
AID: Efficient Prediction of Aggregated Intensity of
Dependency in Large-scale Cloud Systems

Tianyi Yang∗, Jiacheng Shen∗, Yuxin Su∗, Xiao Ling†, Yongqiang Yang†, and Michael R. Lyu∗
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Email: {tyyang, jcshen, yxsu, lyu}@cse.cuhk.edu.hk
†Computing and Networking Innovation Lab, Cloud BU, Huawei

Email: {lingxiao1, yangyongqiang}@huawei.com

Abstract—Service reliability is one of the key challenges that
cloud providers have to deal with. In cloud systems, unplanned
service failures may cause severe cascading impacts on their de-
pendent services, deteriorating customer satisfaction. Predicting
the cascading impacts accurately and efficiently is critical to the
operation and maintenance of cloud systems. Existing approaches
identify whether one service depends on another via distributed
tracing but no prior work focused on discriminating to what
extent the dependency between cloud services is. In this paper,
we survey the outages and the procedure for failure diagnosis in
two cloud providers to motivate the definition of the intensity of
dependency. We define the intensity of dependency between two
services as how much the status of the callee service influences
the caller service. Then we propose AID, the first approach to
predict the intensity of dependencies between cloud services. AID
first generates a set of candidate dependency pairs from the
spans. AID then represents the status of each cloud service with
a multivariate time series aggregated from the spans. With the
representation of services, AID calculates the similarities between
the statuses of the caller and the callee of each candidate pair.
Finally, AID aggregates the similarities to produce a unified value
as the intensity of the dependency. We evaluate AID on the
data collected from an open-source microservice benchmark and
a cloud system in production. The experimental results show
that AID can efficiently and accurately predict the intensity
of dependencies. We further demonstrate the usefulness of our
method in a large-scale commercial cloud system.

Index Terms—cloud computing, software reliability, AIOps,
service dependency

I. INTRODUCTION

Service reliability is one of the key challenges that cloud

providers have to deal with. The common practice nowadays

is developing and deploying small, independent, and loosely

coupled cloud microservices that collectively serve users’

requests. The microservices that serve the same purpose are

called cloud services1. The microservices communicate with

each other through well-defined APIs. Such an architecture

is called microservice architecture [1]. The microservice ar-

chitecture has been widely adopted in cloud systems because

of its reliability and flexibility. Under this architecture, mi-

croservice management frameworks like Kubernetes will be

responsible for managing the life cycles of microservices.

Yuxin Su is the corresponding author.
1For simplicity, in this paper, “cloud service” and “cloud microservice” are

interchangeable when they are used alone.

Developers can focus on the application logic instead of the

bothering tasks of resource management and failure recovery.

Although microservice management frameworks provide

automatic mechanisms for failure recovery, unplanned service

failures may still cause severe cascading effects. For example,

failures of critical services that provide basic request routing

functions will impact the invocation of cloud services, slow

down request processing, and deteriorate customer satisfaction.

Therefore, evaluating the impact of service failures rapidly

and accurately is critical to the operation and maintenance

of cloud systems. Knowing the scope of the impact, reliability

engineers can put more emphasis on services that have greater

impacts on others.

A failed service will only affect services that will invoke

it. In other words, service invocations cause dependencies

between services. Many recent approaches [2], [3] propose

to use the dependencies of services to approximate their

failure impact. All the services and dependencies in a cloud

system collectively construct a directed graph of services,

which is also called a dependency graph. Identifying whether

one service depends on another in cloud systems can be

well solved by industrial tracing frameworks like Dapper and

Jaeger. By using these frameworks, all the invocations between

the caller and callee services can be recorded as traces that are

composed of spans. The attributes about each invocation, like

duration, status, invoked service name, timestamp, etc., are

recorded in each span. Based on the spans, current dependency

detection methods treat the dependency as a binary value

indicating whether one service invokes another or not.

However, modeling the relations of services solely with

binary dependencies is not precise enough. To show the insuffi-

ciency of existing methods, we first conduct an empirical study

on the outages of Amazon Web Service and Huawei Cloud.

We point out that it is inefficient to conduct failure diagnosis

and recovery based on binary dependencies. This is because

the different dependencies of a cloud service impact the cloud

service in different ways. Manual examination of different

dependencies without any priority is inefficient, especially in

cloud systems where the number of dependencies could be

large. Based on this observation, we argue that it will be help-

ful if the dependency can be measured as a continuous value

that indicates the intensity of this dependency. Specifically,

by checking services that are dependent on the failed service

653

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00064

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

85
34

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

with large intensity values, on-call engineers (OCEs) can find

the root cause of a system failure with a higher probability.

By recovering the services that are strongly dependent on the

failed one, the whole system could be restored faster.

To improve the reliability of cloud systems, in this paper, we

propose AID, an end-to-end approach to predict the intensity

of dependencies between cloud microservices for cascading

failure prediction. We first generate a set of candidate depen-

dency pairs from the spans. Then we distribute each span into

different fixed-length bins according to their timestamp and

service name. We calculate the statistics of all spans in each

bin as the Key Performance Indicators (KPIs) for the bin. The

KPIs of one service form a multivariate time series that will

be treated as the representation of the service’s status. For

each candidate dependency pair, we calculate the similarities

between the statuses of the two services in the pair. Finally,

we aggregate the similarities to produce a unified value as the

intensity of the pair.

To show the effectiveness of AID, we evaluate AID on

two datasets. One is a simulated dataset, and the other is an

industrial dataset. For the simulated dataset, we deploy train-

ticket, an open-source microservice benchmark system, simu-

late users’ requests, and collect the traces. For the industrial

dataset, we collect the traces from a production cloud system.

Then we evaluate AID on the datasets and compare its perfor-

mance with several baselines. The experimental results show

that our proposed method can accurately measure the intensity

of dependencies and outperform the baselines. Furthermore,

we showcase the successful usage of our method in a large-

scale production cloud system. In addition, we release both

datasets to facilitate future studies.

The main contributions of this work are highlighted as

follows:

• We propose AID, the first method to quantify the intensity

of dependencies between different services.

• The evaluation results show the effectiveness and effi-

ciency of the proposed method.

• We release a simulated dataset and an industrial dataset

from a production cloud system to facilitate future stud-

ies.

Organization. The remainder of this paper is organized as

follows. Section II provides motivation and background knowl-

edge that underpin our approach. We describe our survey and

empirical study on real outages that motivate the proposed

method in Section III. Section IV elaborates on the method

in detail. Section V introduces the datasets, baselines and

shows the experimental results. Successful use cases of the

proposed method in a production cloud system are demon-

strated in Section VI. We discuss the practical usage, the

perceived limitations, and the possible threats to validity in

Section VII. Section VIII introduces related works. The last

section, Section IX, concludes this paper and lists directions

for future exploration.

II. BACKGROUND

In this section, we briefly describe the service-oriented

architecture of cloud systems and the distributed tracing tools

in cloud systems. Then we present the main techniques, i.e.,

time series similarity analysis, that underpin our approach.

A. The Architecture of Cloud Systems

Modern cloud systems are often constructed from a complex

and large-scale hierarchy of distributed software modules [4].

The common practice nowadays is to develop and deploy these

software modules as cloud microservices that collectively

comprise multiple large cloud services [5]. Microservices are

small, independent, and loosely coupled software modules that

can be deployed independently [1]. Different microservices

serve different responsibilities [6] like user authentication,

resource allocation, virtual network management, billing, etc.

When an external request arrives at the cloud system, the

request will be routed through the system and served by dozens

of different cloud services and microservices. The microser-

vices communicate with each other through well-defined APIs

and, therefore, can be refactored and scaled independently and

dynamically to adapt to incidents like surges of requests and

service failures [7]. Such an architecture is called microservice

architecture [1].

The microservice architecture becomes increasingly popular

due to its high flexibility, reusability, and scalability [8]. It en-

ables agile development and supports polyglot programming,

i.e., microservices developed under different technical stacks

can work together smoothly. However, the loosely coupled

nature of microservices makes it difficult for engineers to

conduct system maintenance. Different microservices in a

large cloud system are usually developed and managed by

separate teams. Each team only has access to their own

services as well as services that are closely related, which

means they only have a local view of the whole system [9].

As a result, the failure diagnosis, fault localization, and

performance debugging in a large cloud system become more

complex than ever [10]–[12]. Despite various fault tolerance

mechanisms introduced by modern cloud systems, it is still

possible for minor anomalies to magnify their impact and

escalate into system outages. As exemplified in Section III-A,

when a cloud service enters an anomalous state and does not

return results in a timely manner, other services that depend

on it will also suffer from the increased request latency. Such

anomalous states can propagate through the service-calling

structure and eventually affect the entire system, resulting in

a degraded user experience or even a service outage.

B. Distributed Tracing

For commercial cloud providers, it is crucial to troubleshoot

and fix the failures in a timely manner because massive

user applications may be affected even by a small service

failure [13]. Distributed tracing is a crucial technique for

gaining insight and observability to cloud systems.

In large-scale cloud systems, a request is usually handled

by multiple chained service invocations. As clues to defective

654

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

Span 0

Span 1 Span 2 Span 3

Span 4 Span 5

ParentID NameSpanID Timestamp Duration …Result

Fig. 1. A trace log with six spans.

services are hidden in the intricate network of services, it

is difficult for even knowledgeable OCEs to keep track of

how a request is processed in the cloud system. Distributed

tracing provides an approach to monitor the execution path

of each request. For chained service invocations, e.g., service

A invokes service B, and service B invokes service C, it

is important to know the status of each service invocation,

including the result, the duration of execution, etc. By adding

hooks to the services and microservices of the cloud system, a

distributed tracing system [14]–[16] can record the contextual

information of each service invocation. Such records are called

span logs, abbreviated as spans. A span represents a logical

unit of execution that is handled by a microservice in a

cloud system. All the spans that serve for the same request

collectively form a directed graph of spans, as illustrated in

Figure 1. Such a directed graph of spans generated by a request

is called a piece of trace log, abbreviated as a trace. A trace

represents an execution path through the cloud system. With a

trace, engineers can track how the request propagates through

the cloud system. Collectively analyzing the traces of the

entire cloud system can help engineers obtain in-depth latency

reports that could assist failure diagnosis, fault localization,

and surface performance degradation in the cloud system.

Span ID e22f30bdbfd09134

Parent Span ID b42a04bf18997d5d

Name ts-preserve-service

Timestamp (μs) 1618589098705000

Duration (μs) 1126

Result SUCCESS

Trace ID c0d17d481f47bdd9

Additional Logs ...

Fig. 2. A span generated by the train-ticket benchmark.

Although the actual implementation of distributed tracing

systems varies a lot, the types of information they record

are similar. For clarity, we formally describe the attributes of

spans as follows. Suppose we have a trace T composed of

spans {s1, s2, ..., sn}, a span si ∈ T contains the following

attributes2:

• sidi : The ID of span si,
• spidi : The ID of the parent span of si,
• stidi : The ID of the trace that si belongs to,

2Other additional contextual information [17] is omitted as we do not use
them in our method.

• sname
i : The name of service/microservice corresponding

to si,
• stsi : The time stamp of si,
• sdi : The duration of execution of si, and

• sri : The result of execution of si.

Figure 2 illustrates a span generated by the

train-ticket benchmark [18]. It means that service

ts-preserve-service was invoked at 04:58 on

April 17, 2020. The duration of execution is 1126 μs, and

the execution result is SUCCESS.

C. Time Series Similarity Analysis

Time series data are ubiquitous. One important task in time

series data mining is to measure the similarity between two

time series. Similar to human intuition, the similarity measure

is usually based on the similarity between the shapes of two

time series [19].

Dynamic time warping (DTW) [20] is a widely-used sim-

ilarity measure when two time series have the same overall

component shapes but are not aligned on the timeline. It

attempts to align two time series along a timeline by distorting

the timeline for one time series so that its converted form is

better aligned with the second time series. DTW was initially

used in speech recognition applications [20] and extended and

optimized by many works [21]–[23].

III. MOTIVATIONS

The research described in this paper is motivated by the

maintenance of a real-world cloud system in production. In

this section, we first survey thirteen publicly known service

outages that severely affected Amazon Web Services (AWS)

from 2011 to 2020. Among the thirteen outages, we identify

five that are related to service dependency and summarized the

consequences of inappropriate management of service depen-

dency. Second, we empirically study the diagnosis records of

five real outages in the cloud system of Huawei Cloud that are

related to inappropriate management of service dependency.

Our study indicates that the information in the traces has not

been used efficiently and current practice heavily relies on the

engineers’ familiarity with the dependencies in the system.

Lastly, we propose to measure the intensity of dependency in

terms of status propagation between dependent cloud services.

We demonstrate the usefulness of the intensity by motivating

examples in real cloud systems.

A. A Survey of the Outages in AWS

Service outages are inevitable in the cloud [24]. In this sec-

tion, we empirically analyzed over 1000 incidents of Huawei

Cloud in 2019 and thirteen publicly known major outages3 of

AWS from 2011 to 2020. Among the incidents of Huawei

Cloud, we found that improper service dependency is the

most frequent reason for failures in Huawei Cloud. Among

the outage summaries of AWS, we also identified that five

3https://aws.amazon.com/premiumsupport/technology/pes/

655

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF AWS OUTAGES RELATED TO SERVICE DEPENDENCY.

Date
Consequences

Cascading Failure Slow Recovery

Apr 21, 2011 �
June 29, 2012 �
Oct 22, 2012 �
Aug 7, 2014 �
Nov, 25 2020 � �

of the outages (38%) are related4 to service dependency. As

shown in Table I, among the five outages that are related to

service dependency, three of them are due to cascading failures

triggered by erroneous upgrades of services. During the failure

recovery, the inappropriate dependencies lead to slow failure

recovery in three outages.

AWS is the worldwide leading cloud provider. It operates

in many regions, each consisting of multiple Availability

Zones (AZs). Each AZ uses separate physical facilities and

independently provides various cloud services [5], including

Steam Data Processing (Kinesis), API Usage Analysis (Cog-

nito), Customer Dashboard (Cloudwatch), Elastic Compute

Cloud (EC2), Relational Database Service (RDS), Elastic Load

Balancing (ELB), and Low-level Block Storage (EBS), etc. For

brevity’s sake, we simplify the dependencies as 1) EC2, RDS,

and ELB all depend on EBS, and 2) Cognito and Cloudwatch

depend on Kinesis5.

The outages on April 21, 2011, and October 22, 2012, are

both caused by erroneous upgrades of EBS. When EBS failed,

the services that depend on EBS, i.e., EC2,ELB, and RDS,

are all affected. The cascading failures resulted in service

disruptions of over 48 hours in the US-East-1 Region of AWS.

The outages on June 29, 2012, and August 7, 2014, are

both triggered by the blackouts. After the blackout, the RDS

and ELB services restarted quickly as expected, but they are

still unable to fully recover because they both depend on EBS

service which, at that time, can not recover simultaneously.

The slow failure recovery incurred by service dependencies

affected the service availability for days in the US-East-1

Region and the EU West-1 Region of AWS. As a follow-up

optimization, ELB service reduced the dependency on EBS

after the outage in 2014.

On November, 25 2020, the erroneous upgrade of Kinesis

lead to its failure, cascadingly causing the failure of Cognito

and Cloudwatch. More severely, during the recovery, AWS

could not notify the customers via the normal way because the

normal customer notification service also relied on Cognito.

Due to the inner mechanism of Kinesis, the recovery of Kinesis

took more than ten hours. Thus the recoveries of Cognito

4The outages are usually caused by various reasons that mutually affect
each other. Service dependency is one of the reasons, so we use the word
“related”.

5The actual dependency relations between these services are complicated.
We omit the details here.

and Cloudwatch were also slowed down. As a follow-up

optimization, Cognito and Cloudwatch services reduced the

dependency on Kinesis after the severe outage.

B. Drawbacks of Current Failure Diagnosis Methods

To gain more knowledge about the procedure of failure

diagnosis in industrial circumstances, we first interviewed en-

gineers in Huawei Cloud6. Then we summarize the procedure

of failure diagnosis, and point out the drawbacks of current

practice in Huawei Cloud.

In Huawei Cloud, the failure diagnosis can be triggered

by two systems, i.e., the customer support system and the

monitoring system. When a customer experiences a service

disruption, the customer can submit a support ticket in the

customer support system. The on-call engineers will distribute

the support ticket to the corresponding engineers responsible

for the service. The monitoring system, on the other hand,

monitors the Key Performance Indicators (KPIs) and the logs

of each service in the cloud system. If the KPIs or the number

of erroneous logs of one service increased abnormally or

reached predefined thresholds, the monitoring system will send

an alert to the corresponding engineers. Upon receiving the

support ticket or alert, engineers start diagnosing the failures.

We summarize the common practice of failure diagnosis

in Huawei Cloud as follows. Suppose the anomalous service

is A, OCEs will first check whether the failure is caused by

the faults of service A (e.g., an erroneous upgrade). If so,

the development team of service A will handle the failure. If

service A is in good condition, OCEs will analyze the status

of all services that A depends on. The status includes the

number of calls, the error rate, etc. If they found the failure

of a service B is likely to cause the failure of service A, then

engineers will continue to investigate service B. Recall that

all the services construct a directed graph where each node

represents a service. The failure diagnosis procedure can be

viewed as a recursive search on the service dependency graph.

The practice works well in small cloud systems that con-

tain tens of cloud services. However, the dependencies in

large-scale cloud systems are much more complicated [10],

making manual failure diagnosis inefficient and difficult for

engineers. Engineers may have trouble identifying the cause

of the failure. In this case, the development teams of all

cloud services have to check whether the failure is caused by

their corresponding services. Sometimes engineers may infer

the possible causes of a failure, but it heavily relies on the

engineer’s familiarity with the dependencies in the system.

In summary, the complex dependency relations in large-scale

cloud systems make failure diagnosis difficult, and current

practice is inefficient and dependent on the human experience.

C. Intensity of Service Dependency

A cloud system is composed of many services. The depen-

dency between two services is caused by one service invoking

the other via predefined APIs. Existing tools [2], [25], [26]

6AWS does not disclose the detailed procedures of failure diagnosis related
to the five outages, so we cannot analyze the aforementioned outages in depth.

656

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The statuses of service A, B and C. A invokes B and C but B has a
greater effect on A.

treat the dependency as a binary relation, i.e., if the caller

service invokes the callee service, then the caller is dependent

on the callee. We suggest that this binary dependency metric

is not fine-grained enough for cloud maintenance. Figure 3

shows the statuses of three services7 A, B, and C in Huawei

Cloud. Service A invokes both service B and service C. Service

B encountered failures. The x-axis represents time in minute.

The y-axes represent the number of invocations per minute,

the average duration of invocations per minute, and the error

rate per minute of A, B, and C. Although service A invokes

service B and service C, it is obvious that the statuses of

B and C influence the status of A in different degrees. The

reason is that the functionalities provided by service A and

B are creating virtual machines, and allocating block storage,

respectively. Creating a virtual machine requires allocating one

or more block storage. Thus, the failure of service B inevitably

affects service A. On the contrary, due to the fault tolerance

mechanism of service A, the failure of service C will not

affect service A a lot. Thus, it is more accurate to say that

the intensity of dependency between service A and service B
is higher than the intensity of dependency between service A
and service C. As can be seen in Figure 3, the similarity of

the statuses reflect the difference in the intensities.

Ideally, if the development team of every cloud microservice

accurately provides the intensity of dependencies for every

dependent services, the failure diagnosis could be accelerated.

OCEs can prioritize the services that exhibit higher intensity

of dependency instead of inspecting all the dependent services

(Section III-B) if they have accurate intensity information.

7For confidentiality reasons, we cannot reveal the names of related services.

However, due to the complexity and the fast-evolving nature of

cloud systems [27], manually maintaining the dependency re-

lations with intensity is very difficult. As a result, OCEs often

struggle in diagnosing failures due to the lack of intensities. In

order to relieve the pressure on OCEs, we propose to predict

the intensity of dependency from the statuses of services.

IV. APPROACH

In this section, we present AID, a framework for predicting

the Aggregated Intensity of service Dependency in large-

scale cloud systems. We first present the overall workflow of

AID. Then we elaborate on each step in detail, i.e., candidate

selection, service status generation, and intensity prediction.

A. Overview

The overall workflow of AID is illustrated in Figure 4. AID

consists of three steps: candidate selection, status generation,

and intensity prediction. Given the raw traces, AID first

generates a set of candidate service pairs (P,C) where service

P directly invokes service C (Section IV-B). The intuition

is that direct service invocation incurs direct dependency to

some degree. Indirect dependencies through the transitivity

of service invocation will be discussed in Section VII-A.

For status generation, we generate the status of all ser-

vices (Section IV-C). The status of one service is composed

of three aspects of dependency, i.e., number of invocations,

duration of invocations, error of invocations. Each aspect of

the service’s status contains one or more Key Performance

Indicators (KPIs), depending on the actual implementation of

the distributed tracing system. A KPI is an aggregated value

of a service status of all the spans of a service in a fixed

time interval, e.g., 1 minute. We use the statistical indicators

of each aggregation as the values of the KPIs. Motivated by

the experience of engineers introduced in Section III-B, we

propose to predict the intensity of service dependencies from

the similarity of the statuses of dependent services. The intu-

ition behind using the similarity of time series is to evaluate

the propagation of service statuses. The intensity prediction

step (Section IV-D) predicts the intensity of dependency by

measuring the similarity between two service’s statuses. The

similarity between two service’s statuses is a normalized and

weighted average of the similarity of all the KPIs of the two

services. We calculate the similarity between two KPIs by a

dynamic status warping algorithm. Finally, AID produces the

dependency graph with intensity.

B. Candidate Selection

In general, direct service invocations can be divided into

two categories, i.e., synchronous invocations and asynchronous

invocations. Modern tracing mechanisms can keep track of

both synchronous and asynchronous invocations [28]. Given

all the raw traces of the cloud system, in this step, we

generate a candidate dependency set Cand. The candi-

date dependency set Cand contains service invocation pairs

(P1, C1), (P2, C2), · · · , (Pn, Cn). Each pair (Pi, Ci) in the

candidate dependency set denotes that the service named

657

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

Raw
Traces

Service Status
Generation

Dependency
Graph with
Intensity

Section IV.C

Section IV.D

Intensity
Prediction

Status Series
of Services

Candidate
Dependency

List

Candidate
Selection

Section IV.B

Fig. 4. The overall workflow of AID.

Pi invokes the service named Ci at least once. Therefore,

service Pi depends on service Ci. This step is to shrink the

search space of possible dependent pairs because the service

invocations indicate direct dependencies.

To generate the candidate dependency set, we need to know

the name of the caller service and the callee service. The name

of callee service is clearly recorded in the span, but the name

of the caller service is not. Hence, we first augment each span s
by adding another attribute spname which denotes the service

name of the parent span. Specifically, the augmentation of

attribute spname is achieved by 1) looking for another span

s′ whose id is the same as spid, and 2) set the name of

s′ as spname. Then we iterate over all the spans and add

(spname, sname) to the candidate dependency set by the union

operation.

For example, assuming the name of services are

the same as the index of spans, the six spans

in Figure 1 will result in a candidate set of {
(Service0,Service1), (Service1, Service4), (Service0,

Service2), (Service0,Service3), (Service3,Service5) } .

C. Service Status Generation

In this step, we generate the status of all cloud services from

the traces. We start by defining the status of a cloud service

(i.e., service status) and then describe the procedure of service

status generation.

Definition of Service Status: A service invocation is com-

posed of three logical components, i.e., the caller service, the

callee service, and the network communication. In particular,

the caller service initiates an invocation to the callee service

via the network. The callee service then processes the invo-

cation, during which it may invoke other services. After the

processing is finished, the callee service will send the result,

e.g., status, to the caller service via the network. Hence, we

could derive three aspects of service invocations: initiation
of invocation, processing, result. As service invocations occur

repeatedly, the three aspects of service invocations can derive

three aspects of service dependency:

• Number of Invocations: The number of invocations from

the caller to the callee,

• Duration of Invocations: The duration of invocations,

• Error of Invocations: The number of successful invoca-

tions from the caller to the callee.

Representation of Service Status: In a cloud system, the

spans record information about every invocation. Intuitively,

the status of a cloud service can be easily obtained from the

spans of that service. Inspired by the common practice in

cloud monitoring [29], we distribute the spans of one service

into many bins according to the spans’ timestamps. Each bin

accepts spans whose timestamp is in a short, fixed-length

period. We denote the length of the short period as τ . For

example, the span shown in Figure 2 will be put in the bin of

ts-preserve-service at time 04:58, April 17 2020. We

can then represent the status of a cloud service in a short

period by the statistical indicators of all the spans in the

corresponding bin.

Formally, given all the spans in the cloud system over a long

period T , we first initiate S×N empty bins of the predefined

size τ . S is the number of microservices. N, determined by
T
τ , is the number of bins. Then we distribute all spans into

different bins according to their timestamp sts and service

name sname. After that, we calculate the following three types

of indicators as the KPIs for each bin.

• invoMt : Total number of invocations (spans) in the bin;

• errMt : Error rate of the bin, i.e., the number of errors

divided by the number of invocations;

• durMt : Averaged duration of all spans in the bin;

where t is the time of the bin and M is the microservice name

of the bin. If a service is not invoked in a particular bin (i.e.,

the corresponding bin is empty), all the KPIs will be zero. In

the end, we get the KPIs of every service M at every period

t. Ordering the bins by t, we get three time series of KPIs for

each cloud service, denoted as invoM , errM , and durM . We

name the time series of server KPIs as status series.

D. Intensity Prediction

In this paper, we define the intensity of dependency between

two services as how much the status of the callee service
influences the status of the caller service. The step of intensity

prediction quantitatively predicts the intensity of dependency

by measuring the similarity between two services’ status

series. Specifically, we calculate the similarity of two different

status series with dynamic status warping and aggregate all the

similarities to get the overall similarity.

1) Dynamic Status Warping: Inspired by the dynamic time

warping algorithm (DTW) [30], we propose the dynamic

status warping (DSW) algorithm (Algorithm 1) to calculate the

658

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Dynamic Status Warping

Input: The status series of caller service and callee

service statusP , statusC ; duration series of

callee durC , estimated round trip time δrtt,
max time drift δd

Output: The similarity between two status series

1 Set the warping window w = max(durC) + δrtt
2 K = length(statusC)
3 N = length(statusP)
4 Initialize the cost matrix C ∈ R

K×N , set the initial

values as +∞
5 C1,1 = (statusP1 − statusC1)

2

6 for i = 2 . . .min(δd,K) do // Initialize the first

column

7 Ci,1 = Ci−1,1 + (statusP1 − statusCi)
2

8 end
9 for j = 2 . . .min(w + δd, N) do // Initialize the first

row

10 C1,j = C1,j−1 + (statusPj − statusC1)
2

11 end
12 for i = 2 . . .K do
13 for j = max(2, i− δd) . . .min(N, i+ w + δd) do
14 Ci,j = min(Ci−1,j−1,Ci−1,j ,Ci,j−1) +

(statusPj − statusCi)
2

15 end
16 end
17 return CK,N

distance between two status series. DSW automatically warps

the time in chronological order to make the two status series

as similar as possible and get the similarity by summing the

cost of warping. It utilizes dynamic programming to calculate

an optimal matching between two status series. Given two

services P , C, and their status series invoP , invoC , errP ,

errC , durP , and durC , the warping from the callee C to the

caller P is specially designed for the cloud environment. The

design considerations include:

Directed warping: Due to the latency of the network and

the time of processing, it takes some time for the status of

the callee service to affect the status of the caller service.

Therefore, different from dynamic time warping, the time

warping of DSW is directed, meaning that the matching from

the callee to the caller can only happen in chronological order.

Adaptive propagation window: In cloud systems, after the

round trip time (δrtt) plus the duration of request processing,

the caller can receive the result of an invocation. Thus, the

size of the directed warping window w is automatically set as

the maximum duration of the callee’s spans plus δrtt.

Time drift: The machine time may drift due to issues with time

synchronization in cloud systems, so we add an undirected

time drift δd to the warping window.

In summary, statusCi can only be matched with one of

[statusPi−δd
, statusPi+w+δd

]. The DSW returns the warping

cost CM,N as the measure of similarity.

TABLE II
DATASET STATISTICS.

Dataset TT Industry9

Microservices 25 192

Spans 17,471,024 About 1.0e10

Strong 18 67

Weak 1 8

2) Similarity Aggregation: For all (Pi, Ci) ∈ Cand, we

calculate similarities between their status series, denoted as

d
(Pi,Ci)
invo , d

(Pi,Ci)
err , and d

(Pi,Ci)
dur . We normalize the similarity

across the whole candidate set with a min-max normalization

with Equation 1, where status ∈ {invo, err, dur}.

d
(Pi,Ci)
status =

d
(Pi,Ci)
status −min(d

(P,C)
status)

max(d
(P,C)
status)−min(d

(P,C)
status)

(1)

The intensity of dependency between Pi and Ci is the

average similarity of all three similarities between their status

series.

I(Pi,Ci) =
1

3

∑
status∈S

d
(Pi,Ci)
status , S = {invo, err, dur} (2)

Finally, we can build the dependency graph with intensity

from the candidate set and the corresponding intensity values.

V. EXPERIMENTS

In this section, we evaluate AID on both a simulated dataset

and an industrial dataset. Particularly, we aim to answer the

following research questions (RQs):

• RQ1. How effective is AID in predicting the intensity of

dependency?

• RQ2. What is the impact of different parameter settings?

• RQ3. What is the impact of different similarity measures?

• RQ4. How efficient is AID?

A. Experimental Setup

1) Dataset: To show the practical effectiveness of AID, we

further conduct experiments on the simulated dataset and an

industrial dataset from the cloud system of Huawei Cloud.

Since there are no existing datasets of trace logs, we deploy

a benchmark microservice system to simulate a real cloud

system. We simulate user requests and collect the generated

trace logs to construct the simulated dataset. We release both

datasets with the paper to facilitate future studies in this field8.

Simulated dataset: For the simulated dataset, we deploy

train-ticket [18], an open-source microservice benchmark, for

data collection. Train-ticket is a web-based ticketing system

with 25 microservices, through which users can search for

8https://github.com/OpsPAI/aid
9We only labeled 75 dependencies that the engineers are familiar with.

659

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

tickets, reserve tickets, and pay for the reserved tickets. An

open-source tracing framework, Jaeger, is used to trace all the

API calls. To generate traces, we develop a request simulator

that simulates normal users’ access to the ticketing system. The

simulator will log in to the system, search for tickets, reserve

a ticket according to the results of the search, and pay for the

ticket. Then we collect the traces from Jaeger and transform

the traces into 17,471,024 spans. The dataset is termed as “TT”

in Table II.

Industrial dataset: Apart from the simulated dataset, we

also collected traces from a region of Huawei Cloud to

evaluate AID. To support tens of millions of users world-

wide, the cloud system of Huawei Cloud contains numerous

cloud services and microservices. The service invocations

are monitored and recorded by an independently developed

distributed tracing system. The complex dependency relations

in the cloud system increase the burden of OCEs. The OCEs

can diagnose problematic microservices timely if the intensity

of dependencies can be automatically detected in real-time. To

evaluate the practical effectiveness of our method, we collected

a 7-day-long trace dataset with 192 microservices in April

2021. The dataset is termed as “Industry” in Table II.

Manual labeling: Since our method is unsupervised, labels

are only for evaluation. Neither of the datasets has labels about

the intensity of dependency, so manual labeling is needed.

We set two candidate labels for the intensity of dependency,

i.e., “strong” and “weak”. Given a candidate dependency pair

(P,C), if the failure of service C will cause the failure of

service P , the intensity between (P,C) should be labeled

“strong”; otherwise it should be labeled “weak”. For the

simulated dataset, two Ph.D. students inspect the source code

of all microservices and label every service dependency inde-

pendently. For the industrial dataset, several senior engineers

are invited to manually label the intensity of dependency. In

both processes, disagreement on labels will be discussed until

consensus is reached. Finally, we convert the “strong” labels

to 1 and the “weak” labels to 0 so that they can be effectively

compared with the computed intensities.

The statistics of the datasets are listed in Table II. “#

Microservices” denotes the number of microservices in the

dataset. “# Spans” denotes the number of spans in the dataset.

“# Strong” and “# Weak” denote the number of dependencies

that are labeled with “strong” or “weak” respectively.

2) Baselines: Since there is no existing work that measures

the intensity of service dependency, we use Pearson correla-

tion coefficient, Spearman correlation coefficient, and Kendall

Rank correlation coefficient as the baseline. Particularly, we

calculate correlation on the status series of a candidate depen-

dency pair (P,C), denoted as corrp
(P,C)
status and corrs

(P,C)
status.

For the baselines, we directly use the implementation from the

Python package scipy. We map the correlation to [0, 1] with

the function f(x) = (x+1)/2. The intensities of dependencies

are then produced in the same way as Equation 2.

3) Evaluation Metrics: We employ Cross Entropy (CE),

Mean Absolute Error (MAE), and Root Mean Squared Error

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON TWO

DATASETS

Dataset Method
Metric

CE MAE RMSE

TT

Pearson 0.6872 0.3305 0.4388

Spearman 0.7512 0.3735 0.4697

Kendall 0.6464 0.3749 0.4577

AID 0.4562 0.3435 0.3859

Industry

Pearson 0.6076 0.4524 0.4563

Spearman 0.6030 0.4501 0.4537

Kendall 0.6258 0.4636 0.4656

AID 0.3270 0.1751 0.3044

(RMSE), as calculated in Equation 3, to evaluate the effec-

tiveness of AID in predicting the intensity of dependency.

CE =
1

N

N∑
i=1

−[yi · log(pi) + (1− yi) · log(1− pi)]

MAE =

∑N
i=1 |yi − pi|

n

RMSE =

√∑N
i=1(yi − pi)2

N

(3)

Specifically, cross entropy calculates the difference between

the probability distributions of the label and the prediction.

Mean absolute error and root mean squared error measures

the absolute and squared error. Lower CE, MAE, and RMSE

values indicate a better prediction.

4) Experimental Environments: We run the experiments on

the simulated dataset on a Linux server with Intel Xeon E5-

2670 CPU @ 2.40GHZ and 128 GB RAM. The experiments

on the industrial dataset run on a Laptop with Intel Core i7

CPU @ 2.60 GHz and 16 GB RAM.

B. RQ1: How effective is AID in predicting the intensity of
dependency?

To study the effectiveness of AID, we compare its perfor-

mance with the baseline models on both the simulated dataset

and the industrial dataset collected from Huawei Cloud. For

the parameters of AID, we set the bin size τ = 1 minute,

the estimated round trip time δrtt = 0. Specially, we set the

max time drift δd = 1 minute for the industrial dataset and

set δd = 0 for the simulated dataset. We do this because the

simulated dataset is deployed in a single server, so the time

drift will not be a problem. In addition, we use moving average

to smoothen the status series for the baselines and our method.

The outputs are scalar values ranging from 0 to 1. A larger

value indicates higher intensity. The overall performance is

shown in Table III, where we mark the smallest loss for each

loss metric and dataset.

660

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

AID achieves the best performance on the industrial dataset

and reduces the loss by 45.8%, 61.1%, and 33.2% in terms

of cross entropy, mean absolute error, and root mean squared

error. On the simulated dataset, AID achieves the best per-

formance in terms of cross entropy and root mean squared

error. Pearson correlation coefficient marginally outperforms

AID on the simulated dataset. The improvement of AID on the

simulated dataset is smaller than that on the industrial dataset.

This is because the benchmark for simulation did incorporate

very few fault tolerance mechanisms, making most of the

dependencies strong. Moreover, since the service invocations

of the TT benchmark are very fast, the statuses of TT’s

services are relatively similar, making simple baselines and

our approach perform similarly.

C. RQ2: What is the impact of different parameter settings?

Fig. 5. Prediction loss under different bin size τ .

Since the estimated round trip time δrtt and the max time

drift δd are minuscule, we only study the impact of the bin size

τ . As the range of time of the simulated dataset is small, we

only study the impact of the bin size τ in the industrial dataset.

In particular, we conduct experiments on with the bin size

τ ∈ [1, 10](minutes), and keep δrtt = 0 and δd = 1 minute.

We did not set larger bin sizes because larger bin sizes result in

more coarse-grained sampling of the service status, which will

add difficulty to the similarity calculation in the subsequent

DSW algorithm.

Figure 5 shows the prediction loss under different bin size τ .

The x-axis denotes the bin size and the y-axis shows the three

loss metrics. The results indicate that the impact of different

bin sizes in a reasonable range is small, but τ = 1 minute
gives the best performance on the industrial dataset.

D. RQ3: What is the impact of different similarity measures?

We further study the impact of different similarity measures

on both datasets. AIDDSW denotes AID that uses the pro-

posed DSW to measure the similarity between status series.

AIDDTW denotes AID that uses the DTW [30] to measure

the similarity. We keep the bin size τ = 1 minute and the

estimated round trip time δrtt = 0 as usual. Similar to previous

experiments, we set the max time drift δd = 1 minute for the

industrial dataset and set δd = 0 for the simulated dataset.

TABLE IV
THE IMPACT OF DIFFERENT SIMILARITY MEASURES

Dataset

/Bin size
Method

Metric

CE MAE RMSE

TT

/1min

AIDDSW 0.4562 0.3435 0.3859

AIDDTW 0.4494 0.3467 0.3832

Industry

/1min

AIDDSW 0.3270 0.1751 0.3044

AIDDTW 0.3584 0.1996 0.3169

Table IV shows the performance of AIDDSW and AIDDTW

on both datasets. On the industrial dataset, the proposed DSW

algorithm improves the performance, but on the simulated

dataset, the performance is almost the same. This is probably

because the duration of spans in the simulated dataset is too

small so that the effect of directed warping is weak. The results

imply that the proposed DSW algorithm works better in real-

world cloud environments.

E. RQ4: How efficient is AID?

The most time-consuming operations are the candidate

selection and service status generation steps because we have

to iterate over all the spans in the cloud system. Theoretically,

the time complexities of the candidate selection and service

status generation steps are O(S), where S is the number of

spans to process in the cloud system. In practice, the industrial

dataset contains about 1.0 × 1010 spans, so we process it

with a distributed computing service in Huawei Cloud. Since

the preprocessing is dynamically scheduled and mixed with

other teams’ tasks, we do not count the time spent on it. For

the intensity prediction step, the time complexity is O(kN2),
where N = T

τ is the number of bins and k is proportional

to the warping window w. In practice, the intensity prediction

step takes 155 seconds on average to process two status series

both with 1440 bins on a laptop. Since the similarity calcula-

tion of different (P,C) pairs are independent, we could easily

parallelize the intensity prediction step to further improve the

time efficiency.

VI. CASE STUDY

In Huawei Cloud, AID has been successfully incorporated

into the dependency management system that serves hundreds

to thousands of cloud services. Figure 6 illustrates the concep-

tual workflow. AID processes trace logs and continuously up-

dates the aggregated intensity in the dependency management

system. The reliability engineers will categorize the intensity

into different levels by referring to both the output of AID

and their domain expertise. Then the dependency management

system will provide reference to the engineers in optimizing

dependencies and mitigating cascading failures.

A. Optimization of Dependencies

In a cloud system, service failures are inevitable, but we can

prevent the failures from affecting other services by optimizing

661

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

Cloud
Services

Dependency
Management

Center

Fault
Injection

Engineers

End User

Intensity
Prediction

(AID)

Manual
Correction

Prevention
/Mitigation
of Failures

Fig. 6. The use case of AID.

improper dependencies. AID assists in the discovery of unnec-

essary strong dependency on critical cloud services. If a critical

cloud service depends on another service with high intensity,

the dependency management system will remind the engineers

to check whether the dependency is necessary. If the depen-

dency is unnecessary, the development team has to reduce the

intensity of the dependency to improve the robustness of the

critical cloud service. Since AID’s deployment, more than ten

unnecessary dependencies of critical cloud services have been

discovered by AID and optimized by the development team.

B. Mitigation of Cascading Failures

AID also assists in the mitigation of cascading failures.

During a cascading failure, AID can provide the latest intensity

of dependency to OCEs, so that they can diagnose service

failures efficiently. In addition, when a cascading failure

occurs, OCEs can limit the traffic to critical cloud services and

recover the dependencies marked as “strong” first. By doing

so, the service disruption can get under control. Once a critical

failure occurs, the manually confirmed “strong” dependencies

will be treated with high priority. We conduct field interviews

with OCEs to collect feedback. Based on the feedback, we

have seen our method shedding light on reducing the impact

of critical failures.

VII. DISCUSSION

A. Practical Usage and Perceived Limitations

1) Indirect Dependencies: In this work, we mainly consid-

ered direct dependencies, which is caused by direct service in-

vocations. The proposed approach does not explicitly consider

indirect dependencies through transitivity of service invocation

because the intensity of indirect dependencies can be easily

inferred from direct dependencies. In practice, the intensity

of indirect dependencies can be inferred by a “cascading

conduction mechanism” that if A intensively depends on B
and B intensively depends on C then A intensively depends on

C. The proposed approach also works well on dependencies

caused by circuit breakers as long as the circuit breakers work

transparently.

2) Extension of Service Status: In this paper, we only derive

three aspects of service invocations, i.e., number of invoca-
tions, duration of invocations, error of invocations. We utilized

them because they are part of the state-of-the-art tracing

system. Other aspects like the content of invocation responses

can also be important to determine status. In practice, cloud

providers can incorporate additional information to extend the

representation of service status in their own implementation

of AID.

3) Limitations on Asynchronous Invocations: Although

modern tracing mechanisms can keep track of asynchronous

invocations, AID may suffer from inaccuracies when dealing

with asynchronous invocations. This is because the max time

drift δd in Algorithm 1 is hard to estimate for asynchronous

service invocations. Furthermore, if the traces of synchronous

and asynchronous invocations are mixed, AID may not work

well since the time drift of synchronous and asynchronous

invocations usually differs a lot. We leave this problem as

future work.

B. Threat to Validity

In this work, we identified the following major threats to

validity.

1) Labeling accuracy: In this paper, we propose to measure

the intensity of service dependency with AID. To evaluate

the practical usage of AID, we conduct experiments on a

simulated dataset and an industrial dataset. As it is a new

relation between cloud services, manual labeling is needed

for the evaluation. The evaluation on the industrial dataset

requires engineers to manually inspect the dependencies and

label the intensity of dependencies. Limited by the experience

of engineers, the label may not be 100% accurate. The

fast evolution of cloud services may also change their fault

tolerance mechanism, resulting in inaccurate labels. However,

the engineers we invited have rich domain knowledge and

are in charge of the architecture design of the cloud system

of Huawei Cloud. They also discuss with each other when

there are disagreements. Moreover, the labeled dependencies

are the core cloud services in Huawei Cloud, so the intensity

of dependencies are stable during the data collection period.

We believe the amount of inaccurate labels is small (if exists).

Most importantly, our method is unsupervised, so inaccurate

labels will not affect the prediction results of the proposed

method.

2) Insufficiency of the simulation: For the evaluation pur-

pose, we deploy an open-source microservice benchmark to

simulate a real cloud system. The benchmark only contains

25 microservices, which is far below the number of cloud

microservices in a real cloud. Additionally, the implementation

of the open-source benchmark did not fully consider the

fault tolerance, resulting in only one weak dependency in the

simulation. Hence, the simulated dataset may not exhibit some

common attributes of a real cloud system. For example, the

proportion of “strong” dependency in the simulated dataset is

twice the proportion of “strong” dependency in the industrial

dataset. However, the insufficiency of the simulation will

not hinder the practical usefulness of AID in the real cloud

system. On the contrary, as we show in Section V, the

proposed method works better on the industrial dataset. The

experimental results on the simulated dataset only confirm the

insufficiency of the simulation.

662

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

VIII. RELATED WORK

A. Cloud Monitoring

Monitoring cloud services properly with low overhead is

the key to provide reliable services. Distributed Tracing, as

a means of monitoring distributed cloud services, has been

widely studied in the literature. All the distributed tracing

approaches can be classified as intrusive tracing and non-

intrusive tracing. Intrusive tracing requires modification to

application code either in run time or at compile time. Google

proposes Dapper [14] to help engineers understand system

behavior and reasoning about performance issues. It reduces

the tracing overhead by sampling and restricting the instru-

mentation number. X-Trace [16] monitors and reconstructs the

whole request path from a client by modifying all the network

protocols and embedding the tracing data to the package

header.

Non-intrusive tracing approaches do not require code mod-

ification and usually have a lower overhead. Normally, these

approaches leverage information like the system runtime logs

and the source code to reconstruct the real event traces. Zhao

et. al. [31] propose lprof to reconstruct the execution flow of

distributed systems using the runtime log of these systems.

lprof conducts static analysis on the call-graph of request

processing code of the system to attribute a log output to a

client request. Chow et. al. [32] also leverage system runtime

logs to conduct performance monitoring and analysis. They

propose ÜberTrace to reconstruct traces from the existing logs,

then use The Mystery Machine to construct a causal model

and conduct analyses. Stitch uses pattern matching on logs to

reconstruct the hierarchical relationship of events in a system.

Pensieve [33] automatically reconstructs a chain of causally

dependent events that leads to a system failure exploiting the

log files and system bytecode.

B. Dependency Mining

Automatically discovering service dependencies is critical to

cloud system administration and maintenance. There are two

major types of dependency mining approaches, i.e., passive

dependency mining and active ones. Passive dependency min-

ing generates service dependency based purely on the runtime

logs or KPIs. Shah et. al. [34] propose to use Recurrent

Neural Networks (RNNs) to analyze and extract dependencies

in KPIs and use the discovered dependencies to identify early

indicators for a given performance metric, analyze lagged

and temporal dependencies, and to improve forecast accuracy.

EIDefrawy et. al. [35] use Transfer Entropy to passively mine

the dependencies. Luo et. al. [25] apply log parsing and

Bayesian decision theory to estimate the direction of depen-

dencies among services. They employ time delay consistency

to reduce false dependencies. Zand et. al. [36] construct a

service correlation graph based on network measures and

extract dependencies using hypothesis-testing. They further

compute an importance metric for network’s components

to facilitate administration. CloudScout [3] employs Pearson

Product-moment Correction Coefficient over machine-level

KPIs such as TCP/UDP connection numbers and CPU uti-

lization to calculate the similarity between different services.

The similarity measure is used to cluster different services

together and to conduct VM consolidation based on the service

clusters. Unlike all these approaches that mostly use physical

machine metrics to infer service dependencies, our method

is designed for the emerging microservice architecture and

utilizes the trace logs that directly record service invocations.

Active dependency mining requires modification to ser-

vices. Ma et. al. propose GMAT [2], which generates service

dependencies in the microservice architecture leveraging the

reflection feature of Java and visualizes the dependencies to

engineers. Rippler [26] extracts the dependencies by randomly

injecting temporal perturbation patterns in request arrival tim-

ings for different services and investigates the propagation of

the patterns. Wang et. al. [37] constructs a service knowledge

graph using real-time measures, operational metadata, and

business features. They propose new metrics to measure the

popularity of services based on their dependencies. Novotny

et. al. [38] focus on mining dependencies on the highly

dynamic mobile networks. They use local monitors to collect

local views of dependencies and generate a global view of

dependency on demand.

IX. CONCLUSION

In this paper, we first conduct a comprehensive empirical

study on the maintenance of AWS and Huawei Cloud. We

identify the inefficiency in failure diagnosis and recovery

with the binary-valued dependencies and define the intensity

of dependency for the first time. To facilitate cloud main-

tenance, we propose AID, the first approach to predict the

intensity of dependencies between cloud microservices. AID

first generates a set of candidate dependency pairs from the

spans. AID then represents the status of each cloud service

with a multivariate time series aggregated from the spans and

calculates the similarities between the statuses of the caller

and callee of each candidate pair. Finally, AID aggregate the

similarities to produce a unified value as the intensity of the

dependency. For the evaluation, we collect and manually label

a new dataset from an open-source microservice benchmark

and evaluate AID on it. Furthermore, we evaluate AID using

the data of Huawei Cloud and showcase the practical usage

of AID. Both the evaluation results and case studies show the

efficiency and effectiveness of AID. In the future, we plan to

incorporate more information from the traces and other service

logs for more accurate predictions.

ACKNOWLEDGMENT

The work was supported by Key-Area Research and

Development Program of Guangdong Province (No.

2020B010165002) and the Research Grants Council of

the Hong Kong Special Administrative Region, China

(CUHK 14210920).

663

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Microsoft, “Microservices architecture style,” 2019. [On-
line]. Available: https://docs.microsoft.com/en-us/azure/architecture/
guide/architecture-styles/microservices

[2] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using service dependency graph to analyze and test microservices,” in
2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 02, 2018, pp. 81–86.

[3] J. Yin, X. Zhao, Y. Tang, C. Zhi, Z. Chen, and Z. Wu, “Cloudscout: A
non-intrusive approach to service dependency discovery,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1271–1284,
2016.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28, Feb 2009.

[5] R. DeFauw, A. Chigani, and N. Harris, “It resilience
within aws cloud, part ii: Architecture and patterns,”
2021. [Online]. Available: https://aws.amazon.com/blogs/architecture/
it-resilience-within-aws-cloud-part-ii-architecture-and-patterns/

[6] D. L. Oppenheimer and D. A. Patterson, “Architecture and dependability
of large-scale internet services,” IEEE Internet Comput., vol. 6, no. 5,
pp. 41–49, 2002.

[7] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in 2015 10th
Computing Colombian Conference (10CCC). IEEE, 2015, pp. 583–590.

[8] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Softw., vol. 33, no. 3, pp. 42–52, 2016.

[9] Y. Wang, G. Li, Z. Wang, Y. Kang, Y. Zhou, H. Zhang, F. Gao, J. Sun,
L. Yang, P. Lee, Z. Xu, P. Zhao, B. Qiao, L. Li, X. Zhang, and Q. Lin,
“Fast outage analysis of large-scale production clouds with service
correlation mining,” in 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE, 2021, pp. 885–896.

[10] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019. ACM, 2019, pp. 19–33.

[11] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID 2018, Washington, DC, USA, May 1-4, 2018.
IEEE Computer Society, 2018, pp. 492–502.

[12] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems,” in 2014 IEEE Conference on Computer
Communications, INFOCOM 2014, Toronto, Canada, April 27 - May
2, 2014. IEEE, 2014, pp. 1887–1895.

[13] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An empirical investigation of incident triage for online
service systems,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 2019,
pp. 111–120.

[14] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale
distributed systems tracing infrastructure,” Google, Inc., Tech. Rep.,
2010. [Online]. Available: https://research.google.com/archive/papers/
dapper-2010-1.pdf

[15] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online
modelling and performance-aware systems,” in 9th Workshop on Hot
Topics in Operating Systems (HotOS IX). USENIX Association, May
2003.

[16] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: A
pervasive network tracing framework,” in 4th Symposium on Networked
Systems Design and Implementation (NSDI 2007), April 11-13, 2007,
Cambridge, Massachusetts, USA, Proceedings. USENIX, 2007.

[17] OpenTracing, “The opentracing semantic specification,” 2021. [Online].
Available: https://opentracing.io/docs/overview/spans/

[18] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Trans. Software Eng.,
vol. 47, no. 2, pp. 243–260, 2021.

[19] A. Fakhrazari and H. Vakilzadian, “A survey on time series data mining,”
in IEEE International Conference on Electro Information Technology,
EIT 2017, Lincoln, NE, USA, May 14-17, 2017. IEEE, 2017, pp. 476–
481.

[20] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE transactions on acoustics, speech,
and signal processing, vol. 26, no. 1, pp. 43–49, 1978.

[21] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series,” in Knowledge Discovery in Databases: Papers
from the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994.
Technical Report WS-94-03. AAAI Press, 1994, pp. 359–370.

[22] V. Niennattrakul and C. A. Ratanamahatana, “On clustering multimedia
time series data using k-means and dynamic time warping,” in 2007
International Conference on Multimedia and Ubiquitous Engineering
(MUE 2007), 26-28 April 2007, Seoul, Korea. IEEE Computer Society,
2007, pp. 733–738.

[23] A. Mueen, H. Hamooni, and T. Estrada, “Time series join on subse-
quence correlation,” in 2014 IEEE International Conference on Data
Mining, ICDM 2014, Shenzhen, China, December 14-17, 2014. IEEE
Computer Society, 2014, pp. 450–459.

[24] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu, Y. Dang, F. Gao, P. Zhao, B. Qiao, Q. Lin, D. Zhang,
and M. R. Lyu, “Towards intelligent incident management: why we need
it and how we make it,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 2020, pp. 1487–1497.

[25] J.-G. Lou, Q. Fu, Y. Wang, and J. Li, “Mining dependency in distributed
systems through unstructured logs analysis,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 1, pp. 91–96, 2010.

[26] A. Zand, G. Vigna, R. Kemmerer, and C. Kruegel, “Rippler: Delay
injection for service dependency detection,” in IEEE INFOCOM 2014-
IEEE Conference on Computer Communications. IEEE, 2014, pp.
2157–2165.

[27] A. B. M. B. Alam, A. Haque, and M. Zulkernine, “CREM: A cloud
reliability evaluation model,” in IEEE Global Communications Confer-
ence, GLOBECOM 2018, Abu Dhabi, United Arab Emirates, December
9-13, 2018. IEEE, 2018, pp. 1–6.

[28] OpenTracing, “Opentracing spring cloud,” 2021. [Online]. Available:
https://github.com/opentracing-contrib/java-spring-cloud

[29] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring:
A survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, 2013.

[30] E. J. Keogh, “Exact indexing of dynamic time warping,” in Proceedings
of 28th International Conference on Very Large Data Bases, VLDB 2002,
Hong Kong, August 20-23, 2002. Morgan Kaufmann, 2002, pp. 406–
417.

[31] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: A non-intrusive request flow profiler for distributed
systems,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, Oct. 2014, pp.
629–644.

[32] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mys-
tery machine: End-to-end performance analysis of large-scale internet
services,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, Oct. 2014, pp.
217–231.

[33] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan, “Pensieve: Non-
intrusive failure reproduction for distributed systems using the event
chaining approach,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 19–33.

[34] S. Y. Shah, Z. Yuan, S. Lu, and P. Zerfos, “Dependency analysis of
cloud applications for performance monitoring using recurrent neural
networks,” in 2017 IEEE International Conference on Big Data (Big
Data). IEEE, 2017, pp. 1534–1543.

[35] K. EIDefrawy, T. Kim, and P. Sylla, “Automated inference of dependen-
cies of network services and applications via transfer entropy,” in 2016
IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), vol. 2. IEEE, 2016, pp. 32–37.

664

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

[36] A. Zand, A. Houmansadr, G. Vigna, R. Kemmerer, and C. Kruegel,
“Know your achilles’ heel: Automatic detection of network critical
services,” in Proceedings of the 31st Annual Computer Security Ap-
plications Conference, 2015, pp. 41–50.

[37] H. Wang, C. Shah, P. Sathaye, A. Nahata, and S. Katariya, “Service
application knowledge graph and dependency system,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshop (ASEW). IEEE, 2019, pp. 134–136.

[38] P. Novotny, B. J. Ko, and A. L. Wolf, “On-demand discovery of software
service dependencies in manets,” IEEE Transactions on Network and
Service Management, vol. 12, no. 2, pp. 278–292, 2015.

665

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

