
STELLAR: Spatial-Temporal Latent Ranking for
Successive Point-of-Interest Recommendation

Shenglin Zhao1,2, Tong Zhao1,2, Haiqin Yang1,2, Michael R. Lyu1,2, Irwin King1,2

1Shenzhen Research Institute
The Chinese University of Hong Kong, Shenzhen, China

2Department of Computer Science & Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{slzhao, tzhao, hqyang, lyu, king}@cse.cuhk.edu.hk

Abstract

Successive point-of-interest (POI) recommendation in
location-based social networks (LBSNs) becomes a sig-
nificant task since it helps users to navigate a number of
candidate POIs and provides the best POI recommendations
based on users’ most recent check-in knowledge. However,
all existing methods for successive POI recommendation
only focus on modeling the correlation between POIs based
on users’ check-in sequences, but ignore an important
fact that successive POI recommendation is a time-subtle
recommendation task. In fact, even with the same previous
check-in information, users would prefer different successive
POIs at different time. To capture the impact of time on
successive POI recommendation, in this paper, we propose
a spatial-temporal latent ranking (STELLAR) method to
explicitly model the interactions among user, POI, and time.
In particular, the proposed STELLAR model is built upon a
ranking-based pairwise tensor factorization framework with
a fine-grained modeling of user-POI, POI-time, and POI-POI
interactions for successive POI recommendation. Moreover,
we propose a new interval-aware weight utility function to
differentiate successive check-ins’ correlations, which breaks
the time interval constraint in prior work. Evaluations on two
real-world datasets demonstrate that the STELLAR model
outperforms state-of-the-art successive POI recommendation
model about 20% in Precision@5 and Recall@5.

Introduction

Location-based social networks (LBSNs) become increas-
ingly popular and provide users a new way to share their
location and experience about point-of-interests (POIs) via
check-in behaviors. To navigate users the most suitable
POIs, POI recommendation methods are developed and play
an important role in LBSN services. POI recommendation
aims to learn users’ preferences based on their check-in
records and then recommend users preferred POIs. Sev-
eral methods are proposed for POI recommendation. Ye
et al. use memory-based methods to recommend POIs (Ye
et al. 2011). Some other researchers (Cheng et al. 2012;
Gao et al. 2013; Lian et al. 2014) turn to model-based meth-
ods to improve the scalability.

Successive POI recommendation, as a natural extension
of general POI recommendation, is recently proposed and
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has attracted great research interest. Different from general
POI recommendation that focuses only on estimating users’
preferences on POIs, successive POI recommendation pro-
vides satisfied recommendations promptly based on users’
most recent checked-in location, which requires not only
the preference modeling from users but also the accurate
correlation analysis between POIs. (Cheng et al. 2013) uti-
lizes a personalized Markov chain and region localization
to solve the problem. (Feng et al. 2015) proposes a person-
alized metric embedding method to model the check-in se-
quences. However, all previous methods ignore to investi-
gate the impact of time on successive POI recommendation.

Successive POI recommendation is a time-subtle recom-
mendation task since at different time, users would prefer
different successive POIs. It is easy to imagine that a user
may go to a restaurant after leaving from office at noon,
while he/she may be more likely to go to a gym when he/she
leaves office at night. However, previous successive POI rec-
ommendation methods only highlight the modeling of corre-
lations between POIs within users’ check-in sequences, but
neglect to model such a time-sensitive property.

In this paper, we try to understand the underlying mech-
anism of how time influences successive POI recommenda-
tion performance. To motivate this work, we first conduct an
empirical analysis on two real world LBSN datasets to ver-
ify that time is an important factor to affect users’ succes-
sive POI check-in behaviors. Based on the analysis, we pro-
pose a spatial-temporal latent ranking (STELLAR) model
to recommend users most possible successive POIs based on
their most recent check-in and the querying time stamp. The
proposed STELLAR model is built upon a ranking-based
pairwise tensor factorization framework with a fine-grained
modeling of user-POI, POI-time, and POI-POI interactions
for successive POI recommendation. To overcome the weak-
nesses of prior latent ranking models(e.g., Tucker Decompo-
sition, Canonical Decomposition, and Pairwise Interaction
Tensor Factorization) that suffer from coupled interaction
on POI feature, we represent each POI by three different
latent feature vectors and model the three kinds of interac-
tions separately. Moreover, the proposed STELLAR method
contains two specific characteristics making it more suitable
for successive POI recommendation: 1) we design a three-
slice time indexing scheme to capture the temporal features
of check-in behavior–periodicity and preference variance;
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2) we introduce an interval-aware weight utility function to
differentiate the correlations of successive check-ins, which
breaks the time interval constraint in prior work.

The contributions of this paper are as follows:
• We propose a time-aware successive POI recommenda-

tion method–the STELLAR model, by considering the
time information. In this model, we employ a new POI
latent feature representation means to resolve the prob-
lem of coupled interaction. Experimental results demon-
strate our STELLAR model outperforms state-of-the-art
successive POI recommendation method.

• We design a three-slice time indexing scheme to represent
the time stamps, which captures the user check-ins spe-
cific characteristics: periodicity and preference variance.
Experimental results show that our model better captures
the temporal effect than state-of-the-art temporal model
for POI recommendation.

• We introduce a new interval-aware weight utility function
to differentiate successive check-ins’ correlations, which
improves the successive POI recommendation accuracy.

Related Work

In this section, we first review the literature of POI recom-
mendation. Then we present the connection of our proposed
model and prior work.

POI recommendation. POI recommendation is an im-
portant task in LBSNs. Ye et al. firstly discuss how to
use memory-based methods to recommend POIs (Ye, Yin,
and Lee 2010; Ye et al. 2011). In order to improve the
memory-based models, advanced techniques are then lever-
aged to capture more information, including social and geo-
graphical influence (Wang, Terrovitis, and Mamoulis 2013;
Zhang and Chow 2013; 2015), temporal effect (Yuan et al.
2013), and sequential check-ins’ influence (Zhang, Chow,
and Li 2014; Zhang and Chow 2015). On the other hand,
model-based methods are proposed for the seek of scala-
bility, most of which base on the latent ranking techniques.
(Cheng et al. 2012) proposes a multi-center Gaussian model
to capture user geographical influence and combines it with
matrix factorization (MF) model (Koren, Bell, and Volin-
sky 2009) to recommend POIs. (Gao et al. 2013) proposes
an MF-based model which captures the temporal effect to
improve performance. (Yang et al. 2013), (Hu and Ester
2014), and (Gao et al. 2015) leverage user comments to im-
prove the POI recommendation system. (Lian et al. 2014)
and (Liu et al. 2014) improve POI recommendation by in-
corporating geographical information in a weighted regular-
ized matrix factorization model. Instead of estimating the
user preference score on POIs, (Cheng et al. 2013) and
(Li et al. 2015) establish ranking models to learn the rec-
ommender system. Other techniques for POI recommen-
dation include generative graphical models, metric learn-
ing techniques, and graph-based method. Readers may re-
fer the papers and references therein (Feng et al. 2015;
Ye, Zhu, and Cheng 2013; Yuan, Cong, and Sun 2014;
Liu et al. 2013; Kurashima et al. 2013; Yin et al. 2013).

Connection to prior work. We focus on successive POI
recommendation in this paper, which recommends POIs on

basis of a user’s most recent check-in. (Cheng et al. 2013)
utilizes the latent ranking model to solve the problem, while
(Feng et al. 2015) employs the metric embedding. Our work
is most related to (Cheng et al. 2013). However, prior work
does not consider the time effect on successive POI rec-
ommendation, which motivates us to propose the STEL-
LAR model. Moreover, we propose a three-slice time in-
dexing scheme to represent the time stamps and introduce
an interval-aware weight utility function to differentiate the
correlations of successive check-ins.

Data Description and Successive

Check-in Analysis

Before we introduce the proposed method, in this section,
we first introduce two real world LBSN datasets used in this
paper and then conduct some empirical analysis on them to
explore the spatial and temporal properties of users’ succes-
sive check-in behaviors.

Data Description

We use two check-in datasets crawled from real world LB-
SNs: one is Foursquare data provided in (Gao, Tang, and
Liu 2012) and the other is Gowalla data (Zhao, King, and
Lyu 2013). Both contain users’ check-in history from Jan-
uary 1, 2011 to July 31, 2011. We filter the POIs checked-in
by less than 5 users and then choose users who check-in
more than 10 times as our samples. After the preprocessing,
the datasets contain the statistical properties as shown in Ta-
ble 1.

Table 1: Statistics of Datasets

Foursquare Gowalla

#users 10,034 3,240
#POIs 16,561 33,578
#check-ins 865,647 556,453
Density 0.0015 0.0028

Successive Check-in Analysis

Now we conduct some empirical analysis to demonstrate the
spatial and temporal properties of users’ successive check-in
behaviors.

Spatial and temporal analysis. Successive check-ins
demonstrate significant spatial and temporal property,
shown in Figure 1. Figure 1(a) and 1(b) show the comple-
mentary cumulative distribution function (CCDF) of inter-
vals and distances in successive check-ins. We verify the
observation in (Cheng et al. 2013) that many successive
check-ins are highly correlated especially in spatial relation:
over 40% and 60% successive check-in behaviors happen
in less than 4 hours since last check-in in Foursquare and
Gowalla respectively; about 90% successive check-ins hap-
pen in less than 32 kilometers (half an hour driving distance)
in Foursquare and Gowalla. Further, we check the CCDF
of distances in successive check-ins that happen beyond 4
hours, shown in Figure 1(c). We observe although being
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(a) CCDF of intervals in succes-
sive check-ins

(b) CCDF of distances in succes-
sive check-ins

(c) CCDF of distances in succes-
sive check-ins beyond 4 hours

(d) Time sensitive analysis of suc-
cessive POI check-ins

Figure 1: Successive check-ins’ spatial-temporal property

weaker the spatial correlations still exist: about 80% suc-
cessive checked-in POIs happen in less than 32 kilometers.
It is not hard to explain the phenomenon: a user always acts
around his/her home or office, so the successive check-in,
even independent with the last check-in, still possibly hap-
pens in the same activity area. Hence, successive checked-
in POIs are generally spatially correlated, while successive
check-ins in shorter interval contain stronger correlation.

Time sensitive analysis. Besides the spatial and temporal
contiguity, we observe that users’ successive check-ins are
time-sensitive behaviors. We count in all users and calculate
(1) the average probability of a previous check-in leading to
the same successive POI at different time (time-insensitive)
and (2) the average probability of a check-in followed by
different successive POIs at different time stamps (time-
sensitive). Figure 1(d) shows the analytical results. We can
obviously find that with different time, given the same pre-
vious POI check-in, users’ successive POI check-ins would
be different. This observation triggers us to incorporate time
impact into successive POI recommendation.

Spatial-Temporal Latent Ranking Model

In this section, we will detail the spatial-temporal latent
ranking (STELLAR) model for successive POI recommen-
dation. We first demonstrate how to index time stamps in our
model. Then we introduce the formulation our STELLAR
model. Finally, we demonstrate how to make the model in-
ference and learn the system.

Time Indexing Scheme

To capture the check-in behavior’s specific temporal char-
acteristics, we design a novel time indexing scheme to
smoothly encode a standard time stamp to a particular time
id. The check-in behavior’s temporal characteristics con-
tain two aspects: (1) Periodicity (Cho, Myers, and Leskovec
2011; Yuan et al. 2013). For example, users always visit
restaurants at noon and bars at night; users check-in POIs
around the office in weekdays but visit malls for shopping in
weekends. (2) Preference variance (Gao et al. 2013). Users’
check-in preferences change with time. In addition, the pref-
erence variance exists in three scales: hours of a day, differ-
ent days of a week, and different months of a year, which is
observed in (Gao et al. 2013) but not modeled. Our proposed

scheme captures the two properties as follows. First, a time
stamp is divided into three slices in terms of month, week-
day type, and hour slot. Next, we split a week into weekday
and weekend and a day into the following four sessions: the
morning session from 6:00 a.m. to 10:59 a.m., the afternoon
and night session from 0:00 a.m. to 2:59 a.m. and 3:00 p.m.
to 11:59 p.m., two transitive sessions that range from 3:00
a.m. to 5:59 a.m. and 11:00 a.m. to 2:59 p.m.. Further, we
use 4 bits to represent the month information, 1 bit to denote
weekday or weekend, and 2 bits to show the hour session. Fi-
nally we convert the binary code into a unique decimal digit
as the time id, where the id is in the range of 0 to 95. Fig-
ure 2 demonstrates the procedure of encoding an exemplary
time stamp, “2011-04-05 18:10:23”.

Figure 2: Time encoding demonstration

Model Formulation

The STELLAR system aims to provide time-aware succes-
sive POI recommendations. The task needs to learn a score
function for a given user u to a candidate POI lc at the time
stamp t given his/her last check-in as a query POI lq , which
is defined as follows:

f(u, lq, t, lc), (1)

where f : U × L × T × L → R maps a four-tuple tensor
to real values. U , L, and T denote the set of users, the set of
POIs, and the set of time ids, respectively. The score value
represents the “successive check-in possibility” of a user to
a candidate POI at the time stamp given the query POI.
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Figure 3: STELLAR model formulation demonstration

We establish a latent ranking framework to learn the score
function, which employs pairwise tensor interactions to rep-
resent the following three key factors affecting users’ check-
in behavior: (1) the preference of a user u to a candidate POI
lc, (2) the temporal effect of time t on a candidate POI lc, and
(3) correlation of the last checked-in POI lq and a candidate
POI lc. Correspondingly, the score value of f(u, lq, t, lc) is
determined by user-POI interaction, time-POI interaction,
and POI-POI interaction together. In this case, a single vec-
tor representation for each POI is not semantically enough
to capture the three different kinds of interactions. There-
fore, we define a 3×d matrix to represent POI latent feature,
where d is the latent space dimension. For each POI, three la-
tent vectors are used to describe the POI-user, POI-time, and
POI-POI interactions respectively. As shown in Figure 3, we
formulate the function f(u, lq, t, lc) as

f(u, lq, t, lc) = L̂T
lc,1Uu + L̂T

lc,2L̂lq,2 + L̂T
lc,3Tt, (2)

where Uu, Tt ∈ Rd are latent vectors of user u and time
t, L̂lc,1, L̂lc,2, L̂lc,3 ∈ Rd are candidate POI lc’s three
d-dimension vectors which correspondingly interact with
users, other POIs, and time labels, and L̂lq,2 is query POI
lq’s latent vector interacting to the candidate POI. Similar
to (Gao et al. 2013; 2015), we set all latent vectors are non-
negative to ensure better performance and real-world ex-
planations on LBSNs for latent features. Further we denote
U ∈ Rd×|U| as the user latent matrix and T ∈ Rd×|T | as
the time latent matrix. In addition, we use L̂, a 3 × d × |L|
tensor, to denote the POI latent factor.

From the observations in Figure 1, we find that successive
POIs in a shorter interval contain a stronger correlation. To
depict this observation, we introduce a weight utility func-
tion to differentiate the strong and weak correlations. The
weight score value is in the range of [0,1], and the function
is non-increasing with the duration of two successive check-
ins. When two successive check-ins happen within a thresh-
old interval, we assume they are highly correlated. Other-
wise the correlation decreases with the increase of the time
interval. In formal, we define the weight utility function as
follows:

w =

{
0.5 + 2

ΔT ΔT ≥ s
1 otherwise

, (3)

where ΔT is the interval of successive check-ins, in unit
of hour; and s is the threshold of differentiating the corre-
lations. In our experiments, s is set as 4 to get best perfor-
mance. The check-in time of query POI lq and current time t
determine the interval ΔT . So we are able to refine the score
function as

f(u, lq, t, lc, w) = L̂T
lc,1Uu +w · L̂T

lc,2L̂lq,2 + L̂T
lc,3Tt, (4)

where w is the weight value to measure the POI-POI inter-
action.

The STELLAR model is proposed to handle the follow-
ing two challenging issues: (1) Disastrous sparsity. Prior
methods learn a model from a tensor with only three tu-
ples. In our formulation, we focus on tuples of four el-
ements, (user, POI, time, POI), which increase the spar-
sity of the tensor significantly. (2) Coupled interaction.
The tuples in previously proposed tensor related methods
are independent. For example, in (Rendle et al. 2009a;
Rendle and Schmidt-Thieme 2010), the tuple includes user,
item, and tag, which are independent. This is easier for up-
dating the models. However, in our constructed tensor, the
tuple includes two POIs coupled in the updating. This makes
the previous tensor decomposition methods unsatisfactory.
Our method represents the POI feature via a matrix and then
models the three kinds of interactions separately. Further,
we simplify the tensor completion problem as a combina-
tion of three low rank matrix factorization problems, which
mitigates the sparsity trouble.

Model Inference and Learning

We make the model inference via learning the ranking order
of successive check-in possibilities. Because we care more
about the ranking order of the candidate POIs rather than
the real values of check-in possibilities when recommend-
ing successive POIs for users. We follow the optimization
criteria used in (Rendle et al. 2009b) and propose a pairwise
ranking-based objective function for the proposed STEL-
LAR model.

We demonstrate the inference procedure following (Ren-
dle et al. 2009b). First we suppose that the scores of
f(u, lq, t, lc) at checked-in POIs are higher than the
unchecked-in counterparts. Then we define the order
lcp >u,lq,t l

c
n, which means at time t, given query POI lq , user
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u visits POI lcp but not lcn. Further we suffice to extract the
set of all pairwise preference constraints

DS := {(u, lq, t, lcp, lcn)|lcp >u,lq,t l
c
n}. (5)

Suppose the tuples in DS are independent of each other, then
to learn the parameters in the score function is to minimize
the negative log likelihood of all the pair orders. Further, we
add a Frobenius norm term to regularize the parameters to
avoid the risk of overfitting. Then the objective function is

O := argmin
Θ

∑
(u,lq,t,lcp,l

c
n)∈DS

− ln(σ(f(u, lq, t, lcp)−

f(u, lq, t, lcn))) + λ||Θ||2F ,
(6)

where σ is the logistic function σ(x) = 1
1+e−x , λ is the

regularization parameter, and Θ denotes the parameter set,
including U , T , and L̂.

We leverage the stochastic gradient decent (SGD) algo-
rithm to learn the objective function for efficacy. Denote
δ = 1 − σ(yu,lq,t,lcp,lcn), then we get the derivative of each
parameter θ ∈ Θ for a tuple (u, lq, t, lcp, l

c
n) as

∂O
∂θ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ · (L̂lcp,1
− L̂lcn,1

) + λ · Uu θ = Uu

−δ · (L̂lcp,3
− L̂lcn,3

) + λ · Tt θ = Tt

−δ · w · (L̂lcp,2 − L̂lcn,2) + λ · L̂lq,2 θ = L̂lq,2

−δ · Uu + λ · L̂lcp,1
θ = L̂lcp,1

−δ · w · L̂lq,2 + λ · L̂lcp,2
θ = L̂lcp,2

−δ · Tt + λ · L̂lcp,3 θ = L̂lcp,3

δ · Uu + λ · L̂lcn,1
θ = L̂lcn,1

δ · w · L̂lq,2 + λ · L̂lcn,2
θ = L̂lcn,2

δ · Tt + λ · L̂lcn,3
θ = L̂lcn,3

.
(7)

To ensure the non-negativity, we project the learned param-
eter to non-negative value. We define the projected operator
P (·) : Rd → Rd as P [xi] = max(0, xi), i = 1, . . . , d. For
each sampled tuple (u, lq, t, lcp, l

c
n) ∈ DS , we update each

parameter θ ∈ Θ through the derivative,

θ ← P (θ − γ
∂O
∂θ

); (8)

where γ is the learning rate. To train the model, we draw
the tuple from DS with bootstrap sampling rule, follow-
ing (Rendle et al. 2009b). Algorithm 1 gives the detailed
procedure to learn the STELLAR model. The convergent
condition is satisfied when the negative log likelihood value
for a fixed sampled tuples does not decrease.

Complexity. Calculating the preference score of a tuple
(u, lq, t, lc) costs O(d), where d is the latent vector dimen-
sion. The updating procedure for each parameter is also in
O(d). Hence training an example (u, lq, t, lc) is in O(k · d),
where k is the number of sampled unchecked POIs. There-
fore, the runtime of training the model is in O(N · k · d),
where N is the number of training examples.

Experiment

We conduct experiments to answer the following questions:
1) how our method performs comparing with state-of-the-art

Algorithm 1 STELLAR model learning algorithm
Input: Training tuples {(ui, l

q
i , ti, l

c
i )}i=1,...,N

Output: U, T, L̂

1: Initialize U, T, L̂
2: repeat
3: Draw (u, lq, t, lcp) uniformly from training tuples
4: For s = 1, · · · , k, k is #sampled unchecked POIs
5: Draw (u, lq, t, lcp, l

c
n) uniformly

6: Update parameters according to Eq. (8)
7: until convergence
8: return U, T, L̂

models? 2) whether our time indexing scheme works well?
3) how the parameters affect the model performance?

Experimental Setting

In this paper, we evaluate our model on two datasets with
statistics shown in Table 1. The system recommends a user
a list of POIs, given his/her last checked-in POI and time
stamp as query. It is equivalent to solve the collaborative re-
trieval task (Weston et al. 2012), treating (query POI, time
id, weight) as query for each user. Following setting in (We-
ston et al. 2012), we extract tuples of (user, query POI, time
id, weight, POI) from all successive check-ins. Here we get
time id from the check-in time stamp via encoding proce-
dure. And the weight value is calculated according to the in-
terval between two successive check-ins through the utility
function in Eq. (3). In order to make our model effective for
future check-ins, we split the tuples into two parts, 80% and
20% according to time sequential order. So we take the first
group of tuples for training and the second group for test.
Finally, we measure different models through Precision@5
and Recall@5, which are general metrics for POI recom-
mendation problem used in prior work (Cheng et al. 2013;
Gao et al. 2013; Ye et al. 2011).

Comparison Methods

Our Methods. We propose three methods: TLAR, SLAR,
and STELLAR. TLAR and SLAR methods are special
cases of STELLAR, which correspondingly only ignore the
POI-POI interaction and time-POI interaction.

Baselines. We compare our proposed model with state-
of-the-art latent ranking models and POI recommendation
methods. Prior work (Lian et al. 2014; Liu et al. 2014) in-
dicates that treating the check-ins as implicit feedback is
better to recommend POIs. Hence we introduce two com-
parative latent ranking methods that model the check-ins as
implicit feedback: WRMF (Hu, Koren, and Volinsky 2008;
Pan et al. 2008) and BPRMF (Rendle et al. 2009b). In addi-
tion, we introduce two state-of-the-art POI recommendation
methods: LRT (Gao et al. 2013) and FPMC-LR (Cheng
et al. 2013). LRT is state-of-the-art model that incorporates
temporal information in a latent ranking model to improve
POI recommendation. FPMC-LR is the state-of-the-art suc-
cessive POI recommendation model.

319



Table 2: Performance Comparison

BPRMF WRMF LRT FPMC−LR TLAR SLAR STELLAR

Gowalla P@5 0.025 0.031 0.033 0.048 0.053 0.050 0.059
R@5 0.020 0.025 0.030 0.167 0.204 0.197 0.226

Foursquare P@5 0.031 0.033 0.061 0.109 0.119 0.114 0.129
R@5 0.027 0.028 0.053 0.347 0.373 0.368 0.425

Experimental Results

In the following, we demonstrate the performance compari-
son. We set latent dimension as 40, and train different mod-
els to get their best performances at appropriate parameters.

Baselines vs. Our Methods. Table 2 shows the experi-
mental results on Foursquare and Gowalla data. We see that:
1) Our proposed model outperforms state-of-the-art latent
ranking methods and POI recommendation models. Com-
pared with state-of-the-art successive POI recommendation
method, STELLAR model gains about 22.9% and 35.3%
improvement for Gowalla, and 18.3% and 22.5% improve-
ment for Foursquare on Precision@5 and Recall@5 . We
observe that all models perform much better on Foursquare
dataset than Gowalla dataset, even though it is sparser. The
reason lies in Foursquare data contain much less POIs. 2)
Our proposed models and FPMC-LR perform much better
than other models, especially at recall measure. The reason
lies in that these models leverage more conditions for each
query. Our models recommend a user POIs given a user’s re-
cent check-in, the specific time stamp, or both; and FPMC-
LR recommends POIs given a user’s recent checked-in POIs.
On the contrary, other three models give general recommen-
dations.

LRT vs. TLAR. The experimental results show that
TLAR outperforms LRT model. Our model depicts the tem-
poral effect with a latent feature, which gets rid of spar-
sity problem suffering in LRT model. Furthermore, since
TLAR is a special case of STELLAR, it means that STEL-
LAR model captures the temporal effect well from the time
stamps.

FPMC-LR vs. SLAR. The experimental results show
that SLAR outperforms FPMC-LR model. It means SLAR
model really improves the recommendation performance by
differentiating the correlations of successive check-ins.

Discussion of Time Indexing Scheme

Our three-slice time indexing scheme effectively captures
the temporal effect in three scales. In order to demonstrate
its efficacy, we ignore one slice to index the time and then
compare their results with our model, shown in Table 3. ‘M’,
‘W’, and ‘D’ represent month, week, and day slice respec-
tively. Our model demonstrates the best performance.

Table 3: Comparison of Different Time Schemes

M+W M+D W+D M+W+D

Gowalla P@5 0.051 0.053 0.054 0.059
R@5 0.207 0.208 0.219 0.226

Foursquare P@5 0.118 0.120 0.121 0.129
R@5 0.371 0.389 0.398 0.425

Parameter Effect

The regularization and latent dimension are important pa-
rameters to learn a latent ranking model. Figure 4 and 5
demonstrate the effect of the parameters on model perfor-
mance. For simplicity, we set the same value for all latent
vectors’ regularizations in the model. The model has best
performance when λ = 0.001. The performance of Stellar
steadily rises with the increase of latent vector dimension.
For the trade-off of performance and computation cost, we
suggest to set dimension d = 40.

(a) Fousquare (b) Gowalla

Figure 4: The effect of regularization

(a) Foursquare (b) Gowalla

Figure 5: The effect of latent dimension

Conclusion and Further Work

In this paper, we study the problem of successive POI rec-
ommendation. Compared with previous work, we show that
successive POI recommendation is a time-subtle recommen-
dation task. To capture the time impact, we first design a
time indexing scheme to smoothly encode time stamps to
particular time ids and then incorporate the time ids into our
proposed STELLAR model. Further, we establish the STEL-
LAR model upon a ranking-based pairwise interaction ten-
sor factorization framework with a fine-grained modeling of
the interactions among time, user, and POI. Experimental
results on two datasets, Foursquare and Gowalla, show that
the STELLAR model outperforms state-of-the-art models.
Our further work may incorporate more information in this
system, e.g., users’ comments and social relations.
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