
Traffic Prediction Based Power Saving in Cellular Networks:
A Machine Learning Method

1Sheng Zhang, 2,3,4Shenglin Zhao, 4Mingxuan Yuan, 4Jia Zeng,
1Jianguo Yao, 2,3Michael R. Lyu, 2,3Irwin King ∗

1Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiaotong University, Shanghai, China
2Shenzhen Key Laboratory of Rich Media Big Data Analytics and Application, Shenzhen Research Institute,

The Chinese University of Hong Kong, Shenzhen, China
3Department of Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong

4Huawei Noah’s Ark Lab, Hong Kong
zhangsheng1730@sjtu.edu.cn,slzhao@cse.cuhk.edu.hk,{yuan.mingxuan,zeng.jia}@huawei.com

jianguo.yao@sjtu.edu.cn,{lyu,king}@cse.cuhk.edu.hk

ABSTRACT
In smart cities, green cellular networks play a crucial role to support
wireless access for numerous devices anywhere and anytime with
efficiency and sustainability. Because base stations (BSes) consume
more than 70% of overall cellular network infrastructure energy,
saving the power consumption of BSes is the key task to build
a green cellular network. Except for low power design of the BS
hardware and software, the traffic-driven BS sleeping operation is
an economical way to improve existing cellular networks, which
can reduce the BS power consumption at low traffic load. However,
prior BS sleeping strategies establish on the static temporal charac-
teristics of traffic load, which ignore the fact that network traffic is
influenced by many factors such as time, human mobility, holiday,
weather, etc. Hence, prior traffic estimation is coarse, and the BS
sleeping strategies cannot apply to the changing network traffic. In
this paper, we exploit a machine learning method to estimate the BS
traffic and propose a BS sleeping strategy based on predicted traf-
fic for power saving in the cellular network. We analyze network
traffic in multi-views: temporal influence, spatial influence, and
event influence. Then, we propose a multi-view ensemble learning
model to predict network traffic load, which learns the traffic in
multi-views and combine the results with ensemble. Furthermore,
we formulate a BS sleeping strategy based on the predicted traffic
load. Finally, we evaluate our traffic prediction algorithm on real
cellular network data. The evaluation shows that our traffic predic-
tion algorithm improves about 40% than state-of-the-art machine
learning methods. Also, we evaluate the proposed BS sleeping strat-
egy, which yields about 10% more energy savings and less device
damage than the competitors in the simulated environment.
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1 INTRODUCTION
The cellular networks play a role of cornerstones in a smart city.
The huge energy consumption in cellular networks encourages to
build a green cellular network due to the economic and ecological
concern [41]. The world’s power consumption of cellular networks
in 2016 is estimated up to 4-5∗1011 Kwh [9, 33]. Hence, even 0.1%
power saving in cellular networks is 4-5∗108 Kwh,which costs about
50million US dollars [39]. In addition, the huge energy consumption
will contribute to a surge in the emission of green house gases and
exacerbate global warming. To address this matter of wallet and
planet, the green cellular network is proposed to reduce energy cost.
To build a green cellular network, the first issue is to enhance the
critical subsystem that dominates the energy consumption, namely
the base station (BS) subsystem. BSes consume more than 70% of
overall infrastructure energy [5, 9, 29]. Hence, power saving for
BSes is an important task for green cellular networks and the smart
city [31, 41].

In addition to low power design of the BS hardware and software,
the traffic-driven BS sleeping strategy is a recent research hot spot to
improve existing cellular networks, which switches the BSes to low
energy consumption mode, namely the “sleep” mode, according to
the traffic patterns [29, 38]. The power consumption of a BS contains
two parts: the functional component that consists of remote radio
units (RRUs), base band units (BBUs), feeder and antenna array,
and the auxiliary component that consists of the cooling system,
power supply, and monitoring system [29]. When the traffic load of
a region is low, we can switch some BSes in the region to the sleep
mode. The original communication requests to the slept BS will be
satisfied by the nearby BS, exerting few delays for users. Such a
BS sleeping strategy is proposed and implemented in [29, 38]. The
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slept BS will save the power consumption and reduce the whole
consumption up to 50% [29, 38].

However, previous work [5, 29, 38] designs the BS sleeping strat-
egy based on the static temporal traffic characteristics. For instance,
Cao et al. [5] assume the traffic patterns of a BS in each day are
similar; Peng et al. [29] consider that the one-week traffic pattern
in BSes keeps the same for each week. In fact, the temporal traf-
fic pattern of a BS is not static. Other factors such as holiday and
special conditions (e.g., rainy days) will affect the traffic pattern.
Hence, we aim to seek a better traffic estimation method, which
will motivate a more efficient power saving strategy.

In this paper, we propose a traffic prediction based power saving
method in cellular networks, which adapts to the dynamic traf-
fic changes. First, we conduct traffic data analysis in multi-views,
showing how the temporal influence, spatial influence, and events
affect the traffic. From the temporal perspective, we demonstrate
the BS data characteristics in three aspects: autocorrelation, trends,
and seasonality. From the spatial perspective, we analyze the nearby
BSes’ data correlations and show how the human mobility affects
the BS traffic. From the event perspective, we illustrate how the
events such as holiday affect the BS traffic. Then, we propose a
multi-view ensemble learning model to predict the BS traffic. In
particular, we (1) propose long and short term SARIMA [4] mod-
els to learn the temporal influence; (2) propose a spreading model
to capture the spatial influence; (3) leverage the decision tree [3]
model to learn the event influence; (4) propose a top-K regression
tree model to learn the historical pattern for capturing the resid-
ual. Furthermore, we employ the random forest to ensemble the
results. Finally, we formulate a BS sleeping strategy based on the
predicted traffic load. Compared with prior work [5, 29], using the
dynamic strategy based on traffic prediction can help us make bet-
ter decisions on cellular infrastructure to reduce cost. We evaluate
our traffic prediction algorithm on real cellular network data and
apply the BS sleeping strategies in a simulated environment. The
evaluation shows that our traffic prediction algorithm improves the
performance by 40% compared with the state-of-the-art prediction
methods and our BS sleeping strategy yields up to 10%more savings
compared with the competitive baselines.

The contributions of this paper are summarized as follows.

(1) We propose a traffic prediction based BS sleeping system.
A recent study [5] proposes a new practical way to sleep
the BSes, which partially shuts down the carriers in BS and
minimizes effects on the quality of service. However, the
strategy in [5] is based on a static traffic temporal character-
istic, which oversimplifies the real scenario. To this end, we
propose a machine learning method to predict the BS traffic
and establish strategies to shut down BS carriers according
to the predicted traffic.

(2) To the best of our knowledge, this is the first work that sys-
tematically analyzes the influential factors for the BS traffic.
Moreover, we propose a multi-view ensemble learning model
for the traffic prediction task. Specifically, we establish appro-
priate models for each view, including temporal influence,
spatial influence, event influence, and residual. Then, we
leverage the random forest to ensemble the results. The eval-
uation on a real data set shows that our proposed method

outperforms state-of-the-art traffic prediction models by 40%
regarding accuracy.

(3) We build a BS sleeping strategy based on the predicted traf-
fic for power saving in cellular networks. In particular, we
take advantage of our accurate prediction result to choose
the best point to sleep the energy-wasting BSes. Unlike the
model proposed in [5], which requires the number of opera-
tions to be under a certain amount, we explicitly make the
trade-off by choosing a suitable measurement of operation
cost, so as to dynamically optimize our total cost under dif-
ferent BS structures. We evaluate our BS sleeping strategy
in a simulated environment. The evaluation shows our BS
sleeping strategy yields up to 10% more energy savings and
less device damage.

2 RELATEDWORK
In this section, we first review the literature of green cellular net-
works. Then, we demonstrate the progress of BS sleeping strategies.
Finally, we show related studies for network traffic prediction.

Green cellular networks. To reduce the green house gas emis-
sions and the operating cost, green cellular networks have become
an important subject in the area of Information and Communi-
cations Technology (ICT) for smart city and green city. Insofar
various approaches are proposed to reduce the energy consump-
tion for green cellular networks, which can be broadly classified
into four categories [38]. The first category aims to improve the
hardware (e.g., power amplifier) energy efficiency [11, 14]. The
second category works on the radio transmission process, phys-
ical or MAC layer, cognitive radio transmission, channel coding,
and resource allocating for signaling [6, 17, 40]. The third cate-
gory works in the direction of reducing the energy consumption
by deploying small cells such as micro, pico, and femto cells to
share the heavy traffic [1, 7, 16]. The fourth category covers the
approach that selectively switches off some resources at low traffic
load hours [2, 5, 23, 29]. The proposed approaches attempt to save
energy by monitoring the traffic load on the network and then de-
cide whether to switch off (i.e., sleep mode) or switch on (i.e., active
mode) certain elements in the cellular network, which can reduce
unnecessary energy consumption at low traffic load. In this paper,
we focus on the fourth category—we propose a traffic prediction
based power saving method in cellular networks.

BS sleeping strategies. Sleeping BSes is an economical oper-
ation to improve the existing cellular networks for power saving.
There are two streams for BS sleeping strategies: Markov Decision
Process (MDP)-based strategy [13, 18, 30] and traffic data-driven
strategy [5, 19, 29, 34]. The MDP-based strategy assumes a distribu-
tion on the arrival, departure or handoff of a user and then yields
a traffic load distribution on each BS. For instance, [18] assumes
the Gamma distribution on the traffic load in BSes. Furthermore, a
state vector is constructed to depict the BS traffic load situations.
The actions space is a binary vector depicting the BS sleep mode.
In addition, a transition probability expresses the state transitive
possibility, and the cost or reward value in the MDP process is used
to measure the energy consumption and quality of service. To solve
the MDP problem, researchers propose a series of reinforcement
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learning method to control the BSes, such as Actor-Critic strat-
egy [18] and Q-learning [13, 30]. Three reasons make the existing
MDP-based strategies hard to use in practice: 1) traffic load in BSes
is more complicated in real scenarios, beyond a presumed distri-
bution; 2) the huge state space results in high complexity; 3) real
cellular networks cannot afford frequent switch-off operations. The
drawbacks in MDP-based strategies inspire the traffic data-driven
strategy. This strategy attempts to analyze the traffic load history
on BSes and predict the traffic load on BSes. Then, the BS controller
can switch off some BSes according to the traffic load using some
heuristic algorithms. The advantages lie in that: 1) the traffic is
estimated based on real data; and 2) the complexity of the control
strategy is low so that it is easy to implement in practice. However,
the traffic prediction in prior work is coarse, and hence the sleeping
strategy cannot adapt to the traffic variance.

Traffic prediction methods. Mobile traffic analysis attracts
much attention with the increase of smart phones[25]. The work
in [36] shows that the traffic demand exhibits spatial and tempo-
ral patterns, which help to predict the traffic load. Previous stud-
ies [28, 36] observe that the traffic at BSes presents a repetitive daily
pattern over different weekdays, namely low demand at night and
high demand during the day. This pattern is further verified in later
work in hourly scale [15, 27]. Although the night and day hours
form two distinct categories with the most different mobile usage
behaviors, the variance among different daytime hours is also no-
ticeable: traffic peaks always appear at day time but the peak time
and the number of peaks vary at different areas [35, 36, 44]. In addi-
tion, researchers in [35, 36] also observe that weekdays and week-
ends yield distinct traffic demands: the traffic load on weekends
are lower than that on the weekdays. In addition to the temporal
pattern of traffic demand, the spatial patterns also exist. Researchers
in [10, 26] observe that nearby regions take the similar average
mobile demands during working days but a huge variability during
weekends. The temporal and spatial regularity of aggregate mobile
traffic can be used to predict the future network load [32]. However,
the observed temporal and spatial characteristics are static, over-
simplifying the traffic prediction task. For instance, although we
observe that the traffic is low at night and high at daytime, there is a
noticeable variance among different days. To capture the temporal
and spatial dynamics, we turn to a machine learning method to pre-
dict the traffic in hourly scale. Machine learning methods have been
used to some similar tasks such as city traffic prediction, business
check-in prediction, and bike demand prediction [12, 20, 42, 43, 45]
and turned out to be successful.

3 PRELIMINARIES
In this section, we first demonstrate the structure of a BS, which
determines how to design a strategy for power saving. Then, we
show the empirical study on BS traffic data, which motivates our
prediction algorithm and the BS sleeping strategy.

3.1 BS Structure
A typical BS in the cellular network, also known as Node B, usually
consists of a communication subsystem and a supporting subsys-
tem. The communication subsystem includes antenna array, RRU,
BBU along with the fiber-optic cable connecting BBU and RRU as

Figure 1: BS structure

illustrated in Figure 1. Each BS may contain several RRUs near the
antennas to provide larger coverage and capacity. BBU is the main
unit, in charge of all the communication functionalities. The sup-
porting subsystem includes the cooling system, the environment
monitor, and other auxiliary devices.

The energy consumption model of each BS is composed of two
categories [29]. One is from the traffic loads transmission, whose
power consumption Pt is linear with the traffic load L, formulated
as Pt = Pα · L + Pβ , where Pα is a coefficient and Pβ is a fixed
consumption for a BS. The variance of Pt comes from the RRU and
BBU components. For example, RRU has to support more active
links if the traffic loads are heavy. The coefficient Pα largely de-
pends on the transmission distance because one BS will cost more
energy to serve the traffic loads from a longer distance. The other
energy consumption Ps comes from the fixed energy consumption,
owing to the supporting subsystem and some communication mod-
ules, especially the cooling system. The consumption Ps mainly
depends on the working environment and is almost invariant to
the traffic loads. The constant power consumption contains Pβ and
Ps , which contributes to the overall power consumption as high as
50 percent [29]. Therefore, our power saving strategy aims to save
the energy at low traffic load.

3.2 Empirical Data Analysis
Our empirical analysis is based on 3G BS traffic data collected from
one of the main operators in a big city in China from Jan. 1, 2016
to Jun. 30, 2016. Following [29], we cluster the BSes into different
grids, also referred as regions 1, according to their geographical
relations to ensure that communication requests can interchange
among different BSes in a region. Then, we analyze the BS traffic
data for each BS region in three aspects: temporal influence, spatial
influence, and event influence. The volume of the traffic is calculated
in the byte.

3.2.1 Temporal Influence. The traffic data is a typical time series.
We focus on three important features: autocorrelation, trend, and
seasonality to analyze the traffic time series data.

First, we analyze the data autocorrelation. We cut one day into
12 intervals to observe the traffic data at each interval of two hours.
Figure 2 shows two typical BS regions’ distribution on each interval.
We observe that two consecutive intervals’ traffic data contain sim-
ilar statistical features: median, mean, and deviation. For instance,
in region 0 and 150, at 8th and 9th intervals, their statistical features

1We alternately use “grid" and “region" in this paper.
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(a) Region 0 (b) Region 150

Figure 2: Autocorrelation demonstration of traffic data

Figure 3: Weekly change trend of traffic data

Figure 4: Weekly and daily pattern of traffic data

are quite similar. It enlightens us on the idea that we can infer the
current interval’s traffic from the last.

Second, we bag the BS regions into 5 groups according to their
locations—group 1, 2, and 3 are in the urban area and group 4 and 5
are in the rural area. Then, we aggregate each week’s traffic data to
see how the traffic data change in a long term, as shown in Figure 3.
We observe that there is a downward trend. This phenomenon may
be caused by the fact that the 4G technology is gradually replacing
the 3G network. We also observe that there is a sharp change during
the third to seventh week, i.e., decrease in group 1, 2, 3 and increase
in group 4, 5, which is attributed to the Chinese Spring Festival.

Last, we analyze the data seasonality from two time scales: day
and week. As shown in Figure 4, the traffic data show periodicity
on day and week. Most of regions take high traffic load in the day
time but low traffic load at night. In addition, the regions in the
urban area take high traffic load on weekdays but low traffic load
on weekends.

(a) Time slot 4 (b) Time slot 5

(c) Time slot 7 (d) Time slot 8

Figure 5: Spatial traffic pattern

3.2.2 Spatial Influence. Spatial influence plays an important
role in the traffic data analysis. Two facts inspire the spatial in-
fluence. First, different regions attract a different number of users.
For instance, the urban central districts attract much more people
than the rural areas. The spatial diversity inspires us to establish
a model for each BS region correspondingly. Second, the human
mobility results in the traffic transferring to nearby regions. We
portrait data at four different time intervals, of region 150 from 8
am to 8 pm, shown in Figure 5. The horizontal axis of Figure 5 is the
total load in the neighborhood at the previous time. It shows that
at the working time, loads of region 150 are correlated with the last
time nearby traffic load. When it comes to rest time, this relation is
not obvious. Most other regions in the urban area also follow this
pattern. This kind of traffic flow resulted from the human mobility
inspires us to capture the spatial influence for BS traffic prediction.

3.2.3 Event Influence. The event influence causes the unusual
traffic change. For instance, in Figure 3, the Chinese Spring Festival
makes the traffic of BS regions in the urban area unusually decrease.
Moreover, we observe events such as holiday, weather, concert,
news will affect the traffic data. In the following, we take the holiday
and weather as examples to analyze the event influence for traffic
load.

Figure 6(a) and 6(b) show how holidays affect the BS traffic
data. Those peaks in Figure 6(a) and their corresponding troughs in
Figure 6(b), respectively, appear in the Spring Festival, Qingming
Festival, Labor Day, etc. We observe that, for regions located in the
rural areas of the city, holiday events are main reasons behind the
peak load. However, these events bring other regions traffic load
to sink. Moreover, these holidays contribute ten percents overall
volatility to the series data.



Traffic Prediction Based Power Saving in Cellular Networks SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

(a) Holidays in rural areas (b) Holidays in urban areas

(c) Weather Impact

Figure 6: Event impact

Figure 6(c) gives details about how the weather affects the BS
traffic data. For region 20 and region 153, rainy conditions cause
nearly 20% drop of traffic load. However, this phenomenon is not
significant in region 56 and 58. Given that different regions response
to different kinds of events vary a lot and the huge impacts of events,
we decide to extract event information and establish event models
for each region.

4 TRAFFIC PREDICTION
In this section, we propose a multi-view ensemble framework to
estimate the traffic data of each BS grid. First, we analyze each
influential factor and establish a model to predict the traffic. Then,
we leverage the random forest model to combine the influences and
yield the final result.

4.1 Learning Temporal Influence
We leverage the SARIMA model [4] to learn the temporal influence:
auto-correlation, trend, and seasonality. The SARIMA model is a
classic time series forecasting model. We assume most regions’ time
series hold a similar time structure. Hence, we entitle every region
with the same SARIMA formulation but set the formulation with
different parameter values. Because the traffic data exhibit season-
ality on different scales: day and week, we propose two SARIMA
models to capture the temporal influence: long-term SARIMA and
short-term SARIMA.

The long-term SARIMA deals with daily-scaled relationships,
treating seasons on the level of week. We sample traffic data at
specific time slot of each day and estimate the traffic at the same
time slot in the future. For example, we sample the traffic data at
the time slot from 8:00 am to 10:00 am of each day, and predict the

traffic data at the time slot from 8:00 am to 10:00 am of one future
day. The Eq. (1) is our long-term SARIMA formula. B is a time back-
shift operator. The seasonal period is set to seven, with AR and MA
parameters both being one for simplicity. The integrated parameter
is set to one to eliminate the trend for the stability concern.

(1 − α1B)︸     ︷︷     ︸
AR

(1 − α2B)︸     ︷︷     ︸
Seasonal-AR

(1 − B)︸ ︷︷ ︸
Diff

(1 − B7)︸   ︷︷   ︸
Seasonal-Diff

yt = (1 + θ1B)︸    ︷︷    ︸
MA

(1 + θ2B7)︸      ︷︷      ︸
Seasonal-MA

et

(1)
The short-term SARIMA tackles hourly-scaled relationships,

treating seasons on the level of day. Comparing with long-term
SARIMA that samples data in the same time slot of each day, the
short-term SARIMA uses all time slots’ data of one day. For the
short-term SARIMA, shown in Eq. (2), we set the parameter to
(3, 1, 3) ∗ (1, 1, 1)12. The AR (3) and MA (3) contains one-quarter of
daily data, which is enough for catching the hour structure of daily
bandwidth load and not too heavy to compute.

(1 − α1B − α2B
2 − α3B

3)︸                          ︷︷                          ︸
AR

(1 − α4B
12)︸        ︷︷        ︸

Seasonal-AR

(1 − B)︸ ︷︷ ︸
Diff

(1 − B12)︸    ︷︷    ︸
Seasonal-Diff

yt

= (1 + θ1B + θ2B2 + θ3B3)︸                         ︷︷                         ︸
MA

(1 + θ4B12)︸       ︷︷       ︸
Seasonal-MA

et
(2)

The reason why we do not combine these two models lies in
different characteristics between intervals. Night slots in sleeping
hours have a little deviation, which largely depend on daily-scaled
data covered by long-term SARIMA. Busy hours such as 8th and 9th
slots are related to previous time slots data covered by short-term
SARIMA. Finally, we ensemble these two models to capture the
temporal influence in the multi-view learning model.

4.2 Learning Spatial Influence
In this section, we propose a spreading model to capture the spatial
influence resulted from the human mobility. We assume that the
human mobility carries the mobile load to flow between BS grids.
Moreover, we assume the traffic data is affected by the traffic of
neighboring BS grids at the last time interval. Hence, we take each
neighboring grid’s load as our features and employ Eq. (3) as our
model formulation. P denotes the decay rate to transform nearby
regions’ load into the target region. Therefore, the traffic yrt of
the target BS region r at time t can be estimated by the linear
combination of decayed nearby BS regions’ traffic and itself at last
time slot,

yrt =
∑

k ∈{r }∪{nearby }
Pkt ∗ ykt−1. (3)

4.3 Learning Event Influence
The key to learning event influence is to discover the events that
may affect the network traffic. In Section 3.2, we have shown that
holiday and weather will affect the network traffic. In addition, we
observe that the hot news and the entertainment event such as
concert affect the network traffic as well. Because the traffic data
collected from the BSes do not contain the event information, we
cannot directly capture the event influence. To resolve this chal-
lenge, we exploit the external information from the Internet to
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Figure 7: Demonstration of event feature

construct the event feature and learn the event influence through a
decision tree regression model since it has turned out being success-
ful to exploit external information to improve a machine learning
task performance [37].

In particular, we establish the event feature from the external
information, shown in Figure 7. For holiday event, we observe that
the span of the holiday is an important factor to affect the traffic
load. We construct a one-dimensional feature to represent the hol-
iday event, which is an integer reflecting the span of the holiday.
For weather event, we employ the crawled information to construct
a six-dimensional feature, including the highest temperature, the
lowest temperature, weather condition (e.g., rainy, sunny, etc.), air
pressure, wind direction, and wind strength. For concert event, we
employ the crawled information to establish a five-dimension fea-
ture, including the number of concert and detailed information (i.e.,
price and the distance to the BS grid) for two kinds of concerts:
the most expensive and the nearest. For news event, we choose
the SINA news as our source to collect the news information re-
ported at each time slot. We use the tf-idf [22] to analyze words in
the news documents and find six words with the highest weights.
Then, we project each word to a 30-dim vector through a Word2Vec
library [24] pre-trained on the whole SINA news data. Plus the
news categories (six options), we obtain a 186-dimension feature
the represent the new event. Based on the constructed event feature,
we employ a decision tree [3] to estimate the traffic load.

4.4 Learning Historical Patterns
We propose a top-K regression tree method to learn the historical
pattern to capture the residual not covered by the proposed models
for temporal influence, spatial influence, and event influence. We
predict each BS grid’s traffic load at time interval t globally using
its local context feature. First, we construct a BS region’s local
context feature X t

c using its previous three time intervals’ load
data and nearby five BS regions’ load data. Next, we calculate the
Pearson correlation to measure the similarity of target BS grid at
t with historical records of all BS regions before time t . Formally,
for the target BS grid дti at time t with local context feature X t

ci ,
its similarity with BS grid дpj at time p (p < t ) with local context
feature Xp

c j can be measured as follows,

Sim(дti ,д
p
j ) =

Cov(X t
ci ,X

p
c j )

σ (X t
ci )σ (X

p
c j )
, (4)

whereCov(·) and σ (·) denote the covariance and standard deviation.
Then, we select the top K historical records of дpj and then con-
catenate their context features Xp

c j and similarity value Sim(дti ,д
p
j )

with original feature X t
ci to construct a new feature. Finally, we

employ a regression tree algorithm [3] to train and predict the BS

Figure 8: Multi-view ensemble learning framework

grid’s traffic load at time interval t . It is important to notice that
we calculate the similarity among all regions so we discover the
historical patterns globally. In addition, j is allowed to equal to i ,
which means we also consider self historical similarity.

4.5 Multi-view Ensemble Learning Model
In this section, we leverage the random forest model to ensemble
results from established multi-view models for the BS traffic. The
random forest model is stable and fast to compute, thus it is wildly
used in the industry. Since our solution space may be complicated,
with every model contributing to traffic load dependent on other
models, we could take advantage of the random forest [21] to decide
feature compositions. The process is shown in Figure 8. First, we
feed every model with its corresponding features to let it learn
its parameters. Next, we view each model as a domain expert and
fetch its prediction value, together with its model features, to let
the forest study every model’s role in the load contribution. Finally,
we ask the random forest for the ultimate prediction result.

5 SLEEPING STRATEGY
BS sleeping strategy aims to shut down some carriers in RRU ac-
cording to the traffic load for power saving. In this paper, the sleep
mode is a general concept for BSes with some power consuming
components off, rather than the specific state with only power on.
The major concern of this sleeping strategy is the trade-off between
the following three factors: the energy saving, operation cost, and
the quality of service. For example, frequently switching on and
off equipment according to the demand, would greatly reduce the
energy cost while providing a more reliable service but sharply
increase the operation cost. Adopting a more conservative strategy
to stabilize the number of on-load devices would decrease destruc-
tive operations but become incapable of meeting the service quality
requirement.

For generality, we estimate the traffic and take actions on each
time interval ∆t , and cut the strategy execution time [0,T ] into N

copies, namely N = ⌈ T∆t ⌉. Then, we give the formal definitions of
three factors explicitly.

Definition 5.1 (Quality of service). Quality of service is used to
measure the communication quality, which can be reflected from the
data missing rate. Formally, the quality of service during time [0,T ]
is measured by the total missing data, Q(T ) = ∑N

k=1
max (Lk−Ck ,0)

Lk
,

where Lk and Ck denote the region load and load capacity at the
k-th interval, respectively.
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Definition 5.2 (Operation cost). Operation cost is used to mea-
sure the device damage resulted from the operations (sleeping or
activating), which can be reflected from the frequency of opera-
tions. Formally, the operation cost during time [0,T ] is measured
by the total operations,W (T ) = F (∑N

k=1 ⌈|
Ck−Ck−1

∆C |⌉), where F (n)
symbols for the accumulation function of device damage after n
operations, Ck denotes load capacity at the k-th interval, and ∆C
denotes the incremental capacity for one operation.

Definition 5.3 (Energy consumption). Energy consumption is the
total consumed power during time [0,T ], formally defined as E(T ) =∑N
k=1 P(min(Ck ,Lk )), where P(·) is the function of energy with the

traffic load, determined by the BS structure shown in Section 3.1.

Based on the definitions, we can establish an optimization model
for the sleeping strategy based on the predicted BS grid traffic.
First, we assume BS energy function P has the form of P(L) =
αL + β ⌈ L

∆C ⌉, where l is the traffic load, ∆C is the incremental
traffic capacity from opening a carrier, and α and β are parameters
modeling how the traffic load and each carrier operation affect the
energy consumption. Further to notice, during the planning time,
we cannot know Lt before hand, so we adopt the predicted value
Mt instead. Next, we consider the quality of service. Because the
operator would not like to receive any quality loss. We assume
there is no missing data,Q(T ) = 0. To fulfill this, we set a threshold
e.g. 99% of the current capacity that once the actual load is beyond
it, we switch on another BS to serve. This can help us to correct
the following prediction, but increase the operation cost due to
false predictions. For the constraint of operation costW (T ), we
observe F (n) can be viewed as the depreciation of fixed asset after
n operations. Hence, by estimating the total operations in the life
time of the device, we get the discounted value to every operation.
Consequently, this brings us the convenience to combineW (T )
and E(T ), because they are under the same measurement of money.
Finally, this gives us Equation 5 and the solution to it, namely
Algorithm 1.

min
N∑
k=0

P(min(Ck ,Mk )) + F (
N∑
k=1

⌈|Ck −Ck−1
∆C

|⌉)

s.t.
N∑
k=0

max(Mk −Ck , 0) = 0

Ck = n∆C,n ∈ N

(5)

6 EXPERIMENTS
In this section, we conduct experiments to evaluate the perfor-
mance of our proposed traffic prediction model and the dynamic
BS sleeping strategy. So our experiments contain two parts: traffic
prediction performance and sleeping strategy comparison. We aim
to answer the following questions. 1) Does the proposed traffic
prediction model perform better than state-of-the-art models? 2)
Does the multi-view learning mechanism improve the prediction?
3) Does the proposed BS sleeping strategy work well?

Algorithm 1: Strategy of Sleeping Device
Data: Predicted LoadM , Current Time Index k , Last Time

Activating Device Number xk−1
Result: Next Time Activating Device Number xk
µ is current cost for each operation;
ShouldOpenk = ⌈M (k∆t )

C ⌉;
xk =max(xk−1, ShouldOpenk );
while xk > max(0, ShouldOpenk ) do

find next time τ when xk ≤ ShouldOpenτ ;
if 2 ∗ µ > β(τ − k) then

xk+ = 1;
break ;

end
xk− = 1 ;

end
return xk

6.1 Prediction Performance
6.1.1 Experimental Setting. We conduct the traffic prediction

experiment on a real data set from one of the main operators in a
big city of China. The data contain the traffic information of all BSes
from Jan. 1, 2016 to Jun. 31 2016. We build our test set on the last
28 days of 181 available data entries. Moreover, the traffic load is
calculated in Gigabyte unit. The time interval for traffic estimation
and BS operation is two hours, and we evaluate the traffic prediction
performance with the averaged root mean square error (ARMSE).
ARMSE is the average RMSE for each region д, defined as follows,

ARMSE =

∑R−1
д=0

√∑N
i=1 |T rue−Predict |2

N

R
, (6)

where N is the number of total intervals and R is the number of
regions.

6.1.2 Model Comparison. In this paper, we propose the multi-
view ensemble learning model (MELM) to predict the BS traffic.
In order to show how each view model affects the traffic, we pro-
pose three models for comparison: MELM (H), MELM (HT), and
MELM (HTS), which capture the “historical patterns", “historical
patterns and temporal influence", and “historical patterns, temporal
influence, and spatial influence", respectively. Moreover, we com-
pare our proposed methods with state-of-the-art statistical time
series forecasting models: VAR and SARIMA [4]. We set their pa-
rameters as VAR(6) and SARIMA(12, 1, 12) ∗ (1, 1, 1)84 for the best
performance. Also, we compare with machine learning based fore-
casting models: HMM [8] and ST-MVL [42].

Table 1 shows the experimental results. We observe that our
proposed models outperform the baselines. MELM (H) performs
better than the baseline methods because the temporal and spatial
information is incorporated into the historical patterns. MELM (H)
could find the right period by choosing the most correlated time

2The improvement is measured over the best baseline—SARIMA.
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Table 1: Prediction Model Performance

Prediction Model ARMSE Improvement 2
ST-MVL 23.79 –
SARIMA 21.85 0
VAR 22.42 –
HMM 24.70 –
MELM (H) 17.18 21%
MELM (HT) 15.91 27%
MELM (HTS) 13.48 38%
MELM 13.20 40%

Figure 9: Catching Periods

Figure 10: Catching Trends

point and notice the sudden change by watching the most related re-
gion traffic, also it can capture the temporal and spatial information
hidden in the holiday pattern.

We also observe MELM (HT) is boosted up by around 8% than
MELM (H)with the help of the temporalmodel. Further,MELM (HTS)
improves MELM (HT) around 15% by capturing the spatial influ-
ence resulted from human mobility. In our experiment, the event
influence only facilitates the performance 2%, because there is no
significant events in our test data (data in June 2016).

In addition, we conduct experiments to show how our models
capture the influence of each view in a traffic time series. Figure 9
shows how the proposed model catches the temporal period of
the traffic data in a selected BS grid. The black line in the figure
separates the training area and testing area. We can see that our
prediction framework can recognize the period information. This
functionality is attributed to the SARIMA model with the appropri-
ate seasonality setting. The appropriate seasonality setting helps
our prediction get higher accuracy.

Figure 11: Exploiting Spatial Relations

Figure 12: Catching Events

Figure 10 shows how the proposed model catches the trend effect
in a selected BS grid. Similar to Figure 9, the black line in the figure
separates the training area and testing area. We can observe our
fitting line follows the downward trend and offers us a decent
prediction, which benefits from the flagged integrated parameter
in the SARIMA model.

Figure 11 shows a two-day-length time series of a selected region.
We can observe that spatial information can improve our prediction
model by correcting the false pulse of the temporal prediction at
2nd, 4th, 6th slots in the prediction days. This correction may follow
the constraints of nearby load.

Figure 12 shows how the proposed model to catch the events,
especially the holiday events in a time series of a selected region.
Similar to Figure 9, the black line in the figure separates the training
area and testing area. We notice that on the 160th day in our test
days, the region met the Dragon Boat Festival, thus incurring high
traffic load. The event view helps the prediction framework notice
this event, and teach it to give a high expectation to coming hours.

6.2 Sleeping Strategy Evaluation
6.2.1 Experimental Setting. We evaluate our sleeping strategy

in a simulated environment because taking actions on real BSes
is not practical. Following [5, 29], we ignore the diversity of BSes
and assume all BSes share the same configuration. Moreover, we
assume the BSes in the same grid can replace each other when
serving user clients.

We set 2100W as BS maximum output and 94.8W as the mini-
mum energy cost only keeping power-on, while the former value is
doubled in its load dependency part compared with [38] to achieve
the maximum coverage in the activation mode according to [29],
and the latter is consistent with the [38]. Therefore, the energy
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Figure 13: Performance comparison with baseline
strategies

Figure 14: Demonstration of performance limit

consumption function with the traffic load L can be denoted as,
p(L) = 1200L+805.2+94.8, while the 805.2 can be interpreted as the
fixed power used in the activation mode. Moreover, the energy cost
is calculated in 1 RMB per Kwh. The capacity of each BS is decided
by its equipment setting, each of them with three sectors, each
sector fitted with two carriers. For each BS, we roughly evaluate it
as 400 thousand RMB. In the strict condition, if every station can
only bear one activating operation and corresponding one sleeping
operation during each day through its ten years life time, we can
distribute its value evenly into every operation cost µ, namely 55
RMB. Notice that, our model cares about the relative value of the
operation cost to the energy saving µ

β , rather than the absolute one
µ, where β is the marginal revenue of turning a base station the
into sleeping mode. The reasonable value of µ

β might be located be-
tween the [5.18, 62.11], where left endpoint symbols for the chance
to sleep BS in each time slot during its ten years life, and the right
symbols for the constraint to sleep BS only once in each day.

6.2.2 Strategy Comparison. We compare our traffic prediction
based strategy with three baseline strategies. The first one is a naive
strategy that keeps all base stations in the activation mode. The
second one named copy yesterday (CY) is using yesterday load as the
prediction value to minimize the energy cost. The third one, copy
yesterday with real load (CYR), is similar with the previous one but
neglects the cap effect by the false prediction, which always uses
the yesterday real load to predict. When the interval is half a day,
the CY strategy is similar to the static strategies in [5, 29]. Without
loss of generality, we compare ou strategy with the proposed three
baselines.

Figure 13 demonstrates the experimental results of different BS
controlling strategies. The total cost contains the energy consump-
tion and the operation cost. Moreover, all cost values in Figure 13
are normalized over the cost of the naive strategy. From the ex-
perimental results, we obtain the following observations. 1) Our
strategy named planmostly performs better than the baseline strate-
gies. When the relative cost ( µβ ) approaches to zero, namely the
operation cost is negligible, the plan strategy achieves the opti-
mization upper bound, 47% power saving over the naive way. The
reason why the plan strategy is worse than CY and CYR when
the operation cost is near zero, is because CY and CYR miss more
load requests compared with our strategy. The number of slots
failing to offer enough capacity of CYR is 24% greater than ours,
while the number of CY is 38% greater than ours. Also, the number
of missing operations to activate the BS to satisfy the demand of
CYR is 42% greater than ours. Therefore, in this case, we consider
our strategy keeps far better service quality at less cost of energy
savings. When we consider the operation cost, the plan strategy
mostly performs much better than CY and CYR, especially when the
relative cost ( µβ ) is larger than 20. 2)We observe CY and CYR nearly
form linear functions, because they both ignore the operation cost,
thus keep a fixed operation number under any conditions. This
explains the result that, when the operation cost is large enough,
their performance will be worse than the naive strategy. Also, the
result that the performance of the CY is better than CYR needs to
be further clarified. Due to the cap effect of CY, once failing to fulfill
the requesting load, it will miss all the load beyond that level so
forth. Hence, its better performance is at the cost of missing more
demanding load.

Moreover, we compare our proposed strategy with another two
extreme strategies shown in Figure 14. The first is the greedy al-
gorithm, which sleeps BSes as many as possible when marginal
energy saving is larger than marginal operation cost. The second
is the best strategy named oracle, assuming we can observe the
real future load. Since they use the same prediction algorithm, the
three strategies obtain the same total cost when the operation cost
approaches zero. When the relative cost ( µβ ) locates near 10, which
our strategy outperforms the greedy one by almost 10%. The greedy
strategy fails to see the coming future load to take a conservative
policy to keep stations activated, while plan exploits future informa-
tion to sleep those unnecessary stations to save energy. These two
strategies also converge since both of them will degenerate into
the naive strategy, when the operation cost is very large. Generally,
our strategy performs near to the oracle strategy with a gap of 5%
in terms of the cost saving, which verifies the effectiveness of our
traffic prediction algorithm.

7 CONCLUSION
In this paper, we propose a traffic prediction based BS power saving
system in cellular networks. First, we partition the BSes of a city
into different grids according to their geographical locations and
service coverage. Next, we use a multi-view learning method to
study the spatial and temporal pattern of each BS time series, and
consider the event and historical influence as well. Then, we employ
the ARMSE as our performance metric to evaluate the traffic predic-
tion algorithm. The experiment shows that our prediction method
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outperforms the best competitor by around 40% in terms of accu-
racy. Moreover, on basis of a dynamic traffic prediction, we design a
sleeping strategy to save the energy consumption by sleeping BSes
at low traffic load. Our strategy explicitly takes the operation cost
into consideration. Finally, we evaluate our strategy in a simulated
environment and the experimental results demonstrate that our
strategy yields more energy savings.
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