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Abstract. We present a self-supervised learning approach to learning
monocular 3D face reconstruction with a pose guidance network (PGN).
First, we unveil the bottleneck of pose estimation in prior parametric
3D face learning methods, and propose to utilize 3D face landmarks
for estimating pose parameters. With our specially designed PGN, our
model can learn from both faces with fully labeled 3D landmarks and
unlimited unlabeled in-the-wild face images. Our network is further aug-
mented with a self-supervised learning scheme, which exploits face geom-
etry information embedded in multiple frames of the same person, to
alleviate the ill-posed nature of regressing 3D face geometry from a sin-
gle image. These three insights yield a single approach that combines the
complementary strengths of parametric model learning and data-driven
learning techniques. We conduct a rigorous evaluation on the challenging
AFLW2000-3D, Florence and FaceWarehouse datasets, and show that
our method outperforms the state-of-the-art for all metrics.

1 Introduction

Monocular 3D face reconstruction with precise geometric details serves as a
foundation to a myriad of computer vision and graphics applications, including
face recognition [1,2], digital avatars [3,4], face manipulation [5,6], etc. However,
this problem is extremely challenging due to its ill-posed nature, as well as
difficulties to acquire accurate 3D face annotations.

Most successful attempts to tackle this problem are built on parametric face
models, which usually contain three sets of parameters: identity, expression,
and pose. The most famous one is 3D Morphable Model (3DMM) [7] and its
variants [5,8–10]. Recently, CNN-based methods that directly learn to regress
the parameters of 3D face models [11–14], achieve state-of-the-art performance.

Are these parameters well disentangled and can they be accurately regressed
by CNNs? To answer this question, we conduct a careful study on the
AFLW2000-3D dataset [15]. Figure 1(a) illustrates our setting. We first train
a neural network that takes an RGB image as input to simultaneously regress
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Fig. 1. Our CNN baseline takes an RGB image as input, and regresses identity, expres-
sion and pose parameters simultaneously. The three sets of parameters are obtained
by minimizing the 3D vertex error. We compute the Normalized Mean Error (NME)
of this face model and denote it as Baseline. Then we replace the predicted identity,
expression, pose parameters with their ground truth, and recompute the NME respec-
tively: With GT Identity, Expression, Pose. As shown in (b), With GT Pose yields
the highest performance gain, and the gain is more significant as the face orientation
degree increases. Our Pose Guidance Network takes advantage of this finding (Sect.
3.2), and greatly reduces the error caused by inaccurate pose parameter regression.

the identity, expression and pose parameters. The Baseline 3DMM model is
obtained by minimizing the 3D vertex error. Then, we independently replace
the predicted identity, expression, and pose parameters with their correspond-
ing ground truth parameters (denoted as GT Identity, GT Expression, and GT
Pose), and recompute the 3D face reconstruction error shown in Fig. 1(b).

Surprisingly, we found that GT Pose yields almost 5 times more performance
gain than its two counterparts. The improvement is even more significant when
the face orientation degree increases. We posit that there are two reasons caus-
ing this result: (1) These three sets of parameters are heavily correlated, and
predicting a bad pose will dominate the identity and expression estimation of
the 3D face model; (2) 3D face annotations are scarce especially for those with
unusual poses.

To address these issues, we propose a pose guidance network (PNG) to isolate
the pose estimation from the original 3DMM parameters regression by estimating
a UV position map [16] for 3D face landmark vertices. Utilizing the predicted 3D
landmarks help to produce more accurate face poses compared to joint param-
eters regression (i.e., Baseline in Fig. 1), and the predicted 3D landmarks also
contain valuable identity and expression information that further refines the
estimation of identity and expression. Moreover, this enables us to learn from
both accurate but limited 3D annotations, and unlimited in-the-wild images
with pseudo 2D landmarks (from off-the-shelf landmark extractor like [17]) to
predict more accurate 3D landmarks. Consequently, with our proposed PGN,
the performance degradation brought by inaccurate pose parameter regression
is significantly mitigated as shown in Fig. 1(b).

To further overcome the scarcity of 3D face annotations, we leverage the read-
ily available in-the-wild videos by introducing a novel set of self-consistency loss
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functions to boost the performance. Given 3D face shapes in multiple frames of
the same subject, we render a new image for each frame by replacing its texture
with that of commonly visible vertices from other images. Then, by forcing the
rendered image to be consistent with the original image in photometric space,
optical flow space and semantic space, our network learns to avoid depth ambi-
guity and predicts better 3D shapes even without explicitly modeling albedo.

We summarize our key contributions as follows:

(1) We propose a PGN to solely predict the 3D landmarks for estimating the
pose parameters based on a careful study (Fig. 1). The PGN effectively
reduces the error compared to directly regressing the pose parameters and
provides informative priors for 3D face reconstruction.

(2) The PGN allows us to utilize both fully annotated 3D landmarks and pseudo
2D landmarks from unlabeled in-the-wild data. This leads to a more accurate
landmark estimator and thus helping better 3D face reconstruction.

(3) Built on a visible texture swapping module, our method explores multi-frame
shape and texture consistency in a self-supervised manner, while carefully
handling the occlusion and illumination change across frames.

(4) Our method shows superior qualitative and quantitative results on ALFW-
2000-3D [15], Florence [18] and FaceWarehouse [19] datasets.

2 Related Work

Most recent 3D face shape models are derived from Blanz and Vetter 3D mor-
phable models (3DMM) [7], which represents 3D faces with linear combina-
tion of PCA-faces from a collection of 3D face scans. To make 3DMM more
representative, Basel Face Model (BFM) [2] improved shape and texture accu-
racy, and FaceWarehouse [19] constructed a set of individual-specific expression
blend-shapes. Our approach is also built on 3DMM—we aim to predict 3DMM
parameters to reconstruct 3D faces from monocular frames.

3D Face Landmark Detection and Reconstruction. 3D face landmark
detection and 3D face reconstruction are closely related. On the one hand, if
the 3DMM parameters can be estimated accurately, face landmark detection
can be greatly improved, especially for the occluded landmarks [15]. Therefore,
several approaches [15,20,21] aligned 3D face by fitting a 3DMM model. On
the other hand, if 3D face landmarks are precisely estimated, it can provide
strong guidance for 3D face reconstruction. Our method goes towards the second
direction—we first estimates 3D face landmarks by regressing UV position map
and then utilizes it to guide 3D face reconstruction.

3D Face Reconstruction from a Single Image. To reconstruct 3D faces
from a single image, prior methods [1,5,22] usually conduct iterative optimiza-
tion methods to fit 3DMM models by leveraging facial landmarks or local fea-
tures e.g., color or edges. However, the convergence of optimization is very sen-
sitive to the initial parameters. Tremendous progress has been made by CNNs
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that directly regress 3DMM parameters [15,23,24]. Jackson et al. [25] directly
regressed the full 3D facial structure via volumetric convolution. Feng et al. [16]
predicted a UV position map to represent the full 3D shape. MMFace [12] jointly
trained a volumetric network and a parameter regression network, where the for-
mer one is employed to refine pose parameters with ICP as a post-processing.
All these three methods need to be trained in a supervised manner, requiring
full 3D face annotations, which are limited at scale [15]. To bypass the limi-
tation of training data, Tewari et al. [26] and Genova et al. [27] proposed to
fit 3DMM models with only unlabeled images. They show that it is possible
to achieve great face reconstruction in an unsupervised manner by minimizing
photometric consistency or facial identity loss. Later, Chang et al. [28] proposed
to regress identity, expression and pose parameters with three independent net-
works. However, due to depth ambiguity, these unsupervised monocular methods
fail to capture precise 3D facial structure. In this paper, we propose to mitigate
the limitation of datasets by utilizing both labeled and unlabeled datasets, and
to learn better facial geometry from multiple frames.

3D Face Reconstruction from Multiple Images. Multiple images of the
same person contain rich information for learning better 3D face reconstruction.
Piotraschke et al. [29] introduced an automated algorithm that selects and com-
bines reconstructions of different facial regions from multiple images into a single
3D face. RingNet [11] considered shape consistency across different images of the
same person, while we focus on face reconstruction from videos, where photo-
metric consistency can be well employed. MVF [14] regressed 3DMM parameters
from multi-view images. However, MVF assumes that the expressions in different
views are the same, therefore its application is restricted to multi-view images.
Our method does not have such constraint and can be applied to both single-view
and multi-view 3D face reconstruction.

The approach that is closest to ours is FML [30], which learns face reconstruc-
tion from monocular videos by ensuring consistent shape and appearance across
frames. However, it only adds multi-frame identity consistency constraints, which
does not fully utilize geometric constraints among different images. Unlike FML,
we do not model albedo to estimate texture parameters, but directly sample
textures from images, swap commonly visible texture and project them onto
different image planes while enforcing photometric and semantic consistency.

3 Method

We illustrate our framework overview in Fig. 2. First, we utilize a shared encoder
to extract semantic feature representations from multiple frames of the same per-
son. Then, an identity regression branch and an expression regression branch are
employed to regress 3DMM face identity and expression parameters (Sect. 3.1)
with the help of our PGN that predicts 3D face landmarks (Sect. 3.2). Finally,
we explore self-consistency (Sect. 3.3) with our newly designed consistency losses
(Sect. 3.4).
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Fig. 2. Framework overview. Our shared encoder extracts semantic feature repre-
sentation from multiple images of the same person. Then, our identity and expression
regression networks regress 3DMM face identity and expression parameters (Sect. 3.1)
with accurate guidance of our PGN that predicts 3D face landmarks (Sect. 3.2). Finally,
We utilize multiple frames (Sect. 3.3) to train our proposed network with a set of self-
consistency loss functions (Sect. 3.4).

3.1 Preliminaries

Let S ∈ R
3N be a 3D face with N vertices, S ∈ R

3N be the mean face geometry,
Bid ∈ R

3N×199 and Bexp ∈ R
3N×29 be PCA basis of identity and expression,

αid ∈ R
199 and αexp ∈ R

29 be the identity and expression parameters. The
classical 3DMM face model [7] can be defined as follows:

S(αid,αexp) = S + Bidαid + Bexpαexp. (1)

Here, we adopt BFM [2] to obtain S and Bid, and expression basis Bexp is
extracted from FaceWareHouse [19]. Then, we employ a perspective projection
model to project a 3D face point s onto an image plane:

v(αid,αexp) =
[
1 0 0
0 1 0

]
· (f · R · s + t) =

[
1 0 0
0 1 0

]
· [

f · R t
] ·

[
s
1

]
, (2)

where v is the projected point on the image plane, f is a scaling factor, R ∈ R
3×3

indicates a rotation matrix, t ∈ R
3 is a translation vector.

However, it is challenging for neural networks to regress identity parameter
αid, expression parameter αexp and pose parameter {f,R, t} together, because
these parameters cannot be easily disentangled and pose parameters turn to
dominate the optimization, making it more difficult to estimate accurate identity
and expression (as discussed in Sect. 1 and illustrated in Fig. 1).

To address this issue, we design a robust landmark-based PGN to obtain the
transformation matrix T =

[
f · R t

]
instead of directly regressing its parame-

ters. Next, we describe our PGN in detail.
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3.2 Pose Guidance Network

To decouple the optimization of pose parameter {f,R, t} with identity parameter
αid and expression parameter αexp, we design a multi-task architecture with two
output branches (shown in Fig. 2). One branch optimizes the traditional 3DMM
identity and expression parameters αid,αexp. The other branch is trained to
estimate a UV position map [16] for 3D face landmarks, which provide key
guidance for pose estimation.

Specifically, Let X be the 3D landmark positions in the face geometry S, and
XUV be the 3D landmarks estimated from our UV position map decoder, we
estimate a transformation matrix T by,

min
T

||T ·
[
X
1

]
− XUV ||2. (3)

Here, T has a closed-form solution:

T = XUV ·
[
X
1

]T

·
( [

X
1

]
·
[
X
1

]T )−1

. (4)

As a result, we convert the estimation of T into the estimation of a UV posi-
tion map for 3D face landmarks rather than regressing T’s parameters. This
disentangles the pose estimation and results in better performance than joint
regression of αid,αexpand {f,R, t}. Another merit of this design is enabling us
to train our network with two types of images: images with 3D landmark anno-
tations and in-the-wild unlabeled images with 2D facial landmarks extracted
by off-the-shelf detectors. During training, we sample one image batch with 3D
landmark labels and another image batch from unlabeled datasets. 3D landmark
loss and 2D landmark loss are minimized for them, respectively. For 3D land-
marks, we calculate the loss across all x, y and z channels of the UV position
map, while for 2D landmark loss, only x and y channels are considered. More
abundant training data leads to more accurate pose estimation, and hence better
face reconstruction.

Note our work is different from PRN [16], which utilizes a CNN to regress
dense UV position maps for all 3D face points. PRN requires dense 3D face labels
which are extremely difficult to obtain. Our network learns directly from sparse
landmark annotations, which are much easier to obtain and more accurate than
the synthetic data derived from facial landmarks.

3.3 Learning from Multiple Frames

The PGN combined with identity and expression parameters regression can
achieve quite accurate 3D face reconstruction, but the estimated 3D mesh lacks
facial details. This is because 3D landmarks can only provide a coarse prediction
of identity and expression. To generate meshes with finer details, we leverage
multi-frame images from monocular videos as input and explore their inherent
complementary information. In contrast to the common perspective that first
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estimates albedo maps and then enforces photometric consistency [30], we pro-
pose a self-consistency framework based on a visible texture swapping scheme.

Every vertex in a 3DMM model has a specific semantic meaning. Given mul-
tiple images with the same identity, we can generate one 3D mesh for every
image. Every corresponding vertex of different meshes share the same semantic
meaning, even though these images are captured with different poses, expres-
sions, lightings, etc. If we sample texture from one image and project it onto the
second image that has different pose and expression, the rendered image should
have the same identity, expression and pose as the second image despite the illu-
mination change. Our multi-image 3D reconstruction is built on this intuition.

More specifically, our method takes multiple frames of the same subject as
input, and estimates the same set of identity parameters for all images, and dif-
ferent expressions and poses (obtained from 3D face landmarks output by our
PGN) for each image. To generate the same identity parameters, we adopt a simi-
lar strategy as [30], which fuses feature representations extracted from the shared
encoders of different images via average pooling (Feature Fusion in Fig. 2). In
this way, we can achieve both single-image and multi-image face reconstruction.

For simplicity, we assume there are two images of the same person as input
(the framework can easily extend to more than two images), denoted as I1 and
I2 respectively. Then, as illustrated on the left side of Fig. 2, we can generate
two 3D meshes with the same identity parameter αid, two different expression
parameters α1

exp,α
2
exp, and pose transformation matrices T1,T2 obtained by

our PGN. After that, we sample two texture maps C1, C2 with Equation 2,
and project the first texture C1 onto the second image I2 with its expression
parameter α2

exp and pose transformation matrix T2 to obtain rendered image
I1→2. Similarly, we can project C2 to I1 to obtain the rendered image I2→1.
Ideally, if there is no illumination change, I2 shall be the same as I1→2 over their
non-occluded facial regions. However, there exists occlusion and illumination
usually changes a lot for different images in real-world scenarios. To this end, we
introduce several strategies to overcome these issues.

Occlusion Handling. We adopt a simple strategy to effectively determine if a
pixel is occluded or non-occluded based on triangle face normal direction. Given
a triangle with three vertices, we can compute its normal n = (nx, ny, nz). If
the normal direction towards outside of the face mesh (i.e., nz > 0), we regard
these three vertices as non-occluded; otherwise they are occluded. According to
this principle, we can compute two visibility maps M1 and M2, where value 1
indicates the vertex is non-occluded and 0 otherwise. A common visibility map
M12 is then defined as:

M12 = M1 � M2, (5)

where value 1 means that the vertex is non-occluded for both 3D meshes.
Considering the occlusion, when projecting C1 onto the second image, we

combine C1 and C2 by

C1→2 = C1 � M12 + C2 � (1 − M12). (6)



Learning 3D Face Reconstruction with a Pose Guidance Network 161

That is, we alleviate the influence of the occlusion by only projecting the com-
monly visible texture from I1 to I2 to generate C1→2, while keeping the original
pixels for the occluded part. In this way, the rendered image I1→2 shall have the
same identity, pose and expression information as I2. The projection from I2 to
I1 can be derived in the same manner.

Illumination Change. The sampled texture is not disentangled to albedo,
lighting, etc. Due to lighting and exposure changes, even if we can estimate
accurate 3D geometry, the rendered texture I1→2 is usually different from I2. To
cope with these issues, we propose three schemes. First, we adopt the Census
Transform [31] from optical flow estimation, which has been shown to be very
robust to illumination change when computing photometric difference (Eq. 9).
Specifically, we apply a 7× 7 census transform and then compute the Hamming
distance between the reference image I2 and the rendered image I1→2. Second,
we employ an optical flow estimator [32] to compute the flow between I2 and
the rendered image I1→2. Since optical flow provides a 2D dense correspondence
constraint, if the face is perfectly aligned, the optical flow between I2 and I1→2

should be zeros for all pixels, so we try to minimize difference, i.e., minimize
the magnitude of optical flow between them (Eq. 10). Third, even though illu-
mination changes, the identity, expression and pose shall be the same for I2 and
I1→2. Therefore, they must share similar semantic feature representation. Since
our shared encoder can extract useful information to predict facial landmarks,
identity and expression parameters, we use it as a semantic feature extractor
and compare the feature difference between I2 and I1→2 (Eq. 11).

3.4 Training Loss

To train our network for accurate 3D face reconstruction, we define a set of
self-consistency loss functions, and minimize the following combination:

L = Ll + Lp + Lf + Ls + Lr. (7)

Each loss term is defined in detail as follows. Note that for simplicity, we only
describe these loss terms regarding projecting I1 to I2 (i.e., I1→2) and the other
way around (I2→1) can be defined similarly.

Sparse Landmark Loss. Our landmark loss measures the difference between
the landmarks of transformed face geometry T · X and the prediction of PGN
XUV :

Ll = λl

∑
|T · X − XUV | (8)

This is the core guidance loss, which is trained with both 3D and 2D landmarks.

Photometric Consistency Loss. Photometric loss measures the difference
between the target image and the rendered image over those visible regions.
We can obtain the visible mask M2d on the image plane with differentiable
mesh render [27]. Note that M2d is different from the vertex visibility map M ,
where the former denotes whether the pixel is occluded on the image plane,



162 P. Liu et al.

and the latter denotes whether the vertex in 3D mesh is occluded. Besides,
considering that most of the face regions have very similar color, we apply a
weighted mask W to the loss function, where we emphasize eye, nose, and mouth
regions with a larger weight of 5, while the weight is 1 for other face regions [16].
The photometric loss then writes:

Lp = λp

∑
Hamming|Census(I2) − Census(I1→2)| � M2d

2 � W∑
M2d

2 � W
, (9)

where Census represents the census transform, Hamming denotes Hamming dis-
tance, and M2d

2 is the corresponding visibility mask.

Flow Consistency Loss. We use optical flow to describe the dense correspon-
dence between the target image and the rendered image, then the magnitude of
optical flow is minimized to ensure the visual consistency between two images:

Lf = λf

∑
|w(I2, I1→2)| � W/

∑
W, (10)

where w is the optical flow computed from [32] and the same weighted mask W
is applied as in the photometric consistency loss.

Semantic Consistency Loss. Photometric loss and 2D correspondence loss
may break when the illumination between two images changes drastically. How-
ever, despite the illumination changes, I2 and I1→2 should share the same seman-
tic feature representation, as the target image and the rendered image share the
same identity, expression and pose. To this end, we minimize the cosine distance
between our semantic feature embeddings:

Ls = λs − λs <
F (I2)

||F (I2)||2 ,
F (I1→2)

||F (I1→2)||2 >, (11)

where F denotes our shared feature encoder. Unlike existing approaches
(e.g., [27]) which align semantic features in a pre-trained face recognition net-
work, we simply minimize the feature distance from our learned shared encoder.
We find that this speeds up our training process and empirically works better.

Regularization Loss. Finally, we add a regularization loss to identity and
expression parameters to avoid over-fitting:

Lr = λr

199∑
i=1

|αid(i)
σid(i)

| +
λr

2

29∑
i=1

|αexp(i)
σexp(i)

|, (12)

where σid and σexp represent the standard deviation of αid and αexp.

4 Experimental Evaluation

Training Datasets. To train the shared encoder and PGN, we utilize two
types of datasets: synthetic dataset with pseudo 3D annotations and in-the-wild
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(a) 2D NME on AFLW2000-3D dataset

Method
NME68

2d

0 to 30 30 to 60 60 to 90 Mean
SDM[33] 3.67 4.94 9.67 6.12
3DDFA [15] 3.78 4.54 7.93 5.42
3DDFA + SDM [15] 3.43 4.24 7.17 4.94
Yu et al. [34] 3.62 6.06 9.56 -
3DSTN[35] 3.15 4.33 5.98 4.49
DeFA[20] - - - 4.50
Face2Face [5] 3.22 8.79 19.7 10.5
3DFAN [17] 2.77 3.48 4.61 3.62
PRN [16] 2.75 3.51 4.61 3.62
ExpNet [13] 4.01 5.46 6.23 5.23
MMFace-PMN [12] 5.05 6.23 7.05 6.11
MMFace-ICP-128 [12] 2.61 3.65 4.43 3.56
Ours (PGN) 2.49 3.30 4.24 3.34
Ours (3DMM) 2.53 3.32 4.21 3.36

(b) 3D NME on AFLW2000-3D dataset
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Fig. 3. Performance comparison on AFLW2000-3D. (a) 2D landmarks. The
NME (%) for 68 2D landmarks with different face orientation along the Y-axis are
reported. (b) 3D face reconstruction. X-axis denotes the NME normalized by
outer interocular distance, the Y-axis denotes the percentage of images. Following [16],
around 45k points are used for evaluation.

datasets. For synthetic dataset, we choose 300W-LP [15], which contains 60k syn-
thetic images with fitted 3DMM parameters. These images are synthesized from
around 4k face images with face profiling synthetic method [36]. To enable more
robust 3D face landmark detection, we choose a corpus of in-the-wild datasets,
including Menpo [37], CelebA [38], 300-VW [39] and Multi-PIE [40] with their
68 2D landmarks automatically extracted by [17].

To train identity and expression regression networks with our proposed self-
consistency losses, we utilize 300-VW [39] and Multi-PIE [40], where the former
contains monocular videos, and the latter contains faces images of the same
identity under different lightings, poses, expressions and scenes.

Evaluation Datasets and Metrics. We evaluate our model on AFLW-2000-
3D [15], Florence [18] and FaceWarehouse [19] datasets. AFLW-2000-3D contains
the first 2000 images from AFLW [41], which is annotated with fitted 3DMM
parameters and 68 3D landmarks in the same way as 300W-LP. We evaluate
face landmark detection performance and 3D face reconstruction performance
on this dataset, which is measured by Normalized Mean Error (NME). Florence
dataset contains 53 subjects with ground truth 3D scans, where each subject
contains three corresponding videos: “Indoor-Cooperative”, “PTZ-Indoor” and
“PIZ-Outdoor”. We report Point-to-Plane Distance to evaluate 3D shape recon-
struction performance. The Florence dataset only contains 3D scans with the
neutral expression, which can only be used to evaluate the performance of shape
reconstruction. To evaluate the expression part, we further evaluate our method
on the FaceWarehouse dataset. Following previous work [26,30,42,43], we use
a subset with 180 meshes (9 identities and 20 expressions each) and report
per-vertex error. Florence and FaceWarehouse are also employed to verify the
effectiveness of our proposed multi-frame consistency scheme.
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Table 1. Comparison of mean point-to-
plane error on the Florence dataset.

Method Indoor-Cooperative PTZ-Indoor
Mean Std Mean Std

Tran et al. [24] 1.443 0.292 1.471 0.290
Tran et al.+ pool 1.397 0.290 1.381 0.322
Tran et al.+ [29] 1.382 0.272 1.430 0.306
MoFA [26] 1.405 0.306 1.306 0.261
MoFA + pool 1.370 0.321 1.286 0.266
MoFA + [29] 1.363 0.326 1.293 0.276
Genova et al. [27] 1.405 0.339 1.271 0.293
Genova et al.+ pool 1.372 0.353 1.260 0.310
Genova et al.+ [29] 1.360 0.346 1.246 0.302
MVF [14] - pretrain 1.266 0.297 1.252 0.285
MVF [14] 1.220 0.247 1.228 0.236
Ours 1.122 0.219 1.161 0.224

Training Details. The face regions
are cropped according to either
pseudo 3D face landmarks or detected
2D facial landmarks [17]. Then
the cropped images are resized to
256 × 256 as input. The shared
encoder and PGN structures are the
same as PRN [16]. For PGN, another
option is using fully connected lay-
ers to regress sparse 3D landmarks,
which can reduce a lot of computation
with slightly decreased performance.
The identity and expression regres-
sion networks take the encoder output
as input, followed by one convolutional layer, one average pooling layer and three
fully-connected layers.

Our whole training procedure contains 3 steps: (1) We first train the shared
encoder and PGN. We randomly sample one batch images from 300W-LP and
another batch from in-the-wild datasets, then employ 3D landmark and 2D land-
mark supervision respectively. We set batch size to 16 and train the network for
600k iterations. After that, both the shared encoder and PGN parameters are
fixed. (2) For identity and expression regression networks, we first pre-train them
with only one image for each identity as input using Ll and Lr for 400k iterations.
This results in a coarse estimation and speeds up the convergence for training
with multiple images. (3) Finally, we sequentially choose 2 and 4 images for each
identity as input and train for another 400k iterations by minimizing Eq. (7).
The balance weights for loss terms are set to λl = 1, λp = 0.2, λf = 0.2, λs = 10,
λr = 1. Due to the memory consumption brought by rendering and optical flow
estimation, we reduce the batch size to 4 for multi-image input. All 3 steps are
trained using Adam [44] optimizer with an initial learning rate of 10−4. Learning
rate decays half after 100k iterations.

3D Face Alignment Results. Figure 3(a) shows the 68 facial landmark detec-
tion performance on AFLW2000-3D dataset [15]. By training with a large corpus
of unlabeled in-the-wild data, our model greatly improves over previous state-
of-the-art 3D face alignment methods (e.g. PRN [16], MMFace [12]) that heavily
rely on 3D annotations. Our method achieves the best performance without any
post-processing such as the ICP used in MMFace. Moreover, our PGN is robust.
We can fix it and directly use its output as ground truth of 3D landmarks to
guide the learning of 3D face reconstruction.

Quantitative 3D Face Reconstruction Results. We evaluate 3D face recon-
struction performance with NME on AFLW2000-3D, Point-to-Plane error on
Florence and Per-vertex error on FaceWarehouse. Thanks to the robustness of
our PGN, we can directly fix it and obtain accurate pose estimation without
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Table 2. Per-vertex geometric error (measured in mm) on FaceWarehouse
dataset. PGN denotes PGN. Our approach obtains the lowest error, outperforming
the best prior art [30] by 7.5%.

Method MoFA

[26]

Inversefacenet

[45]

Tewari et

al. [42]

FML [30] Ours

Single-

Frame

without

PGN

Ours

Single-

Frame

with

PGN

Ours

Multi-

Frame

without

PGN

Ours

Multi-

Frame

with

PGN

Error 2.19 2.11 2.03 2.01 2.18 2.09 1.98 1.86

further learning. Then, our model can focus more on shape and expression esti-
mation. As shown in Fig. 3(b), we achieve the best results on the AFLW2000-3D
dataset, reducing NME3d of previous state-of-the-art from 3.96 to 3.31, with
16.4% relative improvement.

Table 1 shows the results on the Florence dataset. In contrast to MVF that
concatenates encoder features as input to estimate a share identity parameter, we
employ average pooling for encoder features, enabling us to perform both single-
image and multi-image face reconstruction. In the evaluation setting, it does not
make much difference using single-frame or multi-frame as input, because we’ll
finally average all the video frame output. Notably, our method is more general
than the previous state-of-the-art MVF that assumes expressions are the same
among multiple images (i.e., multi-view images), while our method can directly
train on monocular videos.

Table 2 shows the results on FaceWarehouse dataset. For single frame set-
ting, without modeling albedo, we still achieve comparable performance with
MoFA [26], Inversefacenet [45] and Tewari et al. [42]. For multi-frame settings,
we achieve better results than FML [30]. For both single-frame and multi-frame
settings, we achieve improved performance with PGN. All these show the effec-
tiveness of PGN and self-consistency losses.

Qualitative 3D Face Reconstruction Results. Figure 4(a) shows the qual-
itative comparisons with 3DDFA [15], PRNet [16] and the pseudo ground truth.
3DDFA regresses identity, expression and pose parameters together and is only
trained with synthetic datasets 300W-LP, leading to performance degradation.
The estimated shape and expression of 3DDFA is close to mean face geometry
and looks generally similar. PRNet directly regresses all vertices stored in UV
position map, which cannot capture the geometric constraints well; thus, it does
not look smooth and lacks geometric details, e.g., eye and mouth regions. In con-
trast, our estimated shape and expression looks visually convincing. Even when
compared with the pseudo ground truth generated with traditional matching
methods, our estimation is more accurate in many cases. Figure 4(b) shows the
comparison on the Florence dataset, which further demonstrates the effective-
ness of our method. Compared with FML on FaceWarehouse dataset, our results
can generate more accurate expressions with visibly pleasing face reconstruction
results (Fig. 4(c)).
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Input 3DDFA PRN Ours GT Input 3DDFA PRN MVF Ours

Input 3DDFA PRN FML Ours Input 3DDFA PRN MVF Ours

(a) Qualitative comparison on AFLW2000-3D dataset (b) Qualitative comparison on Florence dataset

(c) Qualitative comparison on FaceWarehouse dataset (d) Qualitative comparison on a real-world high-resolution video

Fig. 4. Qualitative Comparison on various datasets. Our model generates more
accurate shapes and expressions, especially around the mouth and eye region, as we
leverage unlimited 2D face data and cross image consistency. The estimated shape of
3DDFA is close to mean face geometry and the results of PRN lack geometric details.
(a) On AFLW2000-3D, our results look even more visually convincing than ground
truth in many cases. (b) Florence. (c) FaceWarehouse. Compared with FML, our
results are more smooth and visibly pleasing. (d) Video results. Our consistency
losses work especially well for high resolution images with few steps of fine-tuning.
We generate accurate shape and expression, e.g., challenging expression of complete
eye-closing. Zoom in for details.

Ablation Study. The effectiveness of PGN has been shown in Fig. 3 (a) (for
face alignment) and Table 2 (for face reconstruction). To better elaborate the
contributions of different components in our self-consistency scheme, we perform
detailed ablation study in Fig. 5.

Our baseline model is single-image face reconstruction trained only with Ll

and Lr. However, it doesn’t lead to accurate shape estimation, because our PGN
with sparse landmarks can only provide a coarse shape estimation. To better esti-
mate the shape, we employ multi-frame images as input. As shown in Fig. 5(a),
even without census transform, the photometric consistency (Lp−) improves the
performance. However, photometric loss does not work well when illumination
changes among video frames. Therefore, we enhance the photometric loss with
census transform to make the model more robust to illumination change. This
improves the performance quantitatively (Fig. 5(a)), and qualitatively (Fig. 5(b–
f)). Applying semantic consistency (Ls) and flow consistency (Lf ) enforces the
rendered image and the target image to look semantically similar and generates
better face geometry.
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Fig. 5. (a) Ablation Study on Florence dataset. Lp− indicates that census trans-
form is not applied when computing photometric differences. We find that census trans-
form is robust for illumination variations. (b–f) Visual results of our ablations on
Multi-PIE dataset: (b) Input image. (c) Pre-trained model with only landmark loss
and regularizer loss. (d) Employ photometric loss. (e) Employ census transform when
computing photometric consistency. (f) Full loss. We can find that key components of
our model improve the accuracy of shape and expression. Zoom in for details.

Video Results. Our proposed multi-image face reconstruction method is based
on texture sampling, then it shall obtain better face reconstruction results with
higher texture quality (higher video resolution). To verify it, we fine-tune our
model on a high-quality video from the Internet, i.e., the fine-tuned model is
specialized for the video. No 3D ground truth is used. As shown in Fig. 4(d), our
estimated shape and expression look surprisingly accurate after several thousand
iterations. Specifically, our model captures the detailed expression (e.g., totally
closed eyes) and face shape very well. This can be an interesting application
when we need to obtain accurate 3D face reconstruction for one specific person.

5 Conclusion

We have presented a pose guidance network which yields superior performance
on 3D face reconstruction from a single image or multiple frames. Our approach
effectively makes use of in-the-wild unlabeled images and provides accurate 3D
landmarks as an intermediate supervision to help reconstruct 3D faces. Fur-
thermore, we have demonstrated that swapping textures of multiple images and
exploring their photometric and semantic consistency greatly improve the final
performance. We hope that our work can inspire future research to develop new
techniques that leverage informative intermediate representations (e.g., 3D land-
marks in this paper) and learn from unlabeled images or videos.
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