
Software Defect Prediction via Convolutional
Neural Network

Jian Li∗†, Pinjia He∗†, Jieming Zhu∗†, and Michael R. Lyu∗†
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, China

†Shenzhen Research Institute, The Chinese University of Hong Kong, China

{jianli, pjhe, jmzhu, lyu}@cse.cuhk.edu.hk

Abstract—To improve software reliability, software defect pre-
diction is utilized to assist developers in finding potential bugs
and allocating their testing efforts. Traditional defect prediction
studies mainly focus on designing hand-crafted features, which
are input into machine learning classifiers to identify defective
code. However, these hand-crafted features often fail to capture
the semantic and structural information of programs. Such
information is important in modeling program functionality and
can lead to more accurate defect prediction.

In this paper, we propose a framework called Defect Prediction
via Convolutional Neural Network (DP-CNN), which leverages
deep learning for effective feature generation. Specifically, based
on the programs’ Abstract Syntax Trees (ASTs), we first extract
token vectors, which are then encoded as numerical vectors
via mapping and word embedding. We feed the numerical
vectors into Convolutional Neural Network to automatically
learn semantic and structural features of programs. After that,
we combine the learned features with traditional hand-crafted
features, for accurate software defect prediction. We evaluate our
method on seven open source projects in terms of F-measure in
defect prediction. The experimental results show that in average,
DP-CNN improves the state-of-the-art method by 12%.

Index Terms—software reliability; software defect prediction;
deep learning; CNN

I. INTRODUCTION

With the ever-increasing scale of modern software, reliabil-

ity has become a critical issue, since these software are often

highly complicated and failure-prone. As the code defects1 in

the implementation of software are considered as the main

causes of failures [1], to improve reliability, companies like

Google employ code review and unit testing for finding bugs

in fresh code [2]. However, manual code reviews are labor-

intensive and testing all code units is impractical. As the

software project budgets are finite, it would be beneficial to

first check potentially buggy code. Therefore, software defect

prediction techniques which automatically find potential bugs

have been widely employed to help developers allocate their

limited resources [3].

Software defect prediction [4], [5], [6], [7], [8] is a process

of building classifiers to predict code areas that potentially

contain defects, using information such as code complexity

and change history. The prediction results (i.e., buggy code

areas) can place warnings for code reviewers and allocate their

efforts. The code areas could be files, changes or methods. In

1Defect and bug will be used interchangeably across this paper.

this paper, we focus on file-level defect prediction. Typical

defect prediction is composed of two phases [9]: feature

extraction from source files, and classifier development using

various machine learning algorithms. Previous studies towards

building more accurate predictions mainly focus on manually

designing new discriminative features or new combinations of

features, so that defects can be better distinguished. Traditional

hand-crafted features include Halstead features based on the

number of operators and operands [10], McCabe features

based on dependencies [11], CK features for object-oriented

programs [12], etc.

However, programs have well-defined syntax and rich se-
mantics hidden in the Abstract Syntax Trees (ASTs), which

traditional features often fail to capture. Thus the prediction

results of traditional methods are not satisfactory enough. Re-

cently, deep learning has emerged as a powerful technique for

automated feature generation, since deep learning architecture

can effectively capture highly complicated non-linear features.

To make use of its powerful feature generation ability, the

state-of-the-art method [13] leverages Deep Belief Network

(DBN) in learning semantic features from token vectors ex-

tracted from programs’ ASTs, which outperforms traditional

features-based approaches in defect prediction. However, it

overlooks the structural information of programs which can

lead to more accurate defect prediction.

There are structural information in ASTs, specifying how

adjacent tokens (i.e., nodes on ASTs) interact with each other

to accomplish certain functionality. Slight difference in local

structure may lead to huge variance in program results, even

program crash. For example in Figure 1, there are two Java

files, both of which contain a for statement, a remove

function and an add function. The only difference between the

two files is the order of the remove function and add func-

tion. File2.java will encounter NoSuchElementException,

when calls remove at the beginning if the queue is empty.

Treating program as bag of words without order, the state-

of-the-art methods often overlook this local structural infor-

mation. As reported by deep learning researchers in speech

recognition [14] and image classification [15], Convolutional

Neural Network (CNN) is more advanced than DBN since the

former can capture local patterns more effectively. Thus CNN

is more capable of detecting local patterns such as the order

difference in Figure 1, and conducting defect prediction.

2017 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-0592-9/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS.2017.42

318

2017 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-0592-9/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS.2017.42

318

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

File1.java File2.java
Fig. 1. A motivating example. File2.java will encounter an exception when
calls remove() at the beginning if the queue is empty.

In addition, to better exploit the program context, word

embedding technique [16] can be helpful as well. Word em-

bedding maps each AST token into a numerical vector, which

is trained regarding the context of each token. Consequently,

tokens appearing in similar context tend to have similar vector

representations that are close in the feature space, which can

benefit CNN in learning the program semantics in certain

contexts. Besides deep learning generated features, traditional

defect prediction features such as complexity metrics and

process metrics are shown to be informative in distinguishing

buggy code [8], which may complement features generated by

deep learning. Intuitively, by combining CNN and traditional

features, we can get a richer feature representation of buggy

source code.

In this paper, we propose a framework called Defect Pre-

diction via Convolutional Neural Network (DP-CNN), which

captures both semantic and structural features of programs.

Specifically, we first parse source code into ASTs, and select

representative nodes on ASTs to form token vectors. Thus

each source file is represented by a token vector. Then we

conduct mapping and word embedding, which converts the

token vectors into numerical vectors, and input the numerical

vectors to CNN. CNN will automatically generate semantic

and structural features of the source code, which are then

combined with several traditional defect prediction features.

Finally the combined features are fed into a Logistic Re-

gression classifier. We evaluate our method on seven open-

source Java projects with well-established labels (i.e., buggy

or clean), in terms of F-measure in defect prediction. The

experimental results indicate that averagely, the proposed DP-

CNN improves the state-of-the-art DBN-based method [13] by

12%, as well as traditional features-based method by 16%. In

summary, This paper makes the following contributions:

• We propose a CNN-based defect prediction framework

to automatically generate discriminative features from

programs’ ASTs, which preserves semantic and structural

information of the source code.

• We employ word embedding to encode tokens extracted

from ASTs, which benefits CNN in learning the seman-

tics of programs.

• We combine the CNN-learned features with traditional

defect prediction features, taking advantage of both non-

linear features and hand-crafted features.

The rest of this paper is organized as follows. Section II

introduces the background of defect prediction and CNN. Sec-

tion III elaborates our proposed DP-CNN, which automatically

learns semantic and structural features from source code for

defect prediction. Section IV shows the experimental setup

and results, including the parameter tuning. Section V and

Section VI present the threats to validity and related work,

respectively. Finally we conclude this paper and discuss plans

for future work in Section VII.

II. BACKGROUND

In this section, we briefly introduce the background of file-

level defect prediction techniques and convolutional neural

network. Here file-level means that each of the training or

test instances is a source code file.

Fig. 2. Defect Prediction Process

A. Defect Prediction

Software defect prediction is a process of predicting code

areas that potentially contain defects, which can help devel-

opers allocate their testing efforts by first checking potentially

buggy code [3]. Defect prediction is essential to ensuring

reliability of today’s large-scale software. Figure 2 presents a

typical file-level defect prediction process which is commonly

adopted in the literature [5], [13], [17]. As the process shows,

the first step is to collect source code files (instances) from

software archives and label them as buggy or clean. The

labeling process is based on the number of post-release defects

of each file. A file is labeled as buggy if it contains at least

one post-release bug. Otherwise, the file is labeled as clean.

The second step is to extract features from each file. There

are many traditional features defined in past studies, which

can be categorized into two kinds: code metrics (e.g., McCabe

features [11] and CK features [12]), and process metrics (e.g.,

change histories). The instances with the corresponding fea-

tures and labels are subsequently employed to train predictive

classifiers using various machine learning algorithms such as

SVM, Naive Bayes, and Dictionary Learning [5]. Finally, new

instances are fed into the trained classifier, which can predict

whether the files are buggy or clean.

The set of instances used for building the classifier is

training set, while test set includes the instances used for

evaluating the learned classifier. In this work, we focus on

within-project defect prediction, i.e., the training and test sets

319319

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

belong to the same project. Following the previous work in

this field [13], we use the instances from an older version of

this project for training, and instances from a newer version

for test.

B. Convolutional Neural Network

Fig. 3. A CNN architecture. The architecture depicts the two characteristics
of CNN: Sparse Connectivity and Shared Weights, which enable CNN to
capture local structural information of the inputs.

Convolutional Neural Networks (CNNs) are a specialized

kind of neural networks for processing data that have a known

grid-like topology [18], such as time-series data in 1D grid and

image data in 2D grid. CNNs have been demonstrated success-

ful in many practical fields, including speech recognition [14],

image classification [15], [19] and natural language processing

[20]. In this work, we leverage CNNs for effective feature

generation from source code. Figure 3 depicts the general

architecture of CNNs. Compared with traditional Artificial

Neural Networks (ANNs) or Multi-Layer Perceptrons (MLPs),

CNNs have two key characteristics: Sparse Connectivity and

Shared Weights, which can benefit our defect prediction in

capturing local structural information of programs.

Sparse Connectivity means CNNs employ a local connec-

tivity pattern between neurons of adjacent layers to generate

spatially local correlation of the inputs. For example in Figure

3, the inputs of units in hidden layer m are from a subset

of units in layer m-1, which are spatially contiguous. The

size of the subset is 3, so units in layer m only connect to

3 adjacent neurons in the layer below (i.e., neurons in the

dashed rectangle), rather than connecting to all the neurons

in traditional ANNs. Each subset acts as a local filter over

the input vector, which can produce strong responses to a

spatially local input pattern. Each local filter applies a non-

linear transformation just like usual ANNs: multiplying the

input with a linear filter, adding a bias term and then applying

a non-linear function. In Figure 3, if we denote the i-th hidden

unit in layer m as hm
i , then the local filter in layer m−1 acts

as follows (for sigmoid non-linearities):

hm
i = sigmoid((Wm−1 ∗ x)i + bm−1). (1)

where Wm−1 and bm−1 denote the weights and bias of the

local filter.

Shared Weights mean each filter shares the same parameter-

ization (weight vector and bias). As our example in Figure 3,

we show a local filter consisting of 3 units. Across the entire

layer m-1, there are 3 local filters, and the same-colored arrows

indicate they share the same weights. Replicating filters in this

way enables us to detect features regardless of their position in

the input vector. Moreover, weight sharing can greatly increase

learning efficiency by reducing the number of free parameters.

Another important concept of CNNs is max-pooling, which

partitions the output vector into several non-overlapping sub-

regions, and outputs the maximum value of each sub-region.

This is a smart way of reducing the dimensionality of inter-

mediate representations and providing additional robustness to

our defect prediction.

The effectiveness of CNNs largely depends on the parame-

ters, such as filter length and batch size. The model would not

even converge under a bad parameter setting. Thus parameter

tuning is a key to train a successful CNN. We will discuss

how to set these parameters in Section IV-F.

III. APPROACH

In this section, we elaborate our proposed DP-CNN, a

framework which automatically generates semantic and struc-

tural features from source code and combines traditional

features, for accurate software defect prediction. Figure 4

illustrates the overall workflow of DP-CNN.

As the workflow shows, we first parse source code of

both training files and test files into Abstract Syntax Trees

(ASTs), then select representative nodes on ASTs to form

token vectors. Thus each source file becomes a token vector,

which is fed into the following encoding phase. We build

a mapping between integers and tokens, and employ word

embedding to encode token vectors as numerical vectors which

are input to subsequent CNN. CNN automatically generates

semantic and structural features of source code from the input

vectors, which are then combined with several traditional

defect prediction features. This feature generation process is

elaborated in Figure 6. Finally, the combined features are

fed into a Logistic Regression classifier. After building our

classifier model (i.e., deciding the weights and biases in CNN

and Logistic Regression), we can produce a probability for

each fresh code file, indicating whether it is buggy or clean.

To sum up, our approach has of four major steps: 1)

parsing source code into ASTs and extract tokens, 2) encoding

token vectors into numerical vectors, 3) employing CNN

to generate semantic and structural features and combining

traditional defect prediction features, and 4) building a Logistic

Regression classifier to decide whether the fresh code files are

buggy or clean.

A. Parsing Source Code

In order to represent each source code file as a vector,

we should first answer a fundamental question: what is the

proper granularity of representation? In general, vector repre-

sentations map a symbol to a real-valued, distributed vector.

For software programs, possible granularities of the symbol

include character-level, token-level, nodes on ASTs, etc. As

analyzed in [21], only nodes on ASTs are a suitable granularity

320320

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

Source Files

for add() remove()

Classifiers1 3 2

encode

(a) Parsing source code and
extracting token vectors (b) Encoding token vectors

(c) Generating features
via CNN

(d) Predicting defects

select informative
nodes

buggy or cleanremove()
for

add()

1
2
3

AST nodes index

Fig. 4. The overall workflow of our proposed DP-CNN.

to build program representation, which preserve both syntactic

and structural information of the programs. In our experiments,

we employ an open-source Python package called javalang2

to parse our Java source code into ASTs. Javalang provides

a lexer and parser targeting Java 8, whose implementation is

based on the Java language specification.

Following the state-of-the-art method [13], we only

select three types of nodes on ASTs as tokens: 1) nodes

of method invocations and class instance creations, which

are recorded as their method names or class names, 2)

declaration nodes, i.e., method declarations, type declarations,

and enum declarations, whose values are extracted as our

tokens, and 3) control-flow nodes including IfStatement,

WhileStatement, ForStatement, ThrowStatement,

CatchClause, etc. Control-flow nodes are simply recorded

as their node types. We exclude other types of AST nodes

such as Assignment because they are often method-specific

or class-specific, which do not have consistent meanings

throughout the whole project. All the selected AST nodes are

listed in Figure 5.

In this way, we convert each source file into a token

vector. Take the two Java files in Figure 1 as example. After

the tokenization as described, File1.java and File2.java
will be denoted as [<FOR>, add, remove] and [<FOR>,

remove, add], respectively.

B. Encoding Tokens and Handling Imbalance

1) Encoding Tokens: Since CNNs require inputs as numeri-

cal vectors, the extracted token vectors cannot be directly sent

to a CNN. To solve this problem, we first build a mapping

between integers and tokens, and convert token vectors into

integer vectors. Each token is associated with a unique integer

identifier which ranges from 1 to the total number of token

types. In this way, the same tokens keep as the same identifier

and different tokens such as different method names and class

names still remain different. Also, CNNs require input vectors

to have the same length. But our converted integer vectors

may differ in their lengths. In response, we simply append

0 to each integer vectors, making their lengths consistent

2https://github.com/c2nes/javalang

FormalParameter
BasicType
PackageDeclaration
InterfaceDeclaration
CatchClauseParameter
ClassDeclaration
MethodInvocation
SuperMethodInvocation
MemberReference
SuperMemberReference
ConstructorDeclaration
ReferenceType
MethodDeclaration
VariableDeclarator
IfStatement
WhileStatement
DoStatement

ForStatement
AssertStatement
BreakStatement
ContinueStatement
ReturnStatement
ThrowStatement
SynchronizedStatement
TryStatement
SwitchStatement
BlockStatement
StatementExpression
TryResource
CatchClause
CatchClauseParameter
SwitchStatementCase
ForControl
EnhancedForControl

Fig. 5. The selected AST nodes

with the longest vector. 0 does not have any meaning since

we encode tokens starting from 1. Additionally, during the

encoding process, we filter out infrequent tokens which might

be designed for a specific file and not generalized for other

files. Specifically, we only encode tokens occurring three or

more times, while denote the others as zeros.

As discussed in Section I, we also employ word embedding

[16] in the encoding phase. However, our word embedding is

built and trained at the same time as CNN. So we wrap word

embedding as a part of our CNN architecture and discuss it

in the following CNN part.

2) Handling Imbalance: Software defect data are often

imbalanced, in which the number of buggy instances is much

less than the number of clean instances. Imbalanced data

will degrade the performance of our model. To address this

problem, two approaches are feasible. One approach is to

reduce the training instances from the majority class (i.e., the

clean files), while another approach is to duplicate training

instances from the minority class (i.e., the buggy files). As

the first approach would lose some information, we use the

321321

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

Integer Vector
Real-valued

Vectors Traditional Hand-
crafted Features

CNN Generated
Featues

Embedding Layer Convolutional
Layer

Max-pooling
Layer

Fully Connected
Hidden Layer

Feature
Concatenation Output Layer

Fig. 6. The feature generation process of DP-CNN, which elaborates the step (c) in Figure 4.

second approach and duplicate the buggy files several times

until we have a balanced dataset. Note that we only apply this

process on the training files.

C. Building CNN and Combining Traditional Features

1) Building CNN: As discussed in Section II-B, we take

advantage of CNN’s powerful ability of feature generation, and

capture semantic and local structural information of the source

code. We train our CNN (i.e., the weights and biases in CNN)

by using the training data. Considering that this work engages

CNN only as an application, we adopt a standard architecture

of CNN rather than fancy and complex architectures in some

theoretical approaches [15], [19]. In particular, our CNN

consists of an embedding layer (i.e., word embedding), a

convolutional layer, a max-pooling layer, a fully-connected

hidden layer, and finally a single unit output layer working

as a Logistic Regression classifier (the last step in Figure 4).

The overall architecture is illustrated in Figure 6. Except the

output layer uses sigmoid activation function, all other layers

use ReLU activation function. Our implementation is based on

Keras3, through which we can easily and quickly build neural

networks. There is an example in Keras demonstrating the use

of 1D Convolutional Neural Network for text classification,

which is taken as our reference.

As shown in Figure 6, we employ word embedding [16] as

the first layer, which turns positive integers (indexes) into real-

valued vectors of fixed size. Obviously, a simple index does

not carry much context information about the token extracted

from ASTs. However, word embedding is trained regarding

the context of each token. A feature vector will be learned for

each token, and tokens appearing in similar context tend to

have similar vector representations which have close distance

in the feature space. In this way, we can further exploit the

semantics of programs via CNN. A word embedding is defined

as f : M → R
n, where M represents the dictionary of

words (or tokens in this work), f is a parameterized function

mapping words to n-dimensional vectors. The parameters

of word embedding are initialized randomly and learned at

3Keras (http://keras.io) is a popular Deep Learning library for Python.

the same time as other parameters in the following CNN

architecture. The implementation of word embedding is also

based on Keras. Therefore, we wrap word embedding as a

part of our CNN architecture and discuss them together in

this paper. Hereinafter, the term CNN always includes word

embedding.

Our CNN model is trained using the minibatch stochastic

gradient descent (SGD) algorithm [22], with the Adam opti-

mizer [23]. We will discuss the details of parameter tuning

such as batch sizes and the number of training epochs in

Section IV-F.

2) Combining Traditional Features: Till now we only con-

sider static code features through the CNN. However, in

conventional defect prediction methods, other features such

as complexity metrics and process metrics are shown to

be informative in distinguishing buggy code [8]. In fact, in

our dataset we are provided with several traditional defect

prediction features of each file, which are carefully extracted

by the dataset contributors. To make use of these information,

we directly concatenate the CNN-learned feature vectors with

traditional hand-crafted feature vectors. This concatenation

can be realized via Merge operator in Keras. Finally, the

combined feature vectors are fed into the subsequent Logis-

tic Regression classifier. To demonstrate the effectiveness of

combining traditional features, we design a variant of DP-

CNN which directly feeds the CNN-learned features to final

classifier without concatenation. In the experiments part, we

will compare this variant with DP-CNN, as well as other state-

of-the-art methods.

D. Predicting Defects

We employ Logistic Regression as the final classifier, since

it is widely used in the literature [24] and we mainly focus

on feature generation in this paper. We process each file in

both training set and test set following the above steps, and

obtain semantic and structural features of each source file.

After we train our model using the training files with their

corresponding labels, both the weights and the biases in our

CNN and Logistic Regression are fixed. Then for each file in

322322

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DATASET DESCRIPTION

Project Description Versions (Tr, T) Avg. Files Buggy Rate (%)

camel Enterprise integration framework 1.4, 1.6 892 18.6

jEdit Text editor designed for programmers 4.0, 4.1 284 23.8

lucene Text search engine library 2.0, 2.2 210 55.7

xalan A library for transforming XML files 2.5, 2.6 815 48.5

xerces XML parser 1.2, 1.3 441 15.5

synapse Data transport adapters 1.1, 1.2 239 30.5

poi Java library to access Microsoft format files 2.5, 3.0 409 64.7

the test set, we feed it into our defect prediction model and the

final classifier will give us a value, indicating the probability

of this file being buggy.

IV. EVALUATION

In this section, we evaluate the effectiveness of our DP-CNN

by comparing its accuracy on defect prediction with other

state-of-the-art methods. In particular, our evaluation addresses

the following research questions (RQ):

• RQ1: Do the deep learning-based methods outperform
traditional features-based methods?

• RQ2: Does DP-CNN which combines traditional features
outperform deep learning-based methods?

• RQ3: How is the performance of DP-CNN under different
parameter settings?

All our experiments were run on a Linux server with one

Tesla K40m GPU. Unless otherwise stated, each experiment

was run for ten times and the average results were reported.

A. Evaluation Metrics

To evaluate the prediction accuracy, we use a widely adopt-

ed metric in the literature [8], [17]: the F-measure (also F1
score), which is the harmonic mean of precision and recall
[25].

We first present some notations in defining precision, recall,

and F-measure: (i) predicting a buggy file as buggy (b→ b);
(ii) predicting a buggy file as clean (b→ c); and (iii) predicting

a clean file as buggy (c→ b). N denotes the number of files

in each above situation, e.g., Nb→b for the first case. Then our

metrics can be defined as follows:

Precision: The ratio of the number of files correctly classi-

fied as buggy to the number of files classified as buggy.

Precision: P =
Nb→b

Nb→b +Nc→b
(2)

Recall: The ratio of the number of files correctly classified

as buggy to the number of truly buggy files.

Recall: R =
Nb→b

Nb→b +Nb→c
(3)

F-measure: The traditional F-measure (F1 score) is the

harmonic mean of precision P and recall R.

F-measure: F =
2 ∗ P ∗R
P +R

(4)

Usually, there are trade-offs between precision and recall.

For example, by predicting all the test files as buggy, we will

get a high recall as 1 but a very low precision. Therefore, F-

measure is a composite measure of precision and recall which

falls in the range [0, 1]. The higher the F-measure is, the better

the prediction performance represents.

B. Dataset Description

Our defect prediction dataset comes from tera-PROMISE

Repository4, which is a publicly available repository special-

izing in software engineering research datasets. We select

seven open-sourced Java projects from this repository, where

the version numbers, the class name of each file, and most

importantly, the defect label for each source file are provided.

With the version numbers and class names, we can extract

source code of each file from Github5 and apply it in our DP-

CNN framework. Table I shows the details of these projects,

including project description, versions, the average number of

files, and the average buggy rate. To obtain the training and

test data, following the state-of-the-art method [13], we use

files from two consecutive versions of each project. The older

version is denoted as Tr and the newer version is denoted as

T. In average, the number of files in each project is 330 and

the buggy rate of each project is 35%.

Moreover, in this dataset, we are provided with 20 tradi-

tional defect prediction features for each source file, including

Lines of Code (LOC), Weighted Methods per Class (WMC),

Depth of Inheritance Tree (DIT), Number of Children (NOC),

and McCabe complexity measures (Max CC and Avg CC),

etc. The 20 traditional features are carefully extracted by

Jureczko et al., the dataset contributors [26]. We list the

detailed description about the 20 features in Table III. These

features and data have been widely used in previous studies

[3], [5], [17].

C. Baseline Methods

We compare our proposed DP-CNN for defect prediction

with the following baseline methods:

• DBN [13]: the state-of-the-art method which employs

Deep Belief Network (DBN) on source code to extract

semantic features for defect prediction.

4http://openscience.us/repo/defect/
5https://github.com/apache

323323

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

camel jEdit lucene xalan xerces synapse poi

0.1

0.3

0.5

0.7

0.9
F

-m
ea

su
re

V
al

u
es

0.329

0.573
0.618 0.627

0.273

0.500

0.748

0.335

0.480

0.758

0.681

0.261

0.503

0.780

0.505

0.631

0.761

0.676

0.311

0.512

0.778

Traditional DBN CNN

Fig. 7. Performance comparison between traditional method and deep learning-based methods for defect prediction.

• Traditional [24]: traditional method which builds a

Logistic Regression classifier based on the 20 features.

• DBN+: an improved version of DBN proposed by us,

which combines the semantic features with the traditional

features as we do in this work.

• CNN: a variant of DP-CNN which directly feeds the

CNN-learned features to final classifier without combin-

ing traditional features.

When implementing DBN and DBN+, we use the same

network architecture and parameter settings as in [13], i.e., 10

hidden layers and 100 nodes in each hidden layer. For a fair

comparison, we follow the same process and tools in our work

to parse source code and encode tokens, as well as handling

data imbalance.

D. Performance of Deep Learning-based Methods (RQ1)

We first compare the traditional features-based method for

defect prediction with two deep learning-based methods, i.e.,

DBN and CNN, as introduced in the previous section. The

purpose of this comparison is to validate the advantage of deep

learning techniques in software defect prediction. We conduct

seven sets of defect prediction experiments on those projects

listed in Table I, within each of which the older version is

used to train prediction models, and the newer version is used

as the test set to evaluate the trained models.

Figure 7 shows the experimental results, i.e., F-measure

values on each project by applying the three competing

methods. We take project camel as an example. After training

using version 1.4 and testing using version 1.6, the F-measure

of defect prediction is 0.329, 0.335, and 0.505 for traditional

method, DBN and CNN, respectively. Both DBN and CNN

outperforms traditional method. We can see from figure 7

that, in most cases, traditional method achieves the lowest

F-measure, indicating the advantages of deep learning-based

methods over the traditional ones. More significantly, CNN

achieves the best performance. These results not only validate

the effectiveness of the state-of-the-art DBN method [13], but

also justify our proposed CNN method, which performs even

better than DBN.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS

Project Traditional DBN DBN+ CNN DP-CNN

camel 0.329 0.335 0.375 0.505 0.508
jEdit 0.573 0.480 0.549 0.631 0.580

lucene 0.618 0.758 0.761 0.761 0.761
xalan 0.627 0.681 0.681 0.676 0.696
xerces 0.273 0.261 0.276 0.311 0.374

synapse 0.500 0.503 0.486 0.512 0.556
poi 0.748 0.780 0.782 0.778 0.784

Average 0.524 0.543 0.559 0.596 0.608

E. Performance of Combining Traditional Features (RQ2)

After validating the effectiveness of deep learning-based

methods in defect prediction, we continue to improve DBN

and CNN via combining traditional features as described in

Section III-C. Taking both traditional hand-crafted features and

deep-learning based features into consideration, we can expect

to achieve more accurate prediction models. We consequently

run experiments on the seven projects with all the five models,

including our proposed DP-CNN. As before, the older version

of each project is used as the training set, while the newer

version is used as the test set. The corresponding F-measure

values of all models are listed in Table II.

In Table II, each row represents each project, with the

project name in first column and F-measure of each method in

the rest five columns. Note that the highest value of each row is

marked in bold. The results generally validate our intuition that

including the traditional features into the deep learning-based

methods can improve the prediction accuracy. For example,

when applying different methods on project camel, DBN+

produces an F-measure of 0.375, which is 4% higher than

DBN, while DP-CNN achieves the highest F-measure as

0.508, which is a bit better than CNN’s 0.505. Among all

the experiments, DP-CNN achieves the best performance in

six out of the seven projects. The only exception is jEdit,
where DP-CNN produces a lower F-measure than that of CNN.

The reason may be that the training set of jEdit is relatively

324324

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

small, thus adding traditional features to CNN may cause

overfitting and degrade the performance. Also, in most cases

DBN+ performs slightly better than DBN.

As shown in last row of Table II, in average, the order of

model accuracy from the lowest to the highest is Traditional,

DBN, DBN+, CNN, and DP-CNN. More specifically, DP-

CNN improves Traditional, DBN and CNN by 16%, 12%

and 2%, respectively. This exactly answers our RQ2 that

combining traditional features is beneficial, and DP-CNN

performs the best.

F. Performance under Different Parameter Settings (RQ3)

In this section, we discuss how we set the free parameters

in DP-CNN for achievement of the best performance. Due to

space limitations, here we only analyze three parameters which

are key to CNNs: the number of filters, the filter length, and

the number of nodes in hidden layers. We vary the values

of these three parameters and conduct experiments on project

camel, xalan, and xerces respectively. For other parameters,

we directly present their values which are obtained via our

validation: batch size is set as 32, the training epoch is 15,

and the embedding dimension is set as 30.

Figure 8 shows the F-measure of DP-CNN under different

number of filters, different filter length and different number of

hidden nodes. We can see that the optimal number of filters is

10, where the three curves generally reach the peak, while the

filter length makes little difference in F-measure. Considering

that the larger the filter length is, the more running time we

will take, we choose the filter length as 5. The number of

hidden nodes is set as 100, which is similar to the number of

filters that the three curves roughly peak at 100.

Obviously these optimal model parameters are application

dependent. But with our automated DP-CNN framework, they

are not difficult to determine when the relevant data are

available.

V. THREATS TO VALIDITY

A. Implementation of DBN

To evaluate the performance our method in defect predic-

tion, we compare our proposed DP-CNN with DBN [13],

which is the state-of-the-art defect prediction technique. Since

the original implementation of DBN is not released, we

have reimplemented our own version of DBN via Keras, as

well as DBN+. Although we strictly followed the procedures

and parameters settings described in the DBN paper, some

implementation details were still not mentioned in the paper,

such as the full list of selected AST nodes and the learning rate

when training neural networks. Thus our new implementation

may not reflect all the implementation details of the original

DBN method. However, we have consulted the first author

of the DBN paper via email regarding key implementation

details, and we are confident that our implementation is very

close to the original DBN.

1 2 3 5 10 20 50 100150200

Number of Filters

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
-m

ea
su

re

camel
xalan

xerces

(a) Different number of filters

2 3 5 10 20 50 100

Filter Length

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
-m

ea
su

re

camel
xalan

xerces

(b) Different filter length

10 20 30 50 100 150 200 250

Number of Hidden Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
-m

ea
su

re

camel
xalan

xerces

(c) Different number of hidden nodes

Fig. 8. Performance of DP-CNN under different parameter settings.

B. Datasets Selection

We conducted our experiments using seven open-source

projects in the PROMISE data set, they might not be repre-

sentative of all software projects. Besides, we only evaluated

DP-CNN on projects written in Java language. Given projects

that are not included in the seven projects or written in other

programming languages (e.g., C++ or Python), our proposed

method might generate better or worse results. To make DP-

CNN more generalizable, in the future, we will conduct

325325

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

TABLE III
DESCRIPTION OF THE 20 TRADITIONAL FEATURES IN PROMISE DATASETS [24]

If m, a are the number of methods, attributes in a class number and μ(a) is the number of methods

accessing an attribute, then lcom3 = ��� ∑�� �(�)
 − m� /(1 − m)

Symbols Description
Weighted Methods per Class WMC The number of methods in the class
Depth of Inheritance Tree DIT the position of the class in the inheritance tree
Number of Children NOC e number of immediate descendants of the class
Coupling Between Object classes CBO ncrease when the methods of one class access services of another
Response for a Class RFC Number of methods invoked in response to a message to the object
Lack of Cohesion in Methods LCOM Number of pairs of methods that do not share a reference to an instance variable
Lack of Cohesion in Methods,
different from LCOM

�

LCOM3

Number of Public Methods NPM all the methods in a class that are declared as public
Data Access Metric DAM Ratio of the number of private (protected) attributes to the total number of attributes
Measure of Aggregation MOA he number of data declarations (class fields) whose types are user defined classes
Measure of Function Abstraction MFA Number of methods inherited by a class plus number of methods accessible by member methods of the class
Cohesion among Methods of class CAM Summation of number of different types of method parameters in every method divided by a multiplication

of number of different method parameter types in whole class and number of methods
Inheritance Coupling IC umber of parent classes to which a given class is coupled
Coupling Between Methods CBM Total number of new/redefined methods to which all the inherited methods are coupled
Average Method Complexity AMC number of JAVA byte codes
Afferent couplings Ca How many other classes use the specific class
Efferent couplings Ce How many other classes is used by the specific class
Maximum McCabe Max (CC) Maximum McCabe’s Cyclomatic Complexity values of methods in the same class
Average McCabe Avg (CC) Average McCabe’s Cyclomatic Complexity values of methods in the same class
Lines of Code LOC Measures the volume of code

experiments on a variety of projects including open-source

and closed-source projects, and extend our method to other

programming languages.

VI. RELATED WORK

A. Software Defect Prediction

Software defect prediction is an active research area in Soft-
ware Engineering [3], [4], [5], [6], [7], [13], [27], [28]. In the

literature, most defect prediction techniques focus on manually

designing new discriminative features or new combinations of

features from labeled historical defect data, which are fed into

machine learning based classifiers to identify code defects [3].

Commonly used features can be categorized into static code

features and process features [8]. Static code features [11],

[12], [29] were already introduced in previous sections, here

we discuss the process features which were proposed recently

and used in defect prediction. Moser et al. [4] employed the

number of revisions, authors, past fixes, and ages of files as

features to predict defects. Nagappan et al. [30] proposed code

churn features, and shown that these features were effective for

defect prediction. Moreover, Hassan et al. [31] used entropy

of change features in predicting defect. Based on these code

and process features, many machine learning models are built

for two different defect prediction tasks: within-project defect

prediction and cross-project defect prediction.

Within-project defect prediction means that both the training

data and test data come from the same project, just like our

work in this paper. When people proposed defect prediction

for the first time in 1971 [32], they meant within-project.

This problem is well explored in the past. For example,

Elish et al. [33] evaluated the feasibility of Support Vector

Machine (SVM) in predicting defect-prone software mod-

ules, and they compared SVM with other eight statistical

learning methods on four NASA datasets. Amasaki et al.

[34] proposed to employ the Bayesian Belief Network in

predicting the final quality of a software product. Wang et al.

[35] examined C4.5 in defect prediction, which is a kind of

Decision Tree (DT) algorithm. Their results indicated that tree-

based algorithms could generate good predictions. Moreover,

Jing et al. [5] introduced the dictionary learning techniques

to defect prediction. Their cost-sensitive dictionary learning

based approach could significantly improve defect prediction

in their experiments.

Recently, more and more papers studied the cross-project

defect prediction problem, where the training data and test

data come from different projects. Zimmermann et al. [36]

evaluated the performance of cross-project defect prediction

on 12 projects and their 622 combinations. They found the

defect prediction models at that time could not adapt well to

cross-project defect prediction. Premraj et al. [37] compared

network and code metrics for defect prediction, and further

built six cross-project defect prediction models using those

metrics sets. Their results confirmed that cross-project defect

prediction is a challenging problem. The state-of-the-art cross-

project defect prediction is proposed by Nam et al. [7], who

adopted a state-of-the-art transfer learning technique called

Transfer Component Analysis (TCA). They further improved

TCA as TCA+ by optimizing TCA’s normalization process.

They evaluated TCA+ on eight open-source projects, and the

results shown their approach significantly improved cross-

project defect prediction.

Our proposed DP-CNN differs from aforementioned de-

fect prediction approaches in that, we utilize deep learning

technique (i.e., CNN) to automatically generate discriminative

326326

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

features from source code, rather than manually designing fea-

tures, which can capture semantic and structural information

of programs and lead to more accurate prediction.

B. Deep Learning in Software Engineering

Hindle et al. [38] were the first to demonstrate that soft-

ware corpora has a “naturalness” property, such that real

programs (or source code) written by real people have rich

statistical properties. They successfully applied n-grams which

is a statistical language model on software languages, to

accomplish a code completion task. Recently, deep learning

techniques have been adopted in Software Engineering to

improve information retrieval-based tasks, due to its powerful

ability for feature generation and remarkable achievements

in other fields [14], [15], [20]. Specifically, Lam et al. [39]

proposed to combine deep learning with information retrieval

to improve the performance in localizing buggy files for bug

reports. Huo et al. [40] employed CNN on source code in

programs and natural language in bug reports to learn features

respectively, and then combined the two kinds of features

as unified features for bug localization. Raychev et al. [41]

employed Recurrent Neural Network (RNN) to tackle code

completion task, which was further improved by their later

Decision Trees-based method [42]. White et al. [43] proposed

to model sequential software languages using deep learning

and applied their models in the task of code clone detection.

Mou et al. [44] proposed tree-based CNN to better model

source code while preserving the structural information, which

was employed to classify the functionalities of programs. Gu et

al. [45] utilized the RNN encoder-decoder model to address

the problem of retrieving API call sequences, based on the

user’s natural language queries. Besides, Program Synthesis

[46], [47], [48], [49] also becomes an active research area

based on deep learning techniques.

Deep learning is also applied in defect prediction. Yang et

al. [50] applied DBN on 14 existing change level features to

generate new feature, for change level defect prediction. Wang

et al. [13] further applied DBN on token vectors which are

extracted from programs’ ASTs, for file level defect prediction.

Our work differs from the first work in that, we leverage deep

learning to generate features directly from source code, rather

than existing features. Our work differs from the second work

in that, we employ CNN to capture the structural information

of programs, and utilize word embedding and combining

traditional features to further improve our prediction results.

VII. CONCLUSION AND FUTURE WORK

With the ever-increasing scale and complexity of modern

software, reliability assurance has become a significant chal-

lenge. To enhance the reliability of software, in this paper, we

focus on predicting potential code defects in the implementa-

tion of software, thus reduce the workload of software main-

tenance. Specifically, we propose a defect prediction frame-

work called DP-CNN (Defect Prediction via Convolutional

Neural Network), which utilizes CNN for automated feature

generation from source code with the semantic and structural

information preserved. Besides, we employ word embedding

and combine the CNN-learned features with traditional hand-

crafted features, to further improve our defect prediction.

Our experiments on seven open source projects show that

averagely, DP-CNN improves the state-of-the-art DBN-based

and traditional features-based methods by 12% and 16%

respectively, in terms of F-measure in defect prediction.

To make DP-CNN more generalizable, in the future, we will

conduct experiments on more projects, and extend our method

to other programming languages like Python. Moreover, the

results in this work demonstrate the feasibility of deep learning

techniques in the filed of program analysis. It is promising to

adapt deep learning in other software engineering tasks such

as code completion and code clone detection, which will be

our future work.

ACKNOWLEDGMENT

The work described in this paper was supported by the

National Natural Science Foundation of China (Project No.

61472338), the Research Grants Council of the Hong Kong

Special Administrative Region, China (No. CUHK 14234416

of the General Research Fund), and 2015 Microsoft Research

Asia Collaborative Research Program (Project No. FY16-RES-

THEME-005).

REFERENCES

[1] A. G. Liu, E. Musial, and M.-H. Chen, “Progressive reliability forecast-

ing of service-oriented software,” in ICWS’11: Proc. of the International
Conference on Web Services, 2011.

[2] Bug prediction at google. [Online]. Available: http://google-

engtools.blogspot.hk/

[3] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,

“Defect prediction from static code features: current results, limitations,

new approaches,” Automated Software Engineering, vol. 17, no. 4, pp.

375–407, 2010.

[4] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of

the efficiency of change metrics and static code attributes for defect

prediction,” in ICSE’08: Proc. of the International Conference on
Software Engineering, 2008.

[5] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary

learning based software defect prediction,” in ICSE’14: Proc. of the
International Conference on Software Engineering, 2014.

[6] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for

imbalanced data,” in ICSE’15: Proc. of the International Conference on
Software Engineering-Volume 2, 2015.

[7] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE’13:
Proc. of the International Conference on Software Engineering, 2013.

[8] J. Nam, “Survey on software defect prediction,” Department of Compter
Science and Engineerning, The Hong Kong University of Science and
Technology, Tech. Rep, 2014.

[9] M. R. Lyu et al., Handbook of software reliability engineering. IEEE

computer society press CA, 1996, vol. 222.

[10] H. H. Maurice, “Elements of software science (operating and program-

ming systems series),” 1977.

[11] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, no. 4, pp. 308–320, 1976.

[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,

1994.

327327

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

[13] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features

for defect prediction,” in ICSE’16: Proc. of the International Conference
on Software Engineering, 2016.

[14] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying con-

volutional neural networks concepts to hybrid nn-hmm model for speech

recognition,” in ICASSP’12: Proc. of the International Conference on
Acoustics, Speech and Signal Processing, 2012.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in NIPS’12: Proc. of the
Advances in Neural Information Processing Systems, 2012.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-

tionality,” in NIPS’13: Proc. of the Advances in Neural Information
Processing Systems, 2013.

[17] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,

no. 11, 1998.

[20] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-

works for text classification,” in NIPS’15: Proc. of the Advances in
Neural Information Processing Systems, 2015.

[21] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang,

“Building program vector representations for deep learning,” arXiv
preprint arXiv:1409.3358, 2014.

[22] L. Bottou, “Large-scale machine learning with stochastic gradient de-

scent,” in Proceedings of COMPSTAT’2010, 2010.

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[24] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source

projects: An empirical study on defect prediction,” in ESEM’13: Proc.
of the International Symposium on Empirical Software Engineering and
Measurement, 2013.

[25] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to infor-
mation retrieval. Cambridge University Press, 2008, vol. 1, no. 1.

[26] M. Jureczko and L. Madeyski, “Towards identifying software project

clusters with regard to defect prediction,” in Proc. of the International
Conference on Predictive Models in Software Engineering, 2010.

[27] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting

faults from cached history,” in ICSE’07: Proc. of the International
Conference on Software Engineering, 2007.

[28] S. Zhang, J. Ai, and X. Li, “Correlation between the distribution of

software bugs and network motifs,” in QRS’16: Proc. of the International
Conference on Software Quality, Reliability and Security, 2016.

[29] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of the mood

set of object-oriented software metrics,” IEEE Transactions on Software
Engineering, vol. 24, no. 6, pp. 491–496, 1998.

[30] N. Nagappan and T. Ball, “Using software dependencies and churn met-

rics to predict field failures: An empirical case study,” in ESEM’07: Proc.
of the International Symposium on Empirical Software Engineering and
Measurement, 2007.

[31] A. E. Hassan, “Predicting faults using the complexity of code changes,”

in ICSE’09: Proc. of the International Conference on Software Engi-
neering, 2009.

[32] F. Akiyama, “An example of software system debugging.” in IFIP
Congress (1), vol. 71, 1971, pp. 353–359.

[33] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules

using support vector machines,” Journal of Systems and Software,

vol. 81, no. 5, pp. 649–660, 2008.

[34] S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno, “A bayesian belief

network for assessing the likelihood of fault content,” in ISSRE’03: Proc.
of the International Symposium on Software Reliability Engineering,

2003.

[35] J. Wang, B. Shen, and Y. Chen, “Compressed c4. 5 models for software

defect prediction,” in QSIC’12: Proc. of the International Conference
on Quality Software, 2012.

[36] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,

“Cross-project defect prediction: a large scale experiment on data vs.

domain vs. process,” in FSE’09: Proc. of the Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on The foundations of Software Engineering, 2009.

[37] R. Premraj and K. Herzig, “Network versus code metrics to predict

defects: A replication study,” in ESEM’11: Proc. of the International
Symposium on Empirical Software Engineering and Measurement, 2011.

[38] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the natu-

ralness of software,” in ICSE’12: Proc. of the International Conference
on Software Engineering, 2012.

[39] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining

deep learning with information retrieval to localize buggy files for

bug reports (n),” in ASE’15: Proc. of the International Conference on
Automated Software Engineering, 2015.

[40] X. Huo, M. Li, and Z.-H. Zhou, “Learning unified features from

natural and programming languages for locating buggy source code,”

in Proceedings of IJCAI’2016.

[41] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical

language models,” in ACM SIGPLAN Notices, vol. 49, no. 6. ACM,

2014, pp. 419–428.

[42] V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for code with

decision trees,” in OOPSLA’16: Proc. of the International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,

2016.

[43] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning

code fragments for code clone detection,” in ASE’16: Proc. of the
International Conference on Automated Software Engineering, 2016.

[44] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural

networks over tree structures for programming language processing,”

arXiv preprint arXiv:1409.5718, 2014.

[45] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in FSE’16:
Proc. of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016.

[46] C. Liu, X. Chen, E. C. Shin, M. Chen, and D. Song, “Latent attention

for if-then program synthesis,” in NIPS’16: Proc. of the Advances in
Neural Information Processing Systems, 2016.

[47] S. Reed and N. De Freitas, “Neural programmer-interpreters,” arXiv
preprint arXiv:1511.06279, 2015.

[48] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tar-

low, “Deepcoder: Learning to write programs,” arXiv preprint arX-
iv:1611.01989, 2016.

[49] C. Shu and H. Zhang, “Neural programming by example,” in AAAI’17:
Proc. of the AAAI Conference on Artificial Intelligence, 2017.

[50] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for

just-in-time defect prediction,” in QRS’15: Proc. of the International
Conference on Software Quality, Reliability and Security, 2015.

328328

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:47 UTC from IEEE Xplore. Restrictions apply.

