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Abstract

Recent NLP studies reveal that substantial linguistic infor-
mation can be attributed to single neurons, i.e., individual
dimensions of the representation vectors. We hypothesize
that modeling strong interactions among neurons helps to
better capture complex information by composing the lin-
guistic properties embedded in individual neurons. Starting
from this intuition, we propose a novel approach to com-
pose representations learned by different components in neu-
ral machine translation (e.g., multi-layer networks or multi-
head attention), based on modeling strong interactions among
neurons in the representation vectors. Specifically, we lever-
age bilinear pooling to model pairwise multiplicative interac-
tions among individual neurons, and a low-rank approxima-
tion to make the model computationally feasible. We further
propose extended bilinear pooling to incorporate first-order
representations. Experiments on WMT14 English⇒German
and English⇒French translation tasks show that our model
consistently improves performances over the SOTA TRANS-
FORMER baseline. Further analyses demonstrate that our ap-
proach indeed captures more syntactic and semantic informa-
tion as expected.

Introduction

Deep neural networks (DNNs) have advanced the state of
the art in various natural language processing (NLP) tasks,
such as machine translation (Vaswani et al. 2017), seman-
tic role labeling (Strubell et al. 2018), and language repre-
sentations (Devlin et al. 2019). The strength of DNNs lies
in their ability to capture different linguistic properties of
the input by different layers (Shi, Padhi, and Knight 2016;
Raganato and Tiedemann 2018), and composing (i.e. aggre-
gating) these layer representations can further improve per-
formances by providing more comprehensive linguistic in-
formation of the input (Peters et al. 2018; Dou et al. 2018).

Recent NLP studies show that single neurons in neu-
ral models which are defined as individual dimensions of
the representation vectors, carry distinct linguistic informa-
tion (Bau et al. 2019). A follow-up work further reveals that
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simple properties such as coordinating conjunction (e.g.,
“but/and”) or determiner (e.g., “the”) can be attributed to in-
dividual neurons, while complex linguistic phenomena such
as syntax (e.g., part-of-speech tag) and semantics (e.g., se-
mantic entity type) are distributed across neurons (Dalvi et
al. 2019). These observations are consistent with recent find-
ings in neuroscience, which show that task-relevant infor-
mation can be decoded from a group of neurons interacting
with each other (Morcos and Harvey 2016). One question
naturally arises: can we better capture complex linguistic
phenomena by composing/grouping the linguistic properties
embedded in individual neurons?

The starting point of our approach is an observation in
neuroscience: stronger neuron interactions – directly ex-
changing signals between neurons, enable more information
processing in the nervous system (Koch, Poggio, and Torre
1983). We believe that simulating the neuron interactions in
nervous system would be an appealing alternative to rep-
resentation composition, which can potentially better learn
the compositionality of natural language with subtle opera-
tions at a smaller granularity. Concretely, we employ bilinear
pooling (Lin, RoyChowdhury, and Maji 2015), which exe-
cutes pairwise multiplicative interactions among individual
representation elements, to achieve strong neuron interac-
tions. We also introduce a low-rank approximation to make
the original bilinear models computationally feasible (Kim
et al. 2017). Furthermore, as bilinear pooling only encodes
multiplicative second-order features, we propose extended
bilinear pooling to incorporate first-order representations,
which can capture more comprehensive information of the
input sentences.

We validate the proposed neuron interaction based (NI-
based) representation composition on top of multi-layer
multi-head self-attention networks (MLMHSANs). The rea-
son is two-fold. First, MLMHSANs are critical compo-
nents of various SOTA DNNs models, such as TRANS-
FORMER (Vaswani et al. 2017), BERT (Devlin et al. 2019),
and LISA (Strubell et al. 2018). Second, MLMHSANs in-
volve in compositions of both multi-layer representations
and multi-head representations, which can investigate the
universality of NI-based composition. Specifically,

• First, we conduct experiments on the machine translation
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task, a benchmark to evaluate the performance of neural
models. Experimental results on the widely-used WMT14
English⇒German and English⇒French data show that
the NI-based composition consistently improves perfor-
mance over TRANSFORMER across language pairs. Com-
pared with existing representation composition strate-
gies (Peters et al. 2018; Dou et al. 2018), our approach
shows its superiority in efficacy and efficiency.

• Second, we carry out linguistic analysis (Conneau et al.
2018) on the learned representations from NMT encoder,
and find that NI-based composition indeed captures more
syntactic and semantic information as expected. These re-
sults provide support for our hypothesis that modeling
strong neuron interactions helps to better capture complex
linguistic information via advanced composition func-
tions, which is essential for downstream NLP tasks.
This paper is an early step in exploring neuron interac-

tions for representation composition in NLP tasks, which
we hope will be a long and fruitful journey. We make the
following contributions:
• Our study demonstrates the necessity of modeling neuron

interactions for representation composition in deep NLP
tasks. We employ bilinear pooling to simulate the strong
neuron interactions.

• We propose extended bilinear pooling to incorporate first-
order representations, which produces a more comprehen-
sive representation.

• Experimental results show that representation composi-
tion benefits the widely-employed MLMHSANs by aggre-
gating information learned by multi-layer and/or multi-
head attention components.

Background

Multi-Layer Multi-Head Self-Attention

In the past two years, MLMHSANs based models establish
the SOTA performances across different NLP tasks. The
main strength of MLMHSANs lies in the powerful repre-
sentation learning capacity provided by the multi-layer and
multi-head architectures. MLMHSANs perform a series of
nonlinear transformations from the input sequences to final
output sequences.

Specifically, MLMHSANs are composed of a stack of L
identical layers (multi-layer), each of which is calculated as

Hl = SELF-ATT(Hl−1) +Hl−1, (1)

where a residual connection is employed around each of
two layers (He et al. 2016). SELF-ATT(·) is a self-attention
model, which captures dependencies among hidden states in
Hl−1:

SELF-ATT(Hl−1) = ATT(Ql,Kl−1) Vl−1, (2)

where {Ql,Kl−1,Vl−1} are the query, key and value vec-
tors that are transformed from the lower layer Hl−1, respec-
tively.

Instead of performing a single attention function, Vaswani
et al. (2017) found it is beneficial to capture different context

features with multiple individual attention functions (multi-
head). Concretely, multi-head attention model first trans-
forms {Q,K,V} into H subspaces with different, learnable
linear projections:1

Qh,Kh,Vh = QWQ
h ,KWK

h ,VWV
h , (3)

where {Qh,Kh,Vh} are respectively the query, key, and
value representations of the h-th head. {WQ

h ,W
K
h ,WV

h }
denote parameter matrices associated with the h-th head. H
self-attention functions (Equation 2) are applied in parallel
to produce the output states {O1, . . . ,OH}. Finally, the H
outputs are concatenated and linearly transformed to pro-
duce a final representation:

H = [O1, . . . ,OH ] WO, (4)

where WO ∈ R
d×d is a trainable matrix.

Representation Composition

Composing (i.e. aggregating) representations learned by dif-
ferent layers or attention heads has been shown beneficial for
MLMHSANs (Dou et al. 2018; Ahmed, Keskar, and Socher
2018). Without loss of generality, from here on, we refer
to {r1, . . . , rN} ∈ R

d for the representations to compose,
where ri can be a layer representation (Hl, Equation 1) or
head representation (Oh, Equation 4). The composition is
expressed as

H̃ = COMPOSE(r1, . . . , rN ), (5)

where COMPOSE(·) can be arbitrary functions, such as lin-
ear combination2 (Peters et al. 2018; Ahmed, Keskar, and
Socher 2018) and hierarchical aggregation (Dou et al. 2018).
Although effective to some extent, these approaches do not
model neuron interactions among the representation vectors,
which we believe is valuable for representation composition
in deep NLP models.

Approach

Motivation

Different types of neurons in the nervous system carry dis-
tinct signals (Cohen et al. 2012). Similarly, neurons in deep
NLP models – individual dimensions of representation vec-
tors, carry distinct linguistic information (Bau et al. 2019;
Dalvi et al. 2019). Studies in neuroscience reveal that
stronger neuron interactions bring more information pro-
cessing capability (Koch, Poggio, and Torre 1983), which
we believe also applies to deep NLP models.

In this work, we explore the strong neuron interactions
provided by bilinear pooling for representation composition.
Bilinear pooling (Lin, RoyChowdhury, and Maji 2015) is a
recently proposed feature fusion approach in the vision field.
Instead of linearly combining all representations, bilinear
pooling executes pairwise multiplicative interactions among

1Here we skip the layer index for simplification.
2The linear composition of multi-head representations (Equa-

tion 4) can be rewritten in the format of weighted sum: O =
∑H

h=1 OhW
O
h with WO

h ∈ R
d
H

×d.

8205



R1R1 R1R2 R1R3

R2R1 R2R2 R2R3

R3R1 R3R2 R3R3

R1

R2

R3

R1 R2 R3 =

(a) Bilinear Pooling

R1R1 R1R2 R1R3 R1

R2R1 R2R2 R2R3 R2

R3R1 R3R2 R3R3 R3

R1 R2 R3 1

R1

R2

R3

1

R1 R2 R3 1 =

(b) Extended Bilinear Pooling

Figure 1: Illustration of (a) bilinear pooling that models fully neuron-wise multiplicative interaction, and (b) extended bilinear
pooling that captures both second- and first-order neuron interactions.

individual representations, to model full neuron interactions
as shown in Figure 1(a).

Note that there are many possible ways to implement the
neuron interactions. The aim of this paper is not to explore
this whole space but simply to show that one fairly straight-
forward implementation works well on a strong benchmark.

Bilinear Pooling for Neuron Interaction

Bilinear Pooling Bilinear pooling (Tenenbaum and Free-
man 2000) is defined as an outer product of two represen-
tation vectors followed by a linear projection. As illustrated
in Figure 1(a), all elements of the two vectors have direct
multiplicative interactions with each other. However, in the
scenario of multi-layer and multi-head composition, we gen-
erally have more than two representation vectors to com-
pose (i.e., L layers and H attention heads). To utilize the
full second-order (i.e. multiplicative) interactions in bilinear
pooling, we concatenate all the representation vectors and
feed the concatenated vector twice to the bilinear pooling.
Concretely, we have:

R = |R̂R̂�|WB , (6)

R̂ = [r1, . . . , rN ], (7)

where |R̂R̂�| ∈ R
Nd×Nd is the outer product of the con-

catenated representation R̂, |·| denotes serializing the matrix
into a vector with dimensionality (Nd)2. In this way, all el-
ements in the partial representations are able to interact with
each other in a multiplicative way.

However, the parameter matrix WB ∈ R
(Nd)2×d and

computing cost cubically increases with dimensionality d,
which becomes problematic when training or decoding on a
GPU with limited memory3. There have been a few attempts
to reduce the computational complexity of the original bi-
linear pooling. Gao et al. (2016) propose compact bilinear
pooling to reduce the quadratic expansion of dimension-
ality for image classification. Kim et al. (2017) and Kong
and Fowlkes (2017) propose low-rank bilinear pooling for
visual question answering and image classification respec-
tively, which further reduces the parameters to be learned
and achieves comparable effectiveness with full bilinear
pooling. In this work, we focus on the low-rank approxima-
tion for its efficiency, and generalize from the original model
for deep representations.

3For example, a regular TRANSFORMER model requires a huge
amount of 36 billion ((Nd)2 × d) parameters for d = 1000 and
N = 6.

Low-Rank Approximation In the full bilinear models,
each output element Ri ∈ R

1 can be expressed as

Ri =

Nd∑
j=1

Nd∑
k=1

wB
jk,iR̂jR̂

�
k

= R̂�WB
i R̂, (8)

where WB
i ∈ R

Nd×Nd is a weight matrix to produce out-
put element Ri. The low-rank approximation enforces the
rank of WB

i to be low-rank r ≤ Nd (Pirsiavash, Ramanan,
and Fowlkes 2009), which is then factorized as UiV

�
i with

Ui ∈ R
Nd×r and Vi ∈ R

Nd×r. Accordingly, Equation 8
can be rewritten as

Ri = R̂�UiV
�
i R̂

= (R̂�Ui � R̂�Vi)�r, (9)
where �r is a r-dimensional vector of ones, � represents
element-wise product. By replacing �r with P ∈ R

r×d, and
redefining U ∈ R

Nd×r and V ∈ R
Nd×r, the low-rank ap-

proximation can be defined as

R = (R̂�U� R̂�V)P. (10)
In this way, the computation complexity is reduced from

O(d3) to O(d2). And the parameter matrices U, V, and P
are now feasible to fit in GPU memory.

Extended Bilinear Pooling with First-Order Representa-
tion Previous work in information theory has proven that
second-order and first-order representations encode different
types of information (Goudreau et al. 1994), which we be-
lieve also holds on NLP tasks. As bilinear pooling only en-
codes second-order (i.e., multiplicative) interactions among
individual neurons, we propose the extended bilinear pool-
ing to inherit the advantages of first-order representations
and form a more comprehensive representation.

Specifically, we append 1s to the representation vectors.
As illustrated in Figure 1(b), we respectively append 1 to
the two R vectors, then the outer product of them produces
both second-order and first-order interactions among the el-
ements. According to Equation 10, the final representation
is revised as:

Rf = (

[
R̂
1

]�
U�

[
R̂
1

]�
V) P, (11)

where R̂ is the concatenated representation as in Equation 7.
As a result, the final representation Rf preserves both multi-
plicative bilinear features (as in Equation 10) and first-order
linear features (as in Equation 4).
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# Model # Para. Train Decode BLEU

1 TRANSFORMER-BASE 88.0M 2.02 1.50 27.31
Existing representation composition

2 + Multi-Layer: Linear Combination +3.1M 1.98 1.46 27.77
3 + Multi-Layer: Hierarchical Aggregation +23.1M 1.62 1.36 28.324

4 + Multi-Head: Hierarchical Aggregation +13.6M 1.74 1.38 28.13
5 + Both (3+4) +36.7M 1.42 1.25 28.42

This work: neuron-interaction based representation composition
6 + Multi-Layer: NI-based Composition +16.8M 1.93 1.44 28.31
7 + Multi-Head: NI-based Composition +14.1M 1.92 1.43 28.29
8 + Both (6+7) +30.9M 1.87 1.40 28.54

Table 1: Translation performance on WMT14 English⇒German translation task. “# Para.” denotes the number of parameters,
and “Train” and “Decode” respectively denote the training speed (steps/second) and decoding speed (sentences/second). We
compare our model with linear combination (Peters et al. 2018) and hierarchical aggregation (Dou et al. 2018).

Applying to TRANSFORMER TRANSFORMER (Vaswani
et al. 2017) consists of an encoder and a decoder, each of
which is stacked in 6 layers where we can apply multi-layer
composition (excluding the embedding layer) to produce the
final representations of the encoder and decoder. Besides,
each layer has one (in encoder) or two (in decoder) multi-
head attention component with H heads, to which we can
apply multi-head composition to substitute Equation 4. The
two sorts of representation composition can be used individ-
ually, while combining them is expected to further improve
the performance.

Experiments

Setup

Dataset We conduct experiments on the WMT2014
English⇒German (En⇒De) and English⇒French (En⇒Fr)
translation tasks. The En⇒De dataset consists of about 4.56
million sentence pairs. We use newstest2013 as the devel-
opment set and newstest2014 as the test set. The En⇒Fr
dataset consists of 35.52 million sentence pairs. We use the
concatenation of newstest2012 and newstest2013 as the de-
velopment set and newstest2014 as the test set. We em-
ploy BPE (Sennrich, Haddow, and Birch 2016) with 32K
merge operations for both language pairs. We adopt the case-
sensitive 4-gram NIST BLEU score (Papineni et al. 2002)
as our evaluation metric and bootstrap resampling (Koehn
2004) for statistical significance test.

Models We evaluate the proposed approaches on the
advanced TRANSFORMER model (Vaswani et al. 2017),
and implement on top of an open-source toolkit –
THUMT (Zhang et al. 2017). We follow Vaswani et
al. (2017) to set the configurations and have reproduced their
reported results on the En⇒De task. The parameters of the
proposed models are initialized by the pre-trained TRANS-
FORMER model. We have tested both Base and Big models,

4The original result in (Dou et al. 2018) is 28.63, which is case-
insensitive. As we report case-sensitive BLEU scores, we have re-
quested Dou et al. to get this result.

which differ at hidden size (512 vs. 1024) and number of at-
tention heads (8 vs. 16). Concerning the low-rank parameter
(Equation 9), we set low-rank dimensionality r to 512 and
1024 in Base and Big models respectively. All models are
trained on eight NVIDIA P40 GPUs where each is allocated
with a batch size of 4096 tokens. In consideration of compu-
tation cost, we study model variations with Base model on
the En⇒De task, and evaluate overall performance with Big
model on both En⇒De and En⇒Fr tasks.

Comparison to Existing Approaches

In this section, we evaluate the impacts of different repre-
sentation composition strategies on the En⇒De translation
task with TRANSFORMER-BASE, as listed in Table 1.

Existing Representation Composition (Rows 1-5) For
the conventional TRANSFORMER model, it adopts multi-
head composition with linear combination but only uses
top-layer representation as its default setting. Accordingly,
we keep the linear multi-head composition (Row 1) un-
changed, and choose two representative multi-layer com-
position strategies (Rows 2 and 3): the widely-used linear
combination (Peters et al. 2018) and the effective hierarchi-
cal aggregation (Dou et al. 2018). The hierarchical aggre-
gation merges states of different layers through a CNN-like
tree structure with the filter size being two, to hierarchically
preserve and combine feature channels.

As seen, linearly combining all layers (Row 2) achieves
+0.46 BLEU improvement over TRANSFORMER-BASE
with almost the same training and decoding speeds. Hier-
archical aggregation for multi-layer composition (Row 3)
yields larger improvement in terms of BLEU score, but at the
cost of considerable speed decrease. To make a fair compar-
ison, we also implement hierarchical aggregation for multi-
head composition (Rows 4 and 5), which consistently im-
proves performances at the cost of introducing more param-
eters and slower speeds.

The Proposed Approach (Rows 6-8) Firstly, we apply
our NI-based composition, i.e. extended bilinear pooling, for
multi-layer composition with the default linear multi-head
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Architecture
EN⇒DE EN⇒FR

# Para. Train BLEU # Para. Train BLEU
Existing NMT systems: (Vaswani et al. 2017)

TRANSFORMER-BASE 65M n/a 27.3 n/a n/a 38.1
TRANSFORMER-BIG 213M n/a 28.4 n/a n/a 41.8

Our NMT systems
TRANSFORMER-BASE 88M 2.02 27.31 95M 2.01 39.28

+ NI-Based Composition 118M 1.87 28.54⇑ 125M 1.85 40.15⇑
TRANSFORMER-BIG 264M 0.85 28.58 278M 0.84 41.41

+ NI-Based Composition 387M 0.61 29.17⇑ 401M 0.59 42.10⇑

Table 2: Comparing with existing NMT systems on WMT14 English⇒German (“EN⇒DE”) and English⇒French
(“EN⇒FR”) translation tasks. “⇑”: significantly better than the baseline (p < 0.01) using bootstrap resampling (Koehn 2004).

composition (Row 6). We find that the approach achieves
almost the same translation performance as hierarchical ag-
gregation (Row 3), while keeps the training and decoding
speeds as efficient as linear combination. Then, we apply the
NI-based approach for multi-head composition with the de-
fault top layer exploitation (Row 7). We can see that our
approach gains +0.98 BLEU point over TRANSFORMER-
BASE and achieves more improvement than hierarchical ag-
gregation (Row 4). The two results demonstrate that our NI-
based approach can be effectively applied to different repre-
sentation composition scenarios.

At last, we simultaneously apply the NI-based approach
to the multi-layer and multi-head composition (Row 8). Our
model achieves further improvement over individual mod-
els and the hierarchical aggregation (Row 5), showing that
TRANSFORMER can benefit from the complementary com-
position from multiple heads and historical layers. In the
following experiments, we adopt NI-based composition for
both the multi-layer and multi-head compositions as the de-
fault strategy.

Main Results on Machine Translation

In this section, we validate the proposed NI-based represen-
tation composition on both WMT14 En⇒De and En⇒Fr
translation tasks. Experimental results are listed in Table 2.
The performances of our implemented TRANSFORMER
match the results on both language pairs reported in previ-
ous work (Vaswani et al. 2017), which we believe makes the
evaluation convincing.

Incorporating NI-based composition consistently and sig-
nificantly improves translation performance for both base
and big TRANSFORMER models across language pairs,
demonstrating the effectiveness and universality of the pro-
posed NI-based representation composition. It is encourag-
ing to see that TRANSFORMER-BASE with NI-based com-
position even achieves competitive performance as that of
TRANSFORMER-BIG in the En⇒De task, with only half
fewer parameters and the training speed is twice faster. This
further demonstrates that our performance gains are not sim-
ply brought by additional parameters. Note that the improve-
ment on En⇒De task is larger than En⇒Fr task, which can
be attributed to the size of training data (4M vs. 35M).

Task Base OURS �

S
u

rf
a

ce SeLen 92.20 92.11 -0.1%
WC 63.00 63.50 +0.8%
Ave. 77.60 77.81 +0.3%

S
y

n
ta

ct
ic TrDep 44.74 44.96 +0.5%

ToCo 79.02 81.31 +2.9%
BShif 71.24 72.44 +1.7%
Ave. 65.00 66.24 +1.9%

S
em

a
n

ti
c

Tense 89.24 89.26 +0.0%
SubNm 84.69 87.05 +2.8%
ObjNm 84.53 86.91 +2.8%
SOMO 52.13 52.52 +0.7%
CoIn 62.47 64.93 +3.9%
Ave. 74.61 76.13 +2.0%

Table 3: Classification accuracies on 10 probing tasks of
evaluating the linguistic properties (“Surface”, “Syntactic”,
and “Semantic”). “Ave.” denotes the averaged accuracy in
each category. “�” denotes the relative improvement, and
we highlight the numbers ≥ 1%.

Analysis

In this section, we conduct extensive analysis to deeply un-
derstand the proposed models in terms of 1) investigating
the linguistic properties learned by the NMT encoder; 2)
the influences of first-order representation and low-rank con-
straint; and 3) the translation performances on sentences of
varying lengths.

Targeted Linguistic Evaluation on NMT Encoder Ma-
chine translation is a complex task, which consists of both
the understanding of input sentence (encoder) and the gen-
eration of output conditioned on such understanding (de-
coder). In this probing experiment, we evaluate the under-
standing part using Transformer encoders that are trained on
the EN⇒DE NMT data, and are fixed in the probing tasks
with only MLP classifiers being trained on probing data.

Recently, Conneau et al. (2018) designed 10 probing tasks
to study what linguistic properties are captured by represen-
tations from sentence encoders. A probing task is a classi-
fication problem that focuses on simple linguistic proper-
ties of input sentences, including surface information, syn-
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tactic information, and semantic information. For exam-
ple, “WC” tests whether it is possible to recover informa-
tion about the original words given its sentence embedding.
“Bshif” checks whether two consecutive tokens have been
inverted. “SubNm” focuses on the number of the subject of
the main clause. For more detailed description about the 10
tasks, interested readers can refer to the original paper (Con-
neau et al. 2018). We conduct probing tasks to examine
whether the NI-based representation composition can bene-
fit the TRANSFORMER encoder to produce more informative
representation.

Table 3 lists the results. The NI-based composition out-
performs that by the baseline in most probing tasks, prov-
ing that our composition strategy indeed helps TRANS-
FORMER encoder generate more informative representation,
especially at the syntactic and semantic level. The averaged
gains in syntactic and semantic tasks are significant, show-
ing that our strategy makes SAN capture more high-level lin-
guistic properties. Note that the lower values in surface tasks
(e.g., SeLen), are consistent with the conclusion in (Conneau
et al. 2018): as model captures deeper linguistic properties,
it will tend to forget about these superficial features.

B
LE

U

27.0

27.5

28.0

28.5

Multi-Layer Multi-Head

Linear
NI Composition w/o First-Order
NI Composition

Figure 2: Effect of first-order representation on WMT14
En⇒De translation task.

Effect of First-Order Representation As aforemen-
tioned, we extend the conventional bilinear pooling by ap-
pending 1s to the representation vectors thus incorporate
first-order representations (i.e. linear combination), and cap-
ture both multiplicative bilinear features and additive linear
features. Here we conduct ablation study to validate the ef-
fectiveness of each component. We respectively experiment
on multi-layer and multi-head representation composition,
and the results are shown in Figure 2.

Several observations can be made. First, we notice that
by replacing linear combination with mere bilinear pool-
ing (“NI-based composition w/o first-order” in Figure 2),
the translation performance significantly improves both in
multi-layer and multi-head composition, demonstrating the

effectiveness of full neuron interaction and second-order
features. We further observe that it is indeed beneficial to
extend bilinear pooling with linear combination (“NI com-
position” in Figure 2) which captures the complementary
information among them and forms a more comprehensive
representation of the input.

B
LE

U

27.0

27.5

28.0

28.5

Rank Constraint for Bilinear Pooling

32 64 12
8

25
6

51
2

NI Composition
Baseline

Figure 3: BLEU scores on the En⇒De test set with differ-
ent rank constraints for bilinear pooling. “Baseline” denotes
TRANSFORMER-BASE.

Effect of Low-Rank Constraint In this experiment, we
study the impact of low-rank constraint r (Equation 9) on
bilinear pooling, as shown in Figure 3. It is interesting to
investigate whether the model with a smaller setting of r
can also achieve considerable results. We examine groups
of multi-head composition models with different r on the
En⇒De translation task. From Figure 3, we can see that the
translation performance increases with larger r value and the
model with r = 512 achieves best performance5. Note that
even when the dimensionality r is reduced to 32, our model
can still consistently outperform the baseline with only 0.9M
parameters added (not shown in the figure). This reconfirms
our claim that the improvements on the BLEU score could
not be simply attributed to the additional parameters.

Length Analysis We group sentences of similar lengths
together and compute the BLEU score for each group, as
shown in Figure 4. Generally, the performance of TRANS-
FORMER goes up with the increase of input sentence
lengths, which is different from the results on single-layer
RNNSearch models (i.e., performance decreases on longer
sentences) as shown in (Tu et al. 2016). We attribute this
phenomenon to the advanced TRANSFORMER architecture
including multiple layers, multi-head attention and feed-
forward networks.

Clearly, our NI-based approaches outperform the baseline
TRANSFORMER in all length segments, including only using
multi-layer composition or multi-head composition, which

5The maximum value of r is 512 since the rank of a matrix
W ∈ R

Nd×Nd is bounded by Nd.
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]
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,45
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>45

Multi-Layer&Head: NI
Multi-Layer: NI
Multi-Head: NI
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Figure 4: BLEU scores on the En⇒De test set with re-
spect to various input sentence lengths. “Baseline” denotes
TRANSFORMER-BASE.

verifies our contribution that representation composition in-
deed benefits SANs. Moreover, multi-layer composition and
multi-head composition are complementary to each other re-
garding different length segments, and simultaneously ap-
plying them achieves further performance gain.

Related Work

Bilinear Pooling Bilinear pooling has been well-studied
in the computer vision community, which is first introduced
by Tenenbaum and Freeman (2000) to separate style and
content. Bilinear pooling has since then been considered to
replace fully-connected layers in neural networks by intro-
ducing second-order statistics, and applied to fine grained
recognition (Lin, RoyChowdhury, and Maji 2015). While
bilinear models provide richer representations than linear
models (Goudreau et al. 1994), bilinear pooling produces a
high-dimensional feature of quadratic expansion, which may
constrain model structures and computational resources. To
address this challenge, Gao et al. (2016) propose compact
bilinear pooling through random projections for image clas-
sification, which is further applied to visual question an-
swering (Fukui et al. 2016). Kim et al. (2017) and Kong
and Fowlkes (2017) independently propose low-rank ap-
proximation on the transformation matrix of bilinear pool-
ing, which aims to reduce the model size and correspond-
ing computational burden. Their models are applied to vi-
sual question answering and fine-grained image classifica-
tion, respectively.

While most work focus on computer vision tasks, our
work is among the few studies (Dozat and Manning 2017;
Delbrouck and Dupont 2017), which prove the idea of bilin-
ear pooling can have promising applications on NLP tasks.
Our approach differs at: 1) we apply bilinear pooling to rep-
resentation composition in NMT, while they apply to the at-
tention model in either parsing or multimodal NMT; and 2)
we extend the original bilinear pooling to incorporate first-
order representations, which consistently improves transla-
tion performance in different scenarios (Figure 2).

Multi-Layer Representation Composition Exploiting
multi-layer representations has been well studied in the
NLP community. Peters et al. (2018) have found that lin-
early combining different layers is helpful and improves
their performances on various NLP tasks. In the context
of NMT, several neural network based approaches to fuse
information across historical layers have been proposed,
such as dense information flow (Shen et al. 2018), itera-
tive and hierarchical aggregation (Dou et al. 2018), routing-
by-agreement (Dou et al. 2019), and transparent atten-
tion (Bapna et al. 2018).

In this work, we consider representation composition
from a novel perspective of modeling neuron interactions,
which we prove is a promising and effective direction.
Besides, we generalize layer aggregation to representation
composition in SANs by also considering multi-head com-
position, and we propose an unified NI-based approach to
aggregate both types of representation.

Multi-Head Self-Attention Multi-head attention has
shown promising results in many NLP tasks, such as ma-
chine translation (Vaswani et al. 2017) and semantic role
labeling (Strubell et al. 2018). The strength of multi-head
attention lies in the rich expressiveness by using multiple at-
tention functions in different representation subspaces. Pre-
vious work show that multi-head attention can be further
enhanced by encouraging individual attention heads to ex-
tract distinct information. For example, Li et al. (2018) pro-
pose disagreement regularizations to encourage different at-
tention heads to encode distinct features, and Strubell et
al. (2018) employ different attention heads to capture differ-
ent linguistic features. Li et al. (2019) is a pioneering work
on empirically validating the importance of information ag-
gregation for multi-head attention. Along the same direction,
we apply the NI-based approach to compose the representa-
tions learned by different attention heads (as well as different
layers), and empirically reconfirm their findings.

Conclusion

In this work, we propose NI-based representation compo-
sition for MLMHSANs, by modeling strong neuron inter-
actions in the representation vectors generated by differ-
ent layers and attention heads. Specifically, we employ bi-
linear pooling to capture pairwise multiplicative interac-
tions among individual neurons, and propose extended bilin-
ear pooling to further incorporate first-order representations.
Experiments on machine translation tasks show that our ap-
proach effectively and efficiently improves translation per-
formance over the TRANSFORMER model, and multi-head
composition and multi-layer composition are complemen-
tary to each other. Further analyses reveal that our model
makes the encoder of TRANSFORMER capture more syntac-
tic and semantic properties of input sentences.

Future work includes exploring more neuron interaction
based approaches for representation composition other than
the bilinear pooling, and applying our model to a variety of
network architectures such as BERT (Devlin et al. 2019) and
LISA (Strubell et al. 2018).
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