
AEON: A Method for Automatic Evaluation of NLP Test Cases
Jen-tse Huang

The Chinese University of Hong Kong

Hong Kong, China

jthuang@cse.cuhk.edu.hk

Jianping Zhang

The Chinese University of Hong Kong

Hong Kong, China

jpzhang@cse.cuhk.edu.hk

Wenxuan Wang

The Chinese University of Hong Kong

Hong Kong, China

wxwang@cse.cuhk.edu.hk

Pinjia He
∗

The Chinese University of Hong

Kong, Shenzhen

Shenzhen, China

hepinjia@cuhk.edu.cn

Yuxin Su

Sun Yat-sen University

Zhuhai, China

suyx35@mail.sysu.edu.cn

Michael R. Lyu

The Chinese University of Hong Kong

Hong Kong, China

lyu@cse.cuhk.edu.hk

ABSTRACT
Due to the labor-intensive nature of manual test oracle construc-

tion, various automated testing techniques have been proposed

to enhance the reliability of Natural Language Processing (NLP)

software. In theory, these techniques mutate an existing test case

(e.g., a sentence with its label) and assume the generated one pre-

serves an equivalent or similar semantic meaning and thus, the

same label. However, in practice, many of the generated test cases

fail to preserve similar semantic meaning and are unnatural (e.g.,
grammar errors), which leads to a high false alarm rate and un-

natural test cases. Our evaluation study finds that 44% of the test

cases generated by the state-of-the-art (SOTA) approaches are false

alarms. These test cases require extensive manual checking effort,

and instead of improving NLP software, they can even degrade NLP

software when utilized in model training. To address this problem,

we propose AEON forAutomatic Evaluation Of NLP test cases. For

each generated test case, it outputs scores based on semantic simi-

larity and language naturalness. We employ AEON to evaluate test

cases generated by four popular testing techniques on five datasets

across three typical NLP tasks. The results show that AEON aligns

the best with human judgment. In particular, AEON achieves the

best average precision in detecting semantic inconsistent test cases,

outperforming the best baseline metric by 10%. In addition, AEON

also has the highest average precision of finding unnatural test

cases, surpassing the baselines by more than 15%. Moreover, model

training with test cases prioritized by AEON leads to models that

are more accurate and robust, demonstrating AEON’s potential in

improving NLP software.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00

https://doi.org/10.1145/3533767.3534394

KEYWORDS
NLP software testing, test case quality

ACM Reference Format:
Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su,

and Michael R. Lyu. 2022. AEON: A Method for Automatic Evaluation

of NLP Test Cases. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’22), July 18–22, 2022,
Virtual, South Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3533767.3534394

1 INTRODUCTION
NLP software has become increasingly popular in our daily lives.

For example, NLP virtual assistant software, such as Siri and Alexa,

receives billions of requests [46, 62] while Google Translate App

translates more than 100 billion words per day [67]. With the de-

velopment of Deep Neural Networks (DNNs), the performance of

NLP software has been largely boosted. Equipped with the SOTA

model [68], Microsoft question answering robot surpasses humans

on conversational question answering task. In addition, Google

beats humans on natural language understanding benchmarks with

the help of pre-trained networks [41]. However, NLP software can

produce erroneous results, leading to misunderstanding, financial

loss, threats to personal safety, and political conflicts [51, 52].

To discover erroneous behaviors in NLP software, researchers

have designed various software testing techniques [10, 24, 39, 61,

78]. A test case for NLP software is in the form of a text (e.g., a sen-
tence) and its label, where the label is the expected correct output

of the NLP software. In theory, most of these testing techniques

modify part(s) of the input text (e.g., a word/character substitu-

tion/insertion/deletion) under the assumption that the generated

test case preserves an equivalent or similar semantic meaning. Typ-

ically, these techniques take labeled texts as inputs and output the

mutated texts and the corresponding labels.

However, it is still challenging for current testing techniques

to produce practical test cases of high quality. Specifically, tiny

modification in a text can change its semantic meaning, which

invalidates the common assumption that the semantic meaning

of the original text and that of the generated text should remain

equivalent or similar, further rendering the possibility of changing

the corresponding labels [47, 49]. For example, removing “not” from

the text “I do not like the movie” changes its semantic meaning

and further changes its label for a sentiment analysis task from

“negative” to “positive”, resulting in a test casewith an incorrect label

202

https://doi.org/10.1145/3533767.3534394
https://doi.org/10.1145/3533767.3534394
https://doi.org/10.1145/3533767.3534394

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su, and Michael R. Lyu

Table 1: Examples for high-quality, inconsistent, and unnatural test cases generated by existing testing techniques on different
datasets. NLP tasks include Sentiment Analysis (SA), Natural Language Inference (NLI), and Semantic Equivalence (SE). Mutated
words are marked in red.

Original text Task Technique
Generated test case Dataset Issue

A man under a running shower with shampoo in his hair.⇒ A man is taking a shower. NLI BAE [19]

A man under a running shower with shampoo in his hair.⇒ A man is taking a bath. SNLI [3] None

Ultimately this is a frustrating patchwork. SA PSO [78]

Ultimately this is a sparkling patchwork. MR [53] Inconsistent

British action wouldn’t have mattered.⇒ British action would have made a big difference. NLI BAE [19]

Welsh action wouldn’t have mattered.⇒ British action would have made a big difference. MNLI [71] Inconsistent

What are some good topics to be bookmarked on Quora? SE Textfooler [32]

What are some good topics to es bookmarked on Quora? QQP [69] Unnatural

I went to Danny’s this weekend to get an oil change and car wash and I paid for a VIP car wash. SA BAE [19]

My gone to work this weekend to do an oil change and car wash and my hired for a VIP car wash. Yelp [85] Unnatural

and further a false alarm. Moreover, existing testing approaches

cannot guarantee the fluency and naturalness of the generated

test cases. Many word-level testing approaches introduce grammar

errors and punctuation errors, and sometimes they introduce words

that do not exist or are rarely used [47]. Although these test cases

may trigger “software errors” (e.g., unexpected software behaviors),
it is important to first ensure the quality of the test cases in terms of

semantic consistency and naturalness before finding more errors.

According to our user study, many of the NLP test cases gen-

erated by existing approaches are of low quality because of the

following two issues: Inconsistent issue and Unnatural issue. These
issues can lead to false alarms in testing and unnaturalness in lan-

guage. In this paper, we say an NLP test case is of high quality if

it does not have any of these issues. As shown in Table 1, a high-

quality test case preserves the semantics of the original text and

reads smoothly. The first Inconsistent case changes the semantics

to the opposite while the second one changes the subjects. Two

Unnatural cases hurt the fluency and naturalness of natural lan-

guage by introducing either non-existing words or wrong grammar.

It is unlikely that these low-quality test cases can contribute to

improving NLP software in practice.

Hence, an automatic quality evaluation metric that can help filter

out low-quality test cases generated by the existing testing tech-

niques is highly in demand. Nevertheless, designing an automatic

quality evaluation metric for NLP test cases is highly challenging.

First, existing testing criteria are mainly based on coverage met-

rics, such as code coverage for traditional software [8] and neuron

coverage for deep neural networks [55], which cannot be directly

leveraged to detect false alarms and evaluate the quality of a natural

language test case. Second, general semantic similarity evaluation

metrics fail to detect Inconsistent issues under this scenario. Specifi-
cally, (1) most of the words in the original text and the generated

text are the same while existing metrics evaluate the semantic simi-

larity based on all the words in the text and thus, the impact of the

mutated word(s) easily vanish; (2) a word may have different mean-

ings in different contexts, making it difficult to compare only the

mutated word(s). Third, existing work on naturalness evaluation

metric either relies on human evaluation [49] or qualitative analysis

(e.g., part-of-speech checking [19]), while we need an automatic

and quantitative naturalness evaluation metric.

To address these problems, we introduce AEON, a method for

Automatic Evaluation Of NLP test cases. AEON takes a text pair

<original text, generated text> as input and outputs scores regarding

semantic similarity and syntactic correctness, aiming for detecting

Inconsistent and Unnatural issues, respectively. We use AEON to

analyze the quality of NLP test cases generated from four popular

testing techniques [19, 31, 61, 78] on five datasets [3, 53, 69, 71, 85]

which cover three typical NLP tasks, namely natural language in-

ference, sentiment analysis, and semantic equivalence. We conduct

a comprehensive human evaluation on the semantic similarity and

language naturalness between the original texts and the generated

test cases, and we check whether AEON’s score aligns with human

evaluation or not. The results show that AEON achieves the Average

Precision (AP), Area Under Curve (AUC), and Pearson Correlation

Coefficient (PCC) scores of 0.688, 0.742, and 0.922, outperforming

the best baseline metric by 10%, 8.1%, and 7.8% respectively. On

the evaluation of human judgment of language naturalness, AEON

also surpasses all baselines and achieves the average AP, AUC, PCC

scores of 0.69, 0.63, 0.82. These results demonstrate the effectiveness

AEON on detecting false alarms and evaluating the language natu-

ralness of NLP test cases. We also show that the high-quality test

cases selected by AEON can significantly improve the accuracy and

robustness of NLP software via model training. Our contributions

can be summarized as:

• We conduct a comprehensive user study on the test cases

generated by existing NLP software testing techniques and

find that 85% of them suffer from two issues: Inconsistent
and Unnatural, resulting in a false alarm rate of 44%.

• We introduce AEON, the first approach to quantitatively

evaluate the quality of NLP test cases from semantics and

language naturalness, addressing two main quality issues of

NLP test cases mentioned above.

203

AEON: A Method for Automatic Evaluation of NLP Test Cases ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 2: Details of the selected testing techniques.

Technique Selection Substitution Constraints

Generative Algorithm (GA) [31] k-nearest neighbors Random combination

Percentage of modified words;

Euclidean distance;

LM grammar checking

BERT-base Adversarial Examples (BAE) [19] Word importance PLM mask prediction

Euclidean distance;

Part-of-speech checking

Particle Swarm Optimization (PSO) [78] Optimization [34] Knowledge graph [14] None

Checklist [61] Random selection

Transformations:

Contraction; Extension;

Changing entities

Numbers of transformation

• AEON is employed to evaluate the test cases generated by

four testing techniques on five widely-used datasets, which

shows that AEON achieves the best performance in terms of

average AP, AUC, and PCC on all datasets.

• The implementation of AEON, the raw experimental results,

and the human annotation on the test case quality are avail-

able on Github
1
.

2 PRELIMINARIES
2.1 Testing Techniques for NLP Software
Though many papers have proposed testing techniques for Com-

puter Vision (CV) software (e.g., face recognition system) [5, 55,

66, 76], the characteristics of natural language make NLP software

testing distinguished from that in CV software. The most significant

difference between NLP test cases and CV test cases is that the input

space of textual data is not as continuous as images, making every

mutation in the original text perceptible. In addition, in natural

language, mutating a single word can cause considerable semantic

differences, which further leads to the risk of changing the correct

label of the text. Therefore, when NLP testing techniques assign

the label of the original text to the generated test cases, lots of false

alarms occur.

Current testing techniques
2
for NLP software can be roughly

divided into four categories: character-level, word-level, sentence-

level, and multi-level [84]. Character-level techniques [39] mutate

a few characters that do not affect human reading comprehension.

Word-level techniques [60, 61] are based on word substitution, usu-

ally using synonyms sets or Pre-trained Language Models (PLMs).

Sentence-level techniques [25] change the whole structure of the

sentences either by adding a sentence to the original texts or trans-

forming the entire texts into another semantically similar format.

Those combining different levels of techniques [40] can be cate-

gorized into multi-level techniques. In particular, word-level tech-

niques significantly outperform others in terms of efficiency [78],

applicability, and usefulness in robust training [60, 78]. However,

this kind of technique suffers more from low-quality test cases

1
https://github.com/CUHK-ARISE/AEON

2
In this paper, we consider papers on attacking NLP models as a line of research on

testing NLP software because the adversarial examples generated by these techniques

can be regarded as test cases for NLP software.

[49]. Thus, we focus on test cases generated by word-level testing

techniques.

From the perspective of combinatorial optimization, generating

test cases with word-level techniques can be formulated as a search-

ing problem, where we substitute each word in the original text

to other words in our vocabulary. The whole search space is the

number of words in original text 𝑁 (where we substitute) times the

vocabulary size 𝑉 (word candidates). In general, these techniques

include diverse modules to prune the search space, which can be

classified into three components: target word selection, word sub-

stitution, and generation constraints [50, 84]. Table 2 presents the

modules of the four selected testing techniques in terms of the

three components. A suitable target word selection method can

decrease 𝑁 while a proper word substitution method can cut back

𝑉 . Constraints are commonly applied to ensure that the synthesized

texts preserve semantic meaning and are syntactically correct.

2.2 Problem Definition
Given NLP software F : X → Y which takes a text 𝑥 in text space

X as input and outputs its prediction 𝑦 ∈ Y, an word-level test

case 𝑥 is synthesized from a seed datum 𝑥 whose ground truth (i.e.,
label) is 𝑦 (denoting with 𝑔𝑡 (𝑥) = 𝑦). It also needs to satisfy that

𝑆𝑖𝑚(𝑥, 𝑥) ≥ 𝑐 , where 𝑆𝑖𝑚 : X × X → R is a similarity metric.

Intuitively, it means 𝑥 and 𝑥 have equivalent or similar semantics.

𝑐 is a task-specific constant to trade between semantic similarity

and generation diversity. Most NLP testing techniques assume that

the generated test case and the original text have the same label,

i.e., 𝑔𝑡 (𝑥) = 𝑔𝑡 (𝑥) = 𝑦.

Given a set of generated test cases 𝑋 , sometimes the similarity

metric it uses may not be able to detect some inconsistency, then

Inconsistent test cases occur. A test case 𝑥 ∈ 𝑋 is Inconsistent when
𝑆𝑖𝑚′(𝑥, 𝑥) ≤ 𝑡𝑠 . Here 𝑡𝑠 is a threshold, and 𝑆𝑖𝑚

′
is a trustable and

robust similarity metric, for example, human judgment. There is a

high chance that Inconsistent test cases are false alarms, which sat-

isfy 𝑔𝑡 (𝑥) ≠ 𝑔𝑡 (𝑥) and F (𝑥) = 𝑔𝑡 (𝑥). In other words, the software

behaves correctly (produces label 𝑔𝑡 (𝑥)), but we wrongly assume it

needs to produce label𝑔𝑡 (𝑥). Whether a test case isUnnatural or not
depends on human evaluation. It is defined as 𝑁𝑎𝑡 ′(𝑥) ≤ 𝑡𝑛 where

𝑁𝑎𝑡 ′ : X → R is human judgment on the language naturalness of

the textual test case and 𝑡𝑛 is a threshold.

204

https://github.com/CUHK-ARISE/AEON

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su, and Michael R. Lyu

Algorithm 1 Algorithm for SemEval

Input: Original text 𝑥 ; Generated test case 𝑥

Output: Semantic similarity score 𝑆𝑖𝑚(𝑥, 𝑥) ∈ [0, 1]
1: 𝑥 ← Tokenize(𝑥)

2: 𝑥 ← Tokenize(𝑥)

3: 𝑑𝑖 𝑓 𝑓 _𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← LevenshteinDistance(𝑥, 𝑥)

4: 𝑒𝑚𝑏 (𝑥) ← GetWordEmbedding(𝑥)

5: 𝑒𝑚𝑏 (𝑥) ← GetWordEmbedding(𝑥)

6: 𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑚 ← a list

7: for each 𝑖 ∈ 𝑑𝑖 𝑓 𝑓 _𝑖𝑛𝑑𝑖𝑐𝑒𝑠 do
8: 𝑝𝑎𝑡𝑐ℎ_𝑥 ← 𝑒𝑚𝑏 (𝑥) [𝑖 − 2 : 𝑖 + 2]
9: 𝑝𝑎𝑡𝑐ℎ_𝑥 ← 𝑒𝑚𝑏 (𝑥) [𝑖 − 2 : 𝑖 + 2]
10: Append

𝑝𝑎𝑡𝑐ℎ_𝑥𝑇 𝑝𝑎𝑡𝑐ℎ_𝑥

∥𝑝𝑎𝑡𝑐ℎ_𝑥 ∥· ∥𝑝𝑎𝑡𝑐ℎ_𝑥 ∥ to 𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑚
11: end for
12: 𝑡𝑒𝑥𝑡_𝑠𝑖𝑚 ← 𝑒𝑚𝑏 (𝑥)𝑇 𝑒𝑚𝑏 (𝑥)

∥𝑒𝑚𝑏 (𝑥) ∥· ∥𝑒𝑚𝑏 (𝑥) ∥
13: 𝑚𝑖𝑛_𝑠𝑖𝑚 ← min(𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑚)

14: 𝑎𝑣𝑔_𝑠𝑖𝑚 ← average(𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑚)

15: 𝑆𝑖𝑚(𝑥, 𝑥) ← 𝜆1𝑚𝑖𝑛_𝑠𝑖𝑚 + 𝜆2𝑎𝑣𝑔_𝑠𝑖𝑚 + (1 − 𝜆1 − 𝜆2)𝑡𝑒𝑥𝑡_𝑠𝑖𝑚

The task of this paper is to design an automatic evaluation metric

that can reflect test case quality in terms of semantic consistency

and naturalness, which facilitates the detection of Inconsistent (false
alarms) and Unnatural test cases.

3 APPROACHES AND IMPLEMENTATION
This section introduces the details of AEON whose input is a text

pair <original text, generated text> and outputs are a semantic

score and a syntactic score. AEON consists of two parts: SemEval
(Semantic Evaluator), which captures the semantic difference be-

tween input text pair, and SynEval (Syntactic Evaluator), which

assesses how likely the generated test case will be used (i.e., writ-
ten or typed) by real users. These two components aim to address

Inconsistent and Unnatural issues, respectively. In the rest of this

section, we will introduce the details of the key components of the

two evaluators.

3.1 SemEval
SemEval aims to solve the two challenges mentioned above. (1) The

influence of the mutated position can easily vanish when taking

average since most words in the original text and the generated test

case are the same. (2) Metrics comparing words without contexts

can neglect their alternative meanings (i.e., polysemy). To this end,

we propose to combine Levenshtein distance [37] and sentence

embedding model to evaluate the semantic similarity in the NLP

testing scenario. The approach is surprisingly effective considering

its simplicity, which is shown in Alg. 1.

After tokenizing the input texts (line 1-2), which converts all

words and punctuation as individual tokens, SemEval extracts small

patches of text where the two inputs differ using Levenshtein dis-

tance (line 3). With the help of Levenshtein distance, we can find all

mutated positions in linear time. Next, it applies a PLM to obtain the

embeddings of all tokens in the two inputs (line 4-5). Current PLMs

[11, 13, 18, 41] can be leveraged to project tokens to the embedding

space, so this module can be replaced easily when more powerful

Algorithm 2 Algorithm for SynEval

Input: Generated test case 𝑥

Output: Language naturalness score 𝑁𝑎𝑡 (𝑥) ∈ (0, 1]
1: 𝑥 ← Tokenize(𝑥)

2: 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ← a list

3: for each 𝑡𝑜𝑘𝑒𝑛 ∈ 𝑥 do
4: 𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡 ← replace 𝑡𝑜𝑘𝑒𝑛 with [MASK] in 𝑥

5: 𝑝𝑟𝑜𝑏 ← GetMaskPrediction(𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡)

6: 𝑝𝑟𝑜𝑏_𝑡𝑜𝑘𝑒𝑛 ← 𝑝𝑟𝑜𝑏 [𝑡𝑜𝑘𝑒𝑛]
7: Append 𝑝𝑟𝑜𝑏_𝑡𝑜𝑘𝑒𝑛 to 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦

8: end for
9: 𝑚𝑖𝑛_𝑛𝑎𝑡 ← min(𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

10: 𝑎𝑣𝑔_𝑛𝑎𝑡 ← average(𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

11: 𝑁𝑎𝑡 (𝑥) ← 𝜙𝑚𝑖𝑛_𝑛𝑎𝑡 + (1 − 𝜙)𝑎𝑣𝑔_𝑛𝑎𝑡

PLMs are proposed. Then, for all patches and the whole text, we

compute the cosine similarity defined by
𝑎𝑇𝑏
∥𝑎 ∥· ∥𝑏 ∥ in line 7-9 and

line 12, respectively. Note that we extract totally five tokens as the

patch for a mutation happened in position 𝑖 by [𝑖 − 2 : 𝑖 + 2]. For a
mutation at the beginning or the end of a sentence, we extract the

first or last three tokens as our patch. Finally, we compute the min-

imum and the average numbers among all patch similarities (line

13-14) and combine them with the text similarity using two hyper-

parameters, 𝜆1 and 𝜆2 (line 15). After this convex combination, we

obtain the output of SemEval, namely 𝑆𝑖𝑚(𝑥, 𝑥).
We tackle challenge (1) by considering the minimum and average

patch similarities. For challenge (2), AEON extract the mutated

position along with its context, which can improve its ability to

understand semantics. Consider an example:

Case Study 1
Task/Dataset SE/QQP

Techniqe BAE

Original Text Is it OK to leave an iPhone plugged into the

charger after 100% charged?

Generated Text Is it OK to leave an iPhone plugged into the

charger after 100% indicted?

If we only consider the mutated position charged and indicted,
the similarity is high since they are synonyms in the meaning of

“being accused”. However, charged here means "to put electricity

into an electrical device". This kind of relationship can be captured

by its context, which is modeled in the PLMs.

3.2 SynEval
Since synthesized test cases may include grammar errors, punctu-

ation errors, or produce rarely used words and phrases, it is vital

to use an automatic and quantitative metric to filter out these Un-
natural test cases. Note that this kind of sentence rarely appears in

real-world natural languages, hence they are treated as noises and

ignored during the training process of PLMs [13, 36, 41]. Intuitively,

how natural a sentence is can be reflected by the probability that

the sentence has the same distribution as its training data, which

can be estimated by PLMs. Therefore, SynEval is designed to mea-

sure naturalness through the perplexity of PLMs. Perplexity, in its

205

AEON: A Method for Automatic Evaluation of NLP Test Cases ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 3: Details of the selected datasets. NLP tasks include Sentiment Analysis (SA), Natural Language Inference (NLI), and
Semantic Equivalence (SE)

Dataset Task Classes Description

Rotten Tomatoes Movie Review (MR) [53] SA 2 Short sentences or phrases of movie reviews

Yelp Restaurant Review (Yelp) [85] SA 2 Long sentences or paragraphs of restaurant reviews

Stanford Natural Language Inference (SNLI) [3] NLI 3 Short texts with simple contexts

Multi-Natural Language Inference (MNLI) [71] NLI 3 Multi-genre, multi-length texts with complicated contexts

Quora Question Pairs (QQP) [69] SE 2 Two similar questions from Quora

formal definition, is the exponential form of the cross entropy of

the given sentence [30], having the form of:

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑥) = 𝑁

√√√
𝑁∏
𝑖=1

1

𝑃 (𝑥𝑖 |𝑥1:𝑖−1)
, (1)

where 𝑥𝑖 is the 𝑖-th word in the sentence and 𝑥1:𝑖−1 is the first to
𝑖 − 1-th words in the sentence. 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 : X → [1, ∞) measures

how confused the PLM is when it sees 𝑥𝑖 given 𝑥1:𝑖−1, the greater
the more confused (i.e., worse).

The recently proposed BERT-like models, including BERT [13],

RoBERTa [41], and ALBERT [36] which trained on billions of sen-

tences, are powerful PLMs for modeling this probability. However,

BERT and its variants are bi-directional, taking not only 𝑥1:𝑖−1 but
also 𝑥𝑖+1:𝑛 as input. Therefore, we need to replace 𝑥1:𝑖−1 with 𝑥\𝑖 in
Eq. 1, where 𝑥\𝑖 denotes the input sentence with its 𝑖-th word being

[MASK]. Since our semantic evaluator outputs similarity scores in

(0, 1] (the greater, the more similar), we adopt
𝑁

√︃∏𝑁
𝑖=1 𝑃 (𝑥𝑖 |𝑥\𝑖)

for SynEval, having the same value range of (0, 1] (the greater, the
better).

Alg. 2 illustrates the implementation of SynEval. First we tok-
enize the input (line 1). Then, for each token in the input, we replace

it with the special token [MASK] (line 4). Feeding the masked text

to the PLM, we can obtain the prediction of the masked position,

which is a probability distribution over the entire vocabulary (line

5). Next, we find out the probability that the PLM thinks the masked

position can be filled with the original token and record it as the

perplexity of this token (line 6-7). Finally, we compute the minimum

and the average numbers among all perplexities and combine them

using a hyper-parameter𝜙 . The score after this convex combination

is the output of SynEval, namely 𝑁𝑎𝑡 (𝑥).

4 EXPERIMENTAL DESIGN AND SETTINGS
In this paper, we focus on the following four research questions:

RQ1: What is the quality of the test cases generated by existing

testing techniques (Section 5.1)?

RQ2: How effective is AEON (Section 5.2)?

RQ3: How can AEON help in testing NLP software? (Section 5.3)

RQ4: How can AEON help in improving NLP model? (Section 5.4)

4.1 Testing NLP Software
To answer the RQs, the first step is generating test cases, i.e., testing
NLP software. We choose to test the APIs provided by Hugging

Face Inc.
3
, the largest NLP open-source community, on five widely-

used datasets across three typical tasks: sentiment analysis, natural

language inference, and semantic equivalence.

Datasets. Sentiment analysis aims at classifying the polarity

(either positive or negative) of the sentiment of given texts. The

inputs of natural language inference tasks are two pieces of texts,

namely Premise andHypothesis, and the target is to predict whether

the Hypothesis is a contradiction, entailment, or neutral to the

given Premise. If the Premise can infer the Hypothesis, the output

is entailment; if the Premise can infer NOT Hypothesis, the output

is contradiction; otherwise, the output is neutral. The inputs of

semantic equivalence tasks are two pieces of text, namely question

1 and question 2, and the objective is to judge if the meaning of the

two given questions is equivalent. We select five datasets, namely

MR, Yelp, SNLI, MNLI, and QQP, for our experiments, whose details

are shown in Table 3. MR and Yelp are crawled from the internet,

so the data contain noises such as HTML tags, HTML encodings,

HTML entity names, and hyperlinks, whichwill make the generated

test case hard to read. To eliminate the influence of noisy data in

our human evaluation, we convert HTML texts to plain texts and

remove hyperlinks using regular expressions.

Testing. To be more specific, we choose five BERT-based APIs
4

for five different datasets. According to the statistics given by Hug-

ging Face Inc, these APIs are downloaded more than 30k times

every month on average. Using the testing techniques described in

Table 2 implemented by TextAttack [50] with their default settings,

we generate test cases for all datasets (APIs). We select 400 original

texts for each dataset using each technique, resulting in 8,000 test

cases. After testing the APIs with our test cases, 3,262 test cases

(40.8%) are reported as software errors.

4.2 Human Evaluation
We aim to find out whether the reported cases really trigger the

erroneous behaviors of NLP software, in other words, whether they

are false alarms. To this end, we design and launch a user study.

Design. Following [6], we propose a unified framework to mea-

sure the quality of generated test cases. The quality is defined from

3
https://huggingface.co/

4
https://huggingface.co/textattack/bert-base-uncased-rotten-tomatoes

https://huggingface.co/textattack/bert-base-uncased-yelp-polarity

https://huggingface.co/textattack/bert-base-uncased-MNLI

https://huggingface.co/textattack/bert-base-uncased-snli

https://huggingface.co/textattack/bert-base-uncased-QQP

206

https://huggingface.co/
https://huggingface.co/textattack/bert-base-uncased-rotten-tomatoes
https://huggingface.co/textattack/bert-base-uncased-yelp-polarity
https://huggingface.co/textattack/bert-base-uncased-MNLI
https://huggingface.co/textattack/bert-base-uncased-snli
https://huggingface.co/textattack/bert-base-uncased-QQP

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su, and Michael R. Lyu

Table 4: Details of the selected baselines.

Baseline Description

N
C
-
b
a
s
e
d

NC [55] The ratio of activated neurons

NBC [42] Activation outside upper/lower bounds

TKNC [42] The ratio of top-𝑘 activated neurons

BKNC [76] The ratio of bottom-𝑘 activated neurons

N
L
P
-
b
a
s
e
d

BLEU [54] The overlaps of 𝑛-grams

Meteor [12] 𝑛-grams with synonyms in WordNet [48]

InferSent [11] BiLSTM-based embedding model

SBERT [59] BERT-based embedding model

SimCSE [18] Embedding model with contrastive learning

BERTScore [83] Token matching in BERT embedding space

four perspectives, including Naturalness, Consistency, Human La-

bel, and Difficulty:

• Consistency: From “1 strongly disagree” to “5 strongly agree”,

how much do you think the two sentences have the same mean-

ing? Consistency quantifies the semantic similarity between the

original text and the changed text.

• Naturalness: From “1 very bad” to “5 very good”, how fluent and

natural do you think this sentence is? Naturalness measures the

fluency and grammar of the examples, including grammar errors,

punctuation errors, and spelling errors (unrecognizable words).

• Human label: Ask humans to do the tasks of the given datasets.

It is a task-specific question and records the human judgment of

classification answers.

• Difficulty: From “1 very easy” to “5 very hard”, how difficult for

you to make the decision? Difficulty reflects how difficult the

task is for humans.

Based on our definition in Sec. 1, high-quality text cases should

have high naturalness and consistency scores. Human label and

difficulty are used to classify the human evaluation results. We also

ask annotators whether these test cases have other problems/issues

that we have not identified. The responses show that Inconsistent
issue and Unnatural issue can cover all their concerns.

Crowdsourcing. We distribute our questionnaire on Qualtrics
5
,

a platform to design, share, and collect questionnaires. We recruit

crowd workers on Prolific
6
, a platform to post tasks and hire work-

ers. Since our questions require a high level of reading comprehen-

sion and inference skills in English, we require Prolific workers to

have a bachelor’s degree or above and have English as their first and

most fluent language. Since we focus on false alarms, we randomly

sample 100 test cases per dataset that are reported as software er-

rors for human evaluation. In total, we choose 500 test cases and

generate 2,000 questions. For each question, we ask three workers

to give their judgment to reduce the variance. Therefore, we ask

150 workers to complete all questionnaires. It takes each worker

15-25 minutes to answer around 40 questions in a questionnaire,

5
https://www.qualtrics.com/

6
https://prolific.co/

and each worker is paid about 5 pounds per hour. The total cost is

300 pounds.

4.3 Baselines
We select diverse test case evaluation metrics as baselines from two

categories: Neuron Coverage (NC) metrics and NLP-based metrics,

which are summarized in Table 4.

NC-based. NC and its variants are commonly-used for evalu-

ating test cases. Different from AEON, NC-based metrics mainly

aim at the evaluation of a test set instead of a test case. In our

experiments, we consider NC-based metrics in two ways. (1) For

basic Neuron Coverage (NC) [55] and Neuron Boundary Coverage

(NBC) [42], we calculate the NC scores of each generated test case.

(2) For Top-𝑘 Neuron Coverage (TKNC) [42] and Bottom-𝑘 Neuron

Coverage (BKNC) [76], they cannot be adapted to a single test case

(e.g., TKNC produces the same coverage for single test cases), thus

we compute the number of neurons covered by the generated test

case but not by the original text. Intuitively, changes in texts may

be reflected in neuron activation. Note that the comparison with

NC-based metrics is not apples-to-apples because NC-based metrics

mainly evaluate the quality of a test set. We include the comparison

here for the completeness of our discussion.

NLP-based. Since the main reason behind false alarms is that

the generated test cases cannot keep equivalent or similar seman-

tic meaning with the original text, we include multiple semantic

similarity metrics for the baselines of SemEval. Evaluating the se-
mantic similarity of texts has long been a complex problem in

NLP research. Previous metrics can be divided into corpus-based,

knowledge-based, and DNN-based. DNN-based metrics outperform

other methods and have served as a breakthrough in semantic sim-

ilarity research [7]. We consider a corpus-based metric, BLEU, a

knowledge-based metric, Meteor, and four DNN-based metrics, In-

ferSent, SBERT, SimCSE, and BERTScore. For embedding models,

namely InferSent, SBERT, and SimCSE, we report the semantic

similarity based on cosine similarity because it is used by most of

the researchers [18, 19, 83] and Euclidean distance yields similar

results in all our experiments.

4.4 Evaluation Criteria
We compute three criteria: AP, AUC, and PCC, to discover the

correlation between human judgment (Sec. 4.2) and the automatic

evaluation metrics, including AEON. We treat the scoring systems

as binary classification systems, the human judgment as ground

truth, and draw their Precision-Recall curve (P-R curve) and Re-

ceiver Operating Characteristic curve (ROC curve) to calculate AP

and AUC. P-R curve shows the trade-off between recall (i.e., true
positive rate) and precision, while the ROC curve depicts the trade-

off between true positive rate and false positive rate. AP and AUC

represent the area under P-R curve and ROC curve, respectively.

An excellent binary classification system tends to have high AP

and AUC scores. Then, we check whether our scores are correlated

with human judgment using PCC, the covariance of two variables

divided by the product of their standard deviations, which can be

written in the form of:

𝑃𝐶𝐶 (𝑋, 𝑌) = 𝐶𝑜𝑣 (𝑋, 𝑌)√︁
𝑉𝑎𝑟 (𝑋) ·𝑉𝑎𝑟 (𝑌)

. (2)

207

https://www.qualtrics.com/
https://prolific.co/

AEON: A Method for Automatic Evaluation of NLP Test Cases ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Inconsistent:

High-Quality: Unnatural:

False Alarms:71%

57%

44%

15%

Figure 1: Venn Diagram of the proportion of each vulnerabil-
ity category (better viewed in colored mode).

PCC is able to show how linearly correlated two variables are.

Note that negative PCC value indicates that the two variables are

negatively correlated.

5 EXPERIMENTAL RESULTS
5.1 RQ1: The Quality of Test Cases
We average the consistency, naturalness, and difficulty scores as the

respective final scores. We use the label that most workers agree as

the final human label. For each test case, we decide whether it is

an Inconsistent case or an Unnatural case based on the consistency

and naturalness scores. Finally, if the human label differs from the

given label, the test case is considered a false alarm.

To show how severe the problem in NLP test case quality is, we

draw the Venn diagram of the generated test cases based on the

human annotation results. As is shown in Fig. 1, 44% of them change

the label and thus are false alarms. In other words, there are only

1,435 cases triggering software errors in all 8,000 test cases. 57% of

them are not natural enough, while 71% fail to preserve the semantic

meaning. Only 15% of them have good language naturalness and

preserve the semantic meaning, which are counted as high-quality

test cases. Besides the statistical information, we have two more

observations. First, though the majority of Inconsistent cases are
false alarms, a few Inconsistent cases do not change the label. These
test cases only account for 11%, and the rest can be categorized

into the two issues. Second, bad naturalness can sometimes hurt

semantic meaning, resulting in test cases that are both Inconsistent
and Unnatural. This is because the unnatural part can eliminate

some key information in texts and further change the semantics.

Answer to RQ1: The quality of NLP test cases cannot be guar-

anteed by existing testing techniques. 71% and 57% of test cases

generated by existing NLP testing techniques are Inconsistent and
Unnatural, respectively. 44% of test cases are false alarms, sig-

nificantly degrading the effectiveness and efficiency of existing

testing techniques.

5.2 RQ2: The Effectiveness of AEON
Since AEON is designed to evaluate the semantic similarity and

language naturalness of NLP software test cases, we assess the two

modules, SemEval and SynEval, to validate the effectiveness of our
approach. We use default settings for all baselines, and we select

𝑘 = 192 (one-fourth of neurons in each layer) for TKNC and BKNC.

We set 𝜆1 = 0.1, 𝜆2 = 0.2 for SemEval, and 𝜙 = 0.6 for SynEval.

5.2.1 SemEval. We draw P-R curves and ROC curves for the se-

mantic scores calculated by SemEval as well as the other baselines

mentioned in Sec. 4.3 and consistency from human evaluation.

Then we compute AP and AUC scores, which are shown in Table 5.

Our method achieves higher AP and AUC values averaged on all

datasets and baselines, showing the strong ability of SemEval to fil-
ter out Inconsistent cases. The results also validate the effectiveness
of SemEval on capturing subtle semantic changes. We calculate

PCC between the semantic score and human-annotated consistency

for each method. As shown in Table 5, our approach achieves about

0.92 PCC on average, which significantly outperforms all the base-

lines. This shows that the score of the SemEval aligns well with

human evaluation.

NC-based metrics achieve decent performance and surpass many

NLP-based metrics, especially on MNLI and QQP datasets, indi-

cating that neuron activation patterns can reflect text semantic

changes. As for NLP-based metrics, BLEU and Meteor perform the

worst since they cannot handle highly overlapped texts. The BLEU

and Meteor scores for text pairs are always high since most of the

words in the original texts and the generated test cases are the same.

DNN-based metrics cannot perform well because of three main rea-

sons. (1) Word embeddings usually lack semantic information. For

instance, the embeddings of [reject] and [accept] calculated by
BERT [13] have high cosine similarity of 0.846, while such word

substitution changes the correct label in sentiment analysis. An-

other example is that the cosine similarity between embeddings of

[Tom] and [Jack] is 0.978, which hurts in natural language infer-

ence tasks. (2) Baselines that employ token matching [83] are prone

to mistakenly matching multiple words to a single word. Consider

the following example:

Illustrative Example 1
Original Text I do like the movie, though I did not watch

it at cinema.

Generated Text I do not like the movie, though I did not

watch it at cinema.

The word [not] in the generated text can be matched to the second

[not] in the original sentence, resulting in a high similarity score.

(3) Models based on contrastive learning fail due to the lack of

data with subtle differences in their training set. These models

are mainly trained on natural language inference datasets [11, 18],

which can hardly cover the cases where two sentences have few

but vital differences.

Considering different datasets, in sentiment analysis tasks, AEON

and all other baselines perform better on MR than on Yelp since the

texts in MR in shorter and simpler. For natural language inference

tasks, though MNLI is more complicated than SNLI, it is surprising

208

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su, and Michael R. Lyu

Table 5: AP, AUC, and PCC results that show how well the automatic metrics align with human-annotated consistency scores.

Datasets MR Yelp SNLI MNLI QQP

Metrics AP AUC PCC AP AUC PCC AP AUC PCC AP AUC PCC AP AUC PCC

N
C
-
b
a
s
e
d

NC 0.76 0.55 0.73 0.29 0.36 -0.70 0.56 0.55 0.65 0.31 0.54 0.50 0.44 0.52 0.47

NBC 0.78 0.66 0.85 0.51 0.62 0.85 0.44 0.47 0.23 0.35 0.56 0.90 0.38 0.56 0.78

TKNC 0.88 0.73 0.88 0.56 0.64 0.88 0.58 0.57 0.65 0.47 0.66 0.87 0.67 0.76 0.91

BKNC 0.88 0.73 0.86 0.55 0.63 0.85 0.58 0.58 0.67 0.48 0.67 0.87 0.64 0.75 0.88

N
L
P
-
b
a
s
e
d

BLEU 0.75 0.58 0.75 0.45 0.57 0.45 0.45 0.42 -0.36 0.34 0.50 0.44 0.44 0.54 0.44

Meteor 0.74 0.54 0.73 0.43 0.57 0.41 0.51 0.50 -0.18 0.46 0.59 0.80 0.53 0.62 0.81

InferSent 0.81 0.68 0.96 0.55 0.67 0.88 0.55 0.61 0.55 0.40 0.61 0.93 0.48 0.59 0.83

SentBERT 0.85 0.71 0.92 0.53 0.63 0.83 0.65 0.65 0.66 0.46 0.63 0.74 0.52 0.59 0.76

SimCSE 0.85 0.75 0.93 0.63 0.76 0.92 0.61 0.65 0.76 0.54 0.73 0.96 0.50 0.56 0.68

BERTScore 0.75 0.61 0.91 0.44 0.53 0.37 0.59 0.60 0.20 0.34 0.58 0.73 0.46 0.59 0.67

AEON (Ours) 0.92 0.82 0.93 0.75 0.84 0.91 0.66 0.70 0.85 0.58 0.75 0.98 0.56 0.63 0.90

Table 6: AP, AUC, and PCC results that show how well the automatic metrics align with human-annotated naturalness scores.

Datasets MR Yelp SNLI MNLI QQP

Metrics AP AUC PCC AP AUC PCC AP AUC PCC AP AUC PCC AP AUC PCC

NC 0.66 0.56 0.53 0.64 0.41 -0.70 0.45 0.54 -0.09 0.56 0.51 0.27 0.56 0.52 0.03

NBC 0.72 0.57 0.32 0.70 0.47 0.51 0.32 0.52 0.66 0.43 0.36 -0.91 0.52 0.47 -0.61

TKNC 0.68 0.56 0.57 0.67 0.53 0.49 0.36 0.51 0.09 0.55 0.47 -0.33 0.65 0.57 0.51

BKNC 0.67 0.55 0.52 0.66 0.52 0.45 0.36 0.51 0.09 0.55 0.47 -0.39 0.64 0.55 0.46

AEON (Ours) 0.87 0.59 0.66 0.77 0.58 0.84 0.52 0.63 0.75 0.54 0.65 0.98 0.73 0.68 0.87

to observe that SNLI has lower PCC scores than MNLI. There are

negative PCC scores when using BLEU and Meteor, indicating the

negative correlation between the baselines and human evaluation.

We think the reason behind this is that the complexity of MNLI lies

in the diversity of contexts, and changes in contexts typically will

not change the corresponding labels.

5.2.2 SynEval. To evaluate the performance of SynEval, we draw
P-R curves and ROC curves and compute AP and AUC, treating

SynEval as a binary classifier to recognize Unnatural cases. We

also calculate PCC between SynEval and naturalness score from

human evaluation, which is included in Table 6. We can observe

that though NC-based metrics have an excellent performance on

detecting Inconsistent test cases, they fall short of measuring lan-

guage naturalness. The performance varies significantly on differ-

ent datasets. The PCC scores of NBC, TKNC, and BKNC show a

negative correlation on MNLI, while positively correlated on other

datasets. We infer the reason behind this may be that the models

make the decision based on the appearance of certain words or

phrases, ignoring whether the input texts have good language natu-

ralness. In addition to using BERT [13] in SynEval that is presented

in Table 6, we also try other language models including RoBERTa

[41] and ALBERT [36], among which BERT achieves the highest

AUC and AP values, averaged on all datasets. Note that traditional

grammar checkers are not suitable for this task because they do not

provide quantitative results, and they cannot reveal the error-free

yet strange sentences that people rarely write.

The impact of the hyperparameters. If we set the proportion
of the minimal semantic score from 0 to 1, we can observe that the

performance increases at first, then remains stable at the same level,

and finally drop when it gets close to 1. We balance this trade-off

using a grid search for lambdas and phis. These parameters can

be generalized to other datasets and NLP tasks since we adopt the

same parameters and consistently achieve good performance for all

selected datasets in our experiments. We also test different patch

lengths 𝑙 for extracting [𝑖 − 𝑙 : 𝑖 + 𝑙]. In particular, 𝑙 = 1 does not

work well because most NLP models use BPE (Byte Pair Encoding)

[63] for tokenization, which may divide a word into smaller tokens,

making it extract only part of a word. Long patches (e.g., 𝑙 ≥ 5)

suffer from the same problem as average scores, i.e., the impact of

mutation vanishes after averaging. In our experiments, 𝑙 = 3 and

209

AEON: A Method for Automatic Evaluation of NLP Test Cases ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 7: The quality of test cases without and with AEON.

Data Source Consistency Naturalness False Alarms

w/o AEON 2.627 2.916 0.440

w/ AEON 3.357 3.305 0.262

Improvement ↑ 27.8% ↑ 13.3% ↓ 40.6%

𝑙 = 4 lead to similar results. To reduce computation cost, we select

𝑙 = 4 for this parameter.

Answer to RQ2:AEON, which consists of SemEval and SynEval,
is effective in terms of detecting test cases that change the label

(false alarms) and test cases that are unnatural. AEON outper-

forms all baselines in average on all datasets.

5.3 RQ3: Test Case Selection Using AEON
This paper aims to propose a metric that facilitates NLP software

testing by evaluating the quality of test cases. In this section, we

utilize AEON to filter out low-quality test cases. We conduct ex-

periments to verify whether the test cases selected by AEON enjoy

better semantic consistency and language naturalness. Specifically,

AEON can be utilized to filter out Inconsistency and Unnatural test
cases to improve the quality of test cases in average. For SemEval,
we set different thresholds for different tasks. We choose multiple

thresholds for semantic similarity score because whether the label

will change depends on the given task. Consider this pair of texts

(original and generated) which is inconsistent in semantics:

Illustrative Example 2
Original Text I watched the movie at home, it was nice.

Generated Text I watched the movie at cinema, it was nice.

If they are in a sentiment analysis dataset, the label remains un-

changed (i.e., positive). However, if they appear in a natural lan-

guage inference dataset as premises, and the hypothesis is “I went

out for the movie”, the label changes from contradiction to en-

tailment. Therefore, to best filter out those false alarms, we set

thresholds as 0.87, 0.90, and 0.91 for sentiment analysis, natural

language inference, and semantic equivalence, respectively. The

thresholds are computed with a balance between true positive rate

and false positive rate. From the thresholds, we can see that the

three tasks need more semantic similarity increasingly to ensure

the preservation of labels, which aligns with the characteristics of

the datasets. For language naturalness, we set the threshold as 0.21.

We generate 500 test cases that are reported to trigger some

software errors, including various datasets and testing techniques

mentioned in Table 3 and Table 2 respectively. Then we check

whether human evaluation has improved before and after applying

AEON to select high-quality test cases. The results are shown in

Table 7. The average consistency and naturalness scores of the 500

test cases are 2.627 and 2.916, which are below 3 (considered as

Inconsistency and Unnatural test cases) in average. The false alarm

rate is 0.44. After selecting test cases whose SemEval and SynEval

scores are above the thresholds with the help of AEON, the qual-

ity of test cases is significantly enhanced. The scores increase to

3.357 and 3.305, considered high-quality test cases on average. The

consistency score improves by 27.8%, and the naturalness score im-

proves by 13.3%. The false alarm rate is 26.2%, showing a significant

improvement of 40.6%. The results demonstrate the effectiveness

of AEON on high-quality test case selection.

Case Study. We choose one of the generated test cases as an

example to illustrate the performance of our SemEval and SynEval
compared to other baselines.

Case Study 2
Task/Dataset SA/MR

Techniqe PSO

Original Text The result is a powerful, naturally dramatic

piece of low-budget filmmaking.

Generated Text The result is a terrible, naturally dramatic

piece of low-budget filmmaking.

AEON achieves a semantic score of 0.58 and a syntactic score of

0.22. From the semantic side, the sentiment of the original example

is positive. However, the sentiment of the generated test case is

negative because [terrible] is a negative adjective. This test case
is not only Inconsistent but also a false alarm since the label of

this example is changed. Therefore, an excellent semantic metric

should give this test case a low score to filter it out. Our method,

SemEval, gives the text pair a score of 0.58, which is far below the

threshold of 0.87, indicating that the test cases cannot preserve

the semantics and should be filtered out. AEON works effectively

because our design to consider patch similarity identifies that the

substitution ([powerful]→[terrible]) dramatically changes the

semantic meaning. From the syntactic side, the generated test case

reads smoothly without difficulty comprehending its meaning, sug-

gesting that it has good language naturalness. The case obtains a

score of 0.22 given by SynEval, which is above the threshold of

0.21 and indicates that the test case is not an Unnatural case. All in
all, our method outperforms other baselines both in semantic and

syntactic perspectives on this example.

Answer to RQ3: AEON can effectively filter out low-quality test

cases. The remaining test cases enjoy better semantic consistency

and language naturalness and, most importantly, a lower false

alarm rate. Thus, AEON can facilitate NLP software testing by

selecting high-quality test cases, saving developers’ time.

5.4 RQ4: Improving NLP Software with AEON
Although NLP software testing is a promising research direction, it

incurs an important yet unavoidable question: can the test cases

be utilized to improve NLP software? To further show how high-

quality test cases selected by AEON can help in improving NLP

software, we add test cases that the model misclassifies to the

training set and conduct model re-training. Accuracy is verified

on the test set of the given task, while robustness is evaluated

using the success rate of adversarial attacks. In this section, we

run experiments to verify whether AEON can further improve the

robustness and accuracy in model re-training.

210

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su, and Michael R. Lyu

(b) Attack Success Rate (%)(a) Test Accuracy (%)

Figure 2: The left figure shows the accuracy of the test set
(the higher, the better), and the right figure shows the attack
success rate (the lower, the better). Blue lines are the results
from models trained on randomly selected test cases, while
red lines are the results from models trained on test cases
selected by AEON. The horizontal axis is the ratio of the test
cases in the whole training set.

We focus on fine-tuning a pre-trained BERT on MR dataset for

sentiment analysis task for simplicity and better reproducibility. We

first generate the test cases using the testing techniques mentioned

in Table 2 using the entire training set of MR for seeds (original

texts). Then we consider two settings: (1) randomly select as many

test cases as 5% to 25% cases in the training set to train the model;

(2) rank all the test cases with AEON in descending order and select

the same size as (1) to train the model. After training, which takes

five epochs to reach convergence, we evaluate the models’ accuracy

using the MR test set and robustness using an adversarial attack

method, PWWS [60].

As shown in Fig. 2(a), models trained with ranked test cases

outperform the models with randomly selected test cases in terms

of accuracy. In addition, Fig. 2(b) shows that models trained with

ranked test cases are more robust (the lower the attack success rate

is, the more robust the model is). At the beginning of each figure,

we observe improvement in accuracy and robustness on both lines.

This is because test cases add generalization ability to models. As we

use more additional data in training, the noisy data issue surfaces

(i.e., false alarms and low-quality test cases) and starts to harm the

model accuracy and robustness.We can observe that nomatter what

ratio of test cases we use, the models trained with AEON ranked

data achieve higher accuracy and robustness thanks to the high-

quality test cases it selects. In contrast, the accuracy and robustness

drop quickly in models trained with randomly selected test cases.

In conclusion, adding low-quality test cases can easily hurt both

accuracy and robustness, while adding a reasonable amount of high-

quality test cases selected by AEON leads to model improvement

in terms of both accuracy and robustness.

Answer to RQ4: Equipped with AEON, test cases generated by

existing testing techniques can be prioritized. The prioritized test

cases can be further leveraged into NLP model training, resulting

in higher accuracy and stronger robustness. AEON can also save

time and resources by filtering out false alarms and test cases of

low quality.

5.5 Discussion
The validity of out user study. To alleviate workers’ negligence

in the annotation process, we double-check the results in two cases.

(1) The workers feel it challenging to select one specific label. Specif-

ically, we check test cases with high difficulty scores (above 3.5), or

where annotators returned three different labels (e.g., three workers
give the label of contradiction, entailment, and neutral in natural

language inference tasks). (2) The human label is different from

the original label (i.e., label changes), while the human-annotated

consistency score is still high, which is counter-intuitive since if the

label is changed, then the semantic meaning must have changed.

We find out 21 cases for case (1) and 66 examples for case (2) and

hire two annotators with two years of experience in NLP research

to re-evaluate them. Afterward, we compute the Kappa score to

check inter-rater reliability. The Fleiss’ Kappa of the classification

task is 0.76 averaged on all datasets, implying substantial agreement

among the annotators. We do not apply Cohen’s Kappa since we

have three annotators for each case.

The importance of Unnatural test cases. We evaluate the

naturalness of test cases and filter out Unnatural ones because they
are rarely seen in real-world scenarios. Though previous work in-

tentionally add spelling and grammar errors to data to improve the

robustness of the NLP models [33], we noticed annotators men-

tioned that they could not understand the weird grammar or expres-

sion of some generated texts. In addition, unnaturalness can hide

important semantic information, which changes the semantics and

further renders the possibility of generating false alarms. Consider

the following example:

Case Study 3
Task/Dataset SA/MR

Techniqe PSO

Original Text ... is a relationship that is worthy of our

respect.

Generated Text ... is a relationship that is costly of our re-

spect.

In this example, the unnaturalness changes the semantics of the

sentence and further reverses from positive sentiment to negative

sentiment while making readers confused. Thus, we think Unnatu-
ral issues are important, and they can also degrade the quality of

NLP software test cases.

Limitations of our proposed approaches. Our proposed ap-

proaches consist of two parts, SemEval for semantic semilarity and

SynEval for language naturalness. To apply SemEval, we require
both the generated test cases and the original texts at the same time,

thus limiting SemEval to testing techniques of metamorphic testing,

where the metamorphic relation assumes the transformation will

change or will not change the semantics of the original text. Under

the assumption that the transformation will not change the seman-

tics, we filter out those with lower SemEval scores, while under

the assumption that the transformation will change the semantics,

we filter out those with higher SemEval scores. SynEval can be

applied to any textual test case.

211

AEON: A Method for Automatic Evaluation of NLP Test Cases ISSTA ’22, July 18–22, 2022, Virtual, South Korea

6 RELATEDWORK
6.1 Testing AI Software
With the improvement of Artificial Intelligence (AI) models, compa-

nies tend to deploy AI in real-world applications like autonomous

driving and neural machine translation [57]. However, AI soft-

ware inherits the deficiencies of AI models that they are prone

to erroneous behavior given particular inputs [2, 4, 5, 15, 20, 73–

75]. A line of research has been conducted to test AI software

systems to address this problem. Specifically, they test software

based on convolutional neural network and feed forward neural

network [17, 26, 35, 43, 66, 72, 80, 82], software based on recur-

rent neuron network [16], and software based on general DNN

models [27, 79, 81]. Other researchers focus on testing deep learn-

ing libraries [56], assist the debugging process [44], and detect

adversarial examples online [45, 65, 70, 77]. Unlike these papers

that primarily focus on CV software, this paper focuses on NLP

software.

6.2 Testing NLP Software
DNNs have boosted the performance of many NLP fields such as

code analysis [1, 29, 58] and machine translation [68]. In recent

years, researchers have proposed a variety of metamorphic testing

techniques for NLP software [9, 10, 23–25, 61, 64]. In addition to

metamorphic testing techniques, another line of research for find-

ing NLP software errors [21, 31, 32, 38, 39, 78] is inspired by the

adversarial attack concept in the CV field. Our work focuses on

automatic quality evaluation of test cases generated by these testing

techniques. Thus, we believe AEON complements with existing

work.

6.3 Testing Criteria
Testing criterion, such as code coverage, has been widely utilized to

measure how good a test suite is in traditional software (e.g., compil-

ers). Inspired by code coverage in traditional software, DeepXplore

[55] introduces the concept of neuron coverage for AI software: the

percentage of neurons activated by the test cases. In recent years,

researchers have proposed diverse variants of neuron coverage as

testing criteria focusing on different activation magnitudes [42, 76].

Researchers also develop neuron coverage specially designed for

recurrent neuron networks [16, 22, 28] to adopt the properties of

sequence inputs. Different from neuron coverage metrics, which

often act as test adequacy criteria of the test suite, our approach

focuses on the quality evaluation of every test case. Thus, we think

AEON can complement with existing testing criteria and contribute

to research on NLP software testing.

7 CONCLUSION
This paper is the first to explore the quality of test cases generated

by NLP software testing techniques. In an evaluation study, we

surprisingly observe that 44% of the generated NLP test cases are

of low quality, incurring Inconsistent or/and Unnatural issues. Thus,
instead of improving NLP software, utilization of these test cases

in model training could even degrade its accuracy and robustness.

To this end, we introduce AEON, a novel, effective approach for

automatic quality evaluation of NLP software testing cases. Given

an original text and a generated test case, AEON returns two scores

regarding similarity consistency and language naturalness. Our

evaluation and user study show that AEON’s scores align well

with the quality scores returned by humans. In particular, AEON

achieves 69.4% and 68.5% AP on detecting Inconsistent and Unnatu-
ral test cases generated by four SOTA testing techniques on five

widely-used datasets. We can conduct test selection or prioritization

according to the scores returned by AEON. In our evaluation, mod-

els trained on the test cases selected by AEON consistently achieve

better accuracy and robustness than models trained on randomly se-

lected test cases. We believe that this work is the important first step

toward systematic quality evaluation of NLP software test cases,

which can further enhance the effectiveness of testing techniques

for NLP software and complement existing testing criteria. We leave

the work for automatically fixing Inconsistent and Unnatural test
cases for future exploration.

ACKNOWLEDGMENTS
We thank gratefully the constructive discussion with Shuqing Li,

and the helpful feedback from members of ARISE Lab. The work

described in this paper was supported by the key program of fun-

damental research from the Shenzhen Science and Technology In-

novation Commission (No. JCYJ20200109113403826), the Research

Grants Council of the Hong Kong Special Administrative Region,

China (CUHK 14210920 of the General Research Fund), and the

National Natural Science Foundation of China (No. 62102340).

REFERENCES
[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning

distributed representations of code. Proc. ACM Program. Lang. 3, POPL (2019),

40:1–40:29.

[2] Anish Athalye, Nicholas Carlini, and David A. Wagner. 2018. Obfuscated Gra-

dients Give a False Sense of Security: Circumventing Defenses to Adversarial

Examples. In Proceedings of the 35th International Conference on Machine Learning
(ICML), Vol. 80. 274–283.

[3] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-

ning. 2015. A large annotated corpus for learning natural language inference.

In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 632–642.

[4] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,

Clay Shields, David A. Wagner, and Wenchao Zhou. 2016. Hidden Voice Com-

mands. In Proceedings of the 25th USENIX Security Symposium (USENIX Security).
513–530.

[5] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness

of Neural Networks. In 2017 IEEE Symposium on Security and Privacy (SP). 39–57.
[6] Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. 2020. Evaluation of Text

Generation: A Survey. CoRR abs/2006.14799 (2020). arXiv:2006.14799

[7] Dhivya Chandrasekaran and Vijay Mago. 2021. Evolution of Semantic Similarity

- A Survey. ACM Comput. Surv. 54, 2 (2021), 41:1–41:37.
[8] Mei-Hwa Chen, Michael R. Lyu, and W. Eric Wong. 2001. Effect of code coverage

on software reliability measurement. IEEE Trans. Reliab. 50, 2 (2001), 165–170.
[9] Songqiang Chen, Shuo Jin, and Xiaoyuan Xie. 2021. Testing Your Question

Answering Software via Asking Recursively. In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, (ASE). 104–116.

[10] Songqiang Chen, Shuo Jin, and Xiaoyuan Xie. 2021. Validation on machine

reading comprehension software without annotated labels: a property-based

method. In Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, (ESEC/FSE).
590–602.

[11] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine

Bordes. 2017. Supervised Learning of Universal Sentence Representations from

Natural Language Inference Data. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP). 670–680.

[12] Michael J. Denkowski and Alon Lavie. 2014. Meteor Universal: Language Specific

Translation Evaluation for Any Target Language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation (WMT@ACL). 376–380.

212

https://arxiv.org/abs/2006.14799

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su, and Michael R. Lyu

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies (NAACL-HLT),
Volume 1 (Long and Short Papers). 4171–4186.

[14] Zhendong Dong, Qiang Dong, and Changling Hao. 2010. HowNet and Its Com-

putation of Meaning. In Proceedings of the 23rd International Conference on Com-
putational Linguistics (COLING), Demonstrations Volume. 53–56.

[15] Tianyu Du, Shouling Ji, Jinfeng Li, Qinchen Gu, Ting Wang, and Raheem Beyah.

2020. SirenAttack: Generating Adversarial Audio for End-to-End Acoustic Sys-

tems. In Proceedings of the 15th ACM Asia Conference on Computer and Commu-
nications Security (ASIA CCS). 357–369.

[16] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-

Stellar: model-based quantitative analysis of stateful deep learning systems. In

Proceedings of the ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
477–487.

[17] Alessio Gambi, Marc Müller, and Gordon Fraser. 2019. Automatically testing self-

driving cars with search-based procedural content generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 318–328.

[18] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive

Learning of Sentence Embeddings. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). 6894–6910.

[19] Siddhant Garg and Goutham Ramakrishnan. 2020. BAE: BERT-based Adversarial

Examples for Text Classification. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6174–6181.

[20] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining

and Harnessing Adversarial Examples. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR).

[21] Junliang Guo, Zhirui Zhang, Linlin Zhang, Linli Xu, Boxing Chen, Enhong Chen,

and Weihua Luo. 2021. Towards Variable-Length Textual Adversarial Attacks.

CoRR abs/2104.08139 (2021).

[22] Jianmin Guo, Yue Zhao, Xueying Han, Yu Jiang, and Jiaguang Sun. 2019. RNN-

Test: Adversarial Testing Framework for Recurrent Neural Network Systems.

CoRR abs/1911.06155 (2019).

[23] Shashij Gupta, Pinjia He, Clara Meister, and Zhendong Su. 2020. Machine trans-

lation testing via pathological invariance. In Proceedings of the 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 863–875.

[24] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-invariant testing

for machine translation. In Proceedings of the 42nd International Conference on
Software Engineering (ICSE). 961–973.

[25] Pinjia He, Clara Meister, and Zhendong Su. 2021. Testing Machine Translation

via Referential Transparency. In Proceedings of the 43rd IEEE/ACM International
Conference on Software Engineering (ICSE). 410–422.

[26] Jens Henriksson, Christian Berger, Markus Borg, Lars Tornberg, Cristofer En-

glund, Sankar Raman Sathyamoorthy, and Stig Ursing. 2019. Towards Structured

Evaluation of Deep Neural Network Supervisors. In Proceedings of the IEEE Inter-
national Conference On Artificial Intelligence Testing (AITest). 27–34.

[27] Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. 2019. Deep-

Mutation++: A Mutation Testing Framework for Deep Learning Systems. In

Proceedings of the 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1158–1161.

[28] Wei Huang, Youcheng Sun, Xingyu Zhao, James Sharp, Wenjie Ruan, Jie Meng,

and Xiaowei Huang. 2019. Coverage Guided Testing for Recurrent Neural Net-

works. CoRR abs/1911.01952 (2019).

[29] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.

Summarizing Source Code using a Neural Attention Model. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (ACL),
Volume 1: Long Papers.

[30] Fred Jelinek, Robert L. Mercer, Lalit R. Bahl, and James K. Baker. 1977. Perplexity

— a measure of the difficulty of speech recognition tasks. The Journal of the
Acoustical Society of America 62, S1 (1977), S63–S63.

[31] Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. 2019. Certified Ro-

bustness to Adversarial Word Substitutions. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 4127–4140.

[32] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is BERT Really

Robust? A Strong Baseline for Natural Language Attack on Text Classification

and Entailment. In The Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI), The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference (IAAI), The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI). 8018–8025.

[33] Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang. 2020. Robust Encod-

ings: A Framework for Combating Adversarial Typos. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics (ACL). 2752–2765.

[34] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In

Proceedings of International Conference on Neural Networks (ICNN). 1942–1948.

[35] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system

testing using surprise adequacy. In Proceedings of the 41st International Conference
on Software Engineering (ICSE). 1039–1049.

[36] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised

Learning of Language Representations. In Proceedings of the 8th International
Conference on Learning Representations (ICLR).

[37] Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. Cybernetics and Control Theory 10, 8 (1966), 707–710.

[38] Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun,

and Bill Dolan. 2021. Contextualized Perturbation for Textual Adversarial Attack.

In Proceedings of the 2021 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (NAACL-HLT).
5053–5069.

[39] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2019. TextBugger:

Generating Adversarial Text Against Real-world Applications. In 26th Annual
Network and Distributed System Security Symposium (NDSS).

[40] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi.

2018. Deep Text Classification Can be Fooled. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI). 4208–4215.

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A

Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

arXiv:1907.11692

[42] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang

Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:

multi-granularity testing criteria for deep learning systems. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE). 120–131.

[43] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie,

Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepMutation: Mutation

Testing of Deep Learning Systems. In Proceedings of the 29th IEEE International
Symposium on Software Reliability Engineering (ISSRE). 100–111.

[44] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.

2018. MODE: automated neural network model debugging via state differential

analysis and input selection. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 175–186.

[45] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.

2019. NIC: Detecting Adversarial Samples with Neural Network Invariant Check-

ing. In Proceedings of the 26th Annual Network and Distributed System Security
Symposium (NDSS).

[46] Edoardo Maggio. 2018. Apple says that 500 million customers use Siri. Online,

Available:. https://www.businessinsider.com/apple-says-siri-has-500-million-users-
2018-1 (2018).

[47] Paul Michel, Xian Li, Graham Neubig, and Juan Miguel Pino. 2019. On Evaluation

of Adversarial Perturbations for Sequence-to-Sequence Models. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-HLT), Volume 1
(Long and Short Papers). 3103–3114.

[48] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39–41.

[49] John X. Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji, and Yanjun Qi. 2020.

Reevaluating Adversarial Examples in Natural Language. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings
(EMNLP) (Findings of ACL, Vol. EMNLP 2020). 3829–3839.

[50] John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi.

2020. TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and

Adversarial Training in NLP. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: SystemDemonstrations, (EMNLP - Demos).
119–126.

[51] Arika Okrent. 2016. 9 Little Translation Mistakes That Caused Big Problems.

Online, Available:. https://www.mentalfloss.com/article/48795/9-little-translation-
mistakes-caused-big-problems (2016).

[52] Ahuy Ong. 2017. Facebook apologizes after wrong translation sees

Palestinian man arrested for posting ‘good morning’. Online, Available:.

https://www.theverge.com/us-world/2017/10/24/16533496/facebook-apology-
wrong-translation-palestinian-arrested-post-good-morning (2017).

[53] Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploiting Class Relationships for

Sentiment Categorization with Respect to Rating Scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL). 115–124.

[54] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:

a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics (ACL).
311–318.

[55] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-

mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th

213

https://arxiv.org/abs/1907.11692

AEON: A Method for Automatic Evaluation of NLP Test Cases ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Symposium on Operating Systems Principles (SOSP). 1–18.
[56] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:

cross-backend validation to detect and localize bugs in deep learning libraries. In

Proceedings of the 41st International Conference on Software Engineering (ICSE).
1027–1038.

[57] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,Maria E. Presa

Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. 2019. A Survey on

Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv.
51, 5 (2019), 92:1–92:36.

[58] Michael Pradel and Koushik Sen. 2018. DeepBugs: a learning approach to name-

based bug detection. Proc. ACM Program. Lang. 2, OOPSLA (2018), 147:1–147:25.

[59] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 3980–3990.

[60] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating Natural

Language Adversarial Examples through Probability Weighted Word Saliency. In

Proceedings of the 57th Conference of the Association for Computational Linguistics
(ACL), Volume 1: Long Papers. 1085–1097.

[61] Marco Túlio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.

Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics
(ACL). 4902–4912.

[62] SafeAtLast. 2021. Incredible Amazon Alexa Statistics You Need to Know in 2021.

Online, Available:. https://safeatlast.co/blog/amazon-alexa-statistics/gref (2021).

[63] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine

Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (ACL), Volume 1: Long
Papers.

[64] Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.

Automatic testing and improvement of machine translation. In Proceedings of the
42nd International Conference on Software Engineering, (ICSE). 974–985.

[65] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. 2018. Attacks

Meet Interpretability: Attribute-steered Detection of Adversarial Samples. In

Proceedings of Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018 (NeurIPS). 7728–7739.

[66] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: automated

testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering (ICSE). 303–314.

[67] Barak Turovsky. 2016. Ten years of Google Translate. Online, Available:.

https://blog.google/products/translate/ten-years-of-google-translate (2016).
[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017 (NIPS). 5998–6008.

[69] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.

Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for Natu-

ral Language Understanding. In Proceedings of the 7th International Conference
on Learning Representations (ICLR).

[70] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.

Adversarial sample detection for deep neural network through model mutation

testing. In Proceedings of the 41st International Conference on Software Engineering
(ICSE). 1245–1256.

[71] Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A Broad-Coverage

Challenge Corpus for Sentence Understanding through Inference. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-HLT), Volume 1
(Long Papers). 1112–1122.

[72] Weibin Wu, Yuxin Su, Xixian Chen, Shenglin Zhao, Irwin King, Michael R. Lyu,

and Yu-Wing Tai. 2020. Towards Global Explanations of Convolutional Neural

Networks With Concept Attribution. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 8649–8658.

[73] Weibin Wu, Yuxin Su, Michael R. Lyu, and Irwin King. 2021. Improving the

Transferability of Adversarial Samples With Adversarial Transformations. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 9024–9033.
[74] WeibinWu, Hui Xu, Sanqiang Zhong, Michael R. Lyu, and Irwin King. 2019. Deep

Validation: TowardDetecting Real-World Corner Cases for DeepNeural Networks.

In 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 125–137.

[75] Chong Xiang, Charles R. Qi, and Bo Li. 2019. Generating 3D Adversarial Point

Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 9136–9144.

[76] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun

Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided

fuzz testing framework for deep neural networks. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
146–157.

[77] Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature Squeezing: Detecting

Adversarial Examples in Deep Neural Networks. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium (NDSS).

[78] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and

Maosong Sun. 2020. Word-level Textual Adversarial Attacking as Combinatorial

Optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL). 6066–6080.

[79] Fuyuan Zhang, Sankalan Pal Chowdhury, andMaria Christakis. 2020. DeepSearch:

a simple and effective blackbox attack for deep neural networks. In Proceedings
of the 28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). 800–812.

[80] Jianping Zhang, Weibin Wu, Jen-tse Huang, Yizhan Huang, Wenxuan Wang,

Yuxin Su, and Michael R. Lyu. 2022. Improving Adversarial Transferability via

Neuron Attribution-Based Attacks. CoRR abs/2204.00008 (2022).

[81] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine Learning

Testing: Survey, Landscapes and Horizons. IEEE Trans. Software Eng. (2020).
[82] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation

framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE). 132–142.

[83] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.

2020. BERTScore: Evaluating Text Generation with BERT. In Proceedings of the
8th International Conference on Learning Representations (ICLR).

[84] Wei Emma Zhang, Quan Z. Sheng, Ahoud Abdulrahmn F. Alhazmi, and Chenliang

Li. 2020. Adversarial Attacks on Deep-learning Models in Natural Language

Processing: A Survey. ACM Trans. Intell. Syst. Technol. 11, 3 (2020), 24:1–24:41.
[85] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Con-

volutional Networks for Text Classification. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015 (NIPS). 649–657.

214

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Testing Techniques for NLP Software
	2.2 Problem Definition

	3 Approaches and Implementation
	3.1 SemEval
	3.2 SynEval

	4 Experimental Design and Settings
	4.1 Testing NLP Software
	4.2 Human Evaluation
	4.3 Baselines
	4.4 Evaluation Criteria

	5 Experimental Results
	5.1 RQ1: The Quality of Test Cases
	5.2 RQ2: The Effectiveness of AEON
	5.3 RQ3: Test Case Selection Using AEON
	5.4 RQ4: Improving NLP Software with AEON
	5.5 Discussion

	6 Related Work
	6.1 Testing AI Software
	6.2 Testing NLP Software
	6.3 Testing Criteria

	7 Conclusion
	Acknowledgments
	References

