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Abstract

Imbalanced learning, or learning from imbalanced data, is a challenging problem
in both academy and industry. Nowadays, the streaming imbalanced data become
popular and trigger the volume, velocity, and variety issues of learning from these
data. To tackle these issues, online learning algorithms are proposed to learn a
linear classifier via maximizing the AUC score. However, the developed linear
classifiers ignore the learning power of kernels. In this paper, we therefore pro-
pose online imbalanced learning with kernels (OILK) to exploit the non-linearity
and heterogeneity embedded in the imbalanced data. Different from previously
proposed work, we optimize the AUC score to learn a non-linear representation
via the kernel trick. To relieve the computational and storing cost, we also in-
vestigate different buffer update policies, including first-in-first-out (FIFO) and
reservoir sampling (RS), to maintain a fixed budgeted buffer on the number of
support vectors. We demonstrate the properties of our proposed OILK through
detailed experiments.

1 Introduction

Streaming imbalanced data become more and more popular in various real-world applications, such
as abnormal behaviors in surveillance systems, fraudulence in credit card transactions, and click-
ing/browsing behaviors in online ads/news. In these applications, the interesting events are usually
important, but rarely appear, which belongs to a minority class, while most other events are common
and not so interested, which can be deemed as a majority class. The streaming characteristic of the
imbalanced data triggers the problem of volume and velocity. Moreover, the variety of the data also
increases the difficulty of learning from them when data appear sequentially.

To tackle the above problems, recent development of online learning algorithms have been proposed
to learn a linear classifier via maximizing the Area Under the receiver operating characteristic curve
(AUCQ) [2,110]. The work also ignites the investigation of deriving theoretical generalization bound
for pairwise loss functions [4, 9]]. A main insufficiency of previously proposed is that they ignore
the learning power of kernel methods and its good performance in online learning setting [} 16]].

To compensate this insufficiency, in this paper, we investigate online imbalanced learning with k-
ernels (OILK) to exploit the non-linearity and heterogeneity of the imbalanced data, which is un-
touched yet. Our work is different from previously proposed online learning classifiers for cost-
sensitive learning [2} [10], which only considers the model in a linear form. Meanwhile, our work
is also different from NORMA [5]], which aims at optimization the classification accuracy instead
of the AUC score. Moreover, we adopt different strategy to conquer the computational and storing
cost of online learning with kernels. That is, the number of support vectors can be scaled with the
number of samples appeared [S]]. Different from the truncation method adopted in [5], we maintain
a buffer with a fixed budget to store the informative support vectors and adopt oblivious strategy to
update the support vectors in the buffer when it is full. More specifically, two effective buffer update



policies, first-in-first-out (FIFO) and reservoir sampling (RS), are investigated. We conduct detailed
experiments in various benchmark cost-sensitive learning datasets to demonstrate the properties of
the proposed OILK model.

2 Online Imbalanced Learning with Kernels (OILK)

2.1 Problem Definition

We aim at learning a non-linear classifier for a binary classification problem with imbalanced data
distributions for the two classes. Suppose the instance space is X € R? and the label set is ) =
{=1,+1}. Let P denote an unknown (underlying) distribution over X x ) and the ¢-th sample,
z; = (X, Yt ), is drawn identically and independently from the distribution P, where the ¢-th sample
isz; = (X¢, Y1), x¢ € X and y; € Y. Without loss of generality, we assume the streaming data is
unbalanced and the positive class is the minority class.

Following the same setup of NORMA [5]], we assume the class of the learned non-linear decision
functions, f : X — ) are elements of a Reproducing Kernel Hilbert Space (RKHS), #. That is,
there exists a positive definite kernel k& : X x X — R, and a dot product (-, -} such that 1) it satisfies
the reproducing property, (k(x,-), f(-)) = f(x); 2) H is the closure of the span of all k(x, -) with
x € X. In other words, all f € H are linear combinations of kernel functions.

Different from typical empirical loss for standard classification problems, we consider AUC met-
ric [} [2, 3L [10]] in the following. Suppose the training data are separated into two sets, a positive
dataset, D* = {z;" = (x", i) € }Rdx{—l—l}}Z 1 andanegative dataset, D~ = {z; = (x;,y;) €

dx{ —1}}‘?:; |, the AUC score of the function f on these two sets, D+ and D, is defined as
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where I[] is the indicator function which outputs 1 if the argument is true and 0 otherwise. Hence,
maximizing AUC(f) is equivalent to minimizing ElD ! ZID ! I[f(x) — f (x;) < 0]. Asdi-
rectly optimizing AUC is equivalent to a combinatorial optimization problem, which is an NP-hard
problem, we replace the indicator function by its convex surrogate, i.e., the hinge loss function

1
n(f,2,2') = max(0,1 = 5(y — ') (f(x) = f(x))), (2)
and find the optimal decision function by minimizing the following objective
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where 3 || f ”H is the regularization term to control the functional complexity, C' > 0 is a positive
parameter quantifying the tradeoff of the regularization term and the error.

2.2 OILK for AUC Maximization

Our objective is to develop an online learning algorithm to efficiently update the non-linear decision
function in (3). Taking into account the pairwise loss on the AUC approximation, we can define the
instantaneous regularized risk of AUC on a single sample z;, by
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It should be noted that: 1) Based on the loss defined in , the ¢-th sample, z;, will not yield loss for
previous samples with the same label; 2) The expression of () is different from the regularized risk
of NORMA in [5]] as it introduces the pairwise loss on all previously coming samples; 3) As in (@),
if we need to store all previous samples, it is intractable for large-scale applications.



To resolve the computation and storing issues of @), we decide to maintain a buffer, B;, with a fixed
budget, N, to store the most informative samples, which are also support vectors for the decision
function, at time ¢. We then define the budgeted instantaneous regularized risk of AUC as follows

| B:|
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In the above, the regularization is kept for the sake of preventing the hypothesis not moving too far
in one direction when a change occurs.

Hence, we can perform classical stochastic gradient descent on the budgeted instantaneous regular-
ized risk of AUC to update the decision function by

fro1 = fe =nOsLp, ([ 2e)| p=1. (6)
where 17 > 0 is the learning rate, which can be constant or decrease as the number of trials increases.

To evaluate the gradient of Lp, with respect to f , we first calculate the (sub)gradient of ¢;, with
respect to f

- 0, A(z,2:) > 1V y: =y
Orln(f,21,2;) = { — (24, 24), ¢(zz,zi) < 1/\yz # i @

where ¢(z;,2;) = %(yt — i) (f(x¢) = f(x3)) and (2, 2;) = %(yt — i) (k(x, ) — k(x4,-)).
Hence, by substituting (7) into OL g, (ft, zt), we obtain
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Now, we choose a zero initial hypothesis f; = 0 and express the decision function at ¢-th iteration
as a kernel expansion while updating the (¢ + 1)-th iteration in an incremental mode,

| B:|
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We can then derive the updating rule for the coefficients as follows
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It is worth to emphasize several remarks on the updating rule: 1) When a new sample does not
incur errors or the label of previously stored support vectors is the same as that of the new sample,
the updating rule is the same as NORMA [3]]; 2) When the new sample introduces errors, i.e., the
pairwise distances of the new sample and the support vectors with opposite labels are too close, the
updating rule is different from NORMA, which only performs one way updating when a new sample
appears. However, our OILK works intuitively and is especially in favor of imbalanced data as it
keeps the balance of updating: the magnitude of its coefficient at the new sample is proportional
to the count sum of pairwise mistakes made on previously stored support vectors, which allows
the new coming sample to push the decision function away from it, while the compensation of the
coefficients of previously stored support vectors with oppositive label to the new sample allows them
to push the decision function back to the new sample.

Update Buffer. When the buffer is not full, the new coming sample will be considered as a new
support vector and stored in the buffer directly. When the buffer is full, we need to update the buffer
correspondingly, which is a very challenging work. In this paper, we investigate several stream
oblivious policies [8, [10]:

e First-In-First-Out (FIFO): With probability 1, we replace the oldest sample in the buffer
with z;. This strategy is simple and intuitive as the coefficient of the oldest sample may be
decayed more.

e Reservoir Sampling (RS): With probability %, we update the buffer by randomly replacing
one instance in B; with z;. This is a widely used strategy in data streaming community and
contains the good property that the instances in the buffer simulate a uniform sampling in
the original dataset [8]].
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Table 1: Average AUC performance on seven benchmark datasets

Dataset Perceptron OAMseq OAMgra NORMA OILKFrrro OILKRs

sonar 0.868 £ 0.056 0.857 £ 0.036 0.856 £ 0.045 0.828 £ 0.038 0.933 £ 0.040 0.929 £ 0.039
australian  0.919 +0.022 0.925 +0.023 0.925 +0.021 0.925 +0.021 0.928 + 0.020 0.925 + 0.021
heart 0.898 £ 0.035 0.912 £ 0.028 0.912 £ 0.028 0.910 £ 0.035 0.907 £ 0.030 0.905 £ 0.028

ionosphere 0.937 +0.031 0.927 +0.036 0.928 4+ 0.036 0.925 +0.041 0.948 4+ 0.023 0.954 + 0.021
fourclass  0.820 £ 0.038 0.823 £0.038 0.823 £ 0.038 0.813 £0.035 0.817 £ 0.043 0.829 + 0.036
segment  0.983 +0.008 0.999 £ 0.001 0.999 + 0.000 0.996 £ 0.002 0.997 &+ 0.007 0.997 £ 0.003
satimage  0.635 +£0.029 0.901 £ 0.016 0.901 +0.012 0.879 £ 0.016 0.905 + 0.013 0.896 £ 0.024
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Figure 1: Data description and evaluation of AUC performance with respect to varied buffer sizes.

3 Experimental Results

In this section, we evaluate the empirical performance of the proposed Online Imbalanced Learning
with Kernel (OILK) algorithms for imbalanced online learning tasks and compare them with the
state-of-the-art online learning algorithms: 1) “Perceptron: the classical Perceptron algorithm [7]; 2-
3) “OAMseq and “OAMgra: the OAM algorithm by the gradient descent and the sequential updating
approach [10]; 4) “NORMA?”: online learning with kernel [5]; 5-6) “OILKp[pn”™ and “OILKRg™
our OILK with the FIFO and the reservoir sampling buffer updating strategy.

Experimental testbed and setup. We conduct experiments on seven benchmark imbalanced
datasets randomly selected from machine learning repositories. Due to space limitation, we show
the detailed description of the datasets in the table of Fig. [l We follow the experimental setup
in [10] and average AUC results over 20 runs. To make fair comparisons, all algorithms adopt the
same setup. For OAM, NORMA, and our OILK, the size of buffer is set to 200. For the OAM
algorithm, we apply a 5-fold cross-validation to the training set to find the best penalty parameter
C € 2[=15110] " For the NORMA algorithm, we use the default value for the parameters as the
authors recommended. Similarly for OILK, we apply a 5-fold cross-validation to select best penalty
parameter C' € 2[-15:1:10] pegt y € 2[=15:1:-5] and o € 20-51:5] for the width of gaussian kernel.

Results and analysis. From Table [I] we can observe that our proposed OILK attains the best
performance in five of the seven datasets. Especially, the results of sonar and satimage outperform
other methods significantly. We conjecture when the dataset is too complicated to be classified, our
OILK can demonstrate its advantages. Moreover, our OILK beats NORMA nearly all the cases,
which implies that AUC maximization plays its effect on imbalanced data learning. In Fig. [} we
also show three typical results of AUC score of our OILK with respect to varied buffer sizes. The
results show that the performance increases gradually with the increase of the buffer size in the
beginning and does not improve when the size is relative large. This implies that there may exist an
optimal value for the buffer size.

4 Conclusion

In this paper, we study the streaming imbalanced learning problem and propose a online imbal-
anced learning with kernels model to exploit the non-linearity and heterogeneity of the imbalanced
data. We optimize the AUC score via the kernel trick and investigate two stream oblivious buffer
updating policies to resolve the computational and storing burden. We have shown the properties
of our proposed OILK through systematical empirical evaluation. Our work also inspires us further
investigation on deriving the generalization bound and the buffer updating strategies.
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