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Abstract- In this paper, we address the problem of one­
class classification. Taking into account the fact that in some 
applications, the given training samples are rather limited, we 
attempt to utilize the advantages of Multi-task Learning (MTL), 
where the data of related tasks may share similar structure and 
helpful information. We then propose an MTL framework for 
one-class classification. The framework derives from the one­
class v-SVM and makes use of related tasks by constraining 
them to have similar solutions. This formulation can be cast into 
a second-order cone program, which achieves a global solution 
and is solved efficiently. Further, the framework also maintains 
the favorable property of the v parameter in the v-SVM, which 
can control the fraction of outliers and support vectors, in one­
class classification. This framework also connects with several 
existing models. Experimental results on both synthetic and 
real-world datasets demonstrate the properties and advantages 
of our proposed model. 

I. INTRODUCTION 

Multi-task learning (MTL, also known as inductive trans­

fer or learning to learn) has become a research topic of 
renewed interest in machine learning, see [2], [4], [9], [10], 
[11], [13], [15], [16] and references therein. One main insight 
of multi-task learning techniques is that related tasks share 
similar structure and information which may be useful for 
improving the performance of these tasks [3], [14], [17], [21]. 
This is especially beneficial when the number of samples in 
a specific task is limited. Incorporating other related useful 
information and utilizing those "background data" efficiently 
will actually help for the task-of-interest. 

Currently, nearly all multi-task learning models focus on 
supervised learning tasks [2], [5], [4], [10], [11], while only 
few focus on semi-supervised learning task [18]. However, 
there is no research touching on the employment of the 
MTL in one-class classification problems. The problem of 
one-class classification can be regarded as a special type 
of classification problems. Usually, in solving one-class 
classification problems, researchers are dealing with what 
is really a two-class classification problem, where the two 
classes are called the target class and the outlier class, 
respectively [24], [25]. This problem is common in applica­
tions such as machine diagnostics, novelty detection, outlier 
detection, disease detection, etc. [22], [24], [25]. In early 
studies, a typical solution for this problem was to estimate 
the probability density of the target data, then to assign 
an object as an outlier when the object falls into a region 
with density lower than a certain threshold [6]. Later on, 
researchers developed one-class classification models based 
on the Support Vector Machine (SVM), such as Support 
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Vector Domain Description [25] and one-class v-SVM [24], 
[22]. These approaches follow Vapnik's principle, one of the 
key concepts in learning theory: never try to solve a problem 
which is more general than the one that is actually interested 
in [27]. 

For real applications, a very common problem is that the 
labeled training samples are usually too few for a specific 
task. This is ubiquitous in applications such as bioinformat­
ics, or related diagnostics tasks. There are several possible 
solutions. For example, one may solve this problem by 
restricting the function complexity using prior knowledge, 
or by collecting more data. However, prior knowledge may 
not exist or may be insufficient, while getting new data may 
be too expensive or there may not exist further representative 
samples for a solo task. However, it is often possible to 
exploit relevant data from other related tasks. How to use 
the partially representative data from relevant tasks is a key 
issue. 

In this paper, we aim to utilize the advantages provided by 
the MTL and focus on the one-class classification problem. 
By upper-bounding the distance between solutions of related 
paired-tasks, we derive a v-SVM style MTL framework 
for one-class classification. The proposed model can be 
transformed and solved by a second-order cone program 

(SOCP). Further, its corresponding kernelized version can 
be solved in a matrix-fractional program (MFP) [19], [7], 
which is also an SOCP. Hence, the proposed model can attain 
a global solution and can be solved efficiently. The MTL 
framework not only takes the one-class v-SVM as one special 
case, maintaining the favorable property of the v parameter, 
but also connects to other related models. Experimental 
comparisons on toy data and real-world datasets demonstrate 
the validity and promise of the proposed MTL for one-class 
classification in enhancing current existing one-class SVMs. 

The paper is organized as follows: Section II reviews 
some current work on one-class support vector machines. 
Section III defines and formulates the MTL framework for 
one-class classification. Section IV derives its kernelized 
version and a corresponding solution. Section V discusses the 
properties of the MTL framework in one-class classification. 
Section VI details our experiment and the results. Finally, 
the paper is concluded in Section VII. 

II. RELATED WORK 

In this section, we introduce current related work for one­
class classification. 

In one-class classification, the only given information are 
N samples of the same class in a data set {Xi} � X, with 
X � lR d, the data space, from a certain distribution. The task 
is to find a separating boundary between the data set and the 
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rest of the feature space by utilizing the provided one kind 
of labeled data only. 

Following Vapnik's principle mentioned in Section I, there 
are two kinds of SVM derivatives to solve the one-class clas­
sification problem. One idea is the Support Vector Domain 

Description (SVDD): it maps the data into a feature space 
and seeks a sphere with minimum volume containing all or 
most of the samples in the target class [25]. When a future 
point falls in the ball, it is deemed to be a "target" object; 
otherwise, it is an outlier object. Another idea is the v-SVM: 
this model maps the data into a feature space and aims to 
separate the given data from the origin with a maximum 
margin. The algorithm returns a decision function f taking 
the value + 1 in a "small" region capturing most of the data 
points in the target class, and -1 elsewhere [24]. The latter 
approach introduces a favorable parameter v E (0, 1]' which 
can control the fraction of outliers and the fraction of support 
vectors [22]. This model is termed as one-class v-SVM. The 
above two approaches can be transformed and represented 
in a kernel form and the SVDD also can be introduced by 
the v parameter [22]. In the following, we only introduce the 
one-class v-SVM. 

The idea of a one-class v-SVM can be solved by the 
following quadratic program: 

min 
w,�,p 

l I N 
"2llwl12 + vN L�i -P 

i=l 
s. t. w T ¢;(Xi) � P -�i' i = 1, ... , N, 

W E IR/, � E JR� , P E JR 

(1) 

where ¢;: JRd --; JR!, is a function mapping the data in the 
original space to a new feature space, and v E (0, 1) is an 
introduced parameter which can control the faction of outliers 
and the faction of support vectors. 

The optimal boundary is then determined by the support 
vectors expansion: 

f(x) = sign (t, aiK(xi, x) - p) , 
where a is the solution of the dual form of the above 
quadratic program and training samples Xi with non-zero 
ai are support vectors. The kernel matrix K is defined by 
the inner product of mapping features and needs to satisfy 
Mercer's condition [27], [23]. 

III. FORMULATION 

In this section, we consider one-class classification in the 
MTL frmaework. 

Suppose there are T tasks, all sharing the common data 
space X and there are N samples in a data set {Xi} � X, 
where each sample belongs to one and only one task. Let 

'It be the t-th task, consisting of its related samples. Hence, 

'L,;=l I 'It I = Nand 7k n 7i = 0, Vk -I- l. Next, suppose 
there is a task relation network indicating the relationships 
among tasks. The task relation network can be represented 
by a graph, where each node denotes a task and two nodes 

are connected by an edge if these two tasks are related to 
each other. The edge set in this network can be denoted by 

£ = {(im,jm);;;=l}· 
Similar to the idea of separating target data from the origin 

with maximum margin in the one-class v-SVM, we seek the 
decision boundary corresponding to the t-th task as 

ft(x) sign (wi ¢;(x) -Pt) , 
Wt E JR!, Pt E JR, t = 1, ... , T 

by making each task separates its target data from the origin 
with maximum margin and setting the solutions of related 
tasks are close to each other. 

The first objective is similar to the optimal solution in (1). 
The second objective can be fulfilled by upper-bounding each 
difference between the solutions of related task pairs by a 
positive scalar 'f} as [15]: 

1 2 "2llwi",-Wj",11 :S:'f}, V (im, jm)E£. 
This constraint is described as a local constraint in [26], and 
it makes the structure of related tasks close to each other. 
Hence, by imposing this constraint, the number of target 
training samples will be increased implicitly compared to 
training a task individually and the related tasks will share 
common information partially. 

Hence, we formulate the multi-task learning framework 
for one-class classification (MTL-OC) as follows: 

min 
w,�,p,,,, 

s. t. 

1 T I T 1 2TLllwtl12+ NLvt L�i 
t=l t=l 'ETt 

T 
-LPt+ C",'f}, 

t=l 
(2) 

wi ¢;(Xi) � Pt -�i' ViE 'It, t = 1, ... , T, 
1 2 "2llwi",-Wj",11 :S:'f}, V (im, jm)E£, 
W E JR!xT C E JRN P E JRT 'Tl E JR , ... +, , · f + 

where W == [Wl' ... ' WT] and � == [6, ... '�N]T . Here, we 
introduce parameters VT == [Vl' ... ' VT ], where Vt E (0, 1] 
for the corresponding task. The advantage of Vt is similar 
to that in the v-SVM; we will analyze its properties in 
Section V. C", is another positive trade-off parameter for the 
upper bound of related tasks. Different C", values will affect 
the weights of the related tasks. More detailed properties of 
C", are discussed in Section V. 

IV. KERNEL VERSION 

In the following, we give the dual formulation for the 
problem of MTL-OC (2) in kernel form and cast it into an 
SOCP problem, more specially, through a matrix-fractional 

program (MFP) [19]. 

A. Duality 

First, we define some notations for the kernels. Let Kfea 
be the feature kernel matrix whose (i,j)-th element is 
the inner product of feature vectors ¢;(Xi) and ¢;(Xj), i.e., 
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K��t = ¢(Xi) T ¢(Xj). Hence, this feature kernel matrix is 
a positive semidefinite matrix. Through defining different 
feature kernels, Kfea, the data domain information can be 
mapped correspondingly. 

The second kernel matrix is the task relationship matrix 
with an M -dimensional non-negative parameter vector 13 E 
TTllM. 
l1'!.+ . 

Ktask(f3) = (�IT + Mf3 ) -1 
(3) 

where 13 are dual variables corresponding to the first con­
straints in (2). IT E �TxT is an identity matrix, Mf3 = 
E�=1 f3mMm, where Mm = Ei",i", + Ej",j", - Ei",j", -
Ej",i"" and Eij E �TxT is a sparse matrix whose (i,j)­
element is one and all the others are zero. This gives a graph 
Laplacian kernel, where the m-th edge is weighted by the 
factor f3m. 

Now, let Z E NTxN be the indicator of a task and a 
sample such that Zt,i = 1, if i E 7;, and Zt,i = 0, otherwise. 
Then the information about the tasks is presented by an 
N x N matrix zTKtask(f3)Z. These two kernel matrices 
are combined together as 

where 0 is the Hadamard product, or element-wise product. 
This parameterized matrix Kcom (13) is guaranteed to be 
positive semidefinite [12]. 

To solve the primal problem of the MTL-OC in (2), we 
can use the Lagrange multipliers method and obtain its dual 
problem as follows: 

min -2
1 a TKcom(f3)a, (4) Dl, {3 

s. t. 
1 o < Q:. < -- if i E 7;, Vi = Vt, - ,- N Vi' 

Za = 1, 
1113 :::; c,." 
a E ��, 13 E ��, 

where a and 13 are Lagrange multipliers corresponding to the 
first and the second kinds of constraints in (2); and lk E �k 
is a k-dimensional vector with all element values equal to l. 

In the test stage, a new sample x in the k-th task can be 
determined by 

fk(X) = sign(t, � Q:iKfea(Xi' x)Ktask(t, k)Zt,i-Pk) , 

where Kfea(., .) and Ktask(., .) are the kernel functions 
over features and tasks, respectively. 

B. SOCP Transformation 

In the following, we will solve the optimization in (4) 
using the standard procedure in [7, ch. 4]. 

Now, suppose the feature kernel matrix Kfea has rank r 
and can be decomposed as Kfea = Ufea Ufea T, where Ufea E 
�Nxr. Let Ufea == [f1, ... ,frJ E �Nxr and matrices Gi == 

Zdiag (fi), for e = 1, ... ,r. Using these representations, the 
objective function in (4) can be rewritten as 

1 r ( 1 ) -1 
Jr(a,f3)="2 8aTGJ TIT+Mf3 Gia 

The above formulation is a combination of r MFPs. 
Next, let qm E �T for each edge, i.e., we can denote 

the task relatedness: q = ei", - ej"" where ei", is a unit 
vector with the im -th element being one. Again, let Q be 
a matrix consisting of q as: Q = [q1, ... , qM] E �TxM. 
Thus, the graph Lagrangian matrix of task relatedness can 
be expressed by Mf3 = Qdiag (f3)Q T. Hence, the objective 
function in (4), i.e., Jr(a, 13), is cast into the following MFP 
problem: 

1 r ( 1 ) -1 
�in -2 La T GJ -TIT + Qdiag (f3)Q T Gia (5) 

,{3 i=1 
subject to the same constraints in (4). 

Hence, we obtain a standard MFP form of (5). We can 
easily transform it into the following SOCP problem: 

min -2
1 �

=

r

1 
(to ,i + 

m
t

=1 
tm,i) (6) 

vo, v, 0, (3, to, tm. 
-t. 

1 
s. t. a:::;vN1N, Za=IT, 

IT 13:::; c,." 
1 VT vO,£ + Qv i = Gia, \fR. 

II [ t�,:�\ ] 112 
:::; to,i + 1 ,  \fR. 

II [ f3� � �':,i ] 112 
:::; f3m + tm,i , \1m, \fR. 

Vo E �Txr, v E �Mxr, a E ��, 
13 E ��, to E �r, tm E �r, 
e = 1, ... ,r, m = 1, ... ,M. 

Hence, we transform the problem of kernelized MTL­
OC into a new SOCP problem. Based on the computational 
complexity analysis of SOCP problems in [19], we can 
summarize the result as follows: 

Theorem 1: The dual problem of MTL in one-class clas­
sification of (4) can be cast as an SOCP problem in (6) and 
be solved in O((M r)2((M + T) r + N)). 
Hence, the optimization of the kernelized MTL-OC can be 
solved by the SOCP in (6), which attains a global optimal 
solution. To solve an SOCP problem, one can adopt different 
methods, e.g., interior-point methods, barrier methods, etc. 
and use some standard solvers, e.g., SeDuMi, SDPT, etc. 
Here, we use the cvx toolbox [7] to solve our model. 

Further, for our model, if the above time complexity is 
dominated by N, the bound of the time for our model is 
linear to N, which should be very efficient. However, in an 
actual computation, the time complexity is not dominated by 
N. A further study is to consider how to speed it up and 
extend the scalability. 
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Fig. I. Toy example with two tasks demonstrates the proposed model. 

V. DISCUSSION 

In the following, we discuss the properties of our proposed 
MTL for one-class classification. 

• Connection to one-class lI-SVM 
The one-class lI-SVM [22], [24] is a special case of our 
proposed MTL model. Actually, when the number of 
tasks is one, the optimization in (2) is reduced to the 
one-class lI-SVM. 
In addition, if we set Cry = 0, i.e., we discard the control 
of the closeness of the weights in related tasks, then our 
MTL framework for one-class classification corresponds 
to training each individual one-class lI-SVM. 

• Relation to MTL via Conic Programming 
Our proposed MTL model focuses on the problem 
of one-class classification. When it employs the label 
information in a binary classification paradigm, it can be 
considered as a II trick of the MTL via conic program­
ming, which distinguishes itself from the formulation 
in [15]. 

• Proposition of liS 
Similar to the property in one-class lI-SVM [24], we 
have the following proposition: 
Proposition 2: Suppose the solution of (2) satisfies 

Pt i= 0 for the t-th task. The following statements hold: 

1) lit is an upper bound on the fraction of outliers for 
the t-th task. 

2) lit is a lower bound on the fraction of support 
vectors for the t-th task. 

3) Suppose the data of the t-th task were generated 
independently from a distribution P(x) without 
discrete components and the kernel is analytic and 
non-constant. With probability 1, asymptotically, 
lit equals both the fraction of support vectors and 
outliers for the t-th task. 

The above proposition can be proved based on the 
constraints of the dual problem and the fact that outliers 
must have Lagrange mUltipliers at the upper bound. 
For practical applications, we can use a global lI, where 
lit is proportional to the number of the training samples 

in the related t-th task, as lit = II I�'. So we can use 
a single global parameter II to control the fraction of 
support vectors and outliers consistently. 

VI. EXPERIMENTS 

In this section, we demonstrate the validity and advantage 
of the proposed method through experiments. 

A. Models and Measurement 

In the experiment, we compare three methods: our pro­
posed MTL-OC model; individually learned SVM (IL­
SVM) and One-SVM. For the MTL-OC model, data for 
all tasks and the information of their tasks relationships are 
fed into the model to get the boundaries for different tasks. 
For IL-SVM, data for each individual task are trained in 
a one-class lI-SVM individually. The decision boundary for 
each task is obtained correspondingly. For the One-SVM, all 
samples in the multiple tasks are considered as one big task 
and they are trained by the one-class lI-SVM. 

For all three models, the gaussian kernel, k(x, y) = 

exp( -')'llx - yI12), is used as the feature kernel. The corre­
sponding parameters are expressed in detail in the following 
subsection. For real-world datasets, the values of the pa­
rameters Cry and VT for the MTL-OC model and related 
parameters for IL-SVM and One-SVM are tuned by cross­
validation over the training set. 

A good one-class classifier will try to minimize two types 
of errors, namely the fraction of false positives (FP) and 
the fraction of false negatives (FN). For a classifier, by 
varying the threshold, these two errors can be obtained corre­
spondingly, and a Receiver Operating Characteristics (ROC) 
curve [20] is then obtained. Usually, the area under the ROC 
curve, AUC, can be used to measure the performance of a 
one-class classifier [8]. The larger the AUC, the better the 
one-class classifier. In the experiment, the AUC of the ROC 
is calculated by the trapezoid area. 
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B. USPS Dataset 

The U.S. Postal Service (VSPS) database 1 is a handwritten 
digits database containing 9298 digit images of size 16 x 

16 = 256 pixels, of which the last 2007 comprise the test 
set. Pixel values in each image are scaled to the range of 
-1.0 and 1.0. 

Here we create two fake but related tasks from this 
VSPS database to mimic the application of recognizing some 
noisy images with the help of clear and related images. We 
choose digit '4' as the target object and create two additional 
mask patterns with random noises which are generated from 
uniform distribution: one is with thin noise and the other 
one is with thick noise. We then add these two masks to 
the images of digit '4' in the original training set of the 
VSPS database. Figure 2 shows some samples of the final 
images on both the training and test datasets. The objective 
of this experiment is to show how clean data can be used for 
improving the performance of outlier detection on the noisy 
related data. 

In the training procedure, data in the created fake and 
related tasks are fed into the corresponding models to get 
the decision boundaries. The parameter, ,,(, of the feature 
kernel is set to _1_ as in [22]. To test the effect of using 0.5·256 
different numbers of training samples, we randomly select 
5, 10, 20 and 40 samples from the training data for each 
task. In the test procedure, we only use the test set (2007 
samples) of the VSPS database and vary the threshold to get 
the corresponding ROC curve on the test set. We repeat the 
above procedure 20 times and average their AVCs. 

Table I reports the result on this task. Since there is only 
one test set for the target object, we average the AVCs of the 
IL-SVM and the MTL-OC as the final AVCs. It is obvious 
that our proposed MTL-OC model shows significant im­
provement over the IL-SVM and the One-SVM. For the IL­
SVM, its performance reduces largely when training on the 
samples with thick noise. Moreover, its performance redu�es 
as the number of training samples decreases for the thIck 
noise case. This means that the more noise samples used 
in the training, the worse decision boundary may distract 
from the true one. On the contrary, our proposed MTL­
OC can overcome the problem of the IL-SVM. Comparing 
our MTL-OC with the IL-SVM on the thick noise case, 
the performance of our model improves greatly. Overall, our 
model achieves the best performance in terms of the average 
AVCs. Although the performance of our MTL-OC training 
on the samples with thick noise does not beat that of the 
One-SVM on all samples, the corresponding performance of 
our MTL-OC is very close to that of the One-SVM and we 
achieve an overall better performance. Another observation 
is that as the number of training samples increases, the 
AVC increases correspondingly for the One-SVM and our 
MTL-OC. In the test, when the number of training samples 
increases from 20 to 40, there is no significant improvement 
on the performance. This means that when the number of 

lhttp://www-stat.stanford.edu/-tibs/ 
ElemStatLearn/data.html 

training samples achieves a certain value, it will not improve 
the performance for our MTL-OC. 

This experiment also gives us an illumination of how to 
detect outliers when the given one-class samples are noisy. 
For that case, we may try to collect some clean data and 
incorporate them in the training procedure to improve the 
detecting performance. 

C. Protein Super-Family Dataset 

In the following, we test the one-class classification on 
a real-world protein super-family dataset [1]. Table II gives 
a structural view of the dataset and the task relationships 
performed in the experiments. We will interpret it in the 
following. 

The data from the SCOP database is the same as that 
of [15]: 20 kinds of amino acids consist of 400 features. In 
this dataset, there are four super-classes which are termed 
as folds [15]: DNA/RNA binding fold, Flavodoxin fold, 
OB-fold and SH3 fold. Each fold is divided into several 
super-families [15]. The DNAIRNA binding fold contains 
three super-families and we denote them as dl, d2 and 
d3, respectively. The Flavodoxin fold contains four super­
families and we denote them as fl, 12, f3, and f4, respectively. 
The OB-fold contains three super-families and we denote 
them as 01, 02 and 03, respectively. There are two super­
families in the SH3 fold and are denoted as s 1 and s2, 
respectively. 

The tasks' relationships are constructed as follows: clas­
sifying a super-family is considered as one task for the one­
class classification. If two one-class classification tasks are in 
the same fold, we set them as related tasks and connect them 
by an edge. For an isolated task without any edge connection, 
our formulation of MTL-OC will define it as an independent 
task and its solution is consistent with that solved by the IL­
SVM. Hence, we can perform the experiments on each fold 
respectively. The effect of the number of training samples is 
also tested on this dataset. We randomly choose N samples, 
where N equals 5, 10, and 20, from each super-family, in 
training for each task. The parameter of the feature kernel, 
"( = �, where a2 is set to the average of the squared 
distanc:s to the fifth nearest neighbors, as [15]. We then 
train on these samples to obtain the corresponding decision 
boundaries for all three models and calculate their AVCs 
correspondingly. The above procedure is repeated ten times 
and we average the results of the AVCs. 

The average results are shown in Fig. 3 and Fig. 4. From 
the results, we clearly see that the MTL-OC outperforms the 
IL-SVM and One-SVM mothods. It is interesting to note 
that the results of One-SVM are substantially worse than 
those of the IL-SVM. An exception exists for the subtask 
of the super-family fl. We guess this may be due to the 
skewness of the data. It is also noted that the AVCs are very 
small for the Flavonoid fold in all three models. Through 
experimental observations, there are very high false positive 
errors for three models in this fold. Overall, this dataset 
again demonstrates the advantage of our proposed MTL-OC 
model. 
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(a) Training Samples (b) Test Samples 

Fig. 2. Samples in the USPS dataset. 

TABLE I 

THE PERFORMANCE (AUC) OF EACH METHOD FOR THE USPS DATASET (%). 

# IL-SVM One-SVM MTL-OC 
thin thick average average thin thick average 

5 82.2±5.1 57.6±3.1 69.9±3.9 81.7±5.1 83.9±5.1 81.2±5.2 82.6±5.2 
10 86.2±2.7 56.3±2.3 71.2±2.3 82.8±2.9 86.2±2.9 82.8±2.4 84.5±2.6 
20 87.2±1.9 55.7±2.1 71.4±1.8 83.3± 1.2 87.2± 1.3 83.1± 1.6 85.1±1.4 
40 87.3±1.3 53.8± 1.5 70.5± 1.2 84. 1± 1.1 87.2± 1.1 83.1± 1.5 85.2±1.3 

TABLE II 

DESCRIPTION OF THE PROTEIN SUPER-FAMILY DATASET. 

Item Content 
Folds DNA/RNA Flavodoxin OB SH3 
Super 

d1 -families d2 d3 f1 

IL-SVM - - - -

One SVM 
MTL-OC 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a new multi-task learning 
framework for one-class classification. The framework is 
to extend the one-class II-SVM and to bound the distance 
between solutions of the related paired-tasks. The formu­
lation is cast into a second-order cone program and is 
solved efficiently with a global optimal solution. We also 
demonstrated the advantage of our proposed model in the 
experiments on toy data, USPS digit data and a protein super­
family dataset. 

There are still several promising directions on the work. 

1) Our framework is derived from the II-SVM. It is 
interesting to derive a similar framework from the 
support vector domain description. 

2) Our method exploits the information from related task 
through model structure assumption, but there are still 
other methods making use of the information inherent 
in multi-tasks through other kinds of knowledge, e. g., 
common features. How to utilize other kinds of inher­
ent knowledge in related tasks is also an interesting 

f2 

-

f3 f4 01 02 03 sl s2 

- - - - - - -

-

problem. 
3) The effectiveness of our model has been demonstrated 

through experimental comparison. It is important and 
valuable to derive a framework to provide more the­
oretical justification of our model, e.g., analyzing the 
generalization error bound of the one-class classifica­
tion in the MTL framework. 

4) Now we have used standard toolboxes with standard 
methods, interior point method, to solve the SOCP 
problem. Standard methods contain the problem of 
scalability. Based on the specific form of our formula­
tion, we believe there are still other methods to speed 
up the procedure of solving SOCP problem. How to 
speed it up and extend the scalability of our model is 
a promising research problem. 
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