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ABSTRACT

Current smartphones generally cannot continuously authen-
ticate users during runtime. This poses severe security and
privacy threats: A malicious user can manipulate the phone
if bypassing the screen lock. To solve this problem, our work
adopts a continuous and passive authentication mechanism
based on a user’s touch operations on the touchscreen. Such
a mechanism is suitable for smartphones, as it requires no
extra hardware or intrusive user interface. We study how to
model multiple types of touch data and perform continuous
authentication accordingly. As a first attempt, we also in-
vestigate the fundamentals of touch operations as biometrics
by justifying their distinctiveness and permanence. A one-
month experiment is conducted involving over 30 users. Our
experiment results verify that touch biometrics can serve as
a promising method for continuous and passive authentica-
tion.
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H.5.2 [Information Interfaces and Presentation|: User
Interfaces; D.4.6 [Software]: Security and Protection

General Terms

Human Factors, Security, Experimentation

Keywords
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1. INTRODUCTION

Smartphones are becoming more and more popular in peo-
ple’s daily life. According to a recent report [31], the num-
ber of smartphone users has reached 56% of the American
adult population, and smartphone sales continue to grow
radically [11]. As a result of the extensive usage of smart-
phones, much of our sensitive and private information is kept
by our phones. This inevitably poses great security risks to
smartphone users [8, 13, 35].

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

Symposium on Usable Privacy and Security (SOUPS) 2014, July 9-11,
2014, Menlo Park, CA.

To mitigate the risk of malicious user access, most smart-
phone systems adopt a traditional access control mechanism:
Before using a phone, a user needs to unlock its screen with
a password or a lock pattern (i.e., several dots in the screen
that should be visited in sequence in one finger move). Since
a user may use her phone quite often in her daily life, pass-
word or lock pattern should be designed simple enough to
facilitate the frequent unlock operations. This severely de-
grades the strength of the access control mechanism. Mali-
cious users can break into the phone simply via peeping [9],
or the smudge attack [5].

An enhanced mechanism, namely continuous authentica-
tion [14, 27], can be more effective in combatting malicious
user access. It keeps authenticating the current user during
system runtime, thus greatly increasing the complexity of
potential intrusions. Examples for such mechanism include
requiring fingerprint! or face authentication frequently, ask-
ing for the answers of a set of pre-defined security problems
or passwords, or connecting to an accessory device owned
by the valid user?. However, these approaches are either too
intrusive (e.g., keep asking for password or fingerprint) or
costly (e.g., require an extra device like fingerprint sensor
or the “Skip”), not to mention the extra energy required to
drive the sensors.

We observe that the user operations on touchscreen can
be utilized for continuous authentication, with no require-
ment for extra hardware or user attention. As the dom-
inant human-to-smartphone interface [34], touchscreen is
equipped on most smartphones. Moreover, modern touch-
screens can produce rich data to describe how users touch,
including the curve, the timing, the size and the pressure
of a touch operation. Such data can be collected in the
background and analyzed to discriminate different users. In
other words, while the user performs her normal operations,
the authentication proceeds continuously without her notice,
i.e., in a passive way.

Using touch operations for continuous authentication has
been suggested recently in [14], where a single type of op-
erations (strokes or slides) is considered. Some promising
results have been reported. For example, a 13% equal error
rate (EER) for one single stroke, and 2% to 3% for 11 con-
sequent strokes can be achieved [14]. However, stroke is not
the only type of touch operations. They can also include
other types, such as pinch and handwriting. Hence, consid-

!Note that recently Apple and Samsung have embedded fin-
gerprint sensor into their smartphones.

2For example, the “Skip” device introduced by Motorola for
MotoX phone.
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ering only strokes is not enough to continuously authenticate
the user as she can perform other types of operations. A
seamless continuous authentication mechanism should take
multiple types of operations into account. Moreover, previ-
ous investigations (e.g., [9],[14]) have based their designs on
a rather straightforward idea that touch operations can be
employed to identify users. Yet, the biometric properties of
touch operations have not been comprehensively evaluated.

Our work, in contrast, takes advantage of multiple types
of touch data to model a user. As a first attempt, we fur-
ther investigate the underlying fundamentals of touch opera-
tions as biometrics by justifying their two critical properties:
distinctiveness and permanence. In other words, we evalu-
ate whether the data features are distinctive among various
users, and whether the data features collected from the same
user are temporally stable. Both properties are prerequisites
for biometrics [17].

To this end, we have conducted a real-world experiment
involving over 30 users for one month. Our results confirm
that it is promising to implement a continuous authenti-
cation mechanism based only on the touch data collected
during normal user operations.

The contributions of this paper are as follows:

e This work serves as the first attempt to comprehen-
sively evaluate the biometric properties of touch data,
and we study how such data can be used for continuous
authentication.

e We propose a set of methods to model the multiple
types of touch data via a separation-of-concern solu-
tion, which is quite effective.

e The findings and data from our real-world experiment
involving over 30 users are publicly available, which
can facilitate further follow-up work.

The rest of the paper is organized as follows. Section
2 provides the adversary model and some preliminaries of
touch biometrics. Section 3 overviews the framework of
touch-based authentication and goes through details about
the feature extraction and classification method. In Sec-
tion 4, we evaluate the performance of touch biometrics in
distinctiveness, permanence and authentication error rate
based on the framework. The related work is discussed in
Section 5. Section 6 concludes our research and suggests
potential future work.

2. BACKGROUND

In this section, we briefly introduce the adversary model
and some technical preliminaries including smartphone
touch operations, biometrics, and performance metrics.

2.1 Adversary Model and Assumptions

In this paper, we assume the following adversary. A ma-
licious attacker has gained access to a person’s smartphone
equipped with a touchscreen. The smartphone is either un-
protected (e.g., no PIN) or the attacker has got into posses-
sion of the authentication secret, for instance by shoulder
surfing the owner. The attacker can then perform undesir-
able actions with the device violating the owner’s privacy
(e.g., browsing photos, reading SMS or e-mails). After-
wards, the phone’s screen can be turned off and put back
to its original place, appearing as if it was never touched.

Table 1: Example of raw event data collected when
tapping “1” and “2” on soft keyboard

Tap | Time XP031t10nY Size | Pressure
1 122382 | 62.869 [ 550.312 | 0.169 0.233
1 122444 | 67.892 | 553.328 | 0.169 0.2
1 122461 70.057 | 550.008 | 0.067 0.067
1 122503 | 70.057 | 550.008 | 0.067 0.067
2 122731 | 202.578 | 553.308 | 0.141 0.167
2 122794 | 204.591 | 556.305 | 0.141 0.2
2 122811 | 204.574 | 554.170 | 0.141 0.2

The owner will have no chance to figure out that it has been
used by someone else. In this way, the owner’s privacy could
be severely violated. Our work targets such situations and
tries to make this kind of manipulation impossible by ana-
lyzing touch behavior.

2.2 Touch Operations

The smartphone systems accept user commands through
interpreting touch. According to our knowledge, the most
frequently used operations include keystroke, slide, pinch,
and handwriting.

o Keystroke: A keystroke is a finger tap on the screen.
Typical scenarios include using soft keyboard and un-
locking screen with PIN.

e Slide: A slide is a finger move on the screen. A lot of
applications use slide for navigating documents, e.g.,
web pages, photo albums, messages, and contact list.

e Pinch: A pinch is a two-finger gesture typically used
for zooming functionality.

e Handwriting: Handwriting is an important alternative
input method on smartphone to enter characters.

When a touch operation is performed, the smartphone
hardware automatically generates a set of data and reports
them to the operating system as raw events. Taking Android
as an example, a raw event reports the data of the position,
pressure, and size of a touch, as well as a timestamp. The op-
erating system generally extracts touch operations intended
by the user by interpreting such raw events. Each row in
Table 1 shows the data of a raw event. We observe in our
practice that the time and position data are fine-grained,
while the size and pressure are coarse-grained. To avoid
noise, we choose to use statistical information (e.g., average
or standard deviation) of the size and pressure data instead
of subtle data changes in the feature extraction process.

In practice, one single touch operation generates a series
of raw events. Their positions form a trajectory sequence.
We call the sequence of the corresponding raw event data
a touch data sequence of the touch operation. Touchscreen
can produce raw events every few milliseconds when being
touched. As a result, even the simplest touch operation can
generate quite a few raw events. Table 1 shows an example
of raw events collected when tapping “1” and “2” on the soft
keyboard. In this example, the tap on “1” and “2” produce
four and three raw events. We will discuss how we model a
touch operation based on the touch data sequence it gener-
ates in Section 3.1.
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2.3 Biometrics

Biometrics refers to the automatic recognition of individ-
uals based on their physiological and/or behavioral char-
acteristics [17]. Common types of biometrics include face,
fingerprint, hand geometry, iris, keystroke, signature, and
voice [16]. When a biological characteristic qualifies to be
a form of biometrics, it should generally bear the following
four properties [17].

e Universality: Every person has the characteristic.

e Distinctiveness: Any two persons are distinguishable
in terms of the characteristic.

e Permanence: The characteristic is stable over a period
of time.

e (Collectability: The characteristic can be measured in
numbers.

Touch operation can be considered as of behavioral bio-
metrics. Its universality and collectability are obvious, while
its distinctiveness and permanence need to be assessed,
which is a major focus of our work.

Note that there are also other issues that need to be con-
sidered for a practical biometric system, for example, recog-
nition speed, overhead, and user-friendliness [17]. These im-
plementation considerations are not the focus of this work.

2.4 Performance Metrics

Accuracy and error rate are two straightforward metrics
for authentication performance. However, their information
is rather limited and must be interpreted with much caution.
It is therefore necessary to introduce the concepts of false
acceptance rate (FAR), false rejection rate (FRR), equal er-
ror rate (EER) and receiver operating characteristic (ROC),
which are more meaningful [24]. These terms are defined as
follows:

e FAR: The rate that an attacker is wrongly accepted as
the valid user.

e F'RR: The rate that the valid user is wrongly rejected
as an attacker.

e FER: The rate at which FAR and FRR are equal. In
practice, FAR and FRR are sensitive to system set-
tings and correlated with each other. FAR will usually
increase as FRR decreases, and vice versa. EER is
a metric of the trade-off between of FAR and FRR,
which is widely used for indicating the performance of
real authentication systems.

e ROC': A graphical plot that visualizes the performance
of a binary classifier as its discrimination threshold
varies. ROC is created by plotting the fraction of the
true positive rate (i.e., rejection rate when the user is
invalid) vs the false positive rate (i.e., rejection rate
when the user is valid), at various threshold settings
[1]. ROC is a more complicated indicator, which re-
flects the performance of a system under different set-
tings.
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Figure 1: Overview of touch-based authentication
approach

3. TOUCH DATA-BASED USER AUTHEN-
TICATION

Our idea of using touch data for continuous authentication
includes two phases: the training phase and the authentica-
tion phase. In the training phase, a number of labeled touch
data (i.e., the data together with whether it comes from a
valid user) are processed so as to model the valid user. In the
authentication phase, the touch data, which may come from
the valid user or an attacker, are labeled according to the
models generated in the training phase. In this way, we can
authenticate the corresponding user of the touch data. Fig.
1 overviews the touch-based user authentication approach.

Centric to this approach is a statistical pattern recognition
procedure that can discriminate different users according to
the touch data. To design an effective touch data-based
user authentication approach, two key steps need to be ad-
dressed: 1) how to model the user characteristics from the
touch data, i.e., what kind of features should be extracted
from the data. 2) how to recognize users according to these
features. We discuss these two issues in what follows.

3.1 Feature Extraction

Touchscreen can catch every subtle user touch and gen-
erate corresponding touch data sequence. We may directly
consider touch data sequence as the basic granularity and
model the user accordingly. However, since different se-
quences may belong to different types of touch operations,
they may contain quite different characteristics. For exam-
ple, a slide operation with one finger move is quite different
from a pinch operation with two fingers. In order to address
this problem, we propose a separation-of-concerns approach
which considers each type of touch operations separately.
In this way, each type of touch operations can be modeled
separately with its corresponding sequence of raw events.

Let X denote the data of a raw event, where X = [Time,
Position,, Position,, Pressure, Size]. Let {X1, X2, ..., Xn}
denote a sequence of raw events that jointly form a touch
operation. Let F' = [feature, featurey, ..., feature,,| denote
the feature vector of a touch operation. We should find how
to map {X1, X2,..., Xn} to F, so that F' can well describe
the characteristics of the touch operation. In what follows,
we will discuss the design of such a mapping according to
the specifics of each type of touch operations.

3.1.1 Features of Keystroke

Keystroke operation typically involves a series of taps on
the soft, on-screen keyboard. Keystroke dynamics on hard-
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Figure 2: Keystroke feature vectors of 2 users in 3-
dimensional space when tapping “1” within a num-
ber sequence “123456”

ware keyboard is a type of biometrics well studied in the
literature [4, 22], which sheds light to our study on soft-
ware keyboard. We adopt two features proven effective in
the hardware keystroke dynamic field: the dwell time and
flight time features. The former considers the duration of a
keystroke and the latter considers the time interval between
successive keystrokes. Even though some new features spe-
cially tailored for touchscreen based keystrokes have been
proposed (e.g., the detailed touch locations of each key [10]),
there is no enough evidence to show that the recognition ac-
curacy can be improved considerably [10]. Hence, we don’t
include these new features in our model.

The upper-left corner of Table 2 shows the four typical
features for keystroke operation we propose. Besides dwell
time and flight time, the other two features are self-explained
by their names. As a demonstrating example, Fig. 2 shows
the feature vectors extracted from 2 different users when
they perform keystroke operations. We can easily see that
different people have quite different characteristics in terms
of the features we propose.

3.1.2  Features of Slide

A slide operation is a finger move from a start point to
a stop point on the screen, i.e., a curve. Besides these two
points, we also consider the largest deviation point (LDP) in
the slide curve. An LDP is the point that is farthest to the
straight line between the start point and the stop point of
the slide curve. Fig. 3(a) shows an example of such an LDP.
The LDP can, to some extent, describe the curvature of the
slide. Hence, we choose to extract features based on these
three points. Our extraction process is designed as follows.

First, we consider the positions of these three points, and
thus introduce the trajectory features. Trajectory features
are the features that reflect the directional information of
finger moving and those that measure the length of the mov-
ing trajectory. The latter is measured by the sum of the
line segments between every two consecutive raw events oc-
curring during the finger move. Secondly, we consider the
dynamics of the slide move along these three points. Spe-
cially, we consider the pressure, size and velocity along them.

Start-to-Stop
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Stop
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, Point

’
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l ’
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(a) Slide  (b) Handwriting (c) Pinch
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Figure 3: Demonstration of key metrics during fea-
ture extraction

Thirdly, there are several statistical features that have been
taken into account. For example, the standard deviation of
touch pressure occurring during a slide can reflect the distri-
bution of touch strength. Table 2 provides the 37 suggested
features for slide.

3.1.3 Features of Handwriting

Input via writing on the screen is an important input
method for smartphones. Naturally, how to model such op-
erations is the area of handwriting forensic. Handwriting
forensic identifies handwriting through the analysis of var-
ious aspects of writing, including the arrangement, slant,
baseline alignment, design of alphabets [32]. In this work,
we also extract handwriting features with the handwriting
forensic approach. We omit those features that are not
computationally available [32] and customize 42 features for
handwriting authentication, as provided in Table 2. Specifi-
cally, we consider the leftmost, rightmost, topmost, and bot-
tommost points of a handwritten letter (denoted by LMP,
RMP, TMP, and BMP, respectively). Fig. 3(b) demon-
strates these four points of a handwritten “a”.

Similar to slide operation, we propose the trajectory fea-
tures of these four points, as well as dynamics of the finger
move along these points. We also consider the statistical
features of raw events which occur during the handwriting.

3.1.4 Features of Pinch

The trajectory of a pinch operation includes two curves,
since it involves two fingers. The features of a pinch nat-
urally include the features of both curves. The features of
each curve can be extracted similarly as a slide. We also
consider the features that can describe the correlation be-
tween the curves, as they are generated by two fingers of the
same user. For example, we consider start distance and stop
distance, which are the distances between two fingers when
the pinch starts and stops respectively.

We notice some people would pinch with thumb and in-
dex finger, while others with index finger and middle finger,
which will cause quite different characteristics of the result-
ing curves. Instead of distinguishing the two curves with
finger name, we distinguish the two curves by their posi-
tional information: The curve with the start position on
the left-hand side to the start position of the other curve is
named the first curve (FC), and the other curve is named
the second curve (SC). There are in total 49 features we
propose for modeling the pinch as listed in Table 2.

In the discussions above, we have provided a set of features
for each type of touch operations based on their specifics. It
is worth noting that these features may not all be effective
for user authentication. In our experimental study, we will
evaluate these features and select a subset for modeling each
type of touch operations.
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Table 2: The features we proposed for touch operations(Pos. and Traj. stand for position and trajectory,
respectively). For each feature, we present the feature evaluation result in accuracy according to Section 4.2.

Keystroke Features Handwriting Features Pinch Features

Feature Name | Accurary (%) [ Ranking Feature Name [ Accurary (%) [Ranking Feature Name | Accurary (%) [Ranking
Max-Size of One Tap 18.3761 1 Left Margin 12.3 27 FC Start Point Pos. X 19.2 3
Max-Pressure of One Tap 9.9343 4 Right Margin 1.1 31 FC Start Point Pos. Y 16 14
Dwell Time 13.1823 3 Top Margin 16.6 15 FC Start Point Size 14.3 20
Flight Time 13.4075 2 Bottom Margin 20.2 4 FC Start Point Pressure 13.8 23
Slide Features LMP Size 19.8 5 SC Start Point Pos. X 13.9 22
Start Point Pos. X 20.6 1 RMP Size 9.9 35 SC Start Point Pos. Y 15.5 18
Start Point Pos. Y 16.4 7 TMP Size 23.3 1 SC Start Point Size 18 8
Start Point Size 18.7 2 BMP Size 17 12 SC Start Point Pressure 1 29
Start Point Pressure 10.1 18 LMP Pressure 8.7 36 FC Stop Point Pos. X 18.4 4
Start Point Velocity 10.6 16 RMP Pressure 4.7 38 FC Stop Point Pos. Y 14.3 21
LDP Pos. X 124 14 TMP Pressure 11.9 28 FC Stop Point Size 9 38
LDP Pos. Y 11.5 15 BMP Pressure 7.9 37 FC Stop Point Pressure 6.5 43
LDP Size 18.5 3 Vertical Direction 24 41 SC Stop Point Pos. X 16 15
LDP Pressure 10.4 17 Horizontal Direction 2.4 40 SC Stop Point Pos. Y 245 1
LDP Velocity 14.2 1 Avg. Size 18.2 9 SC Stop Point Size 12.6 25
Stop Point Pos. X 16.2 8 Avg. Pressure 20.9 2 SC Stop Point Pressure 9.4 37
Stop Point Pos. Y 14.5 10 Start Point Pos. X 11.5 29 FC Start Point Velocity 10.2 32
Stop Point Size 7.7 28 Start Point Pos. Y 16.6 14 FC Stop Point Velocity 8.1 41
Stop Point Pressure 5.5 30 Start Direction 3.2 39 SC Stop Point Velocity 9 39
Stop Point Velocity 8.5 26 Stop Point Pos. X 12.3 26 SC Start Point Velocity 9.8 34
Avg. Velocity 16.8 5 Stop Point Pos. Y 19 6 FC Traj. Length 15.6 16
Start-to-LDP Latency 8.7 25 Stop Direction 2 42 SC Traj. Length 16.7 13
Straight Start-to-LDP Length 9.4 21 Start-to-LMP Latency 11.5 30 FC Interval 19.6 2
Start-to-LDP Direction 4.7 32 Start-to-RMP Latency 19 7 SC Interval 18.3 6
Start-to-Stop Latency 10 19 Start-to-TMP Latency 13.8 21 FC Traj. Velocity 9.8 35
Straight Start-to-Stop Length 9.1 22 Start-to-BMP Latency 17 13 SC Traj. Velocity 11.8 27
Start-to-Stop Direction 3.4 36 Start-to-LMP Traj. Length 13 24 Start Distance 13.5 24
LDP-to-Stop Latency 14.1 12 Start-to-RMP Traj. Length 18.2 8 Stop Distance 15.6 17
Straight LDP-to-Stop Length 16.5 6 Start-to-TMP Traj. Length 16.2 16 Start Interval 8.2 40
LDP-to-Stop Direction 4 35 Start-to-BMP Traj. Length 17.8 1 Stop Interval 1M 30
Straight LDP Length Ratio 7.7 27 Start-to-LMP Velocity 10.7 33 Mutual Interval 184 5
Start Direction 27 37 Start-to-RMP Velocity 13.4 23 Traj. Length Ratio 16.8 10
Stop Direction 4.2 33 Start-to-TMP Velocity 16.2 17 FC Moving Direction 3.3 46
Rotation 4 34 Start-to-BMP Velocity 14.6 20 SC Moving Direction 2.4 48
Traj. Length 171 4 Total Traj. Length 20.6 3 FC Moving Rotation 53 44
Straight to Traj. Length Ratio 5.6 29 Avg. Velocity 18.2 10 SC Moving Rotation 3.3 47
Avg. Distance 8.7 24 Width 13.4 22 FC Straight Length 18.3 7
Avg. Size 15.5 9 Height 15 19 SC Straight Length 16.8 11
Avg. Pressure 14 13 Area Size 15.8 18 Straight Length Ratio 16.8 12
Distance STD Deviation 4.9 31 Width-to-Height Ratio 10.7 32 FC Traj. Radius 5.3 45
Size STD Deviation 9.1 23 Size STD Deviation 12.6 25 SC Traj. Radius 1.7 49
Pressure STD Deviation 9.7 20 Pressure STD Deviation 10.3 34 Avg. Size of FC 155 19
Avg. Size of SC 171 9
FC Pressure STD Deviation 7.7 42 FC Size STD Deviation 1" 31 Avg. Pressure of FC 12.2 26
SC Pressure STD Deviation 9.8 36 SC Size STD Deviation 10.2 33 Avg. Pressure of SC 11.4 28

3.2 C(lassification

The major purpose of the classification process in Fig. 1
is to authenticate users using a classifier. We discuss our au-
thentication model and classifier in this section. Moreover,
since there is no systematic study of touch biometric prop-
erties so far, we further introduce our discrimination model
for studying its biometric properties. The key difference of a
discrimination model from an authentication model is that,
in a discrimination model, we can have the data of each
class for training. Fig. 4 compares these two models and
visualizes their difference.

identify which one of these classes a new observation belongs
to. In the training phase, a number of labeled touch data
from N users are processed via the feature extraction process
discussed in Section 3.1. We can obtain corresponding N
classes of feature vectors. The vectors are then fed into a
classifier for training purpose. While in the discrimination
phase, a new touch data observation is also processed via
feature extraction process first. The classifier then decides
which class the obtained feature vector belongs to and then
identify the user accordingly.

Obviously, when N grows, the identification process nat-
urally becomes more difficult, and the accuracy would de-
crease. A form of good biometrics should exhibit good per-

3.2.1 Discrimination Model

‘We define this model as a typical multi-class classification
model: Given N classes, each having some samples, how to

formance even when N is large. Hence, the discrimination
model can reflect the distinctiveness of biometric properties
by involving different numbers of users.
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3.2.2 Authentication Model

In practice, we cannot know the models of the attackers
beforehand. However, we can obtain the touch data of the
valid user herself, and those of some other users®. We use
these additional users to build a mock attacker model as an
approximation to the real, unknown attacker.

We define the authentication problem as a binary classifi-
cation problem. Given two classes of samples, one including
touch data of the valid user, and the other including those
of the mock attackers, how to identify which class a new
observation belongs to. In the training phase, given the
touch data of both classes, we can obtain two corresponding
classes of feature vectors via the feature extraction process
discussed in Section 3.1. We can then turn to a classification
algorithm: Input the two classes of feature vectors to train
a classifier. After the classifier is trained, it can be used to
determine whether a current user operation is from a valid
user or not, by checking which class (z.e., the valid user class
or the attacker class) it belongs to.

3.2.3 Classifier

There are many classification algorithms we can choose.
We adopt a state-of-the-art statistics-based classification
method, i.e., the Support Vector Machine (SVM) [6]. It
can infer how two classes of vectors are different from each
other by finding a hyperplane (i.e., a boundary) that best
separates the classes. With such a boundary, any unlabeled
sample can then be classified according to which side of the
boundary it locates.

We adopt SVM since it has long been proven successful
in many classification applications. Moreover, it can seam-
lessly apply the kernel method, e.g., via Radial Basis Func-
tion (RBF) kernel [6], and thus find a nonlinear boundary
that best separates the two classes. This non-linear property
is critical to our problem setting, since the discriminations
between the touch data from the valid user and those from
the attackers are nonlinear in nature.

Finally, note that SVM is not the only option of classi-
fier for our user authentication approach. Other methods,
for example, logistic regression and Naive Bayes classifier,

3These data are collectable in reality since it is not hard to
collect the touch data of some other users who use the same
smartphone model.
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Figure 5: User interface of our data acquisition
tool. The first row demonstrates our handwriting
and pinch experimental Uls, while the other demon-
strates these of keystroke and slide.

can also be incorporated into our approach conveniently. A
further comparison study is left to our future work.

4. EXPERIMENTAL STUDY

In the previous section, we have described our framework
for continuous authentication based on touch operations.
This section evaluates its performance via real-world ex-
periments. First, we conduct a real-world experiment to
collect touch data. Secondly, we evaluate the proposed fea-
tures using these data. Thirdly, we study the distinctiveness
and permanence properties of touch operation, and justify
it qualifies to be a form of good biometrics. Finally, we eval-
uate the authentication performance of our proposed frame-
work.

4.1 Data acquisition

We recruited 32 participants for our data acquisition ex-
periment using an online advertisement. The only require-
ment was that the participants had to be users of smart-
phone with touchscreen. This was to guarantee that they
were familiar to the touch operations required in the ex-
periment. Each participant received a $6 gift for his/her
participation.

In order to collect touch data, we programmed a data
acquisition tool with Java, which runs on Android smart-
phone as a stand-alone application. This tool collects the
four types of touch operations of interest, and saves their
touch data sequences for further analysis. Fig. 5 shows the
user interface of this tool. It was installed on a Samsung
Galaxy SII smartphone with Android OS 4.1.2.

Before the experiment, the participants were informed
that that their touch data would be collected for behavior
analysis, and they were required to operate as they usually
did. After they got familiar with the tool, we required them
to start performing operations as the tool instructed. Each
experiment took roughly 15 minutes. In this way, we col-
lected 200 touch data sequences from each participant.

We further chose 3 volunteers among these 32 participants
for a long-term study. We asked them to do the experiment
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with the same settings repeatedly for 20 more times. The in-
terval of each two consecutive experiments for each volunteer
was one day by default except weekends. To be convenient,
we only required them to perform tasks for about 5 minutes
(i.e., we thus collected 50 touch data sequences) in each ex-
periment. The whole data acquisition experiment lasted for
almost one month. We collected roughly 1200 touch data
sequences from each volunteer in total®.

4.2 Feature Evaluation

In Section 3.1, we have suggested a set of features for
each type of touch operations. We now evaluate the effec-
tiveness of each feature in classification accuracy. The idea
is to discriminate users solely based on one feature at a time.
We adopt the discrimination model in the feature evaluation
process. To elaborate, in the training phase, we use only one
feature to model the user at a time. The classifier then clas-
sifies a new sample based on this model. The classification
accuracy can be obtained accordingly as an indication of the
feature’s effectiveness.

In our experimental settings, we use the data set of 32
participants. To evaluate each feature, the classifier per-
forms a 10-fold cross validation based on the data of that
particular feature. A 10-fold cross validation approach ran-
domly partitions the data into 10 equal-size subsets. Each
time nine subsets are used for training, and the remaining
subset is retained for testing. The accuracy values are then
averaged. Our evaluation results are provided in Table 2
along with the feature name, and the ranking according to
the accuracy.

According to [15], a feature X is relevant in the pro-
cess of discriminating class Y=y from others if the condi-
tional probability P(Y=y|X=z) is different from the un-
conditional probability P(Y=y) for some values X=x for
which P(X=z)>0. In our study, since the task is to dis-
criminate one user among the 32 users, a naive guess can
achieve a 1/32 accuracy (i.e., the unconditional probabil-
ity is 3.125%). Therefore, the features with accuracy lower
than 3.125% are useless in discriminating users, and we thus
remove these features.

In the rest of our study, we consider only the features
with accuracy higher than 3.125% in Table 2. Noticing that
some features on directional information are not discrimi-
nating. We believe such an evaluation study can enlighten
future feature extraction method for touch-based continuous
authentication.

4.3 Evaluation of Distinctiveness

In this section, we evaluate the distinctiveness of touch
biometrics, i.e., how well touch operations can be used to
discriminate users. We adopt the discrimination model in
this step. Our experiment is based on the data set of feature
vectors from 32 users. We randomly pick N users and their
vectors from the data set. Focusing on each type of touch
operation at a time, we benchmark the classification accu-
racy with IV users using a 10-fold cross validation approach.
We change N from 2 to 32, and thus get the accuracy with
different user sizes. Fig. 6(a) shows our experiment results.
We can see that all types of touch operations are distinctive
among users with a classification accuracy better than 80%
even when we try to discriminate a user from 31 others.

4The data set are available at the project homepage:
http://www.cudroid.com/urmajesty.
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Figure 6: Distinctiveness performance of touch op-
erations based on the data set of 32 users

We have noticed that there are still minor differences
among the operations of each type. Specifically, a pinch
may be pinch open or pinch close; A slide can have four
possible directions; Handwriting can involve different let-
ters; Keystroke operations can input different words. We
study whether such subtypes have a considerable impact on
the distinctiveness performance. Fig. 6(b) shows the exper-
iment results, from which we can tell that the differences
between subtypes are slight. Therefore, in the subsequent
experiments, we will not consider these subtypes.

4.4 Evaluation of Permanence

We now study the permanence performance of touch bio-
metrics, i.e., if we model a user with her touch biometrics,
whether the model is stable over a period of time for the
same user. In this regard, our experiment is based on a 21-
day data set from the 3 volunteers. As mentioned before,
we collected their touch data from a 21-day long experiment.
We use the discrimination model for evaluation. To elabo-
rate, we model the user using their data collected in the
first day. We then discriminate the data of each remaining
day based on this model. If touch biometrics bears good
permanence property, the model should be good enough in
discriminating the data of the remaining days. Fig. 7 shows
the results.
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Table 3: Average error rate with different numbers

of additional users to model the mock attacker
additional Keystroke Slide Handwriting | Pinch
user #
5 11.76% 11.24% 11.48% 7.38%
10 10.3% 10% 10.08% 4.96%
15 9.36% 4.85% 9.27% 3.87%
20 7.71% 1.53% 11.39% 3.75%
28 6.42% 0.75% 8.67% 3.33%
30 5.3% 1.3% 8.67% 3.33%
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Figure 8: Permanence performance with different
training data sizes

We can observe that the performance is not stable for all
touch operations, even though pinch and slide are relatively
better than keystroke and handwriting. It is probably be-
cause that our data used for training is too flaky to get a sta-
ble enough result. To further clarify this issue, we conduct
another experiment using different sizes of training samples.
The results in Fig. 8 show that the performance improves
only a little as the data size grows. Therefore, we can infer
that data size is not the key factor to the poor performance.
As a result, we conclude that touch biometrics is not quite
stable over time.

A common way to deal with the permanence issue in bio-
metric systems is to consider an adaptive approach: The
model will be adjusted according to new samples. We in-
vestigate whether such an adaptive approach is helpful for
touch biometrics. For this reason, we improve the previous
experiment in permanence evaluation using the same data
set. When discriminating the data of the nth day, we model
the users using all the touch data previous to the nth days,
instead of the first day only. Fig. 9 shows the evaluation
results. We can see that the results tend to be much more
stable, especially after the 8th day. This shows that an
adaptive approach can help tackle the permanence problem.

4.5 Evaluation of Touch-based Authentica-
tion

In this section, we study the performance of touch-based
authentication. The major difference of this study is that
we consider the practical case, where the attacker model is
not known beforehand. In other words, the classifier cannot
be trained with the touch data from the real attacker. We
adopt the authentication model in this study. As discussed
in Section 3.2.2, we assume that we can have the touch data
of the valid user herself, and those of some other users to
mock attackers.

Our experimental setting is discussed as follows. We
consider each of the 3 volunteers at a time, and use her
data of the previous 20 days to model the valid user. We
then randomly select M additional users from the rest 31
users to model the mock attacker. The remaining data of
the valid user and those of the rest users (those are not
involved in the training process) are used for prediction.
We study the performance in terms of average error rate
(i-e., (FAR4+FRR)/2). Table 3 shows our experiment re-
sults when M varies. Each error rate within this table is an
average of those of the three volunteers’.

From Table 3, we can observe that the performance im-
proves as the additional users number increases. However,
an overfitting for slide occurs when the number of additional
users exceeds 28. But for the other 3 touch operations, the
performance might further improve when involving more ad-
ditional users.

In general, including more additional users can help re-
duce FAR, since it explores more diverse user characteris-
tics. In other words, involving more additional users shrink
the class boundary of the valid user and thus improve FAR.
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However, when the number of additional users are too high
(e.g., the 30 case), it may also deteriorate the authentication
accuracy. This is not surprising: As the number increases,
the attacker samples are getting more diverse, and the SVM
will suffer overfitting to the attacker class. As a result, it
tends to misclassify more operations of the valid users, caus-
ing a high FRR.

In practice, FAR and FRR are correlated with each other.
To avoid bias, ROC is commonly used to evaluate biometric
systems, which reflects the characterization of the trade-off
between the true positive rate and the false positive rate.
Fig. 10 visualizes such a trade-off for the average error rate
achieved in Table 3.

Since our approach heavily relies on the SVM classifier,
we tune the SVM parameters to get the EER. We adopt a
commonly-used RBF kernel in the SVM classifier, defined
as K(z;,2;) = exp(—y||jz:i — z;|*) [6]. We tune the value
of v and obtain corresponding FAR and FRR, which are
plotted in Fig. 11. We observe that our biometric system
can generally achieve EER values lower than 10% for all
operation types. The slide operation performs the best by
achieving an EER lower than 1%.

Table 4: Average error rate using consecutive se-
quences. To better visualize the improvement, some
previous experiment results in Table 3 are also
shown here for comparison purpose.

user # Numbers of Operation
in training 1 | 3 [ 5
Keystroke
10 10.3% 9.82% | 9.711%
20 7.7083% | 7.74% | 3.32%
28 6.4167% | 5.02% | 0.88%
Slide
10 10% 9.55% | 9.33%
20 1.5278% | 0.98% | 0.64%
28 0.75% 0% 0%
Handwriting
10 10.0758% | 5.94% | 5.62%
20 11.3889% | 10.92% | 15.8%
28 8.6667% 8.3% 13.89%
Pinch
10 4.9621% | 2.63% 2.1%
20 3.75% 1.47% | 0.92%
28 3.333% 0% 0%

In practical scenarios, we can use a combination of con-
secutive operations jointly for making an authentication de-
cision [14]. A convenient approach is to authenticate the
user with each of the operations first. The system then de-
cides whether a user is an attacker based on the majority
of the results. To verify the applicability of this idea to
our model, we conduct a comparison experiment with the
same data set. This time, we try to authenticate users with
3 and 5 consecutive operations. Table 4 shows the experi-
ment results, which confirm such an approach is helpful in
improving authentication performance. According to Ta-
ble 4, the performance improves a lot in most cases. For
slide and pinch, the average error rate even approaches 0.
However, the performance for handwriting does not improve
much. We think the reason is that the average error rate for
each handwriting operation is relatively high. From the per-
manence experiment, we could infer that consecutive hand-
writing operations are more likely to be similar. Therefore,
errors would also tend to happen consecutively in a short
interval, rather than distribute evenly over a period of time.
When such case occurs, the performance will degrade due to
the high error rate. Which will affect the performance when
the error rate is too high. If the rate could be lower down
(e.g., by involving more additional users), the result would
also improve. Details of such an evaluation are left to future
work.

To conclude, when we model the mock attacker prop-
erly, the authentication performance can be very promising.
Also, using consecutive sequences to authenticate a user is
a helpful way to improving the error rate.

4.6 Lessons Learned

Our experiments have evaluated the distinctiveness and
permanence properties of touch operations. The results
show that touch operation can be a form of good biomet-
rics. However, regarding the distinctiveness property, we
find that there is still room for the accuracy to approach
100% when we discriminate the users. As a result, our touch-
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based continuous authentication approach cannot achieve an
error rate very close to zero using one operation. This indi-
cates a need for further research to make touch-based con-
tinuous authentication a practical solution. We believe that
it is a promising solution to consider a set of touch oper-
ations jointly for making an authentication decision rather
than using one at a time. We have shown that when consid-
ering 3 or 5 consecutive operations jointly, the biometric sys-
tem achieves average error rates approaching 0% for slide or
pinch, which can satisfy practical concerns. However, how to
use these operation combinations effectively and efficiently
should be studied in the future.

Regarding the permanence property, we find that touch
biometrics are not strictly stable over time, especially for
keystroke and handwriting. We have shown that a conve-
nient adaptive approach can greatly improve the accuracy.
Therefore, the permanence problem can be mitigated. How-
ever, a more sophisticated approach is still at large.

Finally, touch-based authentication inevitably requires a
large number of touch operation samples for training pur-
pose. We have shown that potential attackers can be mod-
eled with data from a set of additional users. Such data can
be preloaded into smartphone in practice. However, what is
the adequate number of additional users should be further
studied in the future. Moreover, we still need hundreds of
training samples from the target valid user. How to design a
user-friendly way to obtain so many data samples is still an
open question for implementing touch-based authentication.

5. RELATED WORK

Continuous authentication on traditional PC has been ex-
tensively studied for years. Research on how to continuously
authenticate PC users can be found in [2, 7, 18, 19, 20, 28,
30, 36]. Keystrokes, mouse dynamics, and face recognition
are the main approaches. However, the usability of these
technologies is still a question due to the low recognition
accuracy and inconvenience.

Equipped with more sensors in smartphones (e.g., gyro-
scopes), continuous authentication on smartphone started
a new research area. Several projects have studied how to
passively authenticate users based on a variety of sensory
data. For example, SenSec [38] constantly collects sensory
data from accelerometers, gyroscopes and magnetometers,
and constructs the gesture model of how a user uses the
device. The user studies has showed that SenSec achieved
an accuracy of 75% in identifying the users and 71.3% in
detecting the non-owners. Senguard [29] also investigates
on a framework to continuously identify users based on a
variety of sensory data. Touchscreen is one sensor of con-
cern. However, the paper only visually shows that different
users have different touch traces, without mentioning how
to authenticate users based on these traces.

Using touch operations to authenticate users is a relatively
new topic that has yet to capture extensive research atten-
tions. Several recent work has studied how to improve the
touch unlocking mechanism by considering touch biomet-
rics. Such work includes [3, 9, 25, 26, 33]. De Luca et al. in
[9] propose to track touch data of slide operations to unlock
the screen. Touch data including time, position, size and
pressure are used directly to authenticate users. Their work
has achieved an overall accuracy of 77% using DTW (i.e.,
Dynamic Time Warping) at best. Angulo et al. research
on improving the lock patterns and introduce the notion of

lock pattern dynamics [3]. Their work has achieved an EER
of 10.39% using Random Forest machine learning classifier.
Sae-Bae et al. focus on the specific five-finger touch gestures
available on the Apple devices [25]. They model a user based
on the movement characteristics of the five fingers and the
palm center. An accuracy of 90% has been achieved over an
Apple iPad. Shahzad et al. discuss a slide-based user au-
thentication scheme, where a series of customized slides are
used jointly to authenticate users [26]. It has been reported
that a combination of three slides can achieve an average
EER of 0.5%. Sun et al. propose Touchln that allows user
to draw on arbitrary regions with one or multiple fingers to
unlock his mobile device. The user is authenticated based
on the geometric properties of his drawn curves as well as
his behavioral and physiological characteristics [33].

Other than improving screen locker security, several in-
vestigations focus on exploring the applicability of tradi-
tional keystroke-based authentication on smartphone with
new features. KenSens [10] passively authenticates users via
the specific location touched on each key, the drift from fin-
ger down to finger up, the force of touch, the area of press.
The work in [23] also discusses the feasibility of employing
keystroke dynamics to perform user verification on mobile
phones and introduces a new statistical classifier. However,
such work has not achieved great improvement in authen-
tication accuracy. Zheng et al. propose to rely on more
sensors (e.g., accelerometers) other than purely touchscreen
[37]. They propose acceleration features which can reflect
the magnitude of acceleration when the key is pressed and
released. Their approach finally has achieved an average
EER down to 3.65%.

Besides exploring touching biometrics on improving the
screen lock or keystrokes, Frank et al. introduce the notion
of continuous authentication via touch operations [14]. They
focus on stroke operations. An EER of 13% for one single
stroke, and 2% to 3 % for 11 consequent strokes have been
achieved. Instead of only considering slide operation, Li et
al. study both tap and slide, and achieved an accuracy of
approximately 90% [21]. Feng et al. also study the contin-
uous mobile authentication issues via touchscreen gestures
[12]. They implement FAST (i.e., Finger-gestures Authen-
tication System using Touchscreen), where an extra glove
equipped with sensors is used. FAST has achieved an FAR
of 4.66% and an FRR of 0.13% using 7 touch sequences.

Our work also aims at exploring the applicability of con-
tinuous authentication relying only on touch operations.
Unlike the existing work that using only one type of spe-
cific touch operation, our work comprehensively investigates
a set of general, commonly-used types of touch operations
on smartphone. Our authentication performance is better
than that reported in [14] and [21] (the other existing work
focuses on different problem settings, and is not compara-
ble). More importantly, all existing work is based on the
hypothesis that touch data qualifies good biometrics. Our
work is the first to systematically evaluate the distinctive-
ness and permanence properties of touch biometrics. Such
a study is the basis for touch-based authentication.

6. CONCLUSION

This work has suggested a touch-based authentication
framework to continuously authenticate user. The authen-
tication proceeds in a passive way while the user performs
her normal touch operations. We proposed a set of meth-
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ods targeting the problem of how to model multiple types
of touch data produced by users. We further justified two
critical properties of such data: distinctiveness and perma-
nence. We presented our work together with a real-world
experimental study. It is the first attempt to comprehen-
sively evaluate the biometric properties of touch operations.

Although we have shown that touch operations bear good
biometric properties, there is still a long way to implement
a practical, touch-based continuous authentication system.
First, the error rate when authenticating a user with one
touch operation still cannot approach zero. We have hence
suggested considering a set of touch operations jointly. Al-
though we have shown some preliminary results with such
a consideration, future research efforts (e.g., consider the
combination of different touch operations) are still required
to examine it comprehensively. Secondly, our experiments
have shown that the user features of touch operations are
not stable over a period of time. Although we have sug-
gested an adaptive approach that can mitigate such a prob-
lem, extensive future work is still needed to find an opti-
mized adaptation method. Finally, there are quite a lot of
other implementation issues of our touch-based continuous
authentication framework. Examples include how to engi-
neer a seamless touch operation tracing mechanism that runs
silently as a smartphone background service and how to de-
sign a user-friendly mechanism to obtain data samples for
training purpose.
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