
Manufacturing Resilient Bi-Opaque Predicates

against Symbolic Execution

Hui Xu∗†, Yangfan Zhou‡§, Yu Kang‡, Fengzhi Tu∗, Michael R. Lyu∗†

∗ Shenzhen Research Institute, The Chinese University of Hong Kong
† Dept. of Computer Science and Engineering, The Chinese University of Hong Kong

‡ School of Computer Science, Fudan University
§ Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education

Abstract—Control-flow obfuscation increases program com-
plexity by semantic-preserving transformation. Opaque predi-
cates are essential gadgets to achieve such transformation. How-
ever, we observe that real-world opaque predicates are generally
very simple and engage little security consideration. Recently,
such insecure opaque predicates have been severely attacked by
symbolic execution-based adversaries and jeopardize the security
of control-flow obfuscation. This paper, therefore, proposes
symbolic opaque predicates which can be resilient to symbolic
execution-based adversaries. We design a general framework
to compose such opaque predicates, which requires introducing
challenging symbolic analysis problems (e.g., symbolic memory)
in each opaque predicate. In this way, we may mislead symbolic
execution engines into reaching false conclusions. We observe
a novel bi-opaque property about symbolic opaque predicates,
which can incur not only false negative issues but also false
positive issues to attackers. To evaluate the efficacy of our
idea, we have implemented a prototype obfuscation tool based
on Obfuscator-LLVM and conduct experiments with real-world
programs. Our evaluation results show that symbolic opaque
predicates demonstrate excellent resilience to prevalent symbolic
execution engines, such as BAP, Triton, and Angr. Moreover,
although the costs of symbolic opaque predicates may vary for
different problem settings, some predicates can be very efficient.
Therefore, our framework is both secure and usable. Users can
follow the framework to introduce symbolic opaque predicates
into their obfuscation tools and made them more powerful.

I. INTRODUCTION

Obfuscation is a widely employed technique which protects

software from reverse engineering. It transforms programs into

unintelligible versions while preserving their original function-

alities. Obfuscation can be achieved via lexical transformation,

control-flow transformation, data-flow transformation, etc [1].

Such obfuscation transformation techniques are orthogonal to

each other and can be employed simultaneously.

This paper focuses on control-flow obfuscation, which

increases software complexity (e.g., by adding bogus con-

trol flows) against reverse control-flow analysis. Opaque

predicates are essential gadgets to achieve such obfuscation

transformation. An opaque predicate is a predicate whose

value is known before obfuscation time but difficult to

be deduced by reverse analysis. Because it holds some

deterministic properties, we can employ opaque predicates

to transform a program without changing its semantics.

For example, we can add a bogus code block after a

constantly false opaque predicate and guarantee the code block

would never be executed. In practice, opaque constant (e.g.,

x2 �= −1) is the most prevalent type of opaque predicates

adopted by obfuscation tools, such as Obfuscator-LLVM [2].

Although other approaches (e.g., unsolved conjectures [3])

may demonstrate better security, they are not widely adopted

due to either implementation or performance issues [4].

Recently, the security of opaque predicates has been greatly

challenged due to the development of symbolic execution

techniques. Notably, Ming et al. have proposed an opaque

predicate detection approach based on symbolic execution [5];

Yadegari et al. have demonstrated the effectiveness of deob-

fuscation attacks based on symbolic execution [6]. Symbolic

execution is a program analysis approach that models the

conditions for executing alternative control flows. It attempts

to find test cases that can satisfy such conditions. If a condition

cannot be satisfied, it may indicate a bogus control flow

or an opaque predicate. Symbolic execution-based attacks

may not be new to the research community. But due to the

development of symbolic execution techniques, such attacks

become practical recently and jeopardize the robustness of

obfuscated software.

In this work, we propose a novel framework to manu-

facture symbolic opaque predicates which are resistant to

symbolic execution-based adversaries. A key procedure in our

framework is to introduce challenging problems for symbolic

execution to analyze, such as employing symbolic memory and

parallel programming [7]. Moreover, we observe a bi-opaque

property of such opaque predicates, i.e., it may either mislead

an attacker into falsely recognizing an opaque predicate as a

normal predicate, or to falsely recognizing a normal predicate

as an opaque predicate.

We have implemented a prototype tool based on Obfuscator-

LLVM [2]. Our tool1 automatically replaces the opaque

predicates generated by Obfuscator-LLVM with symbolic

opaque predicates in IR (intermediate representative) level. It

employs a repository-based mechanism to manage different

templates of symbolic opaque predicates. Currently, we have

implemented several templates in the repository, which attack

symbolic execution with symbolic memory, floating-point

numbers, covert propagation, and parallel programming. The

1Our project url is https://github.com/hxuhack/symobfuscator
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tool is flexible such that users to extend the repository with

their own templates.

We have evaluated the resilience of our idea against three

prevalent symbolic execution engines, including BAP [8],

Triton [9], and Angr [10]. The results demonstrate that

symbolic opaque predicates have excellent resilience against

symbolic execution-based attacks. Then we evaluate the stealth

of symbolic opaque predicates against human adversaries

when obfuscating real programs, including both general Linux

programs and encryption programs. Our experimental results

show that the implemented opaque predicates do not incur

obvious abnormal instruction patterns. We also evaluate the

cost of the implemented predicates. Experimental results

show that some symbolic opaque predicates incur almost no

overhead in comparison with the default opaque predicates

adopted in Obfuscator-LLVM, such as those employing

symbolic memory and floating-point numbers. Other opaque

predicates may incur obvious execution overhead, such as

those employing covert propagation and parallel programming.

However, this does not degrade the usability of our framework

as long as there are some efficient symbolic opaque predicates.

The cost issue can be mitigated in practice by allowing users

to filter inefficient predicates or to prioritize the predicates

according to their preferences. Our approach is thus promising

to be adopted by real-world obfuscation tools.

We conclude our primary contributions as follows.

• This paper proposes symbolic opaque predicates and

demonstrates a framework to manufacture such pred-

icates. Our experimental results show that symbolic

opaque predicates are secure against symbolic execution-

based attacks and they are usable.

• We observe the novel bi-opaque property of such opaque

predicates, which extends the classic understanding about

opaque predicates.

The rest of the paper is organized as follows. Section II-A

discusses our motivating examples and defines the adversary

model of this paper. Section III introduces our framework for

composing symbolic opaque predicates. Section IV evaluates

the security and cost of our approach. Section V discusses the

related work. Finally, Section VI concludes the paper.

II. BACKGROUNDS

A. Motivation

Our investigation is mainly motivated by the vulnerability of

real-world opaque predicates. Opaque predicates are essential

gadgets for control-flow obfuscation. As stated by Collberg et

al. [1], the security of opaque predicates largely determines

the security of control-flow obfuscation. However, we notice

that many real-world opaque predicates are not very strong.

Below, we use two examples to demonstrate the issue.

The first example is from a highly cited paper [11], which

proposes an approach to obfuscate programs with NP-hard

security. To compose NP-hard problems, the authors introduce

pointer analysis problems and control pointer alignments with

opaque predicates. In this way, they can compose 3-SAT

(a) The opaque predicate example in [11]

(b) An opaque predicate generated by Obfuscator-LLVM. For easy
reading, we translate the LLVM IR code to source code

Fig. 1: Real-world opaque predicate examples.

problems in the constraint models. However, the underlying

opaque predicates in the paper are not strong enough. We

demonstrate this in Figure 1(a), which includes two opaque

predicates: the first one a ∗ (a + 1)%2 == 0 (line 6) is

constantly true for any integer a; the second one (b − 2) ∗
(b − 1) ∗ b%6 �= 0 (line 13) is constantly false for any

integer b. When such predicates are processed by a symbolic

execution engine, the engine would detect that the constraints

a ∗ (a + 1)%2 �= 0 and (b − 2) ∗ (b − 1) ∗ b%6 �= 0 cannot

be satisfied. Such predicates would be reported as opaque

predicates by symbolic execution-based attackers. As a result,

the NP-hard problem can be simplified to a polynomial-time

problem.

Figure 1(b) demonstrates another opaque predicate example

generated by Obfuscator-LLVM [2]. Obfuscator-LLVM is an

opensource obfuscation tool for C programs and has been

commercialized recently. In this example, the opaque predicate

x7 ∗ (x7 − 1)%2 == 0||x8 < 10 is always true, which can

be easily detected by symbolic execution techniques. We have

reviewed the source code of Obfuscator-LLVM and found that

the opaque predicate is the only supported one. The authors

indeed have left comments in the code and stated that the

opaque predicate should be improved.

Besides, there are many other investigations relying on such

insecure opaque predicates, e.g., [12, 13]. These examples

demonstrate a severe vulnerability of current opaque predicates

in practice. More resilient opaque predicates are therefore

necessary to improve the security of control-flow obfuscation

techniques.
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Fig. 2: A conceptual framework of opaque predicate detection

based on symbolic execution techniques.

B. Adversary Model

This work considers an adversary model as follows.

Suppose an obfuscated binary program is obtained by an

attacker, she can employ symbolic execution techniques to

detect opaque predicates from the obfuscated program and

further deobfuscate the program. We demonstrate a framework

for such opaque predicate detection attacks in Figure 2.

Overall, a symbolic execution engine is employed to extract

the conditions along control paths as constraint models; then

a rule-based detection module is employed to detect opaque

predicates from the constraint models.

In general, a symbolic execution engine for binaries

includes a core symbolic execution module, and a constraint

solving module. The symbolic execution module can be

implemented in two ways: dynamic or static. Dynamic

symbolic execution is also known as concolic (concret and

symbolic) execution. BAP [8] and Triton [9] are two typical

concolic execution engines. They first execute a program with

concrete values, and then perform symbolic analysis on the

generated instruction traces. Comparatively, a static symbolic

execution engine firstly lifts a binary program to high-level

intermediate codes and then perform symbolic execution on

the codes with static analysis approaches. Angr [10] adopts

the second approach. Both the two approaches can generate

constraint models for opaque predicate detection.

To better demonstrate the principle of symbolic execu-

tion, we discuss more details about the concolic execution

technique, which has been adopted by Ming et al. [5]

for opaque predicate detection. Concolic execution includes

several key steps: instruction tracing and lifting, trace slicing,

and constraint extraction and solving.

Instruction Tracing and Lifting: In each round of concolic

execution, we trace the executed instructions along a control

flow. The instructions are assembly codes by default. To

model the semantics of each instruction, an instruction

lifter is required. The lifter translates assembly codes to

a high-level intermediate language (IL), which models the

memory and register operations with variables. In practice,

not all instructions are useful, and sometimes a taint analysis

engine is employed to filter out the instructions irrelevant

to any symbolic variables. This step outputs a sequence of

instructions modeled with IL.

Fig. 3: A framework to compose symbolic opaque predicates.

Trace Slicing: A control flow may contain several condi-

tional branches, and each branch requires a constraint model to

be satisfied for triggering the branch. We may get the negations

of each constraint model and solve them to generate test cases

that can trigger alternative control flows. This step outputs

several sliced sequences of instructions, each indicating a new

control flow possibility.

Constraint Extraction and Solving: The symbolic execution

engine extracts a condition from each sliced trace, and models

the condition with a contraint modeling language, such as

CVC [14] or SMT-Lib [15]. Then the engine employs a

constraint solver (e.g., STP [16] or Z3 [17]) to solve the

models, and the results are new test cases that can trigger

corresponding control paths. For opaque predicate detection,

the constraint models should be passed to a rule-based opaque

predicate detection engine.

Rule-based Opaque Predicate Detection: The constraint

model generated by a symbolic execution engine is generally

in conjunctive normal form (CNF), i.e., λ1 ∧ λ2 ∧ ... ∧ λn.

Each clause λi represents a predicate. Then the CNF is

processed according to opaque predicate detection rules, such

as the rules to detect opaque constants, or contextual opaque

predicates [5]. Since the rules are upper-level applications, we

do not discuss their details. Instead, we focus on attacking the

underlying symbolic execution engines. If the generated CNF

is incorrect, it is likely that such attackers would reach false

conclusions.

III. APPROACH

In this section, we first introduce our idea to compose

symbolic opaque predicates by attacking the challenges up

against symbolic execution; then we discuss the bi-opaque

property of such opaque predicates; finally, we demonstrate

how the predicates work in practice.

A. Idea in a Nutshell

Intuitively, we can employ the weakness of symbolic

execution to compose opaque predicates such that they can

evade detection from symbolic execution-based adversaries.

This is feasible because symbolic execution faces some

challenges, and real-world symbolic execution tools have to

adopt heuristic methods to handle them. Introducing such

challenging problems into a program may incur error for

symbolic execution.
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(a) Original toy program. (b) Symbolic memory. (c) Floating-point number.

(d) Covert symbolic propagation. (e) Parallel programming.

Fig. 4: Opaque predicate examples attacking the challenges of symbolic execution.

Figure 3 demonstrates a general framework to compose such

opaque predicates. Suppose the input is a code snippet or a

function which contains arguments. Then we can choose an

argument as the symbolic variable and create a challenging

problem related to the variable. The challenging problem

is selected from a repository of predefined templates. We

may create hundreds of such templates by attacking different

challenges of symbolic execution or employ different problem

settings. Finally, we can create opaque predicates based on the

symbolic variable protected by the problem.

Note that at least one symbolic variable should get involved

in a challenging problem. Because only such problems matter

to symbolic execution. If a problem does not include any

symbolic value, all the problem-related instructions would be

pruned by the symbolic execution engine. This can be proved

with Hore Logic [18] following the principle of symbolic

execution [7]. Because involving symbolic variables is a

prerequisite for composing such opaque predicates, we name

our opaque predicates as symbolic opaque predicates. If a

function has no argument, then we have to introduce fake

arguments or employ global symbolic variables.

B. Bi-Opaque Property

Traditional opaque predicates aim to evade from detection,

such that the obfuscated control-flow graph cannot be easily

simplified. In other words, they try to mislead adversaries

into falsely recognizing them as normal predicates. Failing to

detect them would cause false negative issues for adversaries.

With symbolic opaque predicates, an interesting observation is

that we may also introduce false positive issues, i.e., we may

mislead adversaries into falsely recognizing normal predicates

as opaque predicates.

In this way, a predicate can be opaque in either a way, which

is the novel bi-opaque property of our approach. Specifically,

we name the two types of opaque predicates: type I opaque

predicate which intends to introduce false negatives and type

II opaque predicate which intends to introduce false positives.

Next, we use several examples to demonstrate how to compose

symbolic opaque predicates with the bi-opaque property.

C. Demonstration

Suppose Figure 4(a) is a function to obfuscate, then

Figure 4(b) demonstrates how to obfuscate it with symbolic

opaque predicates. Specifically, the predicates employ the

challenge of symbolic memory.

Symbolic memory is a difficult problem for program analysis

because it involves pointer analysis issues, which can be NP-

hard or even undecidable [19]. In this example, we compose

two integer arrays. The symbolic value j%7 points to an

element within the first array, and the element serves as an

offset of the second array. The selected element from the

second array is assigned to a new variable i. In this way, i
is a symbolic value protected by the challenging problem, and

we can compose symbolic opaque predicates with i.
For example, we can compose a type I opaque predicate that

cannot be satisfied, such as i == j. With the opaque predicate,

we can insert a bogus code block (i.e., Bogus()) which

would never be executed. The security of the predicate depends

on the capability of symbolic execution engines. If a symbolic

execution engine employs no mechanism to handle symbolic

memory, it would generate incorrect constraint models and

falsely recognize the predicate as a normal predicate.

To compose a type II opaque predicate, we first select an

ordinary predicate, j == 7. Then we modify the predicate

by introducing a new condition related to i, such as i ==
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1&&j == 7. The modification does not change the semantics

of the original predicate because i == 1 is always true when

j equals 7. Such condition can be easily generated because the

value of i can be calculated from any j. In assembly codes, the

new predicate will be dissembled into two predicates i == 1
and j == 7. The second predicate j == 7 will only be

evaluated if the first predicate is true. If a symbolic execution

engine does not support symbolic memory, it cannot solve the

constraint of i == 1 and cannot reach the ordinary predicate

j == 7.

D. Template Generalization

With the above example, we have demonstrated how our

idea works in practice. Now we discuss how to implement the

challenging problem as a template.

In general, a template is a code fragment in a compiler pass,

which inserts, deletes, or modifies the program to be compiled.

Algorithm 1 demonstrates such a template which implements

the challenging symbolic memory problem in Figure 4(b). The

algorithm inputs an icmp instruction and outputs symbolic

opaque predicates. Suppose the icmp compares if a symbolic

variable equals to an integer, the template first parses the

instruction and get a symbolic variable symV ar and a

constant ciObj. Then, we define the types of the two arrays

and initialize them. Next, we can create an integer variable i
and initialize it with the value l2 ary[l1 ary[j%7]].

Based on the protected symbolic variable i, we can directly

create a type I opaque predicate with a comparison instruction

i == j. To compose a type II opaque predicate, we have

to introduce one more icmp instruction. The new instruction

compares if i equals to a value, and it should be true if the

original icmp (i.e., inst) is true. In this example, according

to the array setting, when j equals to a constant value, the

value of i can be determined as j%7 + 1.

E. Template Enrichment

Employing only one template is vulnerable to pattern

recognition. We have to create different opaque predicates to

increase the security level. This can be achieved in two ways.

Firstly, we may create more templates by employing different

problem settings. Secondly, we may create new templates by

employing new challenges.

1) Employing New Settings: For each challenge that sym-

bolic execution is faced with, we may compose a great many

templates. Take the symbolic memory as an example, one

can create arrays with different elements, employ a different

modular, use three arrays instead of two arrays, store the array

with heap instead of stack. All such methods ensure that the

resulting symbolic opaque predicates are different in binaries

or assembly codes.

2) Employing new Challenges: Another orthogonal ap-

proach is to employ new challenges, such as floating-point

number, covert propagation, and concurrent program.

Figure 4(c) is an example that composes opaque predicates

based on the challenge of floating-point numbers. A floating-

point number is an approximation of a real number with a

fixed length of digits in the form of significant × be. It

enables the computer to handle very large numbers or very

small numbers with only limited memory space. As a trade off,

floating-point numbers sacrifice the precision. Floating-point

numbers may incur troubles to symbolic execution because

reasoning over rational numbers and real numbers may lead

to inconsistencies [20, 21]. In this example, because the float

type cannot represent 0.1 precisely, no matter which value we

assign to symvar, f == 0.1 cannot be satisfied. To compose

a type II predicate, we can change the predicate j == 7 to

(1024 + f == 1024)&&(f > 0)&&(j == 7). The new

predicate aims to fool symbolic execution engines that the

constraint (1024+f == 1024)&&(f > 0) cannot be satisfied,

which is true in the domain of real numbers. However, it can be

satisfied in the domain of floating-point numbers. For example,

f = 0.000007 is a solution. In this way, the type II opaque

predicate can be satisfied when j = 7, which preserves the

semantics. If a symbolic execution engine cannot handle such

floating-point numbers, it may falsely regarded f == 0.1 as

a normal predicate, and the type II predicate as an opaque

predicate.

Figure 4(d) demonstrates how to compose opaque predicates

by attacking the challenge of covert propagation. Symbolic

execution requires precise tracking on the propagation of the

symbolic values. However, symbolic values may be propagated

in many ways via I/O (input/output) operations. In this

example, the symbolic value j is propagated via a file on

the disk and then assigned to i. We can compose a type I

opaque constant i! = j, which will always be false. If a

symbolic execution engine cannot track the propagation, it

would treat i as a constant and regard the opaque predicate as

a normal one. To compose a type II opaque predicate, we can

change the predicate j == 7 to i == 7, where i equals to j.

This modification keeps the original semantics of the program.

However, a symbolic executor may consider i as a constant

and reach false conclusions.

Figure 4(e) is another example that introduces a simple

parallel computing problem. Parallel programs are difficult to

handle for symbolic executions because the execution order

is not only determined by the programs, but also by the host

computer. Therefore, we cannot generate a static control-flow

graph for the program, which is a basis for classic symbolic

execution to work. In this example, we create two more threads

that modify the value of a symbolic variable j: one thread

increases in to in + 1, and another decreases in to in − 1.

Due to parallel execution, the two threads compute on the same

value of in simultaneously. The value of i is determined by the

thread that terminates late, which should be the second thread

in our example. Finally, the return value of the ThreadProp

function should equal to j−1. Based on the protected symbolic

variable i, we can compose a type I opaque predicate as

i == j, and a type II opaque predicate as i == 6.

Similar to Algorithm 1, we can extract templates based

on such examples. Note that this work does not intend

to enumerate all such templates to create symbolic opaque

predicates. Rather, we would like to show a general framework
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Algorithm 1: An LLVM template for creating symbolic opaque predicates based on the symbolic memory example in

Figure 4(b).

/* Input an icmp instruction; output 2 opaque

predicates */

input : inst
output: type1Opq,type2Opq
/* Parse the icmp instruction */

Value* left ← inst->getOperand(0) ;
Value* right ← inst->getOperand(1) ;
Value* symVar ;
ConstantInt* ciObj ;
if isa<ConstantInt> (*left) then

ciObj ← left ;
symVar ← right ;

end
else if isa<ConstantInt> (*right) then

symVar ← left ;
ciObj ← right ;

end
if !symVar->getType()->isIntegerTy() then

return;
end
/* Define the size of the two arrays. */

ArrayType* ar1AT ← ArrayType::get(intType, 7) ;
ArrayType* ar2AT ← ArrayType::get(intType, 8) ;
/* Allocate storage for the arrays */

AllocaInst* ar1AI ← new AllocaInst(ar1AT, '''', inst) ;
AllocaInst* ar2AI ← new AllocaInst(ar2AT, '''', inst) ;
/* ... */

/* Here we omit several lines of codes that

initialize the elements of each array. */

/* ... */

/* Create a new variable j that equals to

symV ar, and then load j. */

AllocaInst* jAI ← new AllocaInst(varType, '''', inst) ;
StoreInst* jSI ← new StoreInst(symVar, jAI, inst) ;
LoadInst* jLI ← new LoadInst(jAI, '''', inst) ;

/* Compute j%7. */

BinaryOperator* remBO ← BinaryOperator::Create(SRem, jLI,
cInt7, '''', inst);

/* Get an element from the array ar1AI with an

index remBO; load its value to l1LI. */

std::vector<Value*> l1Vec, l2Vec;
l1Vec.push back(cInt0);
l1Vec.push back(remBO) ;
ArrayRef<Value*> l1AR(l1Vec);
Instruction* l1EPI ← GetElementPtrInst::CreateInBounds(

ar1AI, l1AR,'''', inst);
LoadInst* l1LI ← new LoadInst(l1EPI,'''', false, inst);
/* Get an element from the array ar2AI with an

index l1LI; load its value to iLI. */

l2Vec.push back(cInt0);
l2Vec.push back(l1LI);
ArrayRef<Value*> l2AR(l2Vec);
Instruction* l2EPI ← GetElementPtrInst::CreateInBounds(

ar2AI, l2AR,'''', inst);
LoadInst* iLI ← new LoadInst(l2EPI, '''', false, inst);
/* Compose a type I opaque predicate, i == j.

*/

ICmpInst* type1Opq ← new ICmpInst(inst, ICMP EQ, iLI,
jLI, '''');

/* Compose a type II opaque predicate,

i == j%7 + 1&&inst . */

BinaryOperator* addBO ← BinaryOperator::Create(ADD,
remBO, cInt1,'''', inst);

ICmpInst* leftOpq ← new ICmpInst(inst, ICMP EQ, iLI,
cInt1, '''');

BinaryOperator* andBO ← BinaryOperator::Create(AND,
leftOpq, inst,'''', inst);

ICmpInst* type2Opq ← new ICmpInst(inst, ICMP EQ,
cInt1,andBO,'''');

and demonstrate how it works. This can shed light to more

types of symbolic opaque predicates.

IV. EVALUATION

A. Evaluation Criteria

According to Collberg et al. [22], the evaluation criteria

for assessing software obfuscation quality include potency,

resilience, stealth, and cost. However, not all of the criteria

are applicable to our work. We will evaluate symbolic opaque

predicates with resilience, stealth, and cost.

Resilience evaluates how the obfuscation technique can hold

up against automatic attacks. In this work, we assume the

attackers are symbolic execution-based adversaries, which are

automatic attacks. We should evaluate the security of symbolic

opaque predicates against symbolic execution.

Stealth assesses whether an obfuscation technique is suspi-

cious to human attackers. A stealthy opaque predicate should

not incur abnormal instruction patterns or obvious statistical

difference with normal predicates.

Cost measures the overhead incurred by obfuscation.

Opaque predicates may incur overhead in both program size

and execution time. We should evaluate such overhead when

Fig. 5: Prototype implementation based on Obfuscator-LLVM.

obfuscating real programs with symbolic opaque predicates

and compare the overhead with existing opaque predicates.

We will not evaluate potency because it is not applicable

to opaque predicates. Potency measures how much obscurity

can be added to the program. This is the major objective of

general obfuscation or control-flow obfuscation, rather than

opaque predicates.

B. Prototype Implementation

We have implemented a prototype obfuscation tool based

on Obfuscator-LLVM [2]. Obfuscator-LLVM is an obfuscation
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TABLE I: Evaluation results about the resilience of our

opaque predicates in Figure 4. Notation: ×fn: a type I opaque

predicate causes false negative issues to a symbolic execution

engine; ×fp: a type II opaque predicate causes false positive

issues to a symbolic execution engine;
√

×
: the predicate is

insecure, but we can find corner cases to defeat the symbolic

execution engine.

Templates of
Symbolic Opaque Predicates

Symbolic Execution Tools
BAP Triton Angr

Symbolic Memory
Type I ×fn ×fn ×fn

Type II ×fp ×fp ×fp

Floating-point
Numbers

Type I ×fn ×fn

√
×

Type II ×fp ×fp

√
×

Covet Symbolic
Propagation

Type I ×fn ×fn ×fn

Type II ×fp ×fp ×fp

Parallel Programming
Type I ×fn ×fn ×fn

Type II ×fp ×fp ×fp

tool for C programs based on LLVM compiler [23]. We adopt

LLVM as our compiler basis because it is open-source released

and has achieved wide usage in both research and industrial

fields.

Figure 5 describes the framework of our prototype. The

source code of a program is firstly processed by an LLVM

frontend, which transforms the source code to intermediate

representatives (IR). For C programs, the frontend is Clang.

IR is the core object processed in LLVM. LLVM provides a

basic framework for performing program analysis tasks based

on IR. It allows users to customize their own compilation

passes for specific program analysis tasks, such as optimization

and obfuscation. Obfuscator-LLVM in nature applies several

compilation passes to obfuscate programs in IR level. Finally,

the IR will be compiled to binaries by a corresponding backend

(e.g., for X86 64 system).

Based on the framework of LLVM, we implement the

feature of symbolic opaque predicates as a compiler pass.

The pass can substitute the opaque predicates generated by

Obfuscator-LLVM with resilient ones. We have implemented

all the challenging problems discussed in Section III. Users

can decide which opaque predicates will be employed during

obfuscation.

Our prototype supports two methods to customize new

templates of symbolic opaque predicates. The first one is to

write a native LLVM pass which can insert IR (as shown in

Algorithm 1) during compilation. To this end, users should be

familiar with the IR syntax and LLVM APIs, which impose

a steep learning curve. The second method requires only very

little knowledge about LLVM development. Users can create

new templates in source code level. Then they can compile

the source code to object code and link it with the original

program via static linkage. The second approach is somehow

limited but it can facilitate the development process.

C. Resilience

Our adversary model assumes symbolic execution-based

adversaries. Therefore, we mainly evaluate the resilience of

symbolic opaque predicates with respect to the security against

symbolic execution engines. If a symbolic execution engine

fails in handling the proposed predicates, the corresponding

adversaries should also suffer the same problems.

We choose three prevalent symbolic execution tools for

resilience evaluation, including BAP [8], Triton [9], and

Angr [10]. We consider several criteria when selecting them: 1)

the tool should support binaries; 2) the tool should demonstrate

good capabilities with high community impacts; 3) it should be

free and open-source for public usage. To our best knowledge,

these three tools are the only tools that meet our criteria.

Other prevalent symbolic execution tools either do not support

binaries, such as KLEE [24], or they are close-source, such

as Mayhem [25]. By evaluating against these tools, we aim to

show that the proposed opaque predicates can achieve good

resilience to symbolic execution in practice.

Table I summarizes our evaluation results. The results are

mainly based on the correctness of the generated constraint

models. If a symbolic execution tool falsely models the

constraint for a type I opaque predicate or reports a solution,

we label the result as ×fn; if it falsely models the constraint

for a type II opaque predicate, or reports no solution, we label

the result as ×fp. The results show that all the tools suffer

problems when handling our symbolic opaque predicates,

except that Angr is capable of handling the floating-point

example. We further analyze the details of each experimental

result as follows.

First, we discuss the issues of symbolic execution tools

when handling the predicates based on symbolic memory.

For each tool, we demonstrate the issue of the tool with

a figure. Figure 6(a) reports the issue of BAP. BAP only

taints the first array value retrieving operation (line 18), and

omits the second one (line 21). When modeling the constraint

for the cmp instruction in line 24, the value of EAX is

falsely retrieved from line 18, rather than line 21 or 23. As

a result, BAP cannot model the constraint correctly. Triton

also fails in tainting the array operation. As a result shown

in Figure 6(b), Triton detects several branching points, but

only one contains a constraint model. Finally, a test case 3
is reported a solution to trigger Bogus(), which is a false

positive case. Moreover, Triton does not generate constraint

models to reach the branch with Foo(), so it also suffers false

negative issues. To run Angr, we have customized a python

script which searches solutions that can trigger the addresses

of Foo() and Bogus(). Our script is shown in Figure 6(c).

We observe that the result of Angr depends on how we declare

the size of the symbolic variable. If we declare the size as one

byte, Angr can find a correct solution for reaching Foo().

However, if we declare the size as two bytes or four bytes,

Angr finds two paths to Foo(), but it finds no solution.

Moreover, it falsely reports a solution to reach Bogus(). We

have further verified that if we change the 1-digit predicate

(i.e., j == 7) to a 2-digit predicate (e.g., j == 10), Angr

would suffer problems for all such size declarations. Therefore,

the opaque predicate based on symbolic memory should be

secure against Angr.
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(a) BAP fails in tainting the second array retrieving operation in
line 21. The tainted instructions are in dark black, and untainted
instructions are in light black. The symbolic value j is initialized
as 1.

(b) Triton also fails in tainting the second array operation. As a result, two branching
points are detected, but no constraint models can be generated. The symbolic value
j is initialized as 1.

(c) Angr script for symbolic execution. (d) Result of Angr script.

Fig. 6: Failure report of symbolic execution tools in handling our opaque predicate example in Figure 4(b).

The floating-point example in Figure 4(c) has shown

good resistance against BAP and Triton. The tools both

report several unsupported floating-point instructions, includ-

ing divsd, unpcklpd, cvtpd2ps, movss, etc. Consequently,

they generate incorrect constraint models. Angr has achieved

better performance, and it can handle our example correctly.

However, we are still able to find other floating-point problems

that Angr cannot handle. For example, if a constraint model

requires a solution with decimal digits (e.g., the solution is

“0.000001”), Angr would report incorrect results. We have

inquired the issue with one author from the Angr team. Their

reply confirmed our result that Angr has good support with

floating-point numbers, but not perfect. Therefore, Angr is not

overwhelming for predicates with floating-point numbers. We

may find better floating-point problems to compose symbolic

opaque predicates in the future.

All the three tools fail in handling the covert propagation

example in Figure 4(d). Our experimental results show that

they haven’t traced the instructions related to i. For example,

we cannot find the comparison operation (i == 7) from the

tainted instructions. This implies i is regarded as a constant.

In this way, the condition (i == 7) may be falsely regarded as

an opaque constant, while the second condition (i! = j) will

be falsely regarded as a normal predicate that can be satisfied.

Using the same script in Figure 6(c), Angr falsely reports a

solution for the type I opaque predicate and falsely reports no

solutions for the type II opaque predicate.

The symbolic execution engines also fail in handling the

parallel programming example in Figure 4(e). Angr reports

an error “unable to concretize address for loading with the

provided strategies”. As a result, it falsely generates an

incorrect result (i.e., 0) for the type I opaque predicate, and

it starves the computing resources when handling the type II

opaque predicate and exits abnormally. BAP and Triton do

not support parallel computing and they directly ignore all the

instructions related to thread scheduling. Because for concolic

execution, the instructions related to thread management are

generally not tainted.
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(a) Obfuscator-LLVM. (b) Floating-point
numbers.

(c) Parallel
programming.

Fig. 7: The assembly codes of symbolic opaque predicates.

P (

Parallel Programming  

Fig. 8: A comparison of symbolic opaque predicates with

ordinary predicates. The curve is the distance distribution of

ordinary predicates and the histogram is the raw data.

Note that our evaluation results are from the view of

symbolic execution engines rather than specific symbolic

execution-based attackers. This is because all such attackers

or specific detection rules would be effective only if the un-

derlying symbolic execution engine performs correctly [5]. In

this regard, our evaluation results remain valid for evaluating

symbolic execution-based attackers.

D. Stealth

Currently, there is no standard evaluation method for stealth.

Existing methods (e.g., [26]) generally measure the statistical

difference of instructions between obfuscated programs and or-

dinary programs. The less difference an obfuscation approach

incurs, the stealthier it is.

To apply the idea on evaluating symbolic opaque predicates,

we should measure the difference between a symbolic opaque

predicate and ordinary predicates. In general, the difference

depends on which challenging problem that a predicate

employs. Different problems will generate different codes and

corresponding assembly instructions. Figure 7 demonstrates

the assembly codes of several opaque predicates. Figure 7(a)

is the default opaque predicate generated by Obfuscator-

LLVM, which is mainly composed of arithmetic operations.

Figure 7(b) is the symbolic opaque predicate with floating-

point numbers, which is mainly composed of floating-point

operations. The two figures demonstrate obvious difference;

however, all such instructions are widely used in ordinary

programs.

TABLE II: Categorization of Instructions.

Category Instructions

Arithmetic Instructions imul, inc, sub, add, idiv, divsd, sbb

Logical Instructions and, sar, xor, test, shr, shl, or, xorps

Instructions for Data
Transfer

movaps, movsd, movabs, movzx,
mov, movss, movsx, movsxd, stosd

Instructions Converting
Data Dimension

cvtss2sd, cvtsi2sd, cvtsd2ss, cqo, cdq

Pointer Instructions lea

Comparison Instructions cmp, ucomisd

Jump Instructions
jle, jne, jge, jae, jl, je,jg, jp, ja, jbe,

jno, jmp

Stack-related Instructions pop, push, call, ret

Instructions Creating
Boolean Variable

setge, setne, setg, seta, setb, setl, sete

Other Instructions nop

In our experiment, we use a similarity-based approach to

measure the difference between symbolic opaque predicates

and ordinary predicates. To this end, we randomly select 100

ordinary predicates from the unobfuscated binaries. For each

predicate, we arbitrarily select the 10 instructions before its

conditional jump because such instructions would serve as

essential information for reverse analysis. Then we categorize

such instructions into several types with a categorization

approach employed for malware detection [27]. Table II lists

the categories and corresponding instructions in each category.

Considering the space where each dimension is an instruction

category, a predicate can be represented as a vector in that

space. Then we can compute the center of the 100 ordinary

opaque predicates, and compute the euclidean distance from

each predicate to the center. Figure 8 shows the distribution

of such distances. In our experiment, the average distance is

2.6, and the max distance is 5.4. For comparison, we also

compute the distances from our symbolic opaque predicates

to the center, which are between 3.2, 4.1, 4.5, and 5.1.

The distances are smaller than the max distance of ordinary

predicate. Moreover, they are slightly better than the distance

of the default opaque predicate employed in Obfuscator-

LLVM, which is 5.2.

The opaque predicates based on parallel programming

has the best performance in stealth. The main reason is

that we have employed a call-based approach to implement

the predicate. As shown in Figure 4(e), we implement the

symbolic analysis problem in another function and only

employ the return value in the main routine. In its binary code

shown in Figure 7(c), only a call instruction is artificially

added before the unconditional jump, and the rest instructions

are mostly from the original program. By simply reading the

instructions nearby a conditional jump, it would be difficult to

discover the tricks of symbolic opaque predicates.

E. Cost

To evaluate the cost of symbolic opaque predicates, we

obfuscate several general programs (e.g., Linux commands

such as cat, ls, date) and several encryption programs

(e.g., MD5 and AES). We choose encryption programs because
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(a) Size overhead when obfuscating Linux command cat. (b) Execution overhead when obfuscating Linux command cat.

(c) Size overhead when obfuscating Linux command date. (d) Execution overhead when obfuscating Linux command date.

(e) Size overhead when obfuscating Linux command ls. (f) Execution overhead when obfuscating Linux command ls.

(g) Size overhead when obfuscating AES. (h) Execution overhead when obfuscating AES.

(i) Size overhead when obfuscating MD5. (j) Execution overhead when obfuscating MD5.

Fig. 9: Cost of symbolic opaque predicates.
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they generally have higher security requirements, and therefore

obfuscation is more needed. When obfuscating the programs,

we employ 80% obfuscation rate (i.e., a configuration of

LLVM-Obfuscator) as the baseline. Then for each program,

we replace a certain number (1, 5, 10, and no limit) of opaque

predicates from the obfuscated software with the symbolic

opaque predicates. We watch the performance variations with

different numbers of symbolic opaque predicates.

Figure 9 shows our evaluation results. We measure the

performance of obfuscation with both program size and

execution time. From the result, we observe that the size

overhead is not a big issue. The symbolic opaque pred-

icates based on symbolic memory and floating-point both

incur similar size overhead in comparison with the default

opaque predicate employed by Obfuscator-LLVM. The covert

propagation sample involves more instructions and therefore

incurs more overhead. However, such cost can be mitigated by

employing a call-based implementation. For example, although

the parallel program sample also involves many instructions,

the resulting obfuscated program is even smaller than the

program obfuscated by the original Obfuscator-LLVM.

Some symbolic opaque predicates are also very efficient in

execution time, such as those based on symbolic memory and

floating-point numbers. Their costs are similar to the default

opaque predicates employed in Obfuscator-LLVM. However,

some symbolic opaque predicates incur much cost during

execution. As shown in e.g., Figure 9(h) and Figure 9(j),

the execution overhead may be thousands of times when

employing covert propagation and parallel programming to

obfuscate encryption programs. Such predicates involve heavy

operations (e.g., file read/write, thread creation/execution) and

incur nontrivial execution cost. The overhead seems acceptable

for general Linux programs, but it can be amplified for

encryption programs because the symbolic opaque predicates

are nested in loops in such programs.

In a word, the cost of symbolic opaque predicates depends

on the employed challenging problems and their implemen-

tation mechanisms. Some symbolic opaque predicates can

be very promising with trivial costs. But we should be

careful when employing other opaque predicates with heavy

cost, especially when using them with loops. In practice, we

may prioritize the cost of symbolic opaque predicates and

preemptively employ more efficient ones. Note that there is

still a large room to improve the usability issue, which is

beyond the scope of this work.

V. RELATED WORK

In this section, we first survey the recent achievement of

software deobfuscation with symbolic execution techniques,

which illustrates the importance of our research problem; then

we elaborate the novelty of our research by comparing our

work with existing opaque predicates which might also be

resilient to symbolic execution.

A. Symbolic Execution for Deobfuscation

Recently, the development of symbolic execution techniques

has bred several important attempts to deobfuscation(e.g., [5,

6, 28, 29]). Ming et al. [5] proposed LOOP, which is a

logic-oriented tool for opaque predicate detection. LOOP is

made up of a symbolic execution engine and a rule-based

predicate analyzer. The rule can detect three types of opaque

predicates, including invariant opaque predicates, contextual

opaque predicates, and dynamic opaque predicates. Another

work [29] from the same group employs symbolic execution

techniques to detect malware camouflage from obfuscated

binaries. Yadegari et al. [28] proposed a generic framework

to deobfuscate binaries based on symbolic execution. Their

framework collects traces generated by a symbolic execution

engine and then employs the traces to simplify the obfuscated

control-flow graph. Their work is based on an enhanced

symbolic execution engine (i.e., ConcoLynx [6]). However,

the tool is not available for public evaluation.

Besides, there are several other investigations that attack

obfuscated software with symbolic execution techniques, such

as [30]–[32]. Because the underlying techniques are similar,

we do not discuss each of them in detail.

B. Comparison with Existing Opaque Predicates

Before this work, Wang et al. [3] have conducted another

investigation that has a similar purpose with us. They

propose to compose resilient opaque predicates by attacking

the weakness of symbolic execution in handling loops.

Specifically, they create opaque predicates with unsolved

conjectures, which is a form of looped codes. A common

characteristic of such unsolved conjectures is that they would

eventually exit the loops with some convergence properties.

For example, the Collatz conjecture takes an input x ∈ N+,

and iteratively calculates x = x/2 if x is even, otherwise

calculates x = 3x + 1. No matter what value x has bee

initialized with, the loop always terminates with x equals

to 1. Besides, there are other predicates that maybe secure

against symbolic execution, such as the opaque predicate with

one-way function [33], and the predicate involving dynamic

updated objects [22]. Note that all such opaque predicates

are secure because they attack some weakness of symbolic

execution. Such approaches also comply with our framework,

and we may extend our template repository with them.

In a word, our work is different from previous work

in that our framework is more general. We emphasize the

importance of employing symbolic variables rather than

leveraging specific tricks. In other words, we highlight the

common properties for an opaque predicate to be secure

against symbolic execution.

VI. CONCLUSION

To conclude, this work studies the security issue of

opaque predicates with respect to symbolic execution-based

attacks. We have proposed a novel idea of symbolic opaque

predicates and demonstrated a general framework to compose

such predicates. A novel characteristic of symbolic opaque
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predicates is the bi-opaque property, which can incur either

false negative or false positive issues to symbolic execution-

based attackers. To demonstrate the usability of our approach,

we have implemented a prototype obfuscation tool based

on Obfuscator-LLVM and conducted real-world experiments.

We have evaluated the resilience, stealth, and cost of some

symbolic opaque predicates. Evaluation results show that

symbolic opaque predicates exhibit good resistance against

prevalent symbolic execution engines. Some opaque predicate

examples are also stealthy and efficient. Therefore, symbolic

opaque predicates should serves as a promising idea for

practical obfuscation tools to improve their resistance against

symbolic execution-based attacks.

ACKNOWLEDGMENTS

This work was substantially supported by the the Na-

tional Basic Research Program of China (973 Project No.

2014CB347701), National Natural Science Foundation of

China (Project Nos. 61672164 and 61332010), the Research

Grants Council of the Hong Kong Special Administrative

Region, China (No. CUHK 14234416 of the General Research

Fund), and Microsoft Research Asia via 2018 MSRA Collab-

orative Research Award. Yu Kang is the corresponding author.

REFERENCES

[1] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[2] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm:
Software protection for the masses,” 2015.

[3] Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to combat
symbolic execution,” in ESORICS. Springer, 2011.

[4] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Computing Surveys (CSUR),
2016.

[5] J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proc. of the 22nd

ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015.

[6] B. Yadegari and S. Debray, “Symbolic execution of obfuscated code,”
in Proc. of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015.

[7] X. Hui, Z. Yangfan, K. Yu, and R. L. Michael, “Concolic execution
on small-size binaries: Challenges and empirical study,” in Proc. of the

47th IEEE/IFIP International Conference on Dependable Systems &
Networks (DSN), 2017.

[8] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in Proc. of the International Conference on Computer
Aided Verification. Springer, 2011.

[9] F. Saudel and J. Salwan, “Triton: a dynamic symbolic execution
framework,” in SSTIC, 2015.

[10] Y. Shoshitaishvili and et al., “Sok: (state of) the art of war: Offensive
techniques in binary analysis,” in Proc. of the IEEE Symposium on

Security and Privacy (S&P), 2016.
[11] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, “Software obfuscation

on a theoretical basis and its implementation,” IEICE Trans. on
Fundamentals of Electronics, Communications and Computer Sciences,
2003.

[12] G. Myles and C. Collberg, “Software watermarking via opaque
predicates: Implementation, analysis, and attacks,” Electronic Commerce
Research, vol. 6, no. 2, pp. 155–171, 2006.
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