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Abstract—Probabilistic Temporal Tensor Factorization (PTTF)
is an effective algorithm to model the temporal tensor data. It
leverages a time constraint to capture the evolving properties
of tensor data. Nowadays the exploding dataset demands a
large scale PTTF analysis, and a parallel solution is critical to
accommodate the trend. Whereas, the parallelization of PTTF
still remains unexplored. In this paper, we propose a simple
yet efficient Parallel Probabilistic Temporal Tensor Factorization,
referred to as P2T2F, to provide a scalable PTTF solution.
P2T2F is fundamentally disparate from existing parallel tensor
factorizations by considering the probabilistic decomposition and
the temporal effects of tensor data. It adopts a new tensor data
split strategy to subdivide a large tensor into independent sub-
tensors, the computation of which is inherently parallel. We
train P2T2F with an efficient algorithm of stochastic Alternating
Direction Method of Multipliers, and show that the convergence
is guaranteed. Experiments on several real-word tensor datasets
demonstrate that P2T2F is a highly effective and efficiently scal-
able algorithm dedicated for large scale probabilistic temporal
tensor analysis.

I. INTRODUCTION

Recent developments of tensor decomposition have great

impacts on signal processing [1], computer vision [2], nu-

merical analysis [3], [4], social network analysis [5], [6],

recommendation systems [7], [8] and etc. A comprehensive

overview can be found from the survey paper by [9]. In

particular, automatic recommendation systems significantly

benefit from tensor decomposition as it effectively extracts

hidden patterns from the multi-way data.

Various tensor decomposition methods have been proposed.

The CANDECOMP/PARAFAC decomposition, shorted as CP

decomposition, is a direct extension of low-rank matrix de-

composition to tensors; and it can be regarded as a special

case of Tucker Decomposition by adding a super-diagonal

constraint on the core tensor [10]. This method, however, fails

to consider the fact that the real relational data is evolving

over time and exhibits strong temporal patterns, especially in

recommendation systems. To resolve this issue, Probabilistic
Temporal Tensor Factorization (PTTF) [11], inspired by prob-

abilistic latent factor models [12], [13], has been proposed by

incorporating a time constraint. In contrast with Multi-HDP

[14], Probabilistic Non-negative Tensor Factorization [15] and

Probabilistic Polyadic Factorization [16], PTTF is the only one

capturing the temporal effects of tensor data.
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Fig. 1. The RMSE curve for PTTF on MovieLens. The prediction error
reduces as the number of ratings grows.

The era of big data has also witnessed the explosion of ten-

sor datasets, while the large scale PTTF analysis is important

to accommodate the increasing datasets. Figure 1 demonstrates

PTTF achieves better performance as the tensor size increases

on the MovieLens data (Table I). The result directly sheds light

on the necessity of a parallel PTTF solution. Nevertheless,

there is a huge gap to be filled.

In this paper, we present Parallel Probabilistic Temporal
Tensor Factorization (P2T2F) dedicated for large-scale tempo-

ral tensor factorization problems. The core concept of P2T2F is

to reduce each sequential operation on a large tensor into a set

of independent operations on smaller sub-tensors for parallel

executions, while still retains the ability to model temporal

effects of PTTF. In general, the main contributions of P2T2F

are as follows:

• P2T2F allows parallel solutions to probabilistic tensor de-

composition with temporal effects and thus makes PTTF

model scalable. We demonstrate a new parallelization

scheme in P2T2F to divide the large-scale problem into

several sub-problems for concurrent executions.

• In P2T2F, we also design a novel stochastic learning

algorithm for parallel ADMM framework to improve

the PTTF model. Specifically, this algorithm calculates

the latent feature factors using a substitutive objective

function that is convex and can be viewed as an upper

bound of the original problem.

• The convergence of P2T2F is theoretically guaranteed.
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II. RELATED WORK

Matrix or tensor factorization methods are useful tools

in recommendation systems. One prominent representative

factor-based method for recommendation systems is Proba-
bilistic Matrix Factorization (PMF) [12], the latent factors

of which can be learned by maximum likelihood estimation.

Temporal modeling has been greatly ignored in the community

of collaborative filtering until the timeSVD++ algorithm is

proposed in [17]. This method demonstrates that the latent

features consist of components evolving over time; and such

features effectively capture local changes of user preferences.

To extend the method to tensors, [11] proposes the PTTF

model to capture the global effect of time shared among users

and items.
The increasing demand of modeling data scalability incu-

bates several parallel models for PMF problems, such as PPMF

[18], Hogwild [19] and DSGD [20]. However, compared to

large-scale matrix factorization [21], [22], there are fewer

works devoted to large-scale tensors. In general, the existing

large-scale tensor methods can be categorized into two classes.

The first one consists in exploiting sparseness of tensors.

For example, the GigaTensor algorithm in [23] and DFacTo

method in [24] intend to minimize the number of floating point

operations and to handle the size of intermediate data to avoid

the intermediate data explosion problem, respectively. The

other class of methods consists in distributing the computation

load to a number of workers [25], [26], [27], [28]. Unfortu-

nately, these algorithms do not concentrate on modeling the

temporal effects of tensor data.
ADMM is an effective framework for accelerating the opti-

mization of tensor factorization [29], [27]. However, they do

not target for improving the scalability of tensor factorization

algorithms; it also neglects to model the temporal effects in

dynamic systems. For example, the parallel ADMM algorithm

proposed in [27] computes tensor decomposition mode by

mode; and it is hard to be deployed in online training or

distributed training. As a response, we propose P2T2F that

adapts for the online training or the distributed training. It also

works in various computing environments, such as multi-core

computers or clusters.

III. PRELIMINARIES

A. Notations
A tensor is a multi-dimensional array that generalizes a

vectors (1-dimensional tensor) and a matrix (2-dimensional

tensor) to higher order. Like rows and columns in a matrix,

an N-dimensional tensor has N modes whose lengths are I1
through IN , respectively. By convention, vectors and matrices

are denoted by boldface lowercase letters or uppercase letters

with a subscript, e.g., a or Ai, and boldface capital letters,

e.g., A, respectively. We denote higher-order tensors (order

three or higher) by boldface Euler script letters, e.g., X. We

also denote the entry of a tensor by the symbolic name of

tensor with its indices in subscript. For example, the (i1,i2)th

entry of A is denoted by ai1i2 , and the (i1, . . . , iN )th entry of

X is denoted by xi1,...,iN .

B. Tensor Decomposition

There are several ways to define tensor decomposition

[9], [30], [31]. Our definition is based on CP (CANDE-

COMP/PARAFAC) decomposition, which is one of the most

popular decomposition methods. Details about CP decompo-

sition can be found in [9]. For ease of presentation, we only

derive our model in the third-order case, but it can be easily

generalized to N-way tensor.

Let X ∈ R
I×J×K be a third order tensor with observable

entries {xijk|(i, j, k) ∈ Ω}, we hope to find the factor matrices

{A ∈ R
I×R,B ∈ R

J×R,C ∈ R
K×R} by minimizing the

following loss function:

min
A,B,C

1

2

∑
(i,j,k)∈Ω

(xijk− < Ai, Bj , Ck >)
2

+
λ

2

(‖A‖2F + ‖B‖2F + ‖C‖2F
)
, (1)

where < Ai, Bj , Ck >≡ ∑R
r=1 airbjrckr denotes the inner

product of three R-dimensional vectors, Ai denotes the ith row

of A, so does Bj and Ck. If we solve this model with Stochas-
tic Gradient Descent (SGD), a drastic simplification[32], we

can get a SGD-based CP decomposition model. The stochastic

process depends on the examples randomly drawn at each

iteration.

C. Probabilistic Temporal Tensor Factorization

Probabilistic Temporal Tensor Factorization (PTTF) model

can be considered as the extension of PMF model [12] by

adding a specially-constrained time dimension. For the third

order tensor X in (1), if the third dimension denotes the time

corresponding to the factor matrix C, we assume the following

conditional prior for C [11]:

Ck ∼ N(Ck−1, σ
2
CIR), k = 1, . . . ,K.

For the initial time feature vector C0, we assume

C0 ∼ N(μC , σ
2
0IR),

where μC denotes a 1-by-R row vector and IR denotes a R-

by-R identity matrix. The PTTF model can be expressed to

minimizing the following regularized sum of squared errors

(the proof can be seen in [11]):

1

2

∑
(i,j,k)∈Ω

(xijk− < Ai, Bj , Ck >)
2
+

λ0

2
‖C0 − μC‖22

+
λA

2
‖A‖2F +

λB

2
‖B‖2F +

λC

2

K∑
k=1

‖Ck − Ck−1‖22, (2)

where λA, λB , λC , λ0 denote regularization parameters.

Obviously, we can also get a SGD-based PTTF model

using SGD method, but it can not be easily parallelized

because of the special constraint on the time dimension. In

contrast, ADMM framework has the properties of flexibility

and tractability and, the most important, can be naturally used

to design parallel or distributed learning algorithms for large-

scale problems. So, in the next section, we will address the

2
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Algorithm 1 Tensor Data Split

Input: Tensor X ∈ R
I×J×K ,P .

Output: Xp ∈ R
I
P ×J×K .

1) initialize Ifirst = 0;

2) for p = 1, . . . , P do
3) Ilast = �pI

P �;

4) Xp ← X(Ifirst+1:Ilast),:,:;

5) Ifirst = Ilast;
6) return Xp.

minimization problem in (2) in the framework of ADMM. In

recent years, ADMM has occupied more and more attention

and wide range of applications such as matrix completion [18],

[33] and compressive sensing [34], but as far as we know,

no works have yet been proposed to use parallel ADMM

framework for probabilistic temporal tensor decomposition

problems.

IV. PARALLEL PROBABILISTIC TEMPORAL TENSOR

FACTORIZATION

In this section, we elaborate Parallel Probabilistic Temporal
Tensor Factorization (P2T2F). First, we introduce a new data

split strategy to divide the whole tensor data into several sub-

tensors, and we meticulously reduce a large tensor operation

to a set of independent operations toward sub-tensors allowing

for concurrent executions. We also extend ADMM to handle

these sub-tensors in the training.

A. Data Split Strategy

The costs of tensor decomposition are closely contingent

upon tensor sizes, it is natural for us to split a large tensor data

into several independent sub-tensors. In general, we divide the

tensor X into P sub-blocks (or sub-tensors) along the mode

with the most dimensions (assuming the first mode without

loss of the generality). In this case, each sub-block contains
I
P horizontal slices (e.g., Xp ∈ R

I
P ×J×K , p = 1, 2, . . . , P ).

Assuming there are P corresponding local factor matrices

for each mode denoted as Ap, Bp and Cp, respectively. Please

note that Bp and Cp share the same size with B and C.

To better utilize the global variable consensus optimization

method, we have a global item latent matrix denoted as B
and a global time latent matrix denoted as C. Since the local

matrices Bp and Cp are only coupled with Ap, it is feasible

to independently update Ap, Bp and Cp for each process.

This split strategy enables the CP decomposition problem to

fit in the parallel ADMM framework.

Algorithm 1 demonstrates the details of proposed tensor

data split strategy. Please note that it is also possible to divide

a 3-order tensor into P sub-blocks simultaneously along two

modes, yet the approach is subject to significant complex loss

functions and constraints.

B. Parallel Probabilistic Temporal Tensor Factorization
Model

In this split setting, the minimization problem (e.g., PTTF

model) in (2) can be reformulated as the following constrained

optimization problem:

min
Ap,Bp,Cp,

Cp
0 ,B,C

P∑
p=1

[
f (Ap,Bp,Cp) + g (Ap,Bp,Cp, Cp

0 )
]

s.t. Bp −B = 0,

Cp −C = 0; ∀p ∈ {1, 2, . . . , P}. (3)

where

f (Ap,Bp,Cp) =
1

2

∑
(i,j,k)∈Ωp

(xp
ijk− < Ap

i , B
p
j , C

p
k >)2,

g(Ap,Bp,Cp, Cp
0 ) =

λA

2
‖Ap‖2F +

λB

2
‖Bp‖2F

+
λC

2

K∑
k=1

‖Cp
k − Cp

k−1‖22 +
λ0

2
‖Cp

0 − μC‖22.

Here, Ωp denotes the (i, j, k) indices of the values located in

process p. B and C denote the global factor matrices. If we

want to generalize it to a N -way tensor (N > 3), we add

additional constraints.
We transform the constrained optimization problem in (3)

to an unconstrained problem with Augmented Lagrangian

Method, and yield the following local objective function:

Lp(Ap,Bp,Cp, Cp
0 ,Θ

p
B ,Θ

p
C ,B,C) = f (Ap,Bp,Cp)

+ g (Ap,Bp,Cp, Cp
0 ) + l(Bp,Cp,Θp

B ,Θ
p
C ,B,C), (4)

where

l(Bp,Cp,Θp
B ,Θ

p
C ,B,C)

= tr
(
[Θp

B ]
�(Bp −B)

)
+ (ρB/2)‖Bp −B‖2F

+ tr
(
[Θp

C ]
�(Cp −C)

)
+ (ρC/2)‖Cp −C‖2F .

Here, Θp
B and Θp

C denote the Lagrangian multipliers, ρB and

ρC are the penalty parameters.
The global objective function is then as follows:

L(A,B,C,C0,ΘB ,ΘC ,B,C)

=
P∑

p=1

Lp(Ap,Bp,Cp, Cp
0 ,Θ

p
B ,Θ

p
C ,B,C), (5)

where, A = {Ap}Pp=1, B,C,C0,ΘB and ΘC are similarly

defined. The ADMM method will solve this problem by

repeating the following steps:

Ap
t+1,B

p
t+1,C

p
t+1, (C

p
0 )t+1 ← argmin

Ap,Bp,Cp,Cp
0

Flocal, (6)

Bt+1,Ct+1 ← argmin
B,C

Fglobal, (7)

(Θp
B)t+1 ← (Θp

B)t + ρB(B
p
t+1 −Bt+1), (8)

(Θp
C)t+1 ← (Θp

C)t + ρC(C
p
t+1 −Ct+1), (9)

∀p ∈ {1, 2, . . . , P},

3
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where

Flocal =Lp(Ap,Bp,Cp, Cp
0 , (Θ

p
B)t, (Θ

p
C)t,Bt,Ct),

Fglobal =
P∑

p=1

l(Bp
t+1,C

p
t+1, (Θ

p
B)t, (Θ

p
C)t,B,C).

These update rules suggest that Ap, Bp, Cp, Cp
0 , Θp

B and

Θp
C can be locally updated in an independent process. In this

case, we dissect the whole tensor factorization problem into P
independent sub-problems allowing for concurrent executions.

Since we solve the problem under the ADMM framework,

P2T2F can be viewed as a parallel extension of ADMM

applied in PTTF problem.

C. Stochastic Learning Algorithm for P2T2F

To learn the parameters in (3), we need to solve the above

several steps from (6) to (9). If the optimal Ap, Bp and Cp

have been obtained, it is easy to calculate Cp
0 , B and C. By

setting the partial derivative of Lp w.r.t Cp
0 to zero, we acquire

the update rule of Cp
0 :

Cp
0 ← 1

λ0 + λC
(λCC

p
1 + λ0μC) . (10)

Since B is a global variable, we need to take the partial

derivative of L in (5) w.r.t B, and set the derivative to zero,

then we can get B. If we set (Θp
B)0 = 0, p = 1, . . . , P ,

we can prove that
∑P

p=1 (Θ
p
B)t = 0, t = 1, 2, . . .. Then, the

update rules for B and C (C is similar to B) can be concisely

written as:

B ← 1

P

P∑
p=1

Bp, C ← 1

P

P∑
p=1

Cp. (11)

Θp
B and Θp

C can be directly updated by formulae (8) and

(9). Therefore, how to efficiently compute the factor matrices

becomes the key learning part. In the following content of this

subsection, we will design a stochastic learning algorithm to

solve it.

1) Batch Learning: The update step in (6) is actually a

PTTF problem with Θp
B , Θp

C , B and C fixed. Since Ap,

Bp and Cp are coupled together and the objective function

of the PTTF problem is non-convex, it is not easy to get

a satisfied solution. We employ a technique similar to that

in [35] to resolve this issue by constructing a substitutive

objective function, where the factor matrices Ap, Bp and

Cp are decoupled and can be simultaneously calculated. The

convexity of the constructed function, in each iteration, enables

us to get the analytical solution of Ap, Bp and Cp by setting

their gradients to zero.

The substitutive objective function is defined as follows:

Hp(Mp, (Cp
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct, τt|Mp

t )

=h (Ap,Bp,Cp, τt|Ap
t ,B

p
t ,C

p
t ) + g (Mp, (Cp

0 )t)

+l(Bp,Cp, (Θp
B)t, (Θ

p
C)t,Bt,Ct), (12)

where

h(Mp, τt|Mp
t ) = f(Mp

t ) + tr[∇�
Apf(M

p
t )(A

p −Ap
t )]

+tr[∇�
Bpf(M

p
t )(B

p −Bp
t )] + tr[∇�

Cpf(M
p
t )(C

p −Cp
t )]

+
1

2τt
(‖Ap −Ap

t ‖2F + ‖Bp −Bp
t ‖2F + ‖Cp −Cp

t ‖2F ).
(13)

Here, Mp = {Ap,Bp,Cp}, M
p
t = {Ap

t ,B
p
t ,C

p
t } are used

for simple writing, τt is a value that will be related to the

learning rate and f(Mp
t ) is already defined in (3).

Theorem 1. Let D = {Ap,Bp,Cp|‖Ap
i − (Ap

i )t‖22 ≤
δ2, ‖Bp

j − (Bp
j )t‖22 ≤ δ2, ‖Cp

k − (Cp
k)t‖22 ≤ δ2}, δ2 > 0.

Then, ∀Mp ∈ D, a suitable τt can always be found to make
Hp(·) satisfy the following two properties:

Hp(Mp, (Cp
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct, τt|Mp

t )

≥Lp(Ap,Bp,Cp, (Cp
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct),

Hp(Mp
t , (C

p
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct, τt|Mp

t )

=Lp(Ap
t ,B

p
t ,C

p
t , (C

p
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct).

The proof of Theorem 1 can be found in the supplemental

material. From Theorem 1, we can find that Hp(·) is an

upper bound of Lp(·), and Hp(·) = Lp(·) at the point

(Ap
t ,B

p
t ,C

p
t ). Fortunately, Hp(·) is convex in (Ap,Bp,Cp),

and Ap,Bp,Cp are decoupled in Hp(·). Hence, we can

optimize the easily-solved constructed function Hp(·) instead

of Lp(·) in (6) by setting the gradients to zero, the optimal

results are computed as follows:

Ap ← 1

1 + λAτt
[Ap

t − τt ∗ ∇Apf(Mp
t )], (14)

Bp ← 1

1/τt + λB + ρB

[
Bp

t /τt + ρBBt

− (Θp
B)t −∇Bpf(Ap

t ,B
p
t ,C

p
t )

]
, (15)

Cp ←Q−1
[
Cp

t /τt + ρCCt + λCSC

− (Θp
C)t −∇Cpf(Ap

t ,B
p
t ,C

p
t )

]
, (16)

where SC =

[
(Cp

0 )t
0

]
is a K-by-R matrix and Q =

(1/τt + ρC)IK + λCS is a K-by-K matrix. Here, S denotes

a coefficient matrix which shows relationships on the time

dimension. Actually, S is a tridiagonal matrix and can be

described as follows:

S =

[
2IK−1 0

0 1

]
+

[
0 −IK−1

0 0

]
+

[
0 0

−IK−1 0

]
.

A batch learning algorithm for the problem in (3) can be

got by combining (8)-(11) and (14)-(16).

Theorem 2. The batch learning algorithm enables P2T2F to
converge.

Proof. From Theorem 1, we can get

4
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Lp(Mp
t+1, (C

p
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct)

≤Hp(Mp
t+1, (C

p
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct, τt|Mp

t )

≤Hp(Mp
t , (C

p
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct, τt|Mp

t )

=Lp(Ap
t ,B

p
t ,C

p
t , (C

p
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct).

That is to say, the global objective function L(·) in (5) will

not increase in each iteration. Furthermore, L(·) is non-convex

and has the lower bound −
∑P

p=1 ‖Θp
B‖2

F

2ρB
−

∑P
p=1 ‖Θp

C‖2
F

2ρC
. Hence,

our batch learning algorithm will converge.

2) Stochastic Learning: From the batch learning algorithm,

we can find that the update rules for Mp will need all ratings

related to Mp. If the number of ratings become very large, the

batch learning algorithm will not be efficient. So, we propose a

stochastic learning algorithm to further improve the efficiency,

and the update rules for Mp are as follows:

Ap
i ← (Ap

i )t + τtεijk((B
p
j )t ∗ (Cp

k)t)

1 + λAτt
,

Bp
j ← 1

1/τt + λB + ρB

[
(Bp

j )t/τt + ρB(Bj)t

− ((Θp
B)j)t + εijk((A

p
i )t ∗ (Cp

k)t)
]
,

Cp
k ← 1

1/τt + 2λC + ρC

[
(Cp

k)t/τt + ρC(Ck)t

+ λC((C
p
k−1)t + (Cp

k+1)t)

− ((Θp
C)k)t + εijk((A

p
i )t ∗ (Bp

j )t)
]
, (17)

where εijk = xp
ijk− < (Ap

i )t, (B
p
j )t, (C

p
k)t >. Hence, the

stochastic learning algorithm is a variant of the batch learning

algorithm.

By combining the tensor data split strategy and the stochas-

tic update rules stated above, we get a stochastic learn-

ing algorithm for our P2T2F model. The whole procedure

of P2T2F is briefly listed in Algorithm 2, where A =
[(A1)� (A2)� · · · (AP )�]�. Note that the convergence cri-

terion is met when the difference between the train RMSEs of

two successive iterations less than some threshold, e.g., 10−4.

D. Complexity Analysis

P2T2F mainly needs two steps to update all variables once.

The first step updates Ap,Bp and Cp. For each value xijk, the

time complexity of update Ap
i , Bp

j and Cp
k is O(R). Because

the total number of observed entries in each process is about

|Ω|/P , the time complexity of step one is O(|Ω|R/P ). The

second step needs to update a matrix of size J × R and a

matrix of size K×R in each process, so the time complexity is

O(max {J,K}R). In total, the time complexity of P2T2F for

each iteration can come down to O(|Ω|R/P+max {J,K}R).

V. EXPERIMENTAL RESULTS

Our experiments are designed to study the accuracy and

efficiency of the P2T2F and baselines on the publicly available

real-word datasets. All the experiments are run on a 12-core

server with 2.60GHz Intel(R) Xeon(R) E5-2630 processor and

64GB of RAM.

Algorithm 2 Our P2T2F model

Input: Tensor X ∈ R
I×J×K , Rank R, MaxIter, P .

Output: A ∈ R
I×R,B ∈ R

J×R,C ∈ R
K×R.

1) use Algorithm 1 to get Xp;

2) initialize λA, λB , λC , λ0, ρB , ρC , Ap, Bp, Cp, Cp
0 ,

μC ;

3) set Θp
B (and Θp

C)= 0, p = 1, 2, . . . , P ;

4) calculate B,C by (11);

5) for iter = 1, 2, . . . ,MaxIter do
6) for p = 1, 2, . . . , P parallel do
7) update Cp

0 by (10);

8) for each xijk in process p do
9) update Ap

i , B
p
j , C

p
k by (17);

10) update B,C by (11);

11) for p = 1, 2, . . . , P parallel do
12) update Θp

B ,Θ
p
C by (8) and (9);

13) if convergence criterion is met then
14) break;

15) update τt;
16) return A,B,C.

TABLE I
SUMMARY OF REAL-WORLD DATASETS

S1 S2 S3

I1 14,012 28,060 56,361

I2 19,527 24,981 28,444

I3 242 242 242

#Train 1,851,291 3,739,047 7,566,903

#Test 205,699 415,449 840,766

a) Datasets and Parameter Settings: The real-word ten-

sor data used in our experiments are public collaborative

filtering datasets: Movielens ml-latest 1, which is movie rating

data from MovieLens, an online movie recommender service.

In order to study P2T2F’s parallel performance, we process

it into three 3-order tensors, where each mode correspond

to users, movies and calendar month, respectively, with the

restriction of 20 ratings per user at a minimum. The rates

range from 0.5 to 5, and the details are summarized in Table

I. We set λA = λB = λC = 0.01 and ρB = ρC = 0.5.

Since it is difficult to compute the exact value for τt, we

approximately update it as τt+1 = τt ∗ β(0 < β < 1) for

the t-th iteration. We also set a threshold α. When τt ≤ α,

we stop decreasing τt. We set τ0 = 0.0005, β = 0.9 and

α = 0.0001. The hyperparameters are all determined by cross

validation. We choose R = 20 here.

b) RMSE and Efficiency: We use the root mean squared

error (RMSE) to evaluate our P2T2F model and baselines and

their cocnvergence criteria are the same. We first examine

the significance of the improvement of P2T2F over the CP,

PTTF and PPMF model on these datasets in one core by

repeating the prediction tasks 12 times using different random

1http://grouplens.org/datasets/movielens/
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Fig. 2. Box plot of the RMSEs from PPMF, CP, PTTF and P2T2F on three datasets. P2T2F can outperform others in one core.
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Fig. 3. The test RMSE curves for PTTF and P2T2F with different P on three datasets.

initializations. Figure 2 shows the resulting box plot of test

RMSEs on S1-S3 at the moment when the convergence criteria

of all these methods are satisfied. We can see that P2T2F model

outperforms the baselines in all runs. P2T2F takes advantages

of the stochastic learning algorithm, where it handles the latent

factors using a surrogate objective function and makes them

decoupled and easily computed. Therefore, it reaches a better

RMSE than the conventional SGD-based PTTF method. In

particular, the PTTF model outperforms CP model because of

the temporal effects in the probabilistic decomposition. The

PPMF model only considers the users and movies get the

worst result. CP and PTTF model have a smaller degree of

dispersion because they have fewer parameters than PPMF

and P2T2F methods. Therefore, they are less sensitive random

initializations.

c) Scalability: Another metric used to measure a parallel

algorithm is the scalability. To study the scalability of P2T2F,

we test our model on three datasets by varying the number of

cores from 1 to 8. Figure 3 shows the test RMSE versus the

running time for P2T2F model with different number of cores

(or sub-tensors) P . The result demonstrates that the running

time is approximately reduced to a half when the number of

cores gets doubled. Note that the different curves of P2T2F

eventually converge to the same solution. To see more clearly,

we compute the speedup relative to the running time with 1

core (P = 1) by varying the number of cores from 1 to 8.

Here, we set RMSE = 0.90 as a baseline. The results on S1-

S3 are shown in Figure 4. We can intuitively see that P2T2F

achieves nearly linear speedup and the speedup ratio increases

1 2 4 8

Number of cores
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2

3

4

5

6

7

8
S

p
e

e
d

u
p

S1

S2

S3

Fig. 4. The speedup of P2T2F w.r.t the number of cores on three datasets.

with the number of ratings. The increased speedup from S1

to S3 is probably caused by the increase of data density.

VI. CONCLUSION

In this paper, we present P2T2F by deriving a stochastic

ADMM algorithm to calculate the latent factors of probabilis-

tic temporal tensors. We propose a new data split strategy to

divide the large-scale problem into several independent sub-

problems along the user dimension. Then we use the parallel

ADMM framework to decompose these sub-tensors in parallel.

Experiments on real world data sets demonstrate that our

P2T2F model outperforms the traditional CP decomposition,

PTTF and PPMF model in terms of efficiency and scalability.
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APPENDIX

We show the proof to Theorem 1 in the following.

A. Proof of Theorem 1

Proof. The constructed function h(·) in (13) can be written as

h(Ap,Bp,Cp, τt|Ap
t ,B

p
t ,C

p
t )

=
∑

(i,j,k)∈Ωp

ĥi,j,k(A
p
i , B

p
j , C

p
k , τt|Ap

t ,B
p
t ,C

p
t ),
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where

ĥi,j,k(A
p
i , B

p
j , C

p
k , τt|Ap

t ,B
p
t ,C

p
t )

=f̂i,j,k((A
p
i )t, (B

p
j )t, (C

p
k)t)

+∇Ap
i
f̂i,j,k((A

p
i )t, (B

p
j )t, (C

p
k)t)(A

p
i − (Ap

i )t)
T

+∇Bp
j
f̂i,j,k((A

p
i )t, (B

p
j )t, (C

p
k)t)(B

p
j − (Bp

j )t)
T

+∇Cp
k
f̂i,j,k((A

p
i )t, (B

p
j )t, (C

p
k)t)(C

p
k − (Cp

k)t)
T

+[1/(2miτt)]‖Ap
i − (Ap

i )t‖22
+[1/(2njτt)]‖Bp

j − (Bp
j )t‖22

+[1/(2zkτt)]‖Cp
k − (Cp

k)t‖22.
Here, mi denotes the number of ratings related to Ap

i in Xp,

nj and zk are similarly defined.

Then, we have

Lp(Ap,Bp,Cp, (Cp
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct)

−Hp(Mp, (Cp
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct, τt|Mp

t )

=f (Ap,Bp,Cp)− h(Ap,Bp,Cp, τt|Ap
t ,B

p
t ,C

p
t )

=
∑

(i,j,k)∈Ωp

[f̂i,j,k(A
p
i , B

p
j , C

p
k)

− ĥi,j,k(A
p
i , B

p
j , C

p
k , τt|Ap

t ,B
p
t ,C

p
t )].

For clarity, we denote Ap
i , B

p
j , C

p
k , (A

p
i )t, (B

p
j )t and (Cp

k)t
as a, b, c,at, bt and ct, respectively. Then we have

f̂i,j,k(a, b, c) =
1

2
(xp

ijk− < a− at + at,

b− bt + bt, c− ct + ct >)2

=f̂i,j,k(at, bt, ct)

+∇af̂i,j,k(at, bt, ct)(a− at)
T

+∇bf̂i,j,k(at, bt, ct)(b− bt)
T

+∇cf̂i,j,k(at, bt, ct)(c− ct)
T

+o(a, b, c),

where o(a, b, c) contains all the second to sixth order terms.

We have the following properties by mainly using Cauchy

inequality and the hypothesis ‖a − at‖22 ≤ δ2, ‖b − bt‖22 ≤
δ2, ‖c− ct‖22 ≤ δ2:

−(xp
ijk− < at, bt, ct >) < a− at, b− bt, ct >

≤ |εijk|(a− at)((b− bt) ∗ ct)T

≤ 1

2
|εijk|(‖a− at‖22 + ‖b− bt‖22‖ct‖22);

−(xp
ijk− < at, bt, ct >) < a− at, b− bt, c− ct >

≤ |εijk|(a− at)((b− bt) ∗ (c− ct))
T

≤ 1

2
|εijk|(‖a− at‖22 + ‖b− bt‖22‖c− ct‖22)

≤ 1

2
|εijk|(‖a− at‖22 + ‖b− bt‖22δ2);

where εijk = xp
ijk− < at, bt, ct >.

(a1 + a2 + . . .+ an)
2 ≤ n(a21 + a22 + . . .+ a2n);

(<a− at, b− bt, c− ct >)2

≤ 1

4
(‖a− at‖22 + ‖b− bt‖22δ2)2

≤ 1

4
(δ2 + δ4)(‖a− at‖22 + ‖b− bt‖22δ2);

(< a− at, b− bt, ct >)2

≤ 1

4
(‖a− at‖22 + ‖b− bt‖22‖ct‖22)2

≤ 1

4
(δ2 + δ2‖ct‖22)(‖a− at‖22 + ‖b− bt‖22‖ct‖22);

(< a− at, bt, ct >)2 ≤ (‖a− at‖2‖bt ∗ ct‖2)2
= ‖bt ∗ ct‖22‖a− at‖22.

Using the above six properties, we can prove that

o(a, b, c) ≤πA‖a− at‖22 + πB‖b− bt‖22
+ πC‖c− ct‖22,

where πA, πB , πC are constants which depend on at, bt, ct
and δ2.

If we let

1

τt
≥ max{2miπA, 2njπB , 2zkπC},

then we can prove that

Hp(Mp, (Cp
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct, τt|Mp

t )

≥ Lp(Ap,Bp,Cp, (Cp
0 )t, (Θ

p
B)t, (Θ

p
C)t,Bt,Ct).

The second property in Theorem 1 can be easily proved.
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