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Abstract

In this paper, we propose a novel online topic
tracking framework, named IEDL, for tracking
the topic changes related to deep learning tech-
niques on Stack Exchange and automatically in-
terpreting each identified topic. The proposed
framework combines the prior topic distributions
in a time window during inferring the topics in
current time slice, and introduces a new rank-
ing scheme to select most representative phrases
and sentences for the inferred topics in each time
slice. Experiments on 7,076 Stack Exchange posts
show the effectiveness of IEDL in tracking topic
changes and labeling topics.

1. Introduction

Recent advances in deep learning promote the innovation
of many intelligent systems and applications such as au-
tonomous driving and image recognition. Tracking the
changes of focus for deep learning engineers and researchers
is helpful to identify current emerging deep learning-related
topics. In this work, we choose Stack Exchange to col-
lect experimental dataset due to its popularity among the
developers and researchers (Huang et al., 2018).

Previous topic tracking approaches (Blei & Lafferty, 2006;
AlSumait et al., 2008; He et al., 2013) are mainly based on
Latent Dirichlet Allocation (LDA) (Blei et al., 2003). For
example, the work (AlSumait et al., 2008) proposes an On-
line Latent Dirichlet Allocation (OLDA) model to capture
the evolution of topics, where only the topic distribution
of documents in the prior one time slice is considered for
inferring the topics in current time slice. In (He et al., 2013),
the authors focus on modeling sentiment and topic changes
synchronously, and the topics in all the prior time slices
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are involved during inferring the current topic distribution.
In (Espinoza et al., 2018), the proposed approach also selects
sentiment words for each topic based on Dynamic Topic
Model (DTM) (Blei & Lafferty, 2006).

Inspired by the recent work (Gao et al., 2018), where
an adaptively online latent Dirichlet allocation approach,
named IDEA, is introduced to track user opinions in user
feedback, and outperforms the OLDA approach (AlSumait
et al., 2008), we propose a new framework IEDL for
Identifying Emerging Deep Learning-related topics. The
difference between IDEA and our approach lies in the com-
bination styles of the prior topic distributions. In IDEA, the
similarities between the topics in previous time slices and
those in the previous one time slice are taken into account
for inferring the topics in current time slice, while we in-
troduce an exponential decay function in a time window.
Besides, we propose a novel topic labeling approach based
on the unique characteristics of Stack Exchange posts.

The experimental results on 7,076 Stack Exchange posts
verify the effectiveness of IEDL in detecting topic changes
and topic labeling.

The contributions of our paper are elaborated as below.
e We propose a framework called IEDL to automatically

track topic changes and identify emerging topics from
deep learning-related posts in Q&A forum effectively.

e We propose a novel topic interpretation method, which
improve the topic coherence dramatically.

e We visualize the variations of the captured (emerging)
topics along with time slices, with the emerging ones
highlighted.

2. Methodology of IEDL

IEDL mainly contains two parts: Emerging topic detection
and automatic topic interpretation.
2.1. Emerging Topic Detection

In this section, we aim to detect the emerging topics of
current time slice by considering the topics in previous time
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slices. We first introduce how we use online topic modeling
to capture the topic evolutions with time going by. Then
we present how we discover the emerging topics (anomaly
topics).

2.1.1. ONLINE TOPIC MODELING

Ji&

Figure 1. Our online topic modeling approach.

The preprocessed posts are divided by time, denoted as
M = {M*', M, ... M.} (where t indicates t-th month
in our experiment), and each post is treated as one document.
The prior distributions over document-topic () and topic-
word distributions () are defined initially. K represents the
number of the topics, while ¢ is the probability distribution
vector for the k-th topic over all the input posts. We also
introduce a predefined parameter - window size w, which
refers to the number of previous time slices to be considered
for analyzing the topic distributions of the current time slice.
The overview of the model is shown in Figurel.

We adaptively integrate the topic distributions of the previ-
ous w time slices, denoted as {¢' 1, ..., ¢! =%, ..., ¢' =%}, for
generating the prior 3¢ of the ¢-th time slice. Since the pop-
ularity of a topic always lasts for a time period, compared to
IDEA (Gao et al., 2018) which only considers the similarity
between topic distributions, we think the topics discussed
last month are more related to current topics compared to
those mentioned several months before. Therefore, an expo-
nential decay factor p is added, multiplying the similarity
between topics v to determine the influence. And now the
adaptive integration refers to sum of the topic distributions
of different time slices with different weights 7" and p*:

BL=> ey (1)
=1

where ¢ denotes the i-th previous time slice (1 < i < w).
We denote the weight v* as the similarity of topic distribu-

tions between the (t—3)-th time slice and the (¢—1)-th time
slice, which is calculated by the softmax function:

i exp( Zii ' ltcil) )
T = S gi=i gl
=1 Pk k
where the dot product (¢} " - 51 ) computes the similar-

ity between the topic distribution qﬁfjl and the prior of the
(t—1)-th time slice ﬂf;l. ! is calculated by a simple expo-
nential decay function:

p' = exp(—Xi) 3)

where ¢ means the ¢-th time slice before the current, and A
is a predefined exponential decay coefficient.

2.1.2. ANOMALY DISCOVERY

Based on the topic distribution captured by online topic
model, we regard anomaly topics, which present obvious
distinctions compared to those of the previous time slices,
as emerging topics. To calculate the distinction of the k-th
topics between two successive time slices, we implement
the classic Jensen-Shannon (JS) divergence'. If we take ot
and ¢! ! as an example:

1
Dys(opllon ) = iDKL(d)ZHM)"_ @
1
§DKL(¢?1||M)

where M = 3(¢% + ¢} ").And the Kullback-Leibler (KL)
divergence Dy, is utilized to measure the difference from
one probability distribution P to another ():

P(i)
Q(i)

where P(3) is the i-th item in P. The higher the JS divergence
is, the larger distinction the two topic distributions have.
To find anomaly topics, we set a threshold by leveraging
a typical outlier detection method (Rousseeuw & Hubert,
2011). For each time slice, the topics with divergences
higher than the threshold are regarded as anomaly topics.

Drcr(PIIQ) = > P(i)log 5)

2.2. Automatic Topic Interpretation

The dataset we use are questions asked in Stack Exchange,
which have two significant attributes “votes” and “views”.
Users can manually click the “like” button or the “dislike”
button to show their preference, while high “votes” repre-
sents this is a valuable question. And “views” shows how
many users or tourists have visited this page, which refers
to the popularity of this post. To make good use of these

lhttps ://en.wikipedia.org/wiki/Jensen%E2%
80%93Shannon_divergence
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two attributes, we develop a novel method for deep learning
related posts interpretation. We denote it as Quality Score:

SCOREquq(l) =

1 1 (6)
exp(

T Dme D " 1)

where [ is the post, and vy, r;, h; are the votes, views, and
length of the post respectively. The attributes are adding
1 in case of they are 0. If a post has both high votes and
views, it is more likely to be a good post. Also, length
slightly influence the score by the predefined factor 7, since
long posts may contain more information. Therefore, the
motivation of this Quality Score is to select questions with
both high votes and views with longer length.

3. Experiment and Result

In this section, we introduce how we preprocess the dataset,
and the performance of our IEDL model measured by topic
distribution classification precision and topic coherence.

3.1. Data Analysis

The 7,076 deep learning-related posts we used are pub-
licly released by Stack Exchange”. To evaluate the topics
inferred by our proposed topic model, we also manually la-
beled 507 posts into six categories for classification: Image,
NLP, Game-ai, Self-driving, Programming-languages, and
Reinforcement-learning. The labels are determined based
on the tags provided by Stack Exchange and to maximize
their distinguishability.

3.1.1. WORD FORMATTING

We first convert all words into lowercase, and then perform
lemmatization to change each word into its original form.
We then replace some segments with general symbols, like
converting websites to “<url>" and so on.

3.1.2. PHRASE EXTRACTION

Since some words have specific meanings only in phrases
and we need them to interpreting topics, phrases (mainly
referring to two consecutive words in our paper, and the
words in each phrase are connected with “_”) are extracted
in the preprocessing step and trained along with all the other
words. We want the topic labels in phrases to be meaningful
and comprehensible, therefore, a typical phrase extraction
method based on PMI (Pointwise Mutual Information)?,
which is effective in identifying meaningful phrases based

https://archive.org/download/
stackexchange

*https://en.wikipedia.org/wiki/Pointwise_
mutual_information

on co-occurrence frequencies, is used:

PMI(w;,w;) = 1og]m

(7
where p(w;w;) refers to the co-occurrence probability of
the phrase w;w; and p(w;) and p(w,) indicates the proba-
bility of the word w; and w; in the whole post documents.
High PMI values indicate that it is more likely for the com-
bination of the two words to be a meaningful phrase. We
experimentally set a threshold for PMI, and phrases with
higher PMIs are extracted.

3.1.3. FILTERING

This step aims to eliminate non-meaningful words, such
as emotional words (e.g., “nice” and “bad”), abbreviations
(e.g., “btw”), and useless words (e.g., “something”). We use
the predefined stop words provided by NLTK*, and all words
in the stop word list are filtered out. Finally, all remaining
words and extracted phrases are fed into the model.

3.2. Classification Accuracy

To test the quality of the extracted topics, we use the topic
distribution of each post as features, and classify the 507
labeled posts by SVM. The results show that our proposed
model outperforms the baseline model IDEA (Gao et al.,
2018) by 5% for average precision.

Table 1. Classification result

CATEGORY MODEL | PRECISION  RECALL F1
IDEA 0.89 0.73 0.80
IMAGE TEDL 100 0.64 0.8
IDEA 0.68 0.76 0.72
NLP [EDL | 073 094 082
GAME-AI IDEA 0.83 0.94 0.88
B IEDL 0.83 0.97 0.90
IDEA 0.94 0.89 0.91

SELF-DRIVING IEDL 1.00 0.94 0.97

PROGRAMMING IDEA 0.92 0.73 0.81
-LANGUAGE IEDL 0.86 0.86 0.86
REINFORCEMENT IDEA 0.86 0.86 0.86
-LEARNING IEDL 1.00 0.62 0.76

3.3. Topic Coherence

Table 2. Topic coherence of different approaches.
[ OLDA [ IDEA [ IDEA+QUALITY SCORE | IEDL |
[ 0.133 | 0.166 | 0.217 [ 0.222 |

Topic coherence score (Lau & Baldwin, 2016) is another
way to measure the performance of models by detecting
the coherence between extracted words or phrases assigned
to each topic. The method we use is an extension of PMI,

*http://www.nltk.org/
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Time: 2017-10

Label: self driving; main advantage; human driver; turn leave; swarm intelligence

Value: 15.26829
Emerging Topics: self driving; animal recognition; morality question

Sentence: 1: i also agree_that eventually self driving car will be_able_to handle your hypothetical situation good_than many human_driver;
2:in_my_opinion the_bottom line be a self driving car will_not road rage drive at dangerous speed in a residential area get tire and fall asleep or drink etc;
3: however i can also imagine some human_driver deliberately try to cause self driven car to make poor decision;

4: although _there be potential to make the road saferi_don’t_think that be the driver force behind the push for self driving car;

5: for_example if a human_operator be drive a remote control car in a circle this pattern be the goal behavior

Figure 3. Visualization of topic changes based on ThemeRiver (Havre et al., 2000). Texts highlighted in yellow are the emerging topics in

the corresponding month (Oct. 2017) where the mouse is pointing at.

where ¢ refers to a topic, and NV is the number of words:

1
= wlw])

N
OC_Auto PMI(t
]z;l 1 )p(w;)

®)

We feed the whole 7,076 dataset into our IEDL model and

compare the topic coherence score to IDEA (Gao et al.,

2018). The result shows IEDL improves the topic coherence
score by 33.7%. The topic coherence scores with error bars
are shown in Figure 2.

Topic Coherence

0.255
0.235
0.215
0.195
0.175
0.155
0.135
0.115
0.095

0.075

OLDA IDEA IDEA+Quality Score IEDL

—8—Topic Coherence

Figure 2. Topic coherence with error bars (standard error).

To further elaborate on the coherence between topics and
extracted phrases, we compared the generated phrases for
topics “NLP” and “Image” respectively. The result shows
IEDL can generate more coherent and meaningful phrases
for each topic.

Table 3. Phrases generated by IDEA and IEDL for topics “NLP”
and “Image” respectively. Red underlined fonts highlight the
phrases that are not closely related to the topic.

NLP Image
IDEA IEDL IDEA IEDL
. convolutional
solution space word vector cnn model
—_— network

information . . .
. word embedding | previous layer pixel value
science
. . . capsule
real environment | feature extraction specific task P
— — network

4. Visualization

In this part, we visualize the the evolution deep learning
topics along with time flow for better understanding. As
shown in Figure 3, all the posts constitute one river and
each branch of the river indicates one topic. By moving the
mouse over one topic, one can track detailed topic changes
along with time slices (months in our experiment), where
the emerging issues are highlighted.

The topics with wider branches are of greater concern to
developers, where the width of the k-th branch in the ¢-th
version is defined as:

width}, = " log Count(a) x SCOREgua(la)  (9)

where C'ount(a) is the count of the phrase label a in the post
collection of the ¢-th version, and Scoregyq(l,) denotes the
quality score of [,, which is the post refers to the phrase
label a.

We visualize topic changes from January to December 2017.
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As shown in Figure 3, our IEDL finds an emerging topic
about self-driving, which is not detected by IDEA (Gao
et al., 2018). We double check the dataset and find that,
compared to only one post from July to September, there are
eight posts about self-driving in October (may be caused by
a new release of electric semi-truck of Tesla), which further
proves the effectiveness of our model in detecting emerging
topics.

5. Conclusion and Future Work

Timely and effectively detecting deep learning topics is cru-
cial for developers to capture the trend. We propose IEDL,
a novel framework for automatically identifying emerging
topics from posts in Q&A forums. The experiment results
show IEDL improves the quality of topic distribution and
topic coherence greatly. In the future, we will refine IEDL to
be capable of defining the topic number automatically, and
utilize other information like comments, accepted answers
to further improve the performance.
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