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ABSTRACT 

Statistical-learning approaches such as unsupervised 
learning, supervised learning, active learning, and 
reinforcement learning have generally been separately 
studied and applied to solve application problems.  In this 
paper, we provide an overview of our newly proposed 
unified learning paradigm (ULP), which combines these 
approaches into one synergistic framework. We outline 
the architecture and the algorithm of ULP, and explain 
benefits of employing this unified learning paradigm on 
personalizing information management.  

1. INTRODUCTION 

Human beings learn by being taught (supervised learning), 
by self-study (unsupervised learning), by asking questions 
(active learning), and by being examined for the ability to 
generalize (reinforcement learning), among many ways of 
acquiring knowledge. An integrated process of supervised, 
unsupervised, active, and reinforcement learning provides 
a foundation for acquiring the known and discovering the 
unknown. 

It is natural to extend the human learning process to 
machine learning tasks. In this paper, we propose a 
unified learning paradigm (ULP), which combines several 
machine-learning techniques in a synergistic way to 
maximize the effectiveness of a learning task. Three 
characteristics distinguish ULP from a traditional hybrid 
approach such as semi-supervised learning. First, ULP 
aims to minimize the human effort in collection of quality 
labeled data. Second, ULP uses the stability of the 
membership of unlabeled data, together with active 
learning, to ensure sufficiency of both labeled and 
unlabeled data, thus guaranteeing the generalization 
ability of the learned result. Third, ULP uses active 
learning and reinforcement learning (or some other 
techniques) to access the convergence of the learning 
process.  

More specifically, ULP is an interactive algorithm 
consisting of four steps.  The first step uses a prior kernel 
function to generate a kernel matrix.  The second step 
employs unsupervised learning algorithms to measure the 
stability of selected pairs of unlabeled instances in the 
kernel matrix. The similarity (or dissimilarity) of a pair of 
instances is reinforced when the changes of parameters of 
the clustering algorithms do not affect the instances’ 
cluster memberships.  For instance, suppose we employ 
the spectral clustering algorithm [7] to cluster data.  If a 
pair of instances always belongs to the same cluster, 
despite various choices of the kernel parameter and the 
number of clusters, we increase the similarity score of the 
pair.  If a pair is distributed to several different clusters, 
we can comfortably decrease the similarity scores.  When 
the membership of an unlabeled pair is unstable, ULP in 
its third step uses active learning to solicit user feedback 
to confirm the similarity score. The “questions” selected 
by the active learning component must balance between 
two sub-goals: maximizing information gain and 
maximizing generalization.  The last step of ULP tests for 
the convergence conditions. If the algorithm has not 
converged, ULP returns to the second step using the 
newly aligned kernel matrix to conduct an unsupervised, 
membership stability test. When the algorithm converges, 
ULP outputs a kernel matrix [6] or function [5]. 

ULP is essential for large-scale information management.  
First, for a large-scale task, a supervised approach for 
pattern analysis or knowledge discovery is not scalable. 
ULP uses the unlabeled data in the most effectively way 
to reduce the need for a large amount of labeled data.  
Second, the essence of finding information relevant to a 
query or to a user is to formulate a distance function that 
best describes how the user perceives similarity.  ULP 
outputs such a function, which can then be used in tasks 
of information organization and retrieval.  (The labeled 
and unlabeled data can be the history of a user’s document 
access, or his/her desk-top profile.)  ULP learns a kernel 
based on data; and therefore, it can work more effectively 
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than the traditional way of selecting a kernel in a data 
independent way.   

In the rest of this paper, we discuss in more details on the 
four major synergistic steps of ULP.  Because of space 
limitations, we refer to the reader our published papers for 
more details. 

Figure 1. The Architecture of Unified Learning Paradigm. 

2. ULP ARCHITECTURE 

Figure 1 illustrates the architecture of our proposed 
Unified Learning Paradigm. Basically, the ULP scheme 
comprises five main components: clustering module,
active learning module, similarity reinforcement module, 
kernel transformation module, and convergence 
evaluation module. The clustering module selects the set 
of unlabeled instances in the kernel matrix that are either 
stable or the most unstable according to different 

parameter settings, and then transmits their corresponding 
membership information M to the similarity 
reinforcement module. In the initial step, the similarity 
reinforcement module collects the information provided 
by kernel matrix K , data membership M , and the original 
data labels L  (if they are available). Then it produces the 
possible kernel transformation function T as well as the 
most uncertain data subset Xu  that requires active 
learning. Based on users’ relevance feedback, the active 
learning module than returns the membership information 
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'M  back to the reinforcement module to learn a new T ,
and possibly a new Xu . When the similarity reinforcement 
module gains enough confidence in its produced result, it 
sends the kernel transformation function T  to the kernel 
transformation module to generate a modified kernel 'K .
Note that 'K is assumed to better reveal the intrinsic 
similarities of D . 'K  then passes through the convergence 
evaluation module for a convergence test. If it passes the 
test, the ULP algorithm ends; otherwise 'K  is sent back to 
the clustering module for another iteration.  

Next, we discuss the individual modules in detail. 

2.1  THE CLUSTERING MODULE 

In this module, we attempt to find out those salient data 
instances by measuring the stability of the membership of 
unlabeled data. The salient instances include either the 
data that suggest the underlying structure of the dataset  
(i.e. the most stable) or those that result in the largest 
information gain if we manually label them (i.e., the most 
unstable).   

For example, assume we are given a set of data instances 
},,{ 1 nxxD  and we want to learn the membership 

matrix nnijmM ][ from the data, in which the elements 

are set initially to zero. Suppose we run a clustering 
algorithm on D. A clustering partition pC can be obtained. 

If two data instances ix  and jx  are grouped in the same 

cluster in pC , we update the corresponding element in 

the membership matrix 1ijij mm . This clustering 
procedure is run a number of times by adopting some 
kinds of perturbation. For instance, we can change the k 
value of the k-mean step in the spectral-cluster algorithm, 
or we can change the parameter of a selected kernel.  For 
each clustering result, we can access its quality (or 
confidence) by using a measure such as eigengap. The 
overall membership matrix is obtained by weighting all 
the clustering results with clustering quality. Eventually, a 
membership stability matrix can be obtained from the 
clustering module. The resultant membership knowledge, 
after being processed by the similarity reinforcement 
module, is important for both active learning and kernel 
transformation purposes. 

There are several research topics in this step: 
a) What clustering algorithm(s) [1] should be 

employed? 
b) How might we best measure membership 

stability and select the salient data instances? 

c) How many unstable instances should be 
selected? 

2.2. THE SIMILARITY REINFORCEMENT 
MODULE

From the clustering module, we can obtain sets of similar 
pairs and dissimilar pairs according to the membership 
M of clustering results. However, M may be noisy 
because of the limitation of extracted features. To reduce 
the factor of noise, we adopt the similarity reinforcement 
module [2]. Another important role for this module is to 
deduce a kernel transformation function T  based on the 
information supplied by the clustering module, the active 
learning module, the labeled data L , and even the history 
information (history of kernel matrix updates).  

A possible solution of this module is to propagate the 
similarity from the labeled data to the unlabeled data. 
When this module is uncertain about the labels of some 
data instances, it simply gives these data to the active 
learning module to solicit relevance feedback. And the 
feedback information (i.e., another group of labeled data) 
can be leveraged for learning a better T .

Some interesting research topics pertaining to this module 
are:

1) How do we formulate T ?
2) How might the similarity information best be 

propagated from labeled data to unlabeled data? 
3) How should Xu be selected for conducting active 

learning? 

2.3. THE ACTIVE LEARNING APPROACH 

In some challenging learning tasks, active learning is 
essential for bridging the knowledge gap of the given data 
[3]. Although we can acquire the membership knowledge 
from the clustering and the similarity reinforcement steps, 
we cannot guarantee that the knowledge is noise-free and 
complete. In order to remedy this shortcoming, we employ 
active learning. 

Typically we employ active learning to solicit feedback to 
confirm the similarity score in order to bridge the 
knowledge gap. When we choose a “question” to ask the 
user, we need to balance two sub-goals: maximizing 
information gain and maximizing generalization. For 
example, to maximize the information gain, we can 
consider choosing the data instances that are most 
effective to propagate the similarity to other pairs; we can 
also pick the instances that are most uncertain according 
to the membership knowledge. Or to maximize 
generalization, we can choose the data samples that have 
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the greatest potential to increase the generalization 
performance.  

After the active learning module has collected feedback 
information, the feedback knowledge can be used to 
refine the similarity correlation between data instances.  

2.4. THE KERNEL TRANSFORMATION MODULE 

Kernel functions or kernel matrices are essential for many 
machine learning tasks [4]. It is still a challenging open 
research problem to devise effective kernel functions or 
matrices from labeled and unlabeled data. Our solution is 
to study the kernel transformation techniques by 
combining the prior knowledge of labeled data and the 
membership knowledge of unlabeled data exploited from 
the clustering results and active learning.  

From the similarity reinforcement step, we have learned 
the transformation knowledge T which provides the guide 
to learn the kernel functions or matrices. In order to 
implement the kernel transformation toward an effective 
kernel functions, two problems should be considered. One 
is the positive semi-definite (PSD) issue: It is important 
for a distance metric to satisfy the PSD condition as 
explained in [6]. Another is the generalization 
performance of the kernel functions. How to make the 
kernel functions generalize well to the unseen data is 
important for developing the kernels.  

In sum, from the kernel transformation step, we can learn 
new kernel functions [5] or matrices [6] according to the 
explicit or implicit similarity knowledge from the data. 
Our preliminary results [5,6] show both avenues to be 
effective. 

2.5. THE CONVERGENCE EVALUATION 
MODULE 

In the ULP framework, when a new kernel function or 
matrix is obtained, we run the whole procedure iteratively 
until the convergence conditions are satisfied. There are 
several factors to determine the convergence conditions. 
One is to ascertain whether our similarity knowledge 
matches the user feedback. Furthermore, we can verify 
whether the knowledge gap has been bridged, by 
measuring the completeness of similarity linkages 
between the labeled and unlabeled data.  

After the convergence conditions are satisfied, we have 
obtained an improved kernel matrix *K . One more 
possible step is to deduce a kernel function based on it [5]. 
Alternatively, we can use the matrix to conduct 
generalization [6].  

3. CONCLUSIONS 

In this paper we outlined a foundational framework for 
learning the kernel functions or matrices from labeled and 
unlabeled data in combinations of unsupervised learning, 
supervised learning, active learning, and reinforcement 
learning. We presented our preliminary results through 
references, and discussed our future work.  We believe 
that ULP is an essential tool to work with large-scale, 
personalized information management.  Our other 
endeavors for speeding up kernel methods in large-scale 
settings, which complements ULP, can be found in [8,9]. 
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