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Abstract. The recent development of pre-trained language models
(PLMs) like BERT suffers from increasing computational and memory
overhead. In this paper, we focus on automatic pruning for efficient
BERT architectures on natural language understanding tasks. Specif-
ically, we propose differentiable architecture pruning (DAP) to prune
redundant attention heads and hidden dimensions in BERT, which ben-
efits both from network pruning and neural architecture search. Mean-
while, DAP can adjust itself to deploy the pruned BERT on various edge
devices with different resource constraints. Empirical results show that
the BERTBASE architecture pruned by DAP achieves 5× speed-up with
only a minor performance drop. The code is available at https://github.
com/OscarYau525/DAP-BERT.

Keywords: Natural language processing · Neural architecture search ·
Pruning · BERT

1 Introduction

In the study of natural language processing (NLP), pre-trained language mod-
els (PLMs) have shown strong generalization power on NLP tasks [7,15]. How-
ever, the high computational overhead and memory consumption of these PLMs
prohibit the deployment of these models on resource-limited devices, and thus
motivates various efforts towards network compression on PLMs. This area has
been investigated by numerous studies, such as pruning [6,16,17], knowledge
distillation [11,12], quantization [1,3,23,33].

Among these methods, network pruning starts from a pre-defined architec-
ture and simplifies it by removing unimportant parameters in the network. How-
ever, most existing pruning methods rely on hand-crafted criteria to decide the
sub-network structure, such as the magnitude of parameters [6] or its gradi-
ents [20]. On the other hand, neural architecture search (NAS) aims to automat-
ically search for optimal network architectures and avoids human intervention
at the stage of architecture design. Despite the success of NAS popularized in
convolution neural networks and recurrent neural networks [8,14], little work
has been put on applying NAS to attention-based Transformer networks such
as BERT. This is due to the expensive pre-training of language models, which
makes the searching process quite time-consuming. While there are some works
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that search architecture during the fine-tuning stage [5,16], they either suffer
from computationally expensive CNN-based cells [5] or inaccurate control of
model size through sparse regularization [16].

In this paper, we propose differentiable architecture pruning (DAP) for
BERT, a novel approach that benefits from both BERT pruning and neu-
ral architecture search. Specifically, our proposed DAP can automatically dis-
cover the optimal head number for self-attention and the dimensionality for the
feed-forward networks given the resource constraints from various edge devices.
Inspired by [14], we assign each architecture choice with learnable parameters,
which can be updated by end-to-end training. Meanwhile, to stabilize the search-
ing algorithm, we further introduce rectified gradient update for architecture
parameters, as well as progressive architecture constraint, such that the search-
ing process can proceed smoothly. Finally, to find a sub-architecture that per-
forms comparable to the original network, we apply knowledge distillation as
a clue to architecture searching and model re-training so that the sub-network
mimics the behaviours of its original network.

We conduct extensive experiments and discussions on the GLUE benchmark
to verify the proposed approach. The empirical results show that the inference
time of our pruned BERTBASE can be accelerated up to 5× with only a minor
performance drop. Moreover, to the limit of compression, our pruned model
can reach up to 27× inference speedup compared with the original BERTBASE

model, while maintaining 95% of its average performance over GLUE tasks.

2 Related Work

Neural network pruning and neural architecture search are both rapidly grow-
ing fields with a large amount of literature. We summarize these two strands
of research that are closely related to our proposed solution in the following
sections.

2.1 Network Pruning for BERT

Network pruning aims to remove the unnecessary connections in the neural
network [2,9,28,30]. Gordon et al. [10] investigate the effect of weight mag-
nitude pruning during the pre-training stage on the transferability to down-
stream tasks. Prasanna et al. [20] apply gradient-informed structured pruning
and unstructured weight magnitude pruning on BERT to verify the lottery ticket
hypothesis [9], which indirectly points out the ineffectiveness of sensitivity-based
structured pruning. McCarley et al. [16] incorporate distillation and structured
pruning by L0 regularization. Our proposed structured pruning method dif-
fers from the usual sensitivity-based approaches [16,20] or weight magnitude
approaches [6,10] since we avoid hand-crafted criteria on pruning. Instead, we
adopt a loss objective that accurately reflects the model FLOPs constraint and
the prediction behaviour of the original model.
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2.2 Neural Architecture Search

Neural architecture search (NAS) is to automatize the design of neural network
architecture [14,27,35]. Expensive approaches such as reinforcement learning [35]
and evolutionary algorithm [21] spend thousands of GPU days to obtain the opti-
mal architecture for computer vision tasks. Recent efforts such as DARTS [14]
follow differentiable architecture search, which adopt continuous relaxations over
all possible operations in the search space for gradient-based optimization. Such
NAS techniques can also be applied for network compression such as prun-
ing [8,31] and quantization [13,29,31]. Especially, TAS [8] search for the optimal
width and depth of CNN-based networks in a similar differentiable fashion and
achieve effective network pruning. For BERT architecture, AdaBERT [5] per-
forms differentiable cell-based NAS and searches for a novel small architecture
by task-oriented knowledge distillation, and obtains efficient CNN-based models.
Recently, NAS-BERT [32] performs block-wise NAS with knowledge distillation
during the pre-training stage. However, these approaches search the architec-
tures in the search space from scratch, which can be slow in practice. In this
paper, instead of searching for a novel architecture from scratch, we start from
existing BERT architectures. We follow the differentiable architecture search in a
super-graph defined by the original BERT model to prune potentially ineffective
connections.

3 Methodology

In this section, we present differentiable architecture pruning (DAP) for BERT,
an automatic pruning solution that can be tailored for various edge devices
with different resource constraints. The proposed algorithm is initialized with
a trained PLM for the downstream task, which avoids the time-consuming pre-
training of PLMs. An overview of our searching approach is illustrated in Fig. 1.

3.1 Definition of Search Space

We aim to find the best layer-wise configuration of heads in multi-head atten-
tion (MHA) and intermediate dimensionality in feed-forward network (FFN) of
the transformer. The search space of MHA and FFN is designed as follows:

Multi-head Attention. Recall that with input X to the MHA, the i-th head
Hi can be computed as

Qi = XWQ
i , Ki = XWK

i , Vi = XWV
i , Hi = softmax

(
QiK

T
i√

d

)
Vi, (1)

where WQ
i ,WK

i ,WV
i are projection matrices of query, key and value for the i-th

head respectively, and d is the head size. To prune away unnecessary heads, we
assign αm ∈ R

N as the architecture parameter for each head, where N is the
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Fig. 1. An overview of the search method and search space of a BERT hidden layer,
with multi-head attention block in the bottom and feed-forward block on the top.
Dashed arrows represent skip connections. (a) The original network is initialized as
the super-graph. An architecture parameter αi is assigned to each group of weights of
the same color in the diagram. (b) Learning the αi w.r.t. the objective function. (c)
Output the optimal sub-network by selecting α that exceeds the threshold τ .

total head numbers before pruning. We further assign a sigmoid function that
ensures σ(αm) ∈ [0, 1]N for head selection. Thus, the weighted MHA output can
be written as

MultiHead(Q,K, V ) = Concat(H1 � σ(αm
1 ), ..., HN � σ(αm

N )) WO. (2)

Whenever σ(αm
i ) → 0, the i-th head can be safely pruned without affecting the

output. Note that for each pruned head, the dimensionality of the projection
matrices WQ, WK , WV and WO will be adjusted accordingly.

Feed-Forward Network. The feed-forward network is composed of an inter-
mediate layer followed by an output layer. We aim at reducing the dimension-
ality of the intermediate representation, by introducing architecture parameters
αf ∈ R

D for the D intermediate dimensions. The FFN output can thus be
written as

FFN(X) = max(0,XW1 + b1) Diag
(
σ(αf )

)
W2 + b2, (3)

where X is the input to FFN, Diag(·) represents the diagonal matrix, and
W1,W2, b1, b2 are the parameters of the two linear layers.
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3.2 Differentiable Architecture Pruning

Given the architecture parameters associated with the search space, we follow
differentiable architecture search [14] to update α via end-to-end training. In
order to find the best architecture on edge devices with different computational
capacities, we also include the network FLOPs as part of the search objective.
The overall searching problem can be formulated as a bi-level optimization prob-
lem as follows:

min
α

L(w∗(α), α)

subject to w∗(α) = argminw L(w,α),
F(α) ≤ Ftarget,

(4)

where F(α) denotes the number of FLOPs based on the architecture α, and
Ftarget is the searching target FLOPs. To satisfy the FLOPs constraint in Eq. (4),
we follow [8] to apply FLOPs penalty as a differentiable loss objective Lcost w.r.t.
α as follows:

Lcost =

⎧⎪⎨
⎪⎩

log(E[F(α)]) if E[F(α)] > (1 + δ) × Fcurr(t),
0 if (1 − δ) × Fcurr(t) ≤ E[F(α)] ≤ (1 + δ) × Fcurr(t),
− log(E[F(α)]) if E[F(α)] < (1 − δ) × Fcurr(t),

(5)

E[F(α)] =
L∑

l=1

⎛
⎝ H∑

j=1

σ(αm
lj )FMHA +

D∑
j=1

σ(αf
lj)FFFN

⎞
⎠ , (6)

where E[F(α)] is the expected FLOPs of the current architecture summed over
L hidden layers, FMHA and FFFN are the FLOPs of a single head and one
intermediate dimension in FFN, and δ is a tolerance parameter. Fcurr(t) denotes
the target FLOPs, which is time-dependent as will be introduced in Eq. (8).

Rectified Update of α. During architecture search, we optimize both w and
α by stochastic gradient descent. However, the update of α suffers from vanish-
ing gradient as a result of the sigmoid activation σ(·). To solve this challenge,
we introduce rectified update for α as follows. We adopt sign stochastic gra-
dient descent (signSGD) [4] to enlarge the magnitude of gradients on α. It is
known that signSGD avoids the problem of vanishing gradient since the magni-
tude of gradient is controlled [18]. Nevertheless, signSGD may bring oscillations
that make the optimization unstable. These rapid oscillations to the architecture
parameter α may lead to an immature solution. To smoothly stabilize the opti-
mization process, we only backpropagate the top-10% gradient of α according to
their magnitude within the search region, while the rest are masked as follows:

ĝ
(t)
i =

{
sign(g(t)i ) if g

(t)
i is top-10% in magnitude,

0 otherwise.
(7)

Progressive Architecture Constraint. Directly applying a FLOPs penalty
with a fixed FLOPs target leads α to arrive at the target size early during
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Fig. 2. The searching dynamics of different approaches. (Left) shows the expected
number of attention heads. (Right) shows the FFN intermediate dimensions.

searching, while progressive pruning usually better identifies the less influen-
tial parameters [6]. To perform architecture search progressively, we adjust the
FLOPs target Fcurr(t) at time step t as

Fcurr(t) = Foriginal exp
(

1
T

ln
Ftarget

Foriginal

)t

, (8)

where T is the scheduled number of training steps, Foriginal is the original archi-
tecture FLOPs, and Ftarget is the desired FLOPs.

We visualize the effect of rectified update and progressive architecture con-
straint in Fig. 2. It is evident that vanilla SGD suffers from vanishing gradient,
thus cannot achieve pruning. SignSGD directly arrives at the FLOPs target in
the beginning, which may result in sub-optimal architectures. On the other hand,
our progressive FLOPs constraint and rectified update enable smooth searching.

Loss Objective for Searching. Due to the intractability of the bi-level prob-
lem in Eq. (4), we simultaneously update w and α w.r.t. the objective function
on the training set. The objective function involves two terms: the cross-entropy
between the full-size model logits zt and the searching model logits zs (i.e.,
knowledge distillation); and the FLOPs penalty Lcost as defined in Eq. (5). The
searching objective is thus

Lsearch = Lce + λLcost, where Lce = − softmax(zt) · log softmax(zs). (9)

After the training of α, pruning is achieved with a pre-set threshold τ , i.e., only
keeping the connections that satisfy σ(αi) > τ .

3.3 Fine-Tuning with Two-Stage Knowledge Distillation

After obtaining the slimmed BERT structure, we further fine-tune the network to
recover from performance degradation due to pruning. The fine-tuning is based
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Algorithm 1: Learning optimal sub-network of BERT
Initialize network weights w from a well-trained model;
Initialize architecture parameters α that satisfy σ(αi) > τ ;
� Searching ;
for T iterations do

Forward pass to compute MHA and FFN by Eq. (2), (3);
Update Fcurr(t) according to Eq. (8);
Calculate the loss objective in Eq.(9);
Backpropagate to update w by Adam optimizer;
Backpropagate to update α with rectified gradient in Eq. (7);

end
� Pruning ;
Prune by selecting σ(αi) > τ ;
� Fine-tuning ;
Restore network parameter value from the original network;
Fine-tune the pruned network with two-stage knowledge distillation;

on two-stage knowledge distillation [12] given its previous success in model com-
pression. The first stage aims at intermediate layer distillation, which minimizes
the mean squared error (MSE) between the sub-network (student) and the orig-
inal network (teacher) as follows:

Lint =
L∑

l=1

‖As
l − At

l‖2F + ‖F s
l − F t

l ‖2F , (10)

where ‖·‖F is the Frobenius norm, As
l , A

t
l and F s

l , F t
l denote the MHA attention

maps and FFN output of l-th transformer layer from the student and teacher
model, respectively. Note that as we do not modify the output shape of the
student model, the MSE loss can be directly calculated without linear mapping
to align the dimension as done in [12]. The second stage is prediction layer
distillation, which similarly adopts the cross-entropy loss Lce defined in Eq. (9).

In practice, we find that fine-tuning the network parameters immediately
after searching usually lead to sub-optimal performance. Similar observations are
also found in existing NAS literature [14,19,27], where instead they initialize the
network parameters and train the architecture from scratch. Similarly, we only
inherit the network structure (i.e., the configuration of heads and dimensions in
MHA and FFN), and restore the parameters from the original model.

3.4 Summary of the Method

Algorithm 1 summarizes the overall workflow of our proposed method, which can
be generally divided into three steps: searching, pruning and fine-tuning. Firstly,
we initialize all architecture parameters by σ(αi) > τ such that all the prunable
MHA heads and FFN dimensions are kept initially. We conduct searching by
simultaneously minimizing the objective function in Eq. (9) w.r.t. architecture
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parameter α and network parameters w. To facilitate a smooth searching process,
we rectify the update of α according to Eq. (7), and incorporate progressive
architecture constraint in Eq. (8). After searching, we apply pruning based on α
and restore the network parameters to their original states. Finally, we conduct
two-stage knowledge distillation for fine-tuning.

4 Experiments

In this section, we empirically verify the proposed method on the GLUE bench-
mark [26]. We first introduce the experiment setup in Sect. 4.1. The main results
are presented in Sect. 4.2, followed by comparisons with other state-of-the-art
approaches in Sect. 4.3. Finally, we provide further discussions to better under-
stand the proposed approach in Sect. 4.4.

4.1 Experiment Setup

Dataset and Metrics. The GLUE benchmark provides a variety of natural
language understanding tasks. Unless specified, we report the metrics of each
task as follows: Matthew’s Correlation for CoLA, F1 score for MRPC and QQP,
Spearman Correlation for STS-B, and accuracy for the remaining tasks. Follow-
ing [12], We apply data augmentation to small datasets (RTE, MRPC, STS-B
and CoLA) to improve fine-tuning of the pruned networks.

Implementation. The proposed method applies to any well-trained BERT
models on downstream tasks. We take the BERTBASE [7]1 and TinyBERT [12]2

as the super-graph for searching. For each of the super-graphs, we experiment
with different FLOPs constraint Ftarget and compare the performance drop
across different models. For all the experiments, we initialize αi = 5 and use
τ = 0.99 as the pruning threshold. For small datasets, we search for 10 epochs
and fine-tune for 10 epochs. For large datasets, we search for one or fewer epochs
(i.e., using part of the training set) and fine-tune for 3 epochs. Then we fine-tune
the sub-network using Adam optimizer with 5 × 10−5 learning rate.

4.2 Experiment Results

We evaluate DAP on BERTBASE, TinyBERT4, and TinyBERT6, and results are
shown in Table 1. We denote our results as +DAP-p%, where p% denotes the
pruning rate. It can be found that the accuracy drop depends on the original
network size, where on the same scale of FLOPs reduction, small networks bear

1 To obtain the task-specific parameters, we follow the standard fine-tuning pipeline
in https://huggingface.co/bert-base-uncased.

2 Task specific model parameters available at https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master/TinyBERT.

https://huggingface.co/bert-base-uncased
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
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a larger percentage of accuracy drop than large networks. Notably, BERTBASE

can be pruned to half without accuracy degradation.
Additionally, we also measure the practical inference speedup of the pruned

networks in Table 2. It is shown that FLOPs reduction on the network architec-
ture can bring up to 5.4× practical speed-up for BERTBASE, and can even be
27.6× faster for TinyBERT4 with DAP-30%.

Table 1. Experimental results of the proposed architecture searching algorithm, eval-
uated on the GLUE test set.

Table 2. Practical speedup of the sub-networks, presenting the inference time for a
batch of 32 examples with 128 maximum sequence length on Intel(R) Xeon(R) CPU
E5-2620 0 @ 2.00 GHz with 4 cores.

4.3 Comparison with State-of-the-arts

To further validate the proposed approach, we compare with several state-of-the-
art compression baselines including vanilla BERT [25], DistilBERT [22], Mobile-
BERT [24], NAS-BERT [32] and Mixed-vocab KD [34]. Evaluations on the GLUE
test set and development set are shown in Table 3 and Table 4 respectively. The
proposed DAP shows superior performance against the baselines. For instance,
our DAP-BERT12-10% achieves the averaged test score of 76.4 with only 3.0
FLOPs (B), which is just 2.2 score lower than the original BERTBASE model
with more than 7× FLOPs reduction.
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4.4 Discussion

Rectified Update and Progressive Architecture Pruning. The left side
of Fig. 3 shows the ablation studies for our rectified update and progressive
architecture constraint. It can be found that when armed with only progres-
sive constraint, the searching algorithm fails to converge to the desired FLOPs.
While pure signSGD can converge to network architectures with desired FLOPs,
the performance is usually worse due to oscillating update of α, as previously
discussed in Fig. 2. When combined with the rectified update, the performance
is consistently improved at different FLOPs targets. Finally, when the rectified
update is combined with progressive architecture constraint, the network per-
formance is boosted since the searching dynamics is smooth and stabilized.

Table 3. Comparison with state-of-the-art compression approaches, evaluated on the
GLUE test set.

Table 4. Comparison with state-of-the-art compression approaches, evaluated on the
GLUE development set.

Fig. 3. (Left) shows the architecture accuracies under different approaches. (Right)
shows the effect of knowledge distillation for searching and fine-tuning.
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Distillation for Architecture Searching. We verify the advantage of knowl-
edge distillation (soft labels from the original model) over data labels (hard
labels from ground truth) by comparing the performance of the architectures
found using these search objectives. The empirical result in the right of Fig. 3
shows that knowledge distillation using soft labels can generally find better archi-
tectures than using the ground truth data labels.

5 Conclusion

In this paper, we propose differentiable architecture pruning, an automatic neu-
ral architecture search for BERT pruning. Given the resource constraints from
edge devices, the proposed approach can identify the best model architecture
accordingly. Empirical results on the GLUE benchmark show that the pruned
BERT model can perform on par with the original network, while enjoying signif-
icant inference speedup. Our work opens the door to deploying PLM to resource-
limited edge devices and contributes to the various applications of NLP.

Acknowledgement. The work described in this paper was partially supported by the
National Key Research and Development Program of China (No. 2018AAA0100204)
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