
IntelliAd: Assisting Mobile App Developers in
Measuring Ad Costs Automatically

Cuiyun Gao∗†, Yichuan Man¶, Hui Xu∗†, Jieming Zhu†, Yangfan Zhou‡§, and Michael R. Lyu∗†
∗Shenzhen Research Institute, The Chinese University of Hong Kong, China

†Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, China
‡School of Computer Science, Fudan University, Shanghai, China

§Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education, China
¶Beijing Jiaotong University, China

Abstract—In-app mobile advertising serves as a primary
source of revenue for most free apps. Such apps are embedded
with third-party SDKs for ads displaying and are monetized by
user impressions. However, ad placement can sometimes spoil
user experience, for example, by too much memory consumption
and battery drainage, thus leading to app uninstalling and
unfavorable user feedback. Therefore, ensuring user perceptions
of mobile ads can be greatly beneficial to app developers. Fur-
thermore, various ad networks and formats make ads selection a
great challenge. To achieve this, we design a tool named IntelliAd
to automatically measure the ads-related consumption on mobile
phones. Based on the measured costs, developers can optimize
the ad-embedding schemes for their apps.

Keywords-Mobile Advertising; Ad Costs; Automatic Measure-
ment;

I. INTRODUCTION

In-app advertising is a form of advertising within apps and

on mobile devices such as phones and tablets. To embed

ads into apps, developers are required to introduce third-party

advertising SDKs and determine the ad networks to use (e.g.,
AdMob [2] or MoPub [5]). Moreover, mobile ads must be

defined as text, graphics or video based messages and in

fixed sizes (e.g., banner or interstitial). Ads rendering involves

requesting and fetching ads to display from the ad networks.

Successful renderings, i.e., user impressions, can benefit app

developers.

However, free app users may incur hidden costs, for ex-

ample, using much traffic usage for data transmission and

battery drainage for ads displaying. Such ad costs can spoil

user experience, resulting in customer loss and finally profit

reduction [8]. However, this does not mean that ads are

definitely hated by all the users and should be avoided for free

apps. According to a recent survey, 83% respondents stated

that “Not all ads are bad, but I want to filter out the really

obnoxious ones” [7]. Therefore, if we incorporate ads into

apps appropriately, the user experience can still be ensured.

In the paper, we classify ad costs into four types, including

memory consumption, CPU overhead, number of threads, and

traffic usage. Previous research mainly focuses on mitigating

the ad costs from the system side [11], leaving less flexibility

for app developers to modify or customize. In our work,

developers just need to embed the optional ads into apps, and

then the corresponding costs can be profiled and measured

by running our tool IntelliAd. Based on the measured costs,

developers can determine the optimal ad schemes. This pro-

cess can be handled by developers themselves and therefore

provide more flexibility. The experimental results verify the

effectiveness of our work.

II. THE APPROACH

In the section, we introduce the proposed measuring tool

IntelliAd. The metrics to measure include the memory con-

sumption, CPU overhead, number of threads, and traffic usage

during the app runtime.

Ad Display Control: To automatically measure the costs,

we employ the dynamic analysis tool AppsPlayground [10].

We have modified AppsPlayground to accurately measure the

costs of displaying ads. First, the execution rules have been

adjusted. We confined the UI widgets for ads (i.e., widgets

ending with “View”, “WebView”, or “FrameLayout” in the

class names) to be rendered only, not clicked. Moreover, to

ensure equal displaying durations, the interval between two

operations (e.g., clicks) are fixed, such as 20 seconds.

Memory Consumption: Memory management in Android

enables the system to allocate the precious resource. Much

consumption on the resources leads users to experience lag.

When the memory becomes constrained, the system slows

down dramatically [9]. IntelliAd employs the tool top to

monitor the memory consumption, measured by “Resident Set

Size”.

CPU Overhead: The overall busyness of the system can be

quantified by the CPU utilization [4]. We suppose that different

ad SDKs manage the ad lifecycle differently, and observe their

CPU expended during the runtime. Also, top is utilized to

record the CPU occupancy rate.

Number of Threads: Rendering ads in the user’s interface

involves the implementation of the UI thread. When the UI

thread(i.e., “main thread”) performs intensive work, apps may

appear to hang. Therefore, we also consider the number of

threads as a type of ad costs. The cost is evaluated through

reading the /proc/pid/stat file at the runtime.

Traffic Usage: Different ad networks and ad formats (e.g.,
banner, interstitial, or video) can influence the data transmitted.

IntelliAd utilizes the typical tool tcpdump [6] to estimate the

total bytes consumed in real time.

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.123

252

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

252

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

252

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

253

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

253

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

253

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

253

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

253

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

253

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.123

253

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I
AD SCHEMES MEASURED

ID Ad Network Banner Interstitial
A1 AdMob �
A2 MoPub �
A3 AdMob �
A4 AdMob � �

Measuring Frequency Setting: The top tool is set to run

at one second interval to measure the memory/CPU overhead.

IntelliAd reads the system files every 0.04s to capture the

number of threads. Besides, to record all the traffic transmitted,

tcpdump is started once the app is launched.

III. EXPERIMENTS

In the section, we have measured the ad costs for different

ad schemes, which evaluates the influence of schemes on ad

costs and also the effectiveness of IntelliAd.

A. Experimental Settings

In the experiment, we employ two leading ad networks, i.e.,
AdMob and MoPub, which occupy over half of the whole

android advertising market (68.0%) [1]. The ad formats are

defined as images and in two types of size (banner and

interstitial). Table I depicts the four ad schemes we have

experimented with. We choose the schemes for analyzing the

effects of different ad networks (A1 and A2), or formats (A1

and A3), or the numbers of ads (A1 and A4).

Ad Cost Separation: Since only the costs produced by ads

are required, we create a prototype app for analysis. The costs

of each scheme are calculated by subtracting the costs of the

prototype app from those of the ad-embedded app.

One Page, One Ad: According to the mobile advertising

policies [3], the number of ads on a single screen should

not exceed one. Therefore, we design one button in the main

activity for navigating to an empty activity or interstitial ad

accordingly.

Mitigating Background Noise: To mitigate the background

noise, we restore the system environment to its original state in

the beginning of each measurement. Furthermore, the costs of

each ad schemes are measured for four times and the average

results are calculated for analysis.

B. Experimental Results

The mobile device we have used is the LG Nexus 5

smartphone with a rooted Android 5.0.1 operating system.

Figure 1 illustrates the increase rates for the corresponding

ad costs.

As Fig. 1 indicates, the ad costs for different ad schemes

exhibit obvious differences. The average increase rates are

1.12, 0.11, 2.52, and 8.84 times for memory consumed,

CPU overhead, the number of threads, and traffic usage,

respectively, with the standard deviations at 0.17, 0.13, 0.24,

and 4.24. We can discover that the traffic usage displays

the highest increase rate among all the cost types, and also

largest fluctuation along with ad schemes. This implies that

ad schemes can affect traffic consumption greatly. We then

Fig. 1. Increase Rates of Ad Costs for Different Ad Schemes.

analyze the effects of ad networks and formats on the generate

costs.

(1) Ad Network: According to Figure 1, despite embedded

with the same ad format (banner), A1 (AdMob) presents

nearly 2.8 times more than A2 (MoPub) regarding the traffic

growth, which is also verified in [11]. However, for the CPU

consumed, A2 displays 13.3 times more increase than A1.

Therefore, different ad networks impact ad costs differently.

(2) Ad Format: In Figure 1, although A1 (banner) and A3

(interstitial) are embedded with the same ad network, their ad

costs are different due to ad formats. A3 shows more increase

on CPU utilization (47.8%), which might be attributed to more

rendering work for the interstitial ad. The differences also

exhibit on the memory consumed and traffic usage. Thus, the

ad format is also an influence on the ad costs.

Moreover, by comparing A1 with A4 (banner and intersti-

tial), we can discover that more ads embedded would increase

the ad costs seriously. For example, A4 presents much more

consumption on the data traffic and CPU overhead than A1,

50.1% and 95.7%, respectively. Based on the experimental

results, we can conclude that ad schemes can affect ad costs,

which also signifies the usefulness of IntelliAd.

IV. CONCLUSIONS

We introduce a tool named IntelliAd to automatically mea-

sure and profile ad costs of different ad schemes. Based on

the measured costs, developers can better determine the ads

to embed into their apps.

ACKNOWLEDGMENTS

This work was supported by the Key Project of National

Natural Science Foundation of China (Project No. 61332010),

the National Basic Research Program of China (973 Project

No. 2014CB347701), the Research Grants Council of the

Hong Kong Special Administrative Region, China (No. CUHK

14205214 of the General Research Fund), and 2015 Microsoft

Research Asia Collaborative Research Program (Project No.

FY16-RES-THEME-005). Yangfan Zhou is the corresponding

author.

REFERENCES

[1] Ad libraries provided by AppBrain. http://www.appbrain.com/stats/
libraries/ad.

253253253254254254254254254254

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:29 UTC from IEEE Xplore. Restrictions apply.

[2] AdMob. https://www.google.com/admob/.

[3] Behavioural policies. https://support.google.com/admob/answer/
2753860?hl=en-GB.

[4] CPU time. https://en.wikipedia.org/wiki/CPU time.

[5] MoPub. http://www.mopub.com/.

[6] Tcpdump.

[7] User survey. https://www.vieodesign.com/blog/
new-data-why-people-hate-ads.

[8] Why do people uninstall apps? https://www.quora.com/
Why-do-people-uninstall-the-apps.

[9] Why does the iPhone need so much less RAM than Android devices?

https://www.quora.com/.
[10] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic security

analysis of smartphone applications. In Proceedings of the 3rd Confer-
ence on Data and Application Security and Privacy (CODASPY), pages
209–220. ACM, 2013.

[11] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Pa-
pagiannaki, H. Haddadi, and J. Crowcroft. Breaking for commercials:
characterizing mobile advertising. In Proceedings of the 2012 Confer-
ence on Internet Measurement Conference (IMC), pages 343–356. ACM,
2012.

254254254255255255255255255255

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 03:01:29 UTC from IEEE Xplore. Restrictions apply.

