
System-Level Reliability and Sensitivity
Analyses for Three Fault-Tolerant System

Architectures

Joanne Bechta Dugan * and Michael R. Lyut
Department of Electrical Engineering

University of Virginia
Charlottesville, Virginia 22903-2442

jbd@Virginia.edu
tBelleore

Morristown, New Jersey 07692-1910
lyu@bellcore.com

Abstract

This paper discusses the modeling and analysis of three major fault-tolerant software system archi­
tectures: DRB (Distributed Recovery Blocks), NVP (N-Version Programming) and NSCP (N Self­
Checking Programming). In the system-level reliability modeling domain. fault tree analysis techniques
and Markov modeling techniques are combined to incorporate transient and permanent hardware faults
as weIl as unrelated and related software faults. These models are parameterized by a real-world fault­
tolerant !light control computer application for evaluations and comparisons. In particular. a series of
sensitivity analysis is performed to explore the critical components in each fault-tolerant architecture
and display their quantitative impacts to the overall system reliability.

1 Introduction

Since the first computer was invented some forty years ago. human beings have been depending
more and more on computers in their daily lives. When the requirements for and dependencies
on computers increase. the crises of computer failures also increase. Tbe impact ofhardware and
software failures range from inconvenience (e.g .• malfunctions of horne appliances). economic

F. Cristian et al. (eds.), Dependable Computing for Critical Applications 4
© Springer-Verlag/Wien 1995

460 Dugan,Lyu

loss (e.g., interceptions of banking systems) to life-tbreatening (e.g., failures of flight systems).
Needless to say, reliability of computer systems becomes the major concem for our society for
the 1990's and beyond. Consequently, computer systems tbat are used for critical applications
are designed to tolerate both software and hardware faults by executing multiple software
versions on redundant hardware. Many such examples exist in the aerospace industry [23, 7, 21],
nuclear power industry [15, 2, 22], and ground transportation industry [6].

The system architectures incorporating both hardware and software fault tolerance are explored
in three typical approaches. The Distributed Recovery Blocks (DRB) scheme [9] combines
both distributed processing and Recovery Block (RB) [16] concepts to provide a unified ap­
proach to tolerating both hardware and software faults. Architectural considerations for the
support of N-Version Programming (NVP) [1] were addressed in [10], in which the FfP-AP
system is described. The FfP-AP system achieves hardware and software design diversity by
attaching application processors (AP) to tbe byzantine resilient hard core Fault Tolerant Pro­
cessor (FfP). N Self-Checking Programming (NSCP) [12] uses diverse hardware and software
in self-checking groups to detect hardware and software induced errors. The NSCP concept
forms the basis of tbe flight control system used on tbe Airbus A310 and A320 aircraft [3].

Sophisticated techniques exist for the separate analysis of fault tolerant hardware [5, 8] and
software [11, 18, 19], and a few autbors have considered tbeir combined analysis [11, 20, 13].
This paper uses a combination of fault tree and Markov modeling as a framework for tbe analysis
of hardware and software fault tolerant systems. The overall system model is a Markov model
in which the states of the Markov chain represent the evolution of the hardware configuration
as permanent faults occur. A fault tree model for each state in the Markov chain captures the
effects of software bugs and transient hardware faults. This hierarchical approach simplifies the
development, solution and understanding of the modeling process. In performing each model,
the parameter values are derived from the analysis of data collected from an experimental NVP
implementation [14]. A number of sensitivity analyses are conducted to study the quantitative
behavior of tbe system reliability witb respect to the parameter values.

2 Modeling Methodology

2.1 Assumptions

Task computation. The computation being performed is a task (or set of tasks) which is
repeated periodically. A set of sensor inputs is gatbered and analyzed and a set of
actuations are produced. Bach repetition of a task is independent. The goal of the
analysis is the probability that a task will succeed in producing an acceptable output.

Software failure probability. Software faults exist in the code, despite rigorous testing. A
fault is activated by some random input and produces an erroneous result. Bach compu-

System-Level Reliability and Sensitivity Analyses for Fault-Tolerant System Architectures 461

a) Distribuled Recovery Block b) N-version prograuuning c) N sclf -cbecking programming

Figure 1: Structure of a) DRB, b) NVP and c)NSCP

tation of a task receives a different set of inputs which are independent. Thus, a software
task has a fixed probability of producing an error for a given task execution.

Constant hardware failure rates. The arrival (activation) rate of permanent physical faults
is constant and will be denoted by .\.

Transient hardware faults. Transient hardware faults are modeled separately from permanent
hardware faults. A transient hardware fault is assumed to upset the software running
on the processor and produce an erroneous result which is indistinguishable from an
input-activated software error. We assurne that the lifetime of transient hardware faults
is shorter than a task computation, and thus assign a fixed probability to the occurrence
of a transient hardware fault during a single computation.

Related software faults. A related software fault in two different variants produce similar
erroneous results on the same input. The two erroneous results match, which will be
undetected if the results are compared to each other.

For the comparisons drawn from this study, we assurne that the systems are unmaintained.
Repairability and maintainability could certainly be included in the Markov model; we have
chosen not to include them to make the comparisons clearer. More interesting task computation
processes could be considered within this modeling framework as weIl.

Figure I shows the hardware and software error confinement areas [12] associated with the
three architectures being considered in this paper. The systems are defined by the number of
software variants, the number of hardware replications, and the decision algorithm. The error
confinement area covers the region of the system affected by faults in that component.

462 Dugan, Lyu

2.2 System reliability model

A reliability model of an integrated fault tolerant system must include at least three differ­
ent factors: computation errors, system structure and coverage modeling. In this paper we
concentrate on the first two, as coverage modeling has been addressed in detail elsewhere [4].

The computation process is assumed to consist of a single software task that is executed
repeatedly, such as would be found in a process control system. The software component
performing the task is designed to be fault tolerant. A single task iteration consists of a task
execution on a particular set of input values read from sensors. The output is the desired
actuation to control the external system. During a single task iteration, several types of events
can interfere with the computation. The particular set of inputs could activate a software fault
in one or more of the software versions andlor the decider. Also, a hardware transient fault
could upset the computation but not cause permanent hardware damage. The combinations
of software faults and hardware transients that can cause an erroneous output for a single
computation is modeled with a fault tree. The solution of the fault tree yields the prob ability
that a single task iteration produces an erroneous output. We note that in the more general case
where more than one task is performed, the analyses of each task can be combined accordingly.

The longer-term system behavior is affected by permanent faults and component repair which
require system reconfiguration to a different mode of operation. The system structure is modeled
by a Markov chain, where the Markov states and transitions model the long term behavior of
the system as hardware and software components are reconfigured in and out of the system.
Each state in the Markov chain represents a particular configuration of hardware and software
components and thus a different level of redundancy. The fault and error recovery process is
captured in the coverage parameters used in the Markov chain [4].

The short-term behavior of the computation process and the long-term behavior of the system
structure are combined as follows. For each state in the Markov chain, there is a different
combination of hardware transients and software faults that can cause a computation error, and
thus a different probability that an unacceptable result is produced.

The fault tree model solution produces, for each state i in the Markov model, the probability
qi that an output error occurs during a single task computation while the state is in state i.
The Markov model solution produces Pi(t), the prob ability that the system is in state i at time
t. The overall model combines these two measures to produce Q(t), the probability that an
unacceptable result is produced at time t.

n

Q(t) = 'L,qiPi(t)
i=l

We assume that the system is unable to produce an acceptable result while in the failure state,
thus (qjail = 1).

System-Level Reliability and Sensitivity Analyses tor Fault-Tolerant System Architectures 463

~~~1 
i i lQIT i 

..... ........................... __ .; : ...................... ; 

Markov model 

01 system structure 

2~(1-c) , / 

( FAtLURI!STATl! ) ~ 

---------------------------------------------------------

ComputatIon error model 

ComputatIon error model 

tor intermediate state 

after successful reconligu rat lon 

Figure 2: Reliability model of DRB. 



464 Dugan. Lyu 

······················· ··· ······· ······ ·0 ·· ···· 

Markov model 

01 system struC1ure 

------------------- ------- ---------------------------------------

Computalion error model 

tor in~ial slale 

-- ---------- ---------- ------- --------- --------- ------ -------- ----

Computation error model 

tor Intermediale state 

alter successlul recontiguralion 

Figure 3: Reliability model of NVP. 



System-Level Reliability and Sensitivity Analyses tor Fault-Tolerant System Architectures 465 

! 1::I~l · :~0::: : 
[ GI GI G1 G1 iDi G 0 ' 
: ...................................... : ! .................. : 

H (l -<:) 

Computatlon error model 

for inlermediate state 

after successful reconfiguration 

Markov model 

of syslem slruclure 

Compulalion error model 

for inrtial slale 

8600 
Figure 4: Reliability model of NSCP. 



466 Dugan, Lyu 

The three-part reliability models used for analysis of DRB, NVP and NSCP are shown in 
figures 2, 3 and 4, respectively. Each model consists of a three state Markov chain and two 
fault tree models. The Markov chain shows the evolution of the system structure as permanent 
physical faults are activated and handled. The fault tree models show the combinations of 
events which can upset a single task iteration in the full-up (initial) state and the intermediate 
state of the Markov model. In the Markov model, A is the rate at which permanent hardware 
faults are activated and c is the probability that the system can automatically recover from a 
hardware fault. The basic events in the fault tree represent unrelated software failures (labeled 
Vi), related software failures between two versions (labeled V ij), related software failures in 
all versions (RALL), decider failures (D) and hardware transients (H). 

3 Experimental Data Analysis 

3.1 Description of experiment 

The parameter values for the models in this paper were determined using actual data derived 
from an experimental implementation of a real-world automatie (i.e., computerized) airplane 
landing system, or so-called "autopilot. oo The software systems of this project were developed 
and programmed by 15 programming teams at the University oflowa and the RockwelllCollins 
Avionics Division. A total of 40 students (33 from ECE and CS departments at the University 
oflowa, 7 from the Rockwell International) participated in this project to independently design, 
code, and test the computerized airplane landing system, as described in the Lyu-He study [14]. 

The application used in the Lyu-He study is part of a specification USf'.d by some aerospace 
companies for the automatie (computer-controlled) landing of commercial airliners. The specic 
fication can be used to develop the software of a flight control computer (FCC) for a real aircraft, 
given that it is adjusted to the performance parameters of a specific aircraft. All algorithms 
and controllaws are specified by diagrams which have been certified by the Federal Aviation 
Administration (FAA). The pitch control part of the auto-Ianding problem, i.e., the control 
of the vertical motion of the aircraft, was selected for the project in order to fit the 14-week 
software development time. 

By the end of the software development phase, 12 of the 15 programs passed the acceptance 
test successfully and were engaged in operational testing for further evaluations. The average 
size of these programs were 1564 lines of uncommented code, or 2558 lines when comments 
were included. The average fault density of the program versions which passed ATl (the first 
step in the Acceptance Test) was 0.48 faults per thousand lines of uncommented code. The 
fault denslty for the final versions was 0.05 faults per thousand lines of uncommented code. 

The operational environment for the application was conceived as airplaneJautopilot interacting 
in a simulated environment. During the operational phase, 1000 flight simulations were con-



System-Level Reliability and Sensitivity Analyses for Fault-Tolerant System Architectures 467 

Version Id Number of failures Prob. by case Prob. by time 

ß 510 0.51 0.000096574 

'Y 0 0.0 0.0 
f 0 0.0 0.0 
( 0 0.0 0.0 

11 1 0.001 0.000000189 
e 360 0.36 0.000068169 

'" 0 0.0 0.0 
A 730 0.73 0.000138233 

11 140 0.14 0.000026510 
v 0 0.0 0.0 

e 0 0.0 0.0 
0 0 0.0 0.0 

Average 145.1 0.1451 0.000027472 

Table 1: Characteristics of accepted programs 

ducted. Bach flight simulation was characterized by the following five initial values regarding 
the landing position of an airplane: (1) initial altitude (about 1500 feet); (2) initial distance 
(about 52800 feet); (3) initial nose up relative to velocity (range from 0 to 10 degrees); (4) 
initial pitch attitude (range from -15 to 15 degrees); and (5) vertical velocity for the wind 
turbulence (0 to 10 ftlsec). One simulation consisted of about 5280 iterations oflane command 
computations (50 milliseconds each) for a totallanding time of approximately 264 seconds. 
For a conservative estimation of software failures in the system, we took the program versions 
which passed the ATl for study. The reason behind this was that had the Acceptance Test not 
included an extra test case after ATl, more faults would have remained in the program versions. 

3.2 Failure data analysis 

Table 1 shows the software failures encountered in each single version. We examine two levels 
of granularity in defining software execution errors and correlated errors: "by case" or "by 
time." The first level was defined based on test cases (1000 in total). If aversion failed at any 
time in a test case, it was considered failed for the whole case. If two or more versions failed in 
the same test case (no matter at the same time or not), they were said to have coincident errors 
for that test case. The second level of granularity was defined based on execution time frames 
(5,280,920 in total). Errors were counted only at the time frame upon which they manifested 
themselves, and coincident errors were defined to be the multiple program versions failing at 
the same time in the same test case (with or without the same variables and values). 

The accepted programs were then arranged in configurations of 2, 3 and 4 programs, and the 
error characteristics of each of the configurations is shown in tables 2, 3 and 4. Both the by-case 



468 Dugan,Lyu 

Category BYCASE BYTIME 
Number of cases Frequency Number of cases Frequency 

1- no errors 53150 0.8053 348259290 0.999192 
2 - single error 11160 0.1691 281200 0.000807 
3 - two coincident errors 1690 0.0256 230 0.000001 
Total 66000 1.0000 1161802400 1.000000 

Table 2: Error characteristics for two-version configurations 

Category BYCASE BYTIME 
Number of cases Frequency Number of cases Frequency 

1- no errors 163370 0.7426 1160743690 0.999089 
2 - single error 51930 0.2360 1056010 0.000909 
3 - two coincident errors 4440 0.0202 2700 0.000002 
4 - three coincident errors 260 0.0012 0 0.0 
Total 220000 1.0000 1161802400 1.000000 

Table 3: Error characteristics for three-version configurations 

and by-time error detection methods were used. These characteristics were used to determine 
parameter values for the software faHure models of DRB, NVP and NSCP. 

Table 5 summarizes the parameters used for the software parameters of the system models. 
These parameters are derived from a single experimental implementation and so may not be 
generally applicable. SimHar analysis of other experimental data will help to establish a set of 
reasonable parameters that can be used in models that are developed during the design phase 
of a fault tolerant system. 

Category BYCASE BYTIME 
Number of cases Frequency Number of cases Frequency 

1- no errors 322010 0.65052 2611305000 0.998948 
2 - single error 152900 0.30889 2719200 0.001040 
3 - two coincident errors 16350 0.03303 31200 0.000012 
4 - three coincident errors 3700 0.00747 0 0.0 
5 - four coincident errors 40 0.00008 0 0.0 
Total 495000 1.0000 2614055400 1.000000 

Table 4: Error characteristics for four-version configurations 



System-Level Reliability and Sensitivity Analyses Jor Fault- Tolerant System Architectures 469 

DRBmodel NVPmodel NSCPmodel 

BYCASEDATA 

Pv = 0.095 Pv = 0.0958 Pv = 0.106 
PRV = 0.0167 PRV =0 PRV =0 

PRALL = 0.0003 PRALL = 0 

Predicted failure probability (perfect decider, no HW faults) 
0.0265 0.0262 0.0403 

Observed failure probability (from the data) 
0.0256 0.0214 0.0406 

Probability of decider failure used for system analysis 
0.001 0.0001 0.0001 

BYTIMEDATA 

Pv = 0.0004 Pv = 0.0003 Pv = 0.00026 
PRv = 8.4 X 10-7 PRV = 6 X 10-7 PRV =0 

PRALL = 0 PRALL = 1.2 X 10-5 

Predicted failure probability (perfect decider, no HW faults) 
1 x 10-6 2.07 X 10-6 1.23 X 10-5 

Observed failure probability (from the data) 
1 x 10-6 2.3 X 10-6 1 X 10-5 

Probability of decider failure used for system analysis 
1 x 10-7 1 X 10-7 1 X 10-7 

Table 5: Summary of nominal software parameters used for system analysis 



470 Dugan, Lyu 

3.3 Hardware parameters 

Typical permanent failure rates for processors range in the 10-5 per hour range, with transients 
perhaps an order of magnitude larger. Thus we will use AI' = 10-5 per hour for the Markov 
model. 

In the by-case scenario, a typical test case contained 5280 time frames, each time frame heing 
50 ms., so a typical computation executed for 264 seconds. Assuming that hardware transients 
occur at a rate At = (10-4/3600) per second, we see that the probability that a hardware 
transient occurs during a typical test case is 

1 - e-J.,x264 •• cond. = 7.333 X 10-6 (1) 

We conservatively assume that a hardware transient that occurs anywhere during the execution 
of a task disrupts the entire computation running on the host. 

For the by-time data, the probability that a transient occurs during a time frame is 

1 - e-J.,xO.05 •• cond. = 1.4 X 10-9 (2) 

If we further assume that the lifetime of a transient fault is one second, then a transient can 
affect as many as 20 time frames. We thus take the probability of a transient to he 20 times the 
value calculated in equation 2, or 2.8 x 10-8• 

Finally, for both the by-case and by-time scenarios, we assume a fairly typical value for the 
coverage parameter in the Markov model, C = 0.999. 

4 Reliability and Sensitivity Analysis 

4.1 Reliabilityanalysis 

Figure 5 compares the predicted hehavior of the three systems. Under both the by-case and 
by-time scenarios, the recovery block system is most able to produce a correct resuit, followed 
by NVP. NSCP is the least reliable of the three. It is noted, however, that the analysis performed 
in this paper is based on a reliability aspect (i.e., whether the system can deliver an acceptable 
result) rather than on a safety aspect (i.e., whether the system can deliver an acceptable result 
or conduct a safety shutdown after detecting an unacceptable condition). NSCP is expected 
to obtain a much hetter improvement with respect to the safety analysis. Of course, these 
comparisons are dependent on the experimental data used and assumptions made. More 
experimental data and analysis are needed to enable a more conclusive comparison. 

Figure 6 gives a closer look at the comparisons between the NVP and DRB systems during the 
first 200 hours. The by-case data shows a crossover point where NVP is initially more reliable 



System-Level Reliability and Sensitivity Analyses tor Fault-Tolerant System Architectures 471 

i 
._~~~._-_." ... -- ... -... -.......... -._ ......... -............ __ . 

',L-__ ~~ __ ~.~~----~,,~,----~--~ 
t~Chouul 

j OOOOf. 

l I) aGon 
t t OOOOl 

i 0 aaou 

; 00002 

j 000::: 

Figure 5: Predicted reliability, by-case data (left) and by-time data (right) 

" I oous 

i 0025&$ 

~ 

! :,::: . ::i 002U 

I OOU25 

o DUlIt, '---__ -,~---,-_-,:...~,,-~-. __ -,~ ____ -,' 

J 
• 
f 

Figure 6: Predicted reliability, by-case data (left) and by-time data (right) 



472 Dugan, Lyu 

ByCASEData ByTIMEData 
Parameter Result Percent Change Result Percent Change 
Nominal 0.0265 1.10 x 10-1> 

Pv + 10% 0.0284 7% 1.13 x 10-6 2.8% 
PRV + 10% 0.0282 6.2% 1.18 x 10-6 7.6% 
PD + 10% 0.0266 1.9% 1.11 x 10-6 0.9% 

Table 6: Sensitivity to parameter change for DRB model 

ByCASEData ByTIME Data 
Parameter Result Percent Change Result Percent Change 
Nominal 0.02617 2.17 x 1O-b 

Pv + 10% 0.03137 19.9% 2.23 x 10-6 2.6% 
PRV + 10% 2.35 x 10-6 8.3% 
PRALL + 10% 0.0262 0.1% 
PD + 10% 0.02618 0.04% 2.18 x 10-6 0.5% 

Table 7: Sensitivity to parameter change for NVP model 

but is later less reliable than DRB. Using the by-time data, there is no crossover point, but the 
estimates are so small that the differences may not be statistically significant. 

For all three systems the probability of producing an unacceptable result is initially much 
lower with the by-time data than with the by-case data. This analysis dramatizes the potential 
improvement associated with frequent comparisons (each time frame rather than each test case). 
The probability of producing an unacceptable result increases with time, as expected, but at 
1000 hours is still far below even the initial by-case probability. 

4.2 Sensitivity Analysis 

To see which parameters are the strongest determinant of the system reliability, we increased 
each of the failure probabilities in turn by 10 percent and observed the effect on the predicted 
unreliability. The sensitivity of the predictions to a ten-percent change in input parameters for 
the DRB model is shown in table 6. It can be seen that the DRB model is most sensitive to 
a change in the probability of an unrelated fault for the by-case data, and to a change in the 
probability of a related fault for the by-time data. 

Table 7 shows, the change in the predicted unreliability (at t = 0) when each of the NVP nominal 
parameters is increased. For the by-case data, a ten percent increase in the probability of an 
unrelated software fault results in a twenty percent increase in the probability of an unacceptable 
result. A ten-percent increase in the probability of a related or decider fault activation has an 
almost negligible effect on the unreliability. For the by-time data, the proability of a related 



System-Level Reliability and Sensitivity Analyses tor Fault-Tolerant System Architectures 473 

• 
i 

ByCASEData By TIME Data 
Parameter Result Percent Change Result Percent Change 
Nominal 0.04041 1.237 x 10-' 
Pv + 10% 0.04833 19.6% 1.243 x 10-5 0.5% 
PRALL + 10% 1.357 x 10-5 9.7% 
PD + 10% 0.04042 0.02% 1.238 x 10-5 0.08% 

Table 8: Sensitivity to parameter change for NSCP model 

..... -.• 
. . .... -.. . ..... -.... -- -- ..•. -" --

// 

,/ 
./ 

o~.7. .. --~~--~.~ .. ,~~.~,,~--~--~ 
'~lU.yofDecldu"".lh ... 

• 
I 

1.-05 00001 0001 001 
PrClbabllU'y of Dec:l"'-r Fal1"n. 

Figure 7: Effect of equal decider failure probabilities, by-case data (left) and 
by-time data (right) 

fault has the largest impact on the prob ability of an unacceptable result. This is similar to the 
DRB model. 

The sensitivity of the NSCP model to the nominal parameters is shown in table 8. The fault 
tree models and the sensitivity analysis show that NSCP is vulnerable to related faults, whether 
they involve versions in the same error confinement area or not. 

5 Decider Failure Probability 

The probability of a decider failure may be an important input parameter to the comparative 
analysis of the NVP and DRB systems. In this section we vary the decider failure probability 
in an attempt to demonstrate its importance. Figure 7 shows, for the by-case and by-time 
parameterizations, the unreliability of the three systems as the probability of decider failure is 
varied. For this analysis, we set the probability of failure for the decider to the same value for 
all three models, and show the probability of an unacceptable result at time t = O. 



474 

i 

I 

Dugan, Lyu 

----
• 
I 
~ 

g 00001 

i 
O~~~'~~'_~M~~'~~~"~~"~"--~'7.,,--~--~ 

~licy 01 .. acc.pc .... __ Pa>.l .... 

... -... -

Figure 8: Effect of varying acceptance test failure probability, by-case data(left) 
and by-time data (right) 

For the parameters derived from the experimental data, it seems that DRB and NVP are nearly 
equally reliable, if both have the same probability of decider failure. However, it is not 
reasonable for this application to assume equally reliability deciders for both DRB and NVP. 
The decider for the DRB system is an acceptance test, while that for the NVP is a simple voter 
and NSCP a simple comparator. For this application, it seems likely that an acceptance test 
will be more complicated than a majority voter. The increased complexity is likely to lead to 
a decrease in reliability, with a corresponding impact on the reliability of the system. In fact, 
reliability of DRB will collapse if the acceptance test in DRB is as complex and unreliable 
as its primary or secondary software versions. For example, if the probability of failure in 
acceptance test (PD) is close to Pv , which is 0.095 by case or 0.0004 by time, then both Figure 
7 indicates that DRB will initially perform the worst comparing with NVP and NSCP. 

Figure 8 shows how the comparison between DRB and NVP is affected by a variation in the 
probability of failure for the acceptance test. The parameters for the NVP analysis were held 
constant, and the parameters (other than the probability of acceptance test failure) for the DRB 
model were also held constant. Figure 8 shows that the acceptance test for a recovery block 
system must be very reliable for it to be comparable in reliability to a similar NVP system. 

6 Conclusions 

We have proposed a system-level modeling approach to study the reliability behavior of 
three types of fault-tolerant architectures: DRB, NVP and NSCP. Using a recent fault­
tolerant software project data, we parameterized the models and displayed the resulting system 
(un)reliability. The comparisons of the three fault-tolerant architectures were done not only 



System-Level Reliability and Sensitivity Analyses tor Fault-Tolerant System Architectures 475 

from directly applying the estimated parameters, but from varying the baseline parameters as a 
sensitivity analysis. Several interesting results were obtained: 

1. A drastic improvement of reliability could be observed if a finer and more frequent error 
detection mechanism could be performed by the decider for each architecture. 

2. From the by-case data, varying the probability of an unrelated software fault had the major 
impact to the system reliability, while from the by-time data, varying the probability of 
a related fault had the largest impact. This could be due to the fact that the by-time data 
compares results in a finer granularity level, and is thus more sensitive to related faults 
among pro gram versions. 

3. In comparing the three different architectures, DRB performed better than NVP which in 
turn was better than NSCP. DRB also enjoyed the feature of relative insensitivity to time 
in its reliability function. DRB might perform worse than NVP to begin with, but in the 
long run it could become better. 

4. The acceptance test in DRB had to be very reliable for (3) to remain true. Ifthe acceptance 
test in DRB is as unreliable as its application versions, DRB loses its advantage to NVP 
andNSCP. 

5. NSCP did not seem to perform very weIl in the reliability analysis. However, it is 
expected to gain more improvement and close the gap to the other two architectures if a 
safety analysis is performed. 

Needless to say, more data points are wanted for the validation of our models and for more 
evidences of the advantages and disadvantages of the three fault-tolerant system architectures. 

Acknowledgements 

This work was partially funded by NASA AMES Research Center under grant number NCA2-
617. The authors are grateful to Yu-Tao He and Stacy Doyle for their assistance. The models 
presented in this paper were solved using SHARPE [17]. 

References 

[1] Algirdas AviZienis. The N-version approach to fault-tolerant software. IEEE Transactions 
on Software Engineering, SE-l1(12):1491-150I, December 1985. 



476 Dugan, Lyu 

[2] P.G. Bishop, D.G. Esp, M. Barnes, P. Humphreys, G. Dahl, and 1. Lahti. PODS - a project 
of diverse software. IEEE Transactions on Software Engineering, SE-12(9):929-940, 
September 1986. 

[3] D. Briere and P. Traverse. Airbus A320/A330/A340 electrical flight contro1s: A family 
of fault-tolerant systems. In Proceedings 0/ the 23rd Symposium on Fault Tolerant 
Computing, pages 616-623,1993. 

[4] Joanne Bechta Dugan and K. S. Trivedi. Coverage modeling for dependability analysis 
offault-tolerant systems. IEEE Transactions on Computers, 38(6):775-787,1989. 

[5] Robert Geist and Kishor Trivedi. Reliability estimation of fault-tolerant systems: Tools 
and techniques. IEEE Computer, pages 52-61, July 1990. 

[6] Gunnar Hagelin. ERICSSON safety system for railway control. In U. Voges, editor, 
Software Diversity in Computerized Control Systems, pages 11-21. Springer-Verlag, 1988. 

[7] A. D. Hills. Digital fly-by-wire experience. In Proceedings AGARD Lecture Series, 
number 143, October 1985. 

[8] Allen M. Johnson and Miroslaw Malek. Survey of software tools for evaluating reliability 
availability, and serviceability. ACM Computing Surveys, 20(4):227-269, December 
1988. 

[9] K.H. Kim and Howard O. Welch. Distributed execution of recovery blocks: An approach 
for uniform treatment of hardware and software faults in real-time applications. IEEE 
Transactions on Computers, 38(5):626-636, May 1989. 

[10] Jaynarayan H. Lala and Linda S. Alger. Hardware and software fault tolerance: A unified 
architectural approach. In Proc. IEEE Int. Symp. on Fault-Tolerant Computing, FTCS-18, 
pages 240-245, June 1988. 

[11] Jean-Claude Laprie. Dependability evaluation of software systems in operation. IEEE 
Transactions on Software Engineering, SE-1O(6):701-714, November 1984. 

[12] Jean-Claude Laprie, Jean Arlat, Christian Beounes, and Karama Kanoun. Definition 
and Analysis of Hardware- and Software- Fault-Tolerant Architectures. IEEE Computer, 
pages 39-51, July 1990. 

[13] Jean-Claude Laprie and Karama Kanoun. X-ware reliability and availability modeling. 
IEEE Transactions on Software Engineering, pages 130-147, February, 1992. 

[14] Michael R. Lyu and Yu-Tao He. Improving the N-version programming process through 
the evolution of a design paradigm. IEEE Transactions on Reliability, June 1993. 



System-Level Reliability and Sensitivity Analyses jor Fault-Tolerant System Architectures 477 

[15] C. V. Ramamoorthy, Y. Mok, F. Bastani, G. Chin, , and K. Suzuki. Application of a 
methodology for the development and validation of reliable process control software. 
IEEE Transactions on Software Engineering, SE-7(6):537-555, November 1981. 

[16] Brian Randei!. System structure for software fault tolerance. IEEE Transactions on 
Software Engineering, SE-l(2):220-232, June 1975. 

[17] R. Sahner and K. S. Trivedi. Reliability modeling using SHARPE. IEEE Transactions on 
Reliability, R-36(2):186-193, June 1987. 

[18] R. Keith Scott, James W. Gault, and David F. McAllister. Fault-tolerant software reliability 
modeling. IEEE Transactions on Software Engineering, SE-13(5):582-592, May 1987. 

[19] Kang G. Shin and Yann-Hang Lee. Evaluation of error recovery blocks used for co­
operating processes. IEEE Transactions on Software Engineering, SE-1O(6):692-700, 
November 1984. 

[20] George. E. Stark. Dependability evaluation of integrated hardware/software systems. 
IEEE Transactions on Reliability, pages 440--444, October 1987. 

[21] Pascal Traverse. Airbus and ATR system architecture and specification. In U. Voges, 
editor, Software Diversity in Computerized Control Systems, pages 95-104. Springer­
Verlag, June 1986. 

[22] Udo Voges. Use of diversity in experimental reactor safety systems. In U. Voges, editor, 
Software Diversity in Computerized Control Systems, pages 29-49. Springer-Verlag, 1988. 

[23] L. J. Yount. Architectural solutions to safety problems of digital tlight-critical systems for 
commercial transports. In Proceedings AlAA/lEEE Digital Avionics Systems Conjerence, 
pages 1-8, December 1984. 


