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Abstract

Cloud incidents (service interruptions or performance degra-

dation) dramatically degrade the reliability of large-scale

cloud systems, causing customer dissatisfaction and revenue

loss. With years of efforts, cloud providers are able to solve

most incidents automatically and rapidly. The secret of this

ability is intelligent incident detection. Only when incidents

are detected timely, accurately, and comprehensively, can

they be diagnosed and mitigated at a satisfiable speed. To

overcome the limitations of traditional rule-based detection,

we carried out years of incident detection research. We de-

veloped a comprehensive AIOps (Artificial Intelligence for

IT Operations) framework for incident detection containing

a set of data-driven methods. This paper shares our recent

experience of developing and deploying such an intelligent

incident detection system at Microsoft. We first discuss the

real-world challenges of incident detection that constitute

the pain points of engineers. Then, we summarize our in-

telligent solutions proposed in recent years to tackle these

challenges. Finally, we show the deployment of the incident

detection AIOps framework and demonstrate its practical

benefits conveyed to Microsoft cloud services with real cases.

1 Introduction

In recent years, although enormous efforts have been devoted

to maintaining the reliability of cloud systems, incidents

at different severity levels are still inevitable [2–4]. Severe

incidents will incur poor user experience and huge finical

loss [10, 12], which are required to be detected and solved

as soon as possible. In practice, incident detection of online

services heavily depends on the services’ observability data,

e.g., logs, metrics, traces, and events. Based on these data, a

large number of alerting rules are manually configured by

engineers to detect incidents. Once an incident is detected,

responsible On-Call Engineers (OCEs) will immediately start

the investigation to quickly restore and fix the service.

∗Work done during internship at Microsoft Research Asia.
∗∗Yu Kang and Qingwei Lin are the corresponding authors.

However, due to complex system architecture and depen-

dencies among service components, it is impossible to manu-

ally design complicated and diverse incident detection mech-

anisms to cover all types of failures, which are often error-

prone and unscalable. During the past several years, we have

continuously studied the problem of incident detection in

large-scale cloud systems. Given that incident detection is

data-driven by nature, we tackle this problem in a fashion

of AIOps (Artificial Intelligence for IT Operations) [8, 11],

which leverages the power of AI to pursue intelligent inci-

dent detection. Compared to manual labor, AIOps-powered

incident detection enables incidents to be diagnosed and

mitigated promptly, accelerating the incident management

process. Moreover, due to data security and integrity, man-

ual intervention from public support may not be allowed

in private clouds, sovereign clouds [16], and other sensitive

clouds [1]. These all advocate the adoption of automated deci-

sion making, especially by AI-based solutions. By proposing

a series of intelligent approaches [5–7, 9, 13–15, 18, 20, 24, 26–

29], we have developed a comprehensive AIOps framework

for prompt and accurate incident detection. It has been de-

ployed within Microsoft and serving many services for years,

producing high impact on industrial practices.

Throughout years of applying AIOps strategies to detect-

ing incidents, we have gained rich experience, which is valu-

able for us and the broad community of cloud IT operations

to carry out further customization and improvement. This pa-

per shares our experience of conducting this line of research

at Microsoft. Specifically, we first introduce the pain points

and challenges of incident detection, i.e., complex alerting

logic, flooding incidents, selective incident enrichment, and re-

active alerts. Then, we elaborate on the developed techniques

to tackle the aforementioned challenges, which can be cate-

gorized into four classes, i.e., multi-aspect detection, incident

refinement, incident enrichment, and proactive detection. Fi-

nally, we report the deployment of the AIOps framework

in Microsoft. Real-world incident cases are also shared to

present the benefits achieved by our AIOps framework.

To sum up, this work makes the following major contri-

butions:

• We study the problem of incident detection in large-scale

production cloud systems. We have summarized the pain
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points and challenges in the real-world detection workflow

for critical incidents.

• An AIOps framework is developed to tackle the key chal-

lenges, aiming at promoting the timely, accurate, and com-

prehensive intelligent incident detection.

• We show deployment of the AIOps framework in pro-

duction along with real-world cases to demonstrate the

industrial benefits conveyed to the incident detection of

Microsoft.

2 Background

2.1 Cloud Incidents

In cloud systems, an incident is an unplanned interruption

or performance degradation of a service or product, such as

API timeouts, network jitters, and power outages. Incidents

have different severity levels - low,medium, high, and critical,

which are set according to the potential impact on customers.

Besides severity level, incidents also contain information

like the reporting service, location, related logs or customer

support tickets. These information plays an essential role in

incident resolving.

2.2 Incident Detection

Incident detection is the process of identifying service in-

terruption or performance/quality issues and rendering an

incident ticket to record relevant information. For a cloud sys-

tem with complex dependencies among thousands of compo-

nents (e.g., microservices, serverless functions), incidents are

inevitable. Therefore, timely, accurate, and comprehensive

incident detection is the key to reducing service downtime,

which serves as the primary step for the follow-up incident

management tasks, e.g., incident triage [14] and incident

mitigation [23]. Incidents are mainly detected by monitors,

which continuously run programs to examine the health

status of a service component. Engineers can also submit in-

cidents manually if they observe abnormal system behaviors

or confirm customer-reported failure messages. To pursue

accurate incident detection, different types of observability

data (e.g., logs, metrics, traces, events) are involved, which

characterize the status and behavior of a component from

different perspectives. Based on these data, engineers need

to design appropriate alerting logic for monitors to capture

incidents comprehensively. Typical configurations of mon-

itors include determining the detection scope (e.g., cluster,

node or software version) with the corresponding measure-

ments (e.g., availability, success rate, latency, throughput),

setting alerting thresholds or designing automated detection

methods applied on them.

3 Challenges

A typical cloud system is characterized by its enormously

large scale beyond general software systems and complicated

dependency among different components. Therefore, it is

Version Cluster Node ... API Return State Latency

V_1.1 PrdC01 N01 ... GET-FILES Success 23ms

V_1.1 PrdC01 N01 POST-RESET Success 11ms

... ...

V_1.3 PrdC03 N05 GET-FILES Failed 58ms

V_1.3 PrdC04 N06 POST-RESET Success 17ms

V_1.4 PrdC04 N06 GET-PWD Failed 31ms

... ...

Table 1. An example of monitoring data in cloud.

very challenging to identify incidents from such a cloud

infrastructure and the diverse services that are built on top

of it. In this section, we summarize the real-world problems

of incident detection.

3.1 Complex Alerting Logic

When configuring incident detectors for a single service, en-

gineers often suffer from determining the complicated alert-

ing logic to cover various aspects of the service. Ideally, these

aspects should reflect the system health status, including dif-

ferent monitoring metrics (e.g., availability, request success

rate, request latency) upon diverse monitored subjects (e.g.,

clusters, nodes, or software versions). An example is shown

in Table 1. On the one hand, the number of detectors would

be explosive due to the exponential combinations among

these monitored subjects (e.g., detecting incidents based on

the request success rates with respect to API "GET-FILES" on

Cluster PrdC01.). For compromise, only a few coarse-grained

detectors can be set up leaving finer-grained issues often

missed. On the other hand, the incident detection models

are individually built up based on heterogeneous monitoring

metrics. However, the commonalities shared among these

metrics (e.g., the similar seasonality pattern across multiple

metrics) are not considered, leading to much repetitive work

for detection model training and deployment. Moreover, the

barriers among the detection approaches are not conducive

to improving their detection accuracy through knowledge

sharing.

3.2 Flooding Incidents

There are numerous incidents created in the cloud systems,

making engineers exhausted from tedious on-call matters.

Specifically, service teams in modern cloud systems usually

adopt the DevOps practice to implement and maintain their

services individually, where each service team tends to report

its own incidents. In practice, services in such a large-scale

system are never isolated and the failure of one service often

propagates to dependent services, leading to related failures.

As the real-world example in Figure 1 shows, a configuration

synchronization issue of the Network service leads to the

failed access of the Storage service, which further causes the

SQL database and other storage-dependent service failures.
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multi-service high-impact incidents from a global perspec-

tive [7, 18]. We generalized the failure prediction approaches

as a framework [30]. We have also proposed proactive miti-

gation actions for the predicted failures. For example, we pro-

posed a reinforcement learning strategy that takes proactive

actions from deprioritizing failure nodes, avoiding failure

nodes, live migration, moving works to healthy nodes, soft

reboot, human investigation, and a mixture of them [17].

We have promoted this proactive paradigm as a prediction-

guided design for system [22].

4.4 Incident Refinement

To resolve the challenge of flooding incidents, we propose

to 1) provide a global view of incidents by linking related

incidents together; 2) prioritize high-impact incidents out

of all incidents. In this way, we can greatly reduce the num-

ber of incidents, facilitate the incident resolution and make

engineers’ efforts more focused.

First, we link incidents that are caused by the same un-

derlying issue together. The backbone of incident linking is

the historical incident relation data that are labeled by engi-

neers, based on which we could learn the service dependency

knowledge. We propose LiDAR [6], a framework to leverage

both textual information and components inter-dependency

information to calculate the linking probability of two inci-

dents and COT [24], which can further correlate and cluster

a set of related incidents among services. With LiDAR and

COT in hand, we can provide suggestions to engineers about

which set of incidents are likely to be correlated and should

be analyzed jointly.

Second, to figure out the importance and urgency of in-

cidents, we first conducted an empirical study on the char-

acteristics of incidental incidents. Based on the empirical

results, DeepIP [5] was proposed to prioritize incidents with

an advanced deep learning model. The method takes in-

puts of three types: incident description, key terms (such as

API names), and runtime environment information (such as

incident-occurring device) to predict the likelihood of inci-

dents to be incidental. The incidents with a low likelihood

of being incidental are suggested to engineers for resolving

with a high priority.

4.5 Incident Enrichment

As discussed in Section 3.2, systematic and efficient incident

enrichment can greatly contribute to the incident fixing pro-

cess. Therefore, we focus on systematically and precisely

locate the fault scope, as well as accurately and efficiently

identify service-side console logs or customer-side support

tickets as supplementary information for the target incident.

For fault localization in hierarchical structure, we pro-

posed HALO [26] to localize the fault to a proper granularity,

which usually suffers from improper aggregation level of in-

cidents. HALO can learn the hierarchical relationship among

attributes and leverages the hierarchy structure, and is able

to locate the exact failure part precisely and efficiently.

For service-side log correlation, we proposed Onion [29] to

localize the incident-indicating logs, which are supposed to

be widely distributed on the anomalous components but rare

on the normal ones, as shown in Figure 2. Onion clusters logs

into different groups based on their text, where the contrast

analysis is then performed. Onion can accurately find out

a few lines of related logs from millions of raw log data in

only several minutes.

For linking incidents with customer support tickets, we

proposed LinkCM [14], which can automatically link cus-

tomer reported tickets with the target incident. The above

link prediction problem can be formulated as a binary classi-

fication task. LinkCM incorporates an attention-based deep

learning classifier, which is capable of capturing the seman-

tic meaning from the customers’ issue descriptions written

in natural language.

5 Deployment and Case Studies

AIOps has long been adopted in Microsoft incident manage-

ment and shown its effectiveness. Collaborating with partner

team, we have designed and deployed an AIOps-oriented

incident management project called BRAIN, empowering

real-world incidents in cloud services [8, 9]. An intelligent

incident detection framework is a core part of the AIOps

incident management system. BRAIN intelligent detection

features have been continuously deployed and improved

service incident detection significantly. We show two real

world cases to demonstrate the application and benefits of

intelligent incident detection.

Belated Update of Domain Name Service: This case

is an incident caused by a failure in the propagation of the

decommission state of an account server group to the down-

stream dependent services. The domain name service failed

to update the state of the account server group of region

X (we concealed the name for privacy protection), which

had been decommissioned at an earlier time. This results

in resolution failures when the requests are routed to these

account server groups. Before our intelligent incident detec-

tion approaches, there would be several monitors reporting

incidents for this problem as multiple services had depen-

dencies on these servers and got impacted. The OCEs from

related services would treat the incidents as low severity

since there is not much impact on each service at first glance.

There were multiple reasons behind it. Without proper multi-

dimensional detection, the fault scope was not that precise.

Moreover, without proper refinement, especially incident

correlation, OCEs from multiple services worked indepen-

dently and underestimated the incident impact.

Thanks to our intelligent approaches, we reported the in-

cidents accurately and comprehensively. With multi-dimen-

sional anomaly detector, we gave the fine-grained failure
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scope. With clearer scoping, we further refined and corre-

lated the incidents according to system and service topology.

Then we knew the impacts on multiple services, such as

file sharing and mail exchange processes. Moreover, our

system identified the account server group shared among

the impacted scopes, providing a valuable hint for further

diagnosis. Finally, the OCEs were called up to engage and re-

solve this incident. In summary, our system is able to detect

alerts more accurately and timely, also with more enriched

information. Owing to this, engineers are capable of taking

corresponding actions before the downstream services are

severely impacted.

Datacenter Power Failure: In this case, the region of the

datacenter was hit by an ice storm, resulting in a large-scale

power failure. Counterintuitively, not all incidents caused

by power issues are easy to detect. Few power issues had led

to real incidents due to resource redundancy. The affected

racks lost power when their supporting UPS (Uninterruptible

Power Supply) units drained. It took tens of minutes before

running out of power supply. Multiple services got affected

gradually during this incident. Before our intelligent incident

detection approaches, hardware and software were managed

independently due to layers of abstraction. At that moment,

both service teams and datacenter management teams would

receive incidents, but the teams might not know the whole

picture at first glance.

Thanks to our intelligent approaches, we reported the

high-impact multi-service incident timely and comprehen-

sively. Our intelligent detection system sent out an initial

notification upon receiving alerting signals from the Com-

pute service. This immediately attracted the attention of

OCEs. Right after that, our system identified more than ten

alerting signals from other services. Our intelligent detection

approach correlated the signals and set the proper severity

level of the incident. Our approach took more and more sig-

nals from the downstream and upstream dependent services

into consideration. Not only the inference confidence of the

intelligent model was raised substantially, but also more

OCEs from multiple teams were engaged, including service

teams and datacenter management teams. They were on the

same page, and a bridge meeting was set up for collaborative

problem-solving. In summary, our system is able to detect

this high-impact incident more timely, accurately and com-

prehensively. Owing to this, engineers from different teams

are able to understand the real impact on multiple services

and work together in an early time before the incident gets

worse.

6 Conclusion

Incident detection has become much faster and more accu-

rate in modern cloud. However, some critical incidents still

occur in an unexpectedmanner and thus require intensive en-

gineering effort. This paper provides a comprehensive view

of industrial cloud incident detection from the provider’s per-

spective. We summarize our recent intelligent incident detec-

tion practices and the corresponding real-world challenges

at Microsoft. We also introduce our intelligent framework

for timely, accurate, and comprehensive incident detection

and demonstrate its practical benefits conveyed to the large-

scale Microsoft cloud services. We believe our research work

could shed light on future research and engineering efforts

towards intelligent incident management.
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