
Towards Operational Cost Minimization in Hybrid
Clouds for Dynamic Resource Provisioning

with Delay-Aware Optimization
Song Li, Yangfan Zhou,Member, IEEE, Lei Jiao, Xinya Yan, Xin Wang,Member, IEEE, and

Michael Rung-Tsong Lyu, Fellow, IEEE

Abstract—Recently, hybrid cloud computing paradigm has be widely advocated as a promising solution for Software-as-a-Service

(SaaS) providers to effectively handle the dynamic user requests. With such a paradigm, the SaaS providers can extend their local

services into the public clouds seamlessly so that the dynamic user request workload to a SaaS can be elegantly processed with both

the local servers and the rented computing capacity in the public cloud. However, although it is suggested that a hybrid cloud may save

cost compared with building a powerful private cloud, considerable renting cost and communication cost are still introduced in such a

paradigm. How to optimize such operational cost becomes one major concern for the SaaS providers to adopt the hybrid cloud

computing paradigm. However, this critical problem remains unanswered in the current state of the art. In this paper, we focus on

optimizing the operational cost for the hybrid cloud paradigm by theoretically analyzing the problem with a Lyapunov optimization

framework. This allows us to design an online dynamic provision algorithm. In this way, our approach can address the real-world

challenges where no a priori information of public cloud renting prices is available and the future probability distribution of user requests

is unknown. We then conduct extensive experimental study based on a set of real-world data, and the results confirm that our algorithm

can work effectively in reducing the operational cost.

Index Terms—Cloud computing, hybrid cloud, software-as-a-service

Ç

1 INTRODUCTION

CLOUD computing has surged into popularity in the IT
industry, which can provision computing resource

with a cost-effective, elastic solution. In recent years, a
hybrid cloud paradigm is widely advocated by the industry
practitioners, where a software-as-a-service (SaaS) provider
although owning a small local data center can extend its
services into a public infrastructure-as-a-service (IaaS)
cloud. With such a paradigm, a SaaS provider can scale up
and down its computing capacity by renting different num-
bers of virtual machines (VMs) in the public cloud accord-
ing to the dynamic user demand instead of relying only on
the fixed capacity of local data center. This can handle the
dynamics of user requests elegantly and cost-effectively.

There are diverse successful user cases. For example,
OpenText, a leading enterprise content management soft-
ware provider, employs the hybrid cloud model to demon-
strate their software, which makes their salespeople more
productive and results in increased company revenue [1].
Oxford University uses hybrid cloud to support their

database services, in which researchers are able to use the
database service in their virtual machines provided on the
public cloud which is connected to their private cloud [2].
One of the world’s leading game companies, SEGA, uses
hybrid cloud to improve its development process [3].

In fact, more and more leading IaaS cloud solutions (e.g.,
Amazon EC2 [4] and VMWare vCloud [5]) are now aiming
at such a hybrid cloud paradigm. A SaaS provider can now
quickly and seamlessly adopt such a computing paradigm
with a set of handy tools from the IaaS providers.

But charming as it looks, the cost-effectiveness of such
a paradigm highly depends on how well the SaaS pro-
vider can optimize the cost caused by renting VMs from
the public IaaS cloud. Acquiring public IaaS computing
capacity may actually cause a considerable cost. Recent
years have also witnessed a lot of cases where many
enterprises (e.g. Zynga and Uber) even consider to shift
much of their operations off from the IaaS clouds and
back to their own data centers, because of the high expen-
diture of renting VMs [6], [7]. Unfortunately, we still lack
a good understanding of such a cost optimization prob-
lem, not to mention that there are no tools available for
the cost-down task. This is an urgent call for attention to
the research community.

Minimizing the cost of hybrid cloud operation is actually
a very challenging task. First of all, the end users will be
driven away if a SaaS cannot meet the service level agree-
ment (SLA). In other words, a SaaS provider has to maintain
its computing capacity while limiting the number of the
VMs to reduce the renting cost at the same time. However,
the user requests are highly dynamic in nature. Their

� S. Li, Y. Zhou, X. Yan, and X. Wang are with the School of Computer Sci-
ence, Fudan University, Shanghai, China, and with the Engineering
Research Center of Cyber Security Auditing and Monitoring, Ministry of
Education, China. E-mail: yfzhou@cse.cuhk.edu.hk.

� Y. Zhou and M.R.-T Lyu are with the Shenzhen Research Institute, The
Chinese University of Hong Kong, Shenzhen, China.

� L. Jiao is with the University of G€ottingen, G€ottingen, Germany.

Manuscript received 2 Nov. 2014; revised 31 Dec. 2014; accepted 5 Dec. 2014.
Date of publication 5 Feb. 2015; date of current version 12 June 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2015.2390413

398 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2015

1939-1374 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

patterns cannot be known and even accurately predicted in
advance. Moreover, the communication cost between the
local servers and the public IaaS cloud cannot be ignored,
which unfortunately inherits the dynamics if the number of
the renting VMs are dynamically tuned. Finally, the prices
of VMs in the public IaaS cloud are typically varying and
unpredictable [4]. All these dynamic factors can have a great
impact on the cost, and hence bring great difficulty to the
cost minimization task.

However, existing approaches (e.g., [8] and [9]) on
deciding the cost-efficient computing capacity of the cloud
generally requires a priori knowledge of the user demand
and the VM prices, or an accurate prediction. They also do
not consider the dynamics of user requests. As a result,
they are not specifically tailored for optimizing the cost of
hybrid cloud operation.

This work, in contrast, aims at solving the above real-
world challenges. Via a comprehensive theoretical analysis,
we tackle the cost minimization problem with a fast online
algorithm for dynamic cloud resource provisioning in
hybrid clouds. Our analysis assumes no a priori knowledge
on future user requests and the VM prices, and also takes
the communication cost into considerations. Via modeling
the problem with Lyapunov optimization framework [10],
we can approach the minimum time average cost by anato-
mizing it into three sub-problems, each of which can be
solved efficiently. We further show that the cost can be min-
imized by exploiting the trade-off between the delay of han-
dling a request and the cost. We conduct our experimental
study with real-world data from Amazon EC2. The results
verify that we can achieve a satisfactory optimization results
in real-world scenarios.

The rest of this paper is organized as follows. Section 2
introduces the system model and formulate the cost mini-
mization problem. Section 3 analyzes problem and mod-
els it with the Lyapunov optimization framework which
carefully addresses the real-world challenges. An online
dynamic provision algorithm (ODPA) is then proposed to
solve the problem. We examine the theoretical properties
of the ODPA in Section 4 and provide our our experimen-
tal results with real-world data sets in Section 5. Section 6
discusses the related work and the paper is concluded in
Section 7.

2 RELATED WORK

With the rapid growth of cloud computing industry, the
cloud resource provisioning problem has also attracted
many research efforts in cost-optimizing perspective [8], [9],
[11], [12], [13], [14], [15], [16].

In [8] and [11], the authors build game-theoretic mod-
els in a competing market to decide the number of differ-
ent types of VMs provisioned by the cloud to optimize
the profit of the SaaS provider. These approaches require
the prediction of the user requests. [8] considers the
uncertainty of VM prices and user requests in optimizing
the resource provisioning cost. It develops a stochastic
programming model and focuses mainly on the strategy
of resources reservation in advance based on a given
probability distribution of the user requests. [14] present
a bunch of scheduling policies with a resource prediction

model to estimate the level of resources in the virtual
cluster system. Instead of prediction, [13] propose to opti-
mize the provisioning cost based also on stochastic pro-
gramming models. In contrast, our method optimizes the
cloud resource provisioning cost considering both the
cloud and local data center along with an arbitrary user
request distribution, unknown VM price information, by
mainly solving the linear programming problem.

In [15], the authors propose Cura, a new MapReduce
cloud service model, which automatically creates the best
configuration of clusters for the jobs in order to approach
a global resource optimization. In particular, the system
uses a deadline-awareness method, which delays the exe-
cution of certain jobs, and helps the resource allocation to
reach its global optimization and further reduce the cost.
In contrast, coincidently, we also leverage the delay infor-
mation of job execution, but use the Lyapunov optimiza-
tion to approximate the ideal minimized cost with a
delay-cost trade off.

Recently, the hybrid cloud paradigm has been widely
advocated where a SaaS provider owns a small local data
center, but can extend its services into a public IaaS cloud.
Hybrid cloud are embraced by more and more leading
industry practitioners. Examples include the Amazon EC2
[4], VMWare vCloud [5], IBM Hybrid Cloud Solution [17],
and CloudSwitch [18]. Tak et al. [19] investigate the eco-
nomic issues of the application deployment choice in the
hybrid cloud. Hajjat et al. [20] propose the migration strat-
egy of enterprise application to the cloud that optimizes the
benefits and ensures the security policies. Guo et al. [9]
design a cost-efficient VM migration algorithm to help local
data center scale to the cloud with optimal monetary cost in
the scenario of cloud bursting, in which a local data center
works together with a public cloud to handle workload
peaks [21], [22]. Our work optimizes the cost by taking
many practical issues into considerations, include the com-
munication cost and the dynamics of user requests and VM
prices, with an SLA guarantee.

Finally, Lyapunov optimization technique has been
widely adopted in routing and resource allocation in sev-
eral types of applications. Neely [23] establishes a simple
Lyapunov drift to achieve both system stability and per-
formance optimization in time varying wireless networks.
Amble et al. [24] design stable policies for routing
requests based on Lyapunov optimization framework in
content distribution networks. Recently, much research
attention has been paid in applying Lyapunov optimiza-
tion technique to control power management and
resource allocation in data centers [25], [26], [27]. Inspired
by this track of research efforts, we adopt Lyapunov opti-
mization into the optimal cloud resource provisioning
problem by tailoring the framework according to specifics
of the hybrid cloud settings.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model

In this section, we focus on the system model of the problem
we are facing. We consider a SaaS provider operating with a
small local data center (or local servers in our following dis-
cussions) and The provider can also extend its service

LI ET AL.: TOWARDS OPERATIONAL COST MINIMIZATION IN HYBRID CLOUDS FOR DYNAMIC RESOURCE PROVISIONINGWITH... 399

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

capacity via renting the VMs from a public IaaS cloud. This
is a typical hybrid cloud model.

The public IaaS cloud will in general provision three
types of VM services for the SaaS provider. The first is the
reserved VM service, which is long-term service with a fixed
VM numbers. We let T denote the minimum allowed rent-
ing period of such services. T is typically several days or
months [4], [28]. The second is the on-demand VM service,
where the number of VMs can be set instantaneously by the
SaaS provider. The last is the on-spot VM services, which the
SaaS provider can bid for. The price of the reserved service
per unit is typically the lowest. The on-demand one is often
the most expensive but it is charged in a pay-as-you-go
fashion. The price of the on-spot one is dynamic according
to the user bid (reflecting the user demand). The above is a
typical IaaS provision scheme for current public IaaS cloud
(e.g., the Amazon EC2).

Since renting the public cloud resources incurs monetary
cost, the SaaS provider should reduce such cost. The key

problem to the SaaS provider is how to decide the number
of VMs it need to rent so that the performance requirement
is satisfied and the cost is minimized. We use the symbols
R, D, and S to denote the numbers of VMs of the above
three services an SaaS provider will rent respectively. Also
let L denote the numbers of the VMs in the local servers the
SaaS provider owns. Let Rmax, Dmax, Smax and Lmax denote
the upper bound of the numbers of each VM type, and let
W denote the lower bound of the numbers of all of VMs.

In the real-world scenario, the SaaS provide has to
make decisions on the number of the VMs in some
degrees of granularity. Since the allowed minimum rent-
ing period of reserved VMs is T , we consider the SaaS
provider will divide its operation period into a sequence
of time intervals with length T and determine the number
of the reserved VMs at the beginning of each interval. We
name such a decision interval with length T a coarse-
grained decision interval.

The numbers of the other two types of VMs (the on-
demand ones and the on-spot ones) can be decided in a rela-
tively short-term manner. Without loss of generality, we
consider the operation time can be divided into many non-
overlapping small decision slots with length t. Let t1,
t2; . . . ; ti; . . . (i is a non-negative integer) denote such slots
in sequence. The length of each ti is t. For example, in Ama-
zon EC2, t is one hour, which means that the SaaS provider
can make the decisions of the on-demand VMs and the on-
spot ones per hour. We name such a decision slots with
length t a fine-grained decision time slot.

Without loss of generality, suppose T ¼ mt. In other
words, the length of the coarse-grained decision interval is
m times of the fine-grained decision time slot. The SaaS pro-
vide can decide the number of the reserved VMs in the
beginning of time slot t0, tm, t2m; . . . ; tjm; . . . where j is a
non-negative integer.

In this way, how to determine the numbers of the above
four types of VMs for the SaaS provider can be divided into
a two-scale decision process. Finally, Table I provides a
summary of the symbols used in this paper.

3.2 User Requests and SaaS Service Model

Consider the users access the SaaS provider with an arrival
rate �ðtiÞ. Note that �ðtiÞ can bear an arbitrary distribution
in realistic scenarios.

The user requests to the SaaS provider usually have
deadlines, allowing the request to wait for a maximum
periods of time dmax before it is scheduled. Consider the
requests can be stored in a queue denoted by QðtiÞ in
each fine-grained decision time slot. In each find-grained
interval, the user requests in the queue are served with
the rate mðtiÞ. Therefore, the queue has the following
update equation:

Qðtiþ 1Þ ¼ maxfQðtiÞ � mðtiÞ; 0g þ �ðtiÞ: (1)

To serve the user requests, the SaaS provider allocates
each request a certain number of VMs according to the
request requirement, consisting of those in the local servers
and those in the public IaaS cloud. The service rate in each
time slot ti in a coarse-grained decision interval is

TABLE 1
Notation

Symbols Descriptions

T Minimum renting period of reserved VMs
ti The ith decision slot for the on-demand VMs and

the on-spot VMs
t The length of each decision slot for the on-demand

VMs and the on-spot VMs. T ¼mt wherem is an
integer.

RðtiÞ The number of reserved VMs at time slot ti
Rmax The upper bound of the number of the reserved

VMs
DðtiÞ The number of on-demand VMs at time slot ti
Dmax The upper bound of the number of the on-demand

VMs
SðtiÞ The number of on-spot VMs at time slot ti
Smax The upper bound of the number of the on-spot

VMs
LðtiÞ The number of VMs in the local servers at time

slot ti
Lmax The upper bound of the number of the VMs in the

local servers
WðtiÞ The lower bound of the number of VMs at time

slot ti
�ðtiÞ The arrival rate of user requests at time slot ti
mðtiÞ The service rate of user request at time slot ti
dmax The maximum allowed queueing time of each

user request
QðtiÞ The backlog of the user request queue
Qmax The maximum of the queue backlog
ZðtiÞ The backlog of the virtual queue
Zmax The maximum of the virtual queue backlog
f The cost of running the local servers
PrðtiÞ The price of reserved VMs at ti
PdðtiÞ The price of on-demand VMs at ti
PsðtiÞ The price of on-spot VMs at ti
MðtiÞ The communication cost between VMs in the local

servers and those in the cloud
bðtiÞ The service response time at time slot ti
bmax The service response time upper bound requirment
� The parameter bounding growing rate of the

virtual queue
V Parameter for the trade-off between queueing

delay and the cost

400 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2015

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

mðtiÞ ¼ ðLðtiÞ þRðtiÞ þDðtiÞ þ SðtiÞÞ � c; (2)

where LðtiÞ, RðtiÞ, DðtiÞ, and SðtiÞ denote the number of
the local server VMs, reserved VMs, on-demand VMs,
and on-spot VMs in time slot ti, respectively. c is the ser-
vice capacity of a single VM, i.e., the number of requests
that can be served by a VM per time slot. Without loss of
generality, we assume that VMs are homogenous in terms
of service capacity (otherwise, the capacity of VMs can be
normalized theoretically). We consider the real-world
case that the allocated VMs may communicate with each
other. In practice, the intra-communications among the
local servers or in the cloud per se are free, while inter-
communications between the local servers and the IaaS
cloud will be charged.

3.3 Cost Model

We consider that the cost of the SaaS provider includes run-
ning the local servers, purchasing three types of VMs, and
the communication cost between the VMs across the cloud
and local servers, as follows:

CostðtiÞ ¼ fþRðtiÞPrðtiÞ þDðtiÞPdðtiÞ
þ SðtiÞPsðtiÞ þMðtiÞ;

(3)

where f is the cost of running the local servers, which is a
constant without loss of generality, and MðtiÞ denotes the
communication cost between the VMs in the local servers
and those in the cloud. RðtiÞ, DðtiÞ, and SðtiÞ are the num-
bers of the reserved, on-demand, and on-spot VMs in time
slot ti respectively, and PrðtiÞ, PdðtiÞ, and PsðtiÞ are their
prices respectively. Note that RðtiÞ and PrðtiÞ remain con-
stant in each coarse-grained decision interval, i.e., from tjm
to tðjþ1Þm�1 where j is a non-negative integer.

3.4 Problem Formulation

The SaaS provider can optimize its cost via a two-scale deci-
sion process: decide the reserved VM number in each
coarse-grained decision interval with length T and decide
the numbers of the on-demand and on-spot VMs in each
fine-grained decision time slot ti in the interval, such that
the time-average expecting cost is minimized. Formally,

min limt!1
1

t

Xt�1

i¼0

E½CostðtiÞ� (4)

s.t.

0 � LðtiÞ � Lmax; 0 � RðtiÞ � Rmax;

0 � DðtiÞ � Dmax; 0 � SðtiÞ � Smax:
(5)

LðtiÞ þRðtiÞ þDðtiÞ þ SðtiÞ � WðtiÞ (6)

8ti; QðtiÞ < Qmax (7)

0 � bðtiÞ � bmax: (8)

The symbol E denotes the statistical expectation. The
detailed descriptions of Equations (5)-(8) are as follows.

Equation (5). The SaaS provider can bound the numbers
of VMs of the four types by Lmax, Rmax, Dmax, and Smax

respectively. For instance, the number of reserved VMs can
be bounded if the provider just want to purchase a small
number of reserved VMs due to its service type, or it prefers
to limit the purchasing cost.

Equation (6). In each time slot ti, the provisioned VMs
must satisfy the capability requirement WðtiÞ ensuring that
the requests can be served in a quality required by the SaaS
provider.

Equation (7). Each request in the queue has a maximum
delay, i.e., the request should be served before the deadline.
To guarantee this, the backlog of queue QðtiÞ should satisfy
this equation, where Qmax is the maximum backlog. The
Section 3.2 will show more details on this technique.

Equation (8). An SLA contract is established between
the SaaS provider and the its users, specifying a given
response time requirement bmax. Thus, to ensure that the
SLA contract is not violated, the response time bðtiÞ
should be bounded.

4 ONLINE DYNAMIC ALLOCATION ALGORITHM

To achieve the minimum time-averaged cost in Equation (4)
is a huge challenge, since the SaaS provider cannot have the
knowledge of the future user requests and VM prices in
advance in the real practice.

In this section, we first discuss how we tackle the
resource requirement heterogeneity of user requests, which
is typical in real-world scenarios. Then we discuss our vir-
tual queue notion to bound the request delay so as to meet
the SLA contract. Based on these considerations, we then
build the Lyapunov optimization model [10] and convert
the cost minimization problem into a solvable one. We
design an online dynamic provision algorithm to solve this
problem. ODPA is able to approach the minimum time
average cost without any a priori knowledge of the future
user request workload and the future IaaS VM prices.

4.1 Heterogeneity-Aware Sub-Queues

One of the major challenges to build a queueing model for a
hybrid cloud is to handle the heterogeneity of user requests
to the SaaS. In realistic scenarios, different user requests
may involve different computational resources of VMs, and
incur different resource requirements. For example, a
request may start a computation-intensive job and require
more CPU capacity but less I/O capacity.

Consider the local servers of the SaaS provider that is
typically limited in resource. A request may wait in the
queue because one of the resource requirements cannot be
entertained as the resource is a bottleneck. For example, in
case that the CPU of the local servers is extensively
exploited, the computation-intensive requests would have
to be blocked even if another resource such as the memory
is still quite sufficient.

Hence, we should take care of such heterogeneity of user
requests. We consider the queue is occupied with heteroge-
neous user requests and tackle this real-world challenge
with a queue anatomy approach. To the best of our knowl-
edge, we are the first to take the request heterogeneity into
the Lyapunov optimization queueing model.

To address this issue, we map the queue QðtiÞ into a
set of sub-queues QkðtiÞ, k ¼ 1; 2; . . . ; n. The operation of

LI ET AL.: TOWARDS OPERATIONAL COST MINIMIZATION IN HYBRID CLOUDS FOR DYNAMIC RESOURCE PROVISIONINGWITH... 401

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

the sub queue is described as follows. Each sub-queue
QkðtiÞ is corresponding to a certain type of resource (sup-
pose there are n types of resources), like vCPU number,
memory size requirement, and so on. One request is com-
posed of the requests of each resources. For example, a
user request need 2 vCPUs and 4 GB memory in total to
finish its services. Among those resources, there must be
one resource that is the bottleneck resource, which is the
most scarce one in the cloud and is about to affect the ser-
vice performance. Thus, when a request arrives, its bottle-
neck resource first enters a sub queue, and its requests
for other resources also enters every sub-queue QkðtiÞ
respectively. When the request is queueing in QðtiÞ, we
consider it is queueing for each type of resource in QkðtiÞ.
The requst leaves QðtiÞ only if it can be served by the bot-
tleneck resource p and leave the corresponding sub-queue
QpðtiÞ at the same time. In this case, the request also leave
the other sub-queues.

Therefore, the service rate of QðtiÞ (as well as that of each
sub-queue QkðtiÞ) is determined by the service rate of the
bottleneck sub-queue QpðtiÞ. We name the bottleneck sub-
queue the prime sub-queue and the others the accompany
sub-queues. Note that it is also easy to alter the prime sub-
queue to another one if the bottleneck computing resource
changes. We thus model the heterogeneity of user requests
with such sub-queues.

4.2 Delay-Aware Virtual Queue

As previously mentioned, user request has a deadline
dmax to meet after it enters QðtiÞ. To handle this situation,
we apply �-persistent service queue technique [29] to bound
the worst-case delay of the dequeuing operations, so as to
ensure that a request can be served before its deadline.

Let ZkðtiÞ denote a queue associated with QkðtiÞ. Its
update equation is as follows:

Zkðti þ 1Þ ¼ maxfZkðtiÞ � mkðtiÞ þ �k1QkðtiÞ>0; 0g; (9)

where 1QkðtiÞ>0 is an indicator function taking the value 1 if
QkðtiÞ > 0, and 0 otherwise. �k is a parameter that controls
the growing rate of the delay-aware virtual queue Zk, which
has an impact on the queueing time of a request (We will
discuss the details on �k later). Note that queue Zk is only a
virtual queue, which is not the real request queue as queue
Qk. The reason that we bring in virtual queue is that it is
useful to help us to bound the deadline the the requests,
and is able to be integrated in the Lyapunov optimization
framework.

Queue Zk has the same service rate as that of queue Qk,
but has a different growing process. According to Eq. (9),
queue Zk grows if and only if queue Qk is not empty.

Recall that queue Qk is bounded (Eq. (7)), i.e.,
8ti; QðtiÞ < Qmax

k , where Qmax
k is the maximum backlog of

Qk. According to Eq. (9), we can also find that virtual queue
Zk is bounded, i.e., 8ti; ZðtiÞ < Zmax

k , where Zmax
k is the max-

imum backlog of Zk. To ensure that the requests are served
before the deadline, we have the following lemma.

Lemma 1. Given that QkðtiÞ � Qmax
k and ZkðtiÞ � Zmax

k , the
user requests have the maximum delay of dmax

k , in which:

dmax
k ¼ ��

Qmax
k þ Zmax

k

�
=�k

�
(10)

Proof. We prove this by contradiction, i.e., assuming that
requests �kðtÞ are served at tþ d0, where d0 >
dðQmax

k þ Zmax
k Þ=�ke. Since queues are served in the FIFO

manner, during the time interval ½tþ 1; tþ d0�, arrived
requests are not served, i.e., the served requests are only
the ones arrived before t, and thus we have

Xtþd0

ti¼tþ1

mkðtiÞ � QkðtÞ � �kðtÞ < QkðtÞ < Qmax
k : (11)

According to Equation. (9), we have Zkðtþ 1Þ � ZkðtÞ�
mkðtÞ þ �k. By summing it during the time interval
½tþ 1; tþ d0�, we further have Zkðtþ d0Þ � ZkðtÞ �
�Ptþd0

ti¼tþ1 mkðtiÞ þ d0�k. Since it is already known that

ZkðtÞ � 0 and Zkðtþ d0Þ � Zmax
k , we have

Xtþd0

ti¼tþ1

mkðtiÞ � d0�k � Zmax
k (12)

Combine Equations (11) and (12), we get

d0 <
�
Qmax

k þ Zmax
k

�
=�k: (13)

Equation (13) is contradictory with the assumption. Thus
Lemma 1 is proved. tu

For parameters �k and �l for sub-queues k and l respec-
tively, we have the following relationship.

Theorem 1. Given that 8k, QkðtiÞ � Qmax
k and ZkðtiÞ � Zmax

k ,
8k; l, k 6¼ l, the following equation holds:

�k
�l

¼ Qmax
k þ Zmax

k

Qmax
l þ Zmax

l

: (14)

Proof. Since the property of the sub-queues implies that the
elements with the same index has the same dequeue
time, we have dmax

k ¼ dmax
l . Then using Eq. (10) induced

by Lemma. 1, we can get Eq. (14). tu

4.3 Lyapunov Optimization

At each time slot ti, we select and control the prime queue
QpðtiÞ (i.e., p is the bottleneck resource index), and other
sub-queues are also controlled following the bottleneck one.

Let QðtiÞ denote the vector ½QpðtiÞ; ZpðtiÞ�. We define a
Lyapunov function as follows:

LðQðtiÞÞ , 1

2

�
QpðtiÞ2 þ ZpðtiÞ2

�
: (15)

The one-slot conditional Lyapunov drift is defined as

DðQðtiÞÞ , EfLðQðti þ 1ÞÞ � LðQðtiÞÞjQðtiÞg: (16)

Following the drift-plus-penalty algorithm [30], our aim is to
make decisions on the state of VMs to minimize the upper
bound of the following drift-plus-penalty expression given
the current system state:

402 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2015

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

DðQðtiÞÞ þ VEfCostðtiÞjQðtiÞg; (17)

where V is a parameter determined by the SaaS provider to
achieve a best tradeoff between queueing delay and the
cost, to be discussed later.

The following theorem derives the upper bound of the
drift-plus-penalty expression.

Theorem 2. Assume that 0 � �p � �max
p , 0 � mp � mmax

p , and
QpðtiÞ < Qmax

p , the drift-plus-penalty expression satisfies:

DðQðtiÞÞ þ VEfCostðtiÞjQðtiÞg
� Bþ VEfCostðtiÞjQðtiÞg
þQpðtÞEfð�pðtiÞ � mpðtiÞÞjQðtiÞg
þ ZpðtÞEfð�p � mpðtiÞÞjQðtiÞg;

(18)

where B is

B ¼ 1

2
max

��
mmax
p

�2
; �2p

	þ 1

2

��
mmax
p

�2 þ �
�max
p

�2�
: (19)

Proof. According to Equation (1), we have

Qpðti þ 1Þ2 ¼ ðmaxfQpðtiÞ � mpðtiÞ; 0g þ �pðtiÞÞ2

� Qpðti þ 1Þ2 þ mpðtiÞ2 þ �pðtiÞ2 þ 2Qpð�pðtiÞ � mpðtiÞÞ:

Then we can obtain the following:

Qpðti þ 1Þ2 �QpðtiÞ2
2

� QpðtiÞð�pðtiÞ � mpðtiÞÞ þ
ð�pðtiÞ � mpðtiÞÞ2

2

� QpðtiÞð�pðtiÞ � mpðtiÞÞ þ
1

2

��
mmax
p

�2 þ �
�max
p

��2
:

According to Equation (9), we have

Zpðti þ 1Þ � ZpðtiÞ � mpðtiÞ þ �p:

Squaring both sides yields

Zpðti þ 1Þ2 � ðZpðtiÞ � mpðtiÞ þ �pÞ2

and then we have the following:

Zpðti þ 1Þ2 � ZpðtiÞ2
2

� ZpðtiÞð�p � mpðtiÞÞ þ
ðmpðtiÞ � �pÞ2

2

� ZpðtiÞð�p � mpðtiÞÞ þ
1

2
max

��
mmax
p

�2
; �2p

	
:

We can get the following based on the above inductions:

LðQðti þ 1ÞÞ � LðQðtiÞÞ

¼ Qpðti þ 1Þ2 �QpðtiÞ2
2

þ Zpðti þ 1Þ2 � ZpðtiÞ2
2

� BþQpðtiÞð�pðtiÞ � mpðtiÞÞ þ ZpðtiÞð�p � mpðtiÞÞ:

By taking the expectation and adding VEfCostðtiÞjQðtiÞg
to both sides, we can obtain Equation (18). tu

Rewriting Equation (18) by substituting mðtiÞ and Cost
(ti) in Equations (2) and (3), we turn the drift-plus-penalty
upper bound minimization problem into the following
problem P0:

minEfRðtiÞðVPrðtiÞ �QpðtiÞ � ZpðtiÞÞjQðtiÞg
þ EfDðtiÞðVPdðtiÞ �QpðtiÞ � ZpðtiÞÞjQðtiÞg
þ EfSðtiÞðVPsðtiÞ �QpðtiÞ � ZpðtiÞÞjQðtiÞg
þ EfLðtiÞð�QpðtiÞ � ZpðtiÞÞ þ VMðtiÞjQðtiÞg

(20)

s.t. Equations (5), (6), (7), (8).

4.4 Online Dynamic Provision Algorithm

By analyzing the optimization problem with a Lyapunov
optimization framework, we are able to tackle the compli-
cated time-average cost minimization problem into P0. P0
can then be decoupled into three parts, namely, the long-
term scheduling, the short-term scheduling, and the dynamic
provisioning. It can then be handled with a separation-of-
concern approach: Every part can be solved individually
with efficient algorithms while the time-average cost can be
minimized. Fig. 1 overviews the framework of ODPA. What
follows elaborates these three key parts.

Fig. 1. Architecture of the system and ODPA.

LI ET AL.: TOWARDS OPERATIONAL COST MINIMIZATION IN HYBRID CLOUDS FOR DYNAMIC RESOURCE PROVISIONINGWITH... 403

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

4.4.1 Long-Term Scheduling

The SaaS provider optimizes its cost at the beginning of
each coarse-grained interval with length T .

The number of reserved VMs to be rented can be decided
with the following optimization problem P1:

min
RðtiÞ

RðtiÞðVPrðtiÞ �QpðtiÞ � ZpðtiÞÞ

s:t: Equations ð5Þ; ð6Þ; ð7Þ; ð8Þ:
(21)

It is easy to see that the objective and constraints of P1 are
all linear. Hence, P1 can be efficiently solved with linear
programming.

4.4.2 Short-Term Scheduling

The SaaS provider decides the numbers of the local servers
VMs, the on-demand VMs, and the on-spot VMs in every
fine-grained time slot ti of each coarse-grained interval. The
system state includes QpðtiÞ, ZpðtiÞ, �pðtiÞ, the pricing infor-
mation PdðtiÞ, PsðtiÞ, and the remained resource capacities
of local servers, e.g., remained CPU, memory, and etc.

With the knowledge of long-term scheduling (the solu-
tion to P1), the numbers of the various VMs can be opti-
mized via solving the following problem P2:

min
DðtiÞ;SðtiÞ;LðtiÞ

DðtiÞðVPdðtiÞ �QpðtiÞ � ZpðtiÞÞ

þ SðtiÞðVPsðtiÞ �QpðtiÞ � ZpðtiÞÞ
þ LðtiÞð�QpðtiÞ � ZpðtiÞÞ

s:t: Equations ð5Þ; ð6Þ; ð7Þ; ð8Þ:

(22)

Similar to P1, P2 is also a linear optimization problem
which can be easily solved with linear programming.

We now theoretically analyze the performance of ODPA
scheduling. We first give the worst case delay of the requests
and then find the performance bound of the algorithm.

Lemma 2. If ODPA is implemented and given that 0 < PrðtÞ �
Pmax
r , 0 < PdðtiÞ � Pmax

d , 0 < PsðtiÞ � Pmax
s , 0 � �k �

mmax
k , and V > 0, we have:
(i). The length of Qk and Zk can be bounded by the fol-

lowing:

Qmax
k ¼ Vmax

�
Pmax
r ; Pmax

d ; Pmax
s

	þ �max
k ;

Zmax
k ¼ Vmax

�
Pmax
r ; Pmax

d ; Pmax
s

	þ �k:
(23)

(ii). The worst case delay dmax
k of the requests in sub-queue i is:

dmax
k ¼ 2Vmax

�
Pmax
r ; Pmax

d ; Pmax
s

	þ �max
k þ �k

�k

 �
: (24)

(iii). The worst case delay dmax
k and dmax

l of sub-queue k and l
are equal, 8k; l, k 6¼ l:

dmax
k ¼ dmax

l : (25)

Proof. (i). To prove this, we need to prove 8ti, QkðtiÞ �
VmaxfPmax

r ; Pmax
d ; Pmax

s gþ�max
k and ZkðtiÞ� VmaxfPmax

r ;

Pmax
d ; Pmax

s g þ �k. We prove this by induction. For ti ¼ 0,
we have Qkð0Þ ¼ 0 � VmaxfPmax

r ; Pmax
d ; Pmax

s g þ �max
k

and Zkð0Þ ¼ 0 � VmaxfPmax
r ; Pmax

d ; Pmax
s g þ �k. Assume

that the equations hold for ti, we induce that they
also hold for ti þ 1. We first consider Qk. (1) if
QkðtiÞ � VmaxfPmax

r ; Pmax
d ; Pmax

s g. We can obtain the fol-
lowing:

Qkðti þ 1Þ ¼ maxfQkðtiÞ � mkðtiÞ; 0g þ �kðtiÞ
� QkðtiÞ þ �kðtiÞ
� VmaxfPmax

r ; Pmax
d ; Pmax

s g þ �kðtiÞ
� VmaxfPmax

r ; Pmax
d ; Pmax

s g þ �max
k :

(2) In the other case, if VmaxfPmax
r ; Pmax

d ; Pmax
s g <

QkðtiÞ � VmaxfPmax
r ; Pmax

d ; Pmax
s g þ �max

k . In this case,
the following holds:

QkðtiÞ þ ZkðtiÞ � QkðtiÞ > VmaxfPmax
r ; Pmax

d ; Pmax
s g:

Based on this inequation, according to Equation (20), we
can see that RðtiÞ,DðtiÞ, SðtiÞ and LðtiÞwould choose its
maximum value respectively, and thus mkðtiÞ ¼ ðLmax þ
Rmax þDmax þ SmaxÞ � c ¼ mmax

k . In case (2.1), if QkðtiÞ �
mmax
k � 0, refers to Equation (1), we have

Qkðti þ 1Þ ¼ �kðtiÞ � �max
k

� VmaxfPmax
r ; Pmax

d ; Pmax
s g þ �max

k :

(2.2) If QkðtiÞ � mmax
k > 0. Recall that we assumed the

queue Qk is finite(Equation (7)) and thus in the optimiza-
tion process mmax

k � �max
k holds, we have

Qkðti þ 1Þ ¼ QkðtiÞ � mmax
k þ �max

k

� QkðtiÞ � Vmax
�
Pmax
r ; Pmax

d ; Pmax
s

	þ �max
k :

Hence, we prove that

Qkðti þ 1Þ � Vmax
�
Pmax
r ; Pmax

d ; Pmax
s

	þ �max
k ;

and thus prove the case of Qk.
We next consider Zk, which is similar to Qk. (1) if

ZkðtiÞ � VmaxfPmax
r ; Pmax

d ; Pmax
s g, we have

Zkðti þ 1Þ ¼ maxfZkðtiÞ � mkðtiÞ þ �k1QkðtiÞ>0; 0g
� ZkðtiÞ þ �k � VmaxfPmax

r ; Pmax
d ; Pmax

s g þ �k:

(2) In the other case, if VmaxfPmax
r ; Pmax

d ; Pmax
s g <

ZkðtiÞ � VmaxfPmax
r ; Pmax

d ; Pmax
s g þ �k. Similar to the

case of Qk, mkðtiÞ ¼ mmax
k . (2.1) if ZkðtiÞ � mmax

k � �k,
refers to Equation (9), we have

Zkðti þ 1Þ ¼ 0 � Vmax
�
Pmax
r ; Pmax

d ; Pmax
s

	þ �k:

(2.2) If ZkðtiÞ > mmax
k � �k, and according to the assump-

tion that 0 � �k � mmax
k , we have

Zkðti þ 1Þ ¼ ZkðtiÞ � mmax
k þ �k � ZkðtiÞ

� Vmax
�
Pmax
r ; Pmax

d ; Pmax
s

	þ �k:

Hence, we prove that

ZkðtiÞ � Vmax
�
Pmax
r ; Pmax

d ; Pmax
s

	þ �k;

and thus prove the case of Zk.
(ii). Combine Equations (10) and (23), we can easily

get Equation (24).

404 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2015

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

(iii). The settings of sub-queues infer that the elements
in the sub-queues have the same time interval for
enqueue and dequeue operation for each request, and
thus the maximum deadlines are the same. tu

Based on this lemma, we derive the following theorem.

Theorem 3. ODPA can bound the time average cost as follows:

limt!1
1

t

Xt�1

i¼0

E½CostðtiÞ� � 1

t

Xt�1

i¼0

c�ti þ
B

V
: (26)

Proof. We define c�ti as the minimum ideal value of
E½CostðtiÞ� if the request information is already known
before time slot ti, subjects to mpðtiÞ � �pðtiÞ � 0 and

mpðtiÞ � �p � 0. Inspired by [31], we define the 1-slot

sample path drift D1ðQðtiÞÞ without expectation as fol-
lowing:

D1ðQðtiÞÞ , LðQðtiþ1ÞÞ � LðQðtiÞÞ:
Similar to the previous Lyapunov analysis, we have

D1ðQðtiÞÞ � B�QpðtiÞðmpðtiÞ � �pðtiÞÞ � ZpðmpðtiÞ � �pÞ:
By adding VE½CostðtiÞ� to both sides, and using the opti-
mizing process discussed in ODPA which finds the opti-
mum m�

p, we can obtain

D1ðQðtiÞÞ þ VE½CostðtiÞ� � Bþ c�r
�QkðtiÞðm�

pðtiÞ � �pðtiÞ
� ZkðtiÞðm�

pðtiÞ � �kÞ
� Bþ Vc�r :

By summing the above equation over t slots, and divid-
ing by kV , we can get

LðQðttÞ � LðQð0ÞÞ
tV

þ 1

t

Xt�1

i¼0

E½CostðtiÞ� � 1

t

Xt�1

i¼0

c�r þ
B

V
:

Since LðQðtÞÞ � LðQð0ÞÞ ¼ 0 and we extend t to the infin-
ity, we can prove the theorem:

limt!1
1

t

Xt�1

i¼0

E½CostðtiÞ� � 1

t

Xt�1

i¼0

c�ti þ
B

V
;

tu

where 1
t

Pt�1
i¼0 c

�
ti

is the minimum possible time average
cost if the future information of subsequent slots is known,
B is defined in Equation (19).

The above theorem shows the [Oð1=V Þ; OðV Þ� trade-off
between cost and delay. By increasing the value of V , we
can get the near-optimal value of time average cost but
bring in larger queue length and longer delay. We verify
it with our experimental study with real-world data in
what follows.

4.4.3 Dynamic Provisioning

We now consider the communication cost MðtiÞ. Given
the solutions of long-term and short-term scheduling, we
should then decide the locations of the VMs to minimize

the communication cost with SLA guarantee. As dis-
cussed before, although the intra communication of the
local servers or the cloud is free, the communication
between the local servers and the cloud will be charged.
A good provision of VMs to the local servers and the IaaS
cloud should be able to minimize the communication cost
at each slot. The optimization problem is defined in the
following P3 formulation

min V �MðtiÞ
s:t: constraintð8Þ: (27)

Unfortunately, P3 is not an easily tractable problem. We
prove it NP-complete, and then resort to a fast online heu-
ristic algorithm.

Theorem 4. The problem of P3 is NP-complete.

Proof. By regarding the VMs as the vertices and the com-
munication links between the local servers and the
IaaS as the edges of the graph, the SaaS system can be
modeled as a graph. Each edge is then weighted with
its corresponding communication cost. The local serv-
ers and the IaaS clouds are then regarded as two fix-
sized partitions of the graph. P3 is to find the partition
that minimize the edge weights across the two fixed
unequal sized sets.

We now show that this problem belongs to NP. For
a given graph G ¼ ðV; EÞ and size jV j, we use the edge
set E0 	 E as a certificate for G. For each edge e in E0,
we can check whether its two endpoints are in differ-
ent partitions and whether jfej8e 2 E0gj is equal to jV j
in polynomial time. In other words, verifying the cer-
tificate can be solved in polynomial time, and hence P3
belongs to NP.

We next prove P3 NP-hard by reducing it from Mini-
mum Graph Bisection problem (MGBP), a known NP-
complete problem [32]. Given an instance G ¼ ðV;EÞ
(jV j ¼ 2n1, n1 2 Nþ) of MGBP, we reduce it to an
instance of P3. Assuming n2 > n1, we form G0 ¼ ðV 0; E0Þ
by adding a clique of size n2 � n1 with þ1 edge weights
to G. This can be done in polynomial time. We then show
this transformation is in nature a reduction.

Suppose S 	 E is a cut set of size jV j in G. S is also a
cut set of size jV j in G0, i.e., S = S0, since edges of new
added clique have þ1 weights and they cannot be in
the cut set of G0. Conversely, suppose S0 	 E0 is a cut
set of size jV j in G0. Since clique edges cannot be in the
cut set due to their positive infinity weights, we have
S0 ¼ S.

Hence, we prove that S is a cut set of size jV j in G if
and only if S0 is a cut set of size jV j in G0. The reduction
is then proved. As a result, P3 is NP-hard. Since P3 is NP
as well as NP-hard, it is NP-complete. tu

Next, we designed a fast heuristic algorithm that can effi-
ciently solve P3 illustrated in Algorithm 1. We modify the
state-of-the-art Fiduccia-Mattheyses algorithm [33] by
bringing the moving penalty between two partitions and
the SLA contract into consideration.

The algorithm first computes the gain of all VMs in each
iteration, greedily selects the VM of maximum gain and

LI ET AL.: TOWARDS OPERATIONAL COST MINIMIZATION IN HYBRID CLOUDS FOR DYNAMIC RESOURCE PROVISIONINGWITH... 405

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

updates the adjacent VMs until all VMs selected. It then exe-
cutes the first x moves that maximize the sum of those
gains. The gain, which is the cost reduction after moving
one VM to the other partition, is defined as follows:

gðcÞ ¼ Ec � Ic � Pc; (28)

where Ec and Ic are the external cost and internal cost of
VM c respectively, i.e., the communication cost with the
VMs in the other partition and VMs in the same partition
(if each communication is charged), and Pc is the possible
extra penalty caused by the moving operation, i.e., the
violation of the communication cost. Note that the mov-
ing operation may cause the change of the partition size.
To ensure that the partition size is fixed, each labelled
VM should satisfy the balance constraint as follows:

r � jU j � 1 � jAj � r � jU j þ 1; (29)

where jAj þ jBj ¼ jU j, and r ¼ jAj
jAjþjBj.

Algorithm 1.Minimizing Communication Cost

Input: The initial distribution of VMs G ¼ ðV;EÞ, and the initial
partitions of local servers A0 and cloud B0 with fixed
size jVA0

j and jVB0
j respectively.

Output: The partition A and B of size jVAj and jVBj that
approximately minimize the communication
cost between the two partitions.

1: repeat
2: compute the gain for all VMs;
3: c ¼ 1;
4: repeat
5: select vc that has maximum gain g½c� from unlocked

VMs and satisfies the balance and SLA contract;
6: if no such VM then
7: break;
8: end if
9: update gains of adjacent VMs with vc;
10: lock VM vc;
11: c ¼ cþ 1;
12: until all VMs are locked
13: find x that maximize gmax ¼ Px

i¼1 g½c�;
14: if gmax > 0 then
15: move v1, v2; . . . ; vx VMs to the other partition;
16: unlock all VMs;
17: reset g, gmax;
18: end if
19: until gmax � 0

The time complexity of Algorithm 1 is OðnÞ, and it only
needs a very small number of passes to converge leading to
a fast approximate algorithm.

Algorithm 2. Online Dynamic Provision Algorithm

Input: VM prices, local servers state, request workload.
Output: The provision strategy
1: for each coarse-grained slot T do
2: select the prime sub-queue;
3: solve linear programming problem P1;
4: for each fine-graind slot ti do
5: select the prime sub-queue;
6: solve linear programming problem P2;
7: algorithm1;
8: update queue state;
9: end for
10: update queue state;
11: end for

Finally, we can now formally describe ODPA in
Algorithm 2. ODPA involves solving two linear program-
ming problems and Algorithm 1 with linear time complex-
ity. Hence, it meets the efficiency requirement in real-world
online application.

5 EXPERIMENTAL STUDY WITH REAL-WORLD

DATA SET

To further study the performance of ODPA, we conduct
a set of experimental study with a large real-world
data set.

The VM price data are recorded by tracking the prices
of the prevalent IaaS cloud, the Amazon EC2 [4]. We
wrote a python script to automatically record the prices
of the three types of VMs, i.e., the reserved VMs, the on-
demand VMs, and the on-spot VMs in each hour for one
month from the Amazon EC2’s official website. Fig. 2
shows the on-spot VM prices. The user request data are
based on the real cloud request log RICC [34], which is a
computing platform with various job running records.
We mapped the request in every different months with
the one-month VM prices from Amazon, and did one
experiment for the data of every month. The results are
averaged. We believe that in this way with real-life data
sets, we can well capture the performance of the algo-
rithm objectively. Fig. 3 plots the request data sampled
for one month. We can see from the two figures that both
data are highly dynamic, which is a real-world challenge
to VM provision algorithm like ODPA.

We first study the optimization performance of ODPA
via comparing it with two benchmark methods. The first
benchmark method is one based on a conventional notion
that schedules the requests immediately and purchases the

Fig. 2. Price of on-spot VMs.
Fig. 3. User request workload.

406 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2015

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

lowest price VMs to serve the requests regardless the
changes of prices. We name it the conventional method, and
this method is a commonly-used online algorithm.

Another benchmark method assumes that there is ora-
cle and all the future information is perfectly known across
the entire time horizon and achieves the ideal solution. We
name it an ideal offline method. Note that the ideal offline
method is an idealized best method, which is not feasible
in reality since the future user request and IaaS price infor-
mation cannot be known beforehand.

Detailed comparisons of ODPA with the two benchmark
algorithms are provided in Section 5.1. Section 5.2 futher
examines the delay property of ODPA and the trade-off
between the delay and cost to verify the theoretical analysis
in real-world scenarios.

5.1 Cost Saving of ODPA

First we study how ODPA perform in terms of cost minimi-
zation. According to the previous analysis, V and �i are two
major parameters that influence the cost minimization.
Moreover, the cost may vary with different proportions of
the VMs in the local servers and public IaaS cloud. We eval-
uate these factors in what follows.

Fig. 4 shows the impact of V by setting it in range [0,
54,000]. We can see from Fig. 4 that the total cost decreases
as V increases. This is consistent with our theoretical anal-
ysis. In particular, when V increases, the performance of
ODPA gets closer to the ideal offline method. Fig. 5 further
compares ODPA with the conventional method. It shows

that ODPA can reduce up to 30 percent cost saving when
V is large.

We then evaluate the impact of parameter �i. Note that it
is not necessary to verify each �i since each pair of �i and �j
can be converted to the other based on Theorem 1.

Therefore, without loss of generality, we considers
only sub-queue 1 with its corresponding parameter �1,
and study its impact on cost. Fig. 6 shows the results,
where we can observe that the cost increases with the
growing of �1.

Finally, the proportion of the requests handled by
local servers can influence the cost, since renting less
IaaS VMs can reduce the cost more. Fig. 7 shows that
the cost decreases as the size of the local servers grows,
in which the size is set at different levels of average
workload.

When V is set large enough, e.g., V ¼ 50;000, the perfor-
mance of ODPA can closely approach the ideal offline
method. Fig. 8 shows that even when the local servers han-
dles most of the requests, ODPA is still able to reduce the
cost by at least around 10 percent compared with the con-
ventional method.

5.2 Delay Property of ODPA

Based on Theorem 3, there is a trade-off between cost and
delay with ODPA. The delay is influenced by the parameter
V and �i according to Lemma 2. Fig. 10 shows the impact of
these factors on the delay.

Fig. 6. The cost with various size of �1 (V ¼ 50;000).Fig. 4. Total cost with various V.

Fig. 5. Impact of Parameter V (�1 ¼ 1). Fig. 7. Total cost with various size of local servers.

LI ET AL.: TOWARDS OPERATIONAL COST MINIMIZATION IN HYBRID CLOUDS FOR DYNAMIC RESOURCE PROVISIONINGWITH... 407

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

We measure the delay as the average request delay, i.e.,
the average queueing time of the requests. The delay caused
by parameter V is illustrated in Fig. 9, suggesting that larger
V incurs larger delay. Also, the delay decreases when the
parameter �1 increases, as shown in Fig. 10.

Together with Figs. 4 and 6, we can see that there is a
trade-off between cost and delay when tuning the parame-
ter V and �i. The experimental results are consistent with
the theoretical analysis. ODPA can successfully save cost by
exploiting the delay property. In practice, to meet the delay
requirement, one can tune the parameter V , �i based on the
Lemmas 1 and 2.

6 CONCLUSION

This paper investigates how to optimize the monetary cost
of purchasing cloud VMs for the hybrid cloud computing
paradigm. Our work assumes an arbitrary request arriving
probability and no accurate a priori knowledge of VM pri-
ces in the public cloud. We specifically tailor a theoretical
model based on Lyapunov Optimization framework
according to the real-world challenges of this problem. We
then develop an method to minimize the time average cost
with an online dynamic allocation algorithm. Both the the-
oretical analysis and the experimental study based on real-
world data trace demonstrate the advantages of the algo-
rithm. The evaluation shows that the online dynamic pro-
vision algorithm can achieve much lower cost than the
conventional method and approach the ideal offline opti-
mal method closely.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Program of China under 973 Project No. 2014CB347701,
the National Natural Science Foundation of China under
Project Nos. 61100077 and 61332010, the Program for New
Century Excellent Talents in University under Project No.
NCET-11-0113, the Shenzhen Basic Research Program
under Project No. JCYJ20120619152636275, and the
Research Grants Council of the Hong Kong Special Admin-
istrative Region, China under Project No. CUHK 415113.
This work has presented in part in IEEE ICWS 2014. Yang-
fan Zhou is the corresponding author.

REFERENCES

[1] (2014). “Opentext,” [Online]. Available: http://www.skytap.
com/downloads/case-studies/skytap_casestudy_opentext.pdf

[2] (2014). “Oxford university,” [Online]. Available: http://www.
vmware.com/a/customers/solution/10?sort=a&next=21

[3] (2014). “Sega,” [Online]. Available: http://www.vmware.com/a/
customers/solution/10?sort=a&next=41

[4] (2014). “Amazon ec2,” [Online]. Available: http://aws.amazon.
com/ec2

[5] (2014). “Vmware vcloud,” [Online]. Available: http://www.
vmware.com/products/vcloud-hybrid-service/

[6] (2014). “Zynga,” [Online]. Available: http://zynga.com/
[7] (2014). “Uber,” [Online]. Available: https://www.uber.com/
[8] D. Ardagna, B. Panicucci, and M. Passacantando, “A game theo-

retic formulation of the service provisioning problem in cloud sys-
tems,” in Proc. 20th Int. Conf. World Wide Web, 2011, pp. 177–186.

[9] T. Guo, U. Sharma, T. Wood, S. Sahu, and P. Shenoy, “Seagull:
intelligent cloud bursting for enterprise applications,” in Proc.
USENIX Annu. Tech. Conf., 2012, p. 33.

[10] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Delft, The Netherlands,
Now Publishers, 2006.

[11] D. Ardagna, B. Panicucci, and M. Passacantando, “Generalized
nash equilibria for the service provisioning problem in cloud
systems,” IEEE Trans. Serv. Comput., vol. 6, no. 4, pp. 429–442,
Oct.–Dec., 2012.

[12] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 5, no. 2, pp. 164–177, Apr.–Jun. 2012.

[13] S. Chaisiri, R. Kaewpuang, B.-S. Lee, and D. Niyato, “Cost minimi-
zation for provisioning virtual servers in amazon elastic compute
cloud,” in Proc. IEEE Int. Symp. Model., Anal. Simulation Comput.
Telecommun. Syst., 2011, pp. 85–95.

[14] T. Hacker and K. Mahadik, “Flexible resource allocation for reli-
able virtual cluster computing systems,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., Nov. 2011, pp. 1–12.

[15] B. Palanisamy, A. Singh, and B. Langston, “Cura: A cost-
optimized model for mapreduce in a cloud,” in Proc. IEEE 27th
Int. Symp. Parallel Distrib. Process., May 2013, pp. 1275–1286.

Fig. 8. Proportion of cost reduction.

Fig. 9. Impact of V (�1 ¼ 1).

Fig. 10. Impact of �1 (V ¼ 50;000).

408 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2015

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

[16] K. Chard, K. Bubendorfer, and P. Komisarczuk, “High occupancy
resource allocation for grid and cloud systems, a study with
drive,” in Proc. 19th ACM Int. Symp. High Perform. Distrib. Comput.,
2010, pp. 73–84.

[17] (2014). “Ibm hybrid cloud solution,” [Online]. Available: http://
www-01.ibm.com/software/tivoli/products/hybrid-cloud/

[18] (2014). “Cloudswitch,” [Online]. Available: http://www.
cloudswitch.com/

[19] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To move or
not to move: The economics of cloud computing,” in Proc. 3rd
USENIX Conf. Hot Topics Cloud Comput., 2011, p. 5.

[20] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K.
Sripanidkulchai, and M. Tawarmalani, “Cloudward bound:
Planning for beneficial migration of enterprise applications to
the cloud,” ACM SIGCOMM Comput. Commun. Rev., vol. 40,
no. 4, pp. 243–254, 2010.

[21] (2014). “Hp cloud,” [Online]. Available: https://www.hpcloud.
com/solutions/bursting

[22] (2014). “Cisco business briefing document,” [Online]. Available:
https://www.cisco.com/en/US/solutions/collateral/ns341/
ns991/ns995/IaaS_BDM_WP.pdf

[23] M. J. Neely, “Energy optimal control for time-varying wireless
networks,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934,
Jul. 2006.

[24] M. M. Amble, P. Parag, S. Shakkottai, and L. Ying, “Content-
aware caching and traffic management in content distribution
networks,” in Proc. IEEE INFOCOM, 2011, pp. 2858–2866.

[25] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely,
“Dynamic resource allocation and power management in virtual-
ized data centers,” in Proc. IEEE Netw. Oper. Manage. Symp., 2010,
pp. 479–486.

[26] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
centers power reduction: A two time scale approach for delay tol-
erant workloads,” in Proc. IEEE INFOCOM, 2012, pp. 1431–1439.

[27] W. Deng, F. Liu, H. Jin, and C. Wu, “SmartDPSS: Cost-
minimizing multi-source power supply for datacenters with
arbitrary demand,” in Proc. Int. Conf. Distrib. Comput. Syst.,
2013, pp. 420–429.

[28] “Google compute engine,” http://cloud.google.com/products/
compute-engine/

[29] M. J. Neely, “Opportunistic scheduling with worst case delay
guarantee in single and multi-hop network,” in Proc. INFOCOM,
2011, pp. 1728–1736.

[30] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Delft, The Netherlands:
Now Publishers, 2006.

[31] M. J. Neely, A. S. Tehrani, and A. G. Dimakis, “Efficient algo-
rithms for renewable energy allocation to delay tolerant consum-
ers,” in Proc. 1st IEEE Int. Conf. Smart Grid Commun., 2010,
pp. 549–554.

[32] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified
np-complete graph problems,” Theor. Comput. Sci., vol. 1, no. 3,
pp. 237–267, 1976.

[33] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. 19th Conf. Des. Autom.,
1982.

[34] “The ricc log,” [Online]. Available: http://www.cs.huji.ac.il/
labs/parallel/workload/l_ricc/index.html

Song Li received the BS degree from the School
of Computer Science, Fudan University,
Shanghai, China, in 2012. He is currently working
toward the MS degree at the School of Computer
Science, Fudan University. His research interests
include cloud services and the performance of
data center network.

Yangfan Zhou received the BSc degree from
Peking University in 2000, and the MPhil and
PhD degrees from The Chinese University of
Hong Kong in 2006 and 2009, respectively. He is
currently with Fudan University. His research
interests include distributed computing and net-
working, particularly in mobile computing, cloud
computing, and the Internet of Things. Before
joining Fudan, he was a research staff member
with The Chinese University of Hong Kong from
2009 to 2014. He has also been working as an

engineer in information technology industry for many years, where he is
now also active in technology consulting. He is a member of the IEEE.

Lei Jiao received the BSc and MSc degrees from
Northwestern Polytechnical University, Xi’an,
China, in 2007 and 2010, respectively, and the
PhD degree from University of G€ottingen,
G€ottingen, Germany, in 2014, all in computer sci-
ence. Prior to his PhD study, he was a researcher
with IBM Research, Beijing, China. His research
interests span computer networks and distributed
systems, with a recent focus on performance
modeling, analysis, optimization, and evaluation.

Xinya Yan received the BS degree from Zhejiang
University of Technology, Hangzhou, China, in
2012. She is currently working toward the MS
degree at the School of Computer Science, Fudan
University. Her current research interests include
cloud resource provisioning and cloud pricing.

Xin Wang received the BS degree in information
theory and MS degree in communication and
electronic systems from Xidian University, China,
in 1994 and 1997, respectively. He received the
PhD degree in computer science from Shizuoka
University, Japan, in 2002. In 1995 and 1998, he
was working on China’s pioneering telecom-level
video conferencing systems and DVB-S systems
with Huawei Inc., Shenzhen, China. He is cur-
rently a professor at Fudan University, Shanghai,
China. His research interests include quality of

network service, next-generation network architecture, mobile Internet
and network coding. He is a member of CCF, IEEE, and ACM.

Michael Rung-Tsong Lyu received the BS
degree in electrical engineering from National
Taiwan University in 1981, the MS degree in
computer engineering from the University of
California, Santa Barbara, in 1985, and the PhD
degree in computer science from the University
of California, Los Angeles, in 1988. He is a pro-
fessor at the Computer Science and Engineering
Department of the Chinese University of Hong
Kong. His research interests include software
reliability engineering, software fault tolerance,

distributed systems, data mining, social networks, machine learning,
multimedia information retrieval, and mobile networks, where he has
published over 450 papers. He has been an associate editor of the IEEE
Transactions on Reliability, IEEE Transactions on Knowledge and Data
Engineering, IEEE Transactions on Services Computing, IEEE Access,
andWiley Software Testing, Verification & Reliability Journal. He is a fel-
low of the IEEE and AAAS, and a Croucher Senior Fellow. He received
the IEEE Reliability Society 2010 Engineer of the Year Award.

LI ET AL.: TOWARDS OPERATIONAL COST MINIMIZATION IN HYBRID CLOUDS FOR DYNAMIC RESOURCE PROVISIONINGWITH... 409

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:33:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

