IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

1245

Toward Fine-Grained, Unsupervised, Scalable
Performance Diagnosis for Production
Cloud Computing Systems

Haibo Mi, Student Member, IEEE, Huaimin Wang, Member, IEEE, Yangfan Zhou, Member, IEEE,
Michael Rung-Tsong Lyu, Fellow, IEEE, and Hua Cai, Member, IEEE

Abstract—Performance diagnosis is labor intensive in production cloud computing systems. Such systems typically face many real-
world challenges, which the existing diagnosis techniques for such distributed systems cannot effectively solve. An efficient,
unsupervised diagnosis tool for locating fine-grained performance anomalies is still lacking in production cloud computing systems.
This paper proposes CloudDiag to bridge this gap. Combining a statistical technique and a fast matrix recovery algorithm, CloudDiag
can efficiently pinpoint fine-grained causes of the performance problems, which does not require any domain-specific knowledge to the
target system. CloudDiag has been applied in a practical production cloud computing systems to diagnose performance problems. We
demonstrate the effectiveness of CloudDiag in three real-world case studies.

Index Terms—Cloud computing, performance diagnosis, request tracing

1 INTRODUCTION

PERFORMANCE diagnosis is labor intensive, especially for
typical production cloud computing systems. In such
systems, a lot of software components bear a large number of
replicas (component instances) distributed in different
physical nodes in the cloud. They can be assembled into
multiple types of services, serving large amounts of user
requests. The services provisioned by the cloud are often
prone to various performance anomalies (e.g., SLA violations
[1]) caused by software faults, unexpected workload, or
hardware failures. Such defects may, however, be manifested
only in a small part of component replicas, hiding themselves
in a large number of normal component replicas.

Our experiences in performance diagnosis for Alibaba
Cloud Computing' show that troubleshooting performance
anomalies in practical production cloud computing systems
faces many real-world challenges. It is very difficult to apply
existing diagnosis techniques for such distributed systems.
We summarize the new design challenges as follows:

1. Alibaba cloud computing is a subsidiary of Alibaba, Inc., one of the
largest e-commerce companies in the world. It designs and maintains the
data-centric cloud computing facilities for Alibaba, Inc.

e H. Mi and H. Wang are with National Laboratory for Parallel &
Distributed Processing, National University of Defense Technology,
Changsha, Hunan 410073, China.

E-mail: rainmhb@gmail.com, whm_w@163.com.

e Y. Zhou and M.R. Lyu are with Shenzhen Research Institute, The Chinese
University of Hong Kong, Ho Sin Hang Engineering Building, Shenzhen,
Hong Kong, China. E-mail: {yfzhou, lyuj@cse.cuhk.edu.hk.

o H. Cai is with Alibaba Cloud Computing, Alibaba, Inc., Hangzhou, China.
E-mail: ch.caih@aliyun-inc.com.

Manuscript received 1 Mar. 2012; revised 31 Dec. 2012; accepted 31 Dec.
2012; published online 11 Jan. 2013.

Recommended for acceptance by V.B. Misic, R. Buyya, D. Milojicic, and
Y. Cui.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-03-0229.

Digital Object Identifier no. 10.1109/TPDS.2013.21.

1045-9219/13/$31.00 © 2013 IEEE

1. Performance diagnosis in fine granularity. A compo-
nenttypically hasalotofreplicasinaproduction cloud
system. Within one component, there are many
performance-related private methods (i.e., those in-
voked inside the component) and public methods (i.e.,
the interfaces invoked by other components). Itis very
challenging to localize anomalous methods as well as
their corresponding physical replicas. Current ap-
proaches generally focus on locating anomalous
physical nodes (e.g., [2]) or logical components (e.g.,
[3]). Such coarse-grained results are not enough. In the
former case, given an anomalous physical node, a
system operator has to identify the faulty component
among many components typically hosted in the same
node. In the latter case, given an anomalous logical
component, the operator has to identify which one
among their numerous replicas distributed in the
cloud is faulty. Consequently, huge human efforts are
still required to further pinpoint the subtle primary
cause. Performance diagnosis in a fine granularity is of
high concern to reduce manual efforts.

2. Unsupervised performance diagnosis. Many existing
performance diagnosis techniques resort to system
behavior models in identifying anomalies [4], [5].
Unfortunately, it is hard to manually build such
models in production cloud systems, given their
complexity in system scale. In addition, cloud services
are generally composed of many components devel-
oped by different teams, which are independently
updated online. It is extremely difficult to maintain
the behavior models for such evolutional systems.
Hence, a performance diagnosis tool for production
cloud systems should be completely unsupervised,
without assuming that any prior knowledge about the
service should be input.

3. Performance diagnosis with high efficiency. Coping
with large runtime data generated by a production

Published by the IEEE Computer Society

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

1246

cloud system efficiently is a challenging task in
performance diagnosis. Many defects only manifest
themselves in an online production cloud that
involves a large number of component replicas.
Unlike a small-scale in-house debugging system, a
production cloud system can generate massive
performance logs during its runtime, which are
recorded in a distributed manner across a large
number of cloud nodes. It is, therefore, critical to
design a fast, scalable performance diagnosis tool
chain that can assemble the relevant logs on demand
when performance anomalies occur, and quickly
pinpoint the primary cause accordingly. Yet, this is
not the focus of the current approaches (e.g., [6]).

Typical production cloud systems are service-oriented in
nature. The response time of user requests directly reflects
the system performance. In this regard, tracing user
requests is a viable means to exposing performance data,
so as to help performance diagnosis. Recent work [7], [8],
[9], [10] has shown that it is promising to pinpoint
performance anomalies with end-to-end request tracing
data. However, an efficient, unsupervised diagnosis tool for
locating fine-grained performance anomalies is still lacking.

This paper bridges this gap by proposing CloudDiag.
CloudDiag periodically collects the end-to-end tracing data
(In particular, execution time of method invocations) from
each physical node in the cloud. It then employs a
customized Map-Reduce algorithm to proactively analyze
the tracing data. Specifically, it assembles the tracing data of
each user request, and classifies the tracing data into
different categories according to call trees of the requests.

When the cloud system is suffering performance
degradation (e.g., average response time of user requests
is larger than a threshold), a cloud operator can access
CloudDiag with its web interfaces to conduct a performance
diagnosis. With the request tracing data, CloudDiag will
perform a fast customized matrix recovery algorithm to
instantly identify the method invocations (together with the
replicas they locate) which contribute the most to the
performance anomaly. The whole process requires no
domain-specific knowledge to the target service.

CloudDiag has been successfully launched in diagnosing
performance problems for the production cloud systems in
Alibaba Cloud Computing. We report three case studies in
our real-world performance diagnosis experiences to demon-
strate the effectiveness of CloudDiag in helping the operators
localize the primary causes of performance problems.

The rest of this paper is organized as follows: Section 2
overviews the design of CloudDiag. In Section 3, we
introduce our performance data collection mechanism.
Section 4 illustrates how CloudDiag pinpoints the primary
causes of the performance anomalies. We demonstrate the
effectiveness of CloudDiag with three real-world case studies
in Section 5. Section 6 discusses the related work. Section 7
provides some further discussions and concludes this paper.

2 OVERVIEW

2.1 Preliminaries

A typical production cloud (e.g.,, the data-centric cloud
computing facilities offered by Alibaba Cloud Computing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

9
2 ol]
58
z T]
2 6r 1
g °r i
5 4r 1
3
200 i
. 2
20
<1
0

Node ID

Fig. 1. The execution time of a component method in different replicas in
a 100-node cloud system.

for Alibaba Inc.) generally offers a lot of concurrent
services. Services work collaboratively to support a cloud
application. For example, an e-mail application hosted in
Ablibaba Cloud Computing is supported by many
services that handle the e-mail-relevant operations such
as sending an e-mail, loading an e-mail, and listing e-
mails. From a service-oriented perspective, a service in the
cloud is for handling a certain type of user requests (e.g.,
reading an email).

A service is typically composed of many components.
Each component often contains a large number of replicas
(component instances) distributed in different physical
nodes in the cloud for fault-tolerance, load balancing, and
elasticity considerations.

A user request to a service, therefore, may go through
many component replicas, invoking numerous methods
they provide. A call tree of a user request is a directed tree
describing the method invocation relations, where each
node is a method and each edge e = u — v from node u to
node v denotes that method v is invoked by method u, i.e., u
is a caller and v is its callee. Requests to the same service can
generate multiple call trees. For example, the call tree of one
request reading a file from the cache is different from that of
another request reading a file from the disk.

2.2 Framework of CloudDiag

Performance anomalies in cloud systems will manifest
themselves as anomalous response time of user requests.
Since a service is composed of a lot of components, a service
with anomalous performance must have involved some
components with performance anomalies. A component
typically has a lot of replicas in a production cloud system;
however, the performance anomaly of a component may be
manifested only in a small part of its replicas. This will
cause the performance degradation of the involving service,
which is frequently observed in the cloud computing
systems of Alibaba Inc.

Fig. 1 shows the execution time of a component method
in different replicas in a 100-node cloud system. We can
instantly see that only a small part of replicas (e.g., nodes 8
and 12) are anomalous when executing the method.

Such performance problems are the most difficult to
locate, because the anomalous methods hide themselves
in numerous well-functioning replicas. Therefore, to
reduce human efforts in pinpointing performance anom-
aly, a performance diagnosis tool must first identify
which component methods contribute to the performance

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

MI ET AL.: TOWARD FINE-GRAINED, UNSUPERVISED, SCALABLE PERFORMANCE DIAGNOSIS FOR PRODUCTION CLOUD COMPUTING...

\

1247

,,,,,,,,,,,, [Colllecting and Assembling)

Assembling

i e—

dﬁ%:\

i

'

Diagnosing

) Identifying
abnormal categories

Ranked anomalous
methods and instances

Fig. 2. A System overview of CloudDiag.

anomaly, and then locate the component replicas that
execute the methods.

An efficient, unsupervised diagnosing tool that can
pinpoint the fine-grained causes of performance anomalies
is of critical importance to production cloud computing
systems. To this end, we propose CloudDiag, a tool for
performance diagnosis in production cloud computing
systems. Fig. 2 provides a system-level overview of
CloudDiag.

CloudDiag is composed of three major parts, i.e.,
1) collecting the performance data; 2) assembling the
performance data; and 3) identifying the primary causes
of the anomalies. We briefly overview each part as follows:

o Collect performance data. CloudDiag traces user
requests at a given sampling rate to expose
performance data. For the sampled requests, each
component replica records the performance data and
saves them in its local storage. An important
consideration is what kind of performance data
CloudDiag should collect and how. CloudDiag
adopts an instrumentation-based approach that
collects the execution time of each component
method. Details are discussed in Section 3.

o Assemble performance data. CloudDiag should first
assemble the performance data distributed in nu-
merous component replicas in a request-oriented
way. In other words, the performance data belong-
ing to the same requests are correlated together.
CloudDiag will then analyze such request-oriented
performance data and infer the call tree of each
sampled request. A customized map-reduce process
is utilized to group requests into different categories
based on their call trees. Requests within one
category share the same call tree.

e Identify the primary causes of anomalies. CloudDiag
then identifies the anomalous categories according
to their latency distribution. Then, for each anom-
alous category, a fast customized matrix recovery
algorithm (i.e., robust principal component analysis
(RPCA) [11]) is employed to identify the anomalous
method invocations together with the replicas they
are located. Details are discussed in Section 4.

Note that Steps 1 and 2 are relatively time-consuming
tasks since they work on the massive tracing data generated
by the entire production cloud system. Hence, for efficiency

considerations, CloudDiag performs these two steps proac-
tively. In other words, CloudDiag conducts the tracing data
collection and assembly during the execution of the system.
All categories are stored in a BigTable-like storage system
[12] for further performance diagnosis when performance
anomalies are detected.

A web-based interface to access the data is provided for
system operators. When performance anomalies are ob-
served, an operator can conduct the primary cause analysis
by accessing the web interface. Step 3 is then triggered and
the fine-grained results (i.e., the anomalous method invoca-
tions together with the replicas they are associated with) is
automatically provided to the operator. Finally, note that
such a design also allows the operator to flexibly conduct a
tunable Step 3 (e.g., tune the time windows to rerun the
diagnosing process) without performing the time-consum-
ing performance data assembly step.

3 PERFORMANCE DATA COLLECTION

In this section, we introduce what kind of performance data
that CloudDiag should collect and how to collect them.

Our instrumentation-based tracing approach will pro-
duce performance data when a sampled request is being
processed in each component replica. Specifically, each
component method, when being invoked or returning, will
generate a log entry.

The data structure of a tracing log entry is shown in
Fig. 3a, which contains five items. Host indicates the
machine where the component replica locates. Time stamp
records the time of the event occurrence (i.e., a method
invocation or a method return). RequestID is the global
identifier of a request. MID is a unique identifier for request

| Host | Timestamp I RequestiD I MID I Method Flag
Host1 2012-01-01 16:31:31.690272 169 739 AliStorge.ReadFile Start
Host1 2012-01-01 16:31:32.991376 169 739 AliStorge.ReadFile End

(a) Log entry for method execution time

Host | Timestamp

I RequestID ICaIIer MID ICaIIee MID

Host1 2012-01-01 16:31:31.690724 169 739 991

(b) Log entry for method invocation relationship

Fig. 3. Tracing log formats and examples.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

1248

15000

i

10000

5000

-5000

Time Deviation (us)

w‘"“H‘“‘

m il

-15000
0

i
W m

-10000

40 60
Host IDs

Fig. 4. The time deviation of a 100-node cloud system. The standard
time in the figure is the clock of a node randomly selected.

tracing purpose, which will be discussed later. The Method
field saves the name of the method invoked. Lastly, Flag
indicates whether this is a method invocation or a method
return. Fig. 3a also shows two example log entries that
record the invocation of the AliStorage.readFile method and
its return.

RequestID should be unique for every request. It is
assigned when a request arrives the system. Typically, a
cloud service may have multiple entry nodes for the same
type of requests. To guarantee the uniqueness of RequestID,
an entry node will assign the RequestID (a unique 64-bit
integer) as the concatenation of two integers: One is the
unique number to identify the entry node per se, and the
other is incremental with each new request.

CloudDiag uses the invocation relationship between
methods to model a request. To obtain such relationship,
CloudDiag resorts to the chronological order of the method
invocations. Our experiences show that one challenge of
request tracing is to cope with the clock drifts of nodes,
which are inevitable in production cloud systems. Previous
approaches (e.g., [10], [13], [6], [8]) generally assume that
the clock drifts are negligible. However, this is not true in
production cloud computing systems. Fig. 4 shows an
example of clock drifts in a 100-host cluster in Alibaba
Cloud Computing. Even with a Network Time Protocol
(NTP) [14] to synchronize the clocks, the deviations
between the clocks of different cloud nodes are still in
millisecond-level. As we can see in the figure, the biggest

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

deviation is larger than 20 milliseconds. Previous ap-
proaches (e.g., [8], [10], [13], [6]) simply employ only a
global identifier (i.e.,, RequestID in Fig. 5) to mark the
distributed tracing record and use their time stamps to infer
the invocation relationships with methods. As a result,
clock drifts may lead to the wrong order of method
invocations when merging the distributed logs generated
in processing a request. For example, the start time-stamp of
the callee in one host may be earlier than the start time-
stamp of the caller in another host.

To guarantee the order of the invoked methods, we
design hierarchical identifiers to trace a request. Specifi-
cally, before a node calls a method in another node, besides
passing the RequestID to the callee, the caller also generates
an MID, a unique integer, for the callee. When a request
enters the first component method in the system (i.e., the
request entry method), the MID of the method is initially set
identical to the RequestID. CloudDiag then records the MIDs
of the caller and the callee in the logs of the caller as well.
Fig. 3b shows such a log format.

Thus, CloudDiag can recover the caller-callee relation-
ships according to the MIDs. The order of method
invocations can then be correctly recovered and an entire
performance trace of a request can, thus, be obtained. Fig. 5
shows an example of combining the tracing logs distributed
over three hosts and retrieving the call tree.

4 DIAGNOSING ANOMALIES WITHOUT DOMAIN
KNOWLEDGE

In this section, CloudDiag first employs a statistical
technique to detect anomalous categories that contain
latency-anomalous requests. Then, from anomalous cate-
gories, a fast matrix recovery algorithm, namely, RPCA, is
adopted to identify the anomalous methods and instances.
Details are as follows:

4.1 Identifying Anomalous Categories

We cannot rely only on the response latency of a request to
check whether a request is anomalous. Long response
latency does not indicate a failure. For example, the
response latency of one request reading a file from hard
disk is several times longer than that of another reading a
file from cache.

T Hostl
Method Invocation Method Return Host1
Host1

232
T 232 Host1
P] Host1
AliStorage.ReadFile 17 T12 Host1

232 232 232

T8

23

-

AliComm.SendRPC

AT6 T7 4Tl

T1
T2

o

1734 232 AliStorage.ReadFile Start
1734 232 AliComm.SendRPC Start
1734 232 791

1734 232 AliComm.SendRPC End
1734 232 AliComm..SendRPC Start
1734 232 801

1734 232 AliComm.SendRPC End
1734 232 AliComm.ReadFile End

T7
T8
T11
T12

AliStorage.ReadFile

AliComm.SendRPC AliComm.SendRPC

T
Host2
AliFile.ReadMeta

791 791
W

—

T4 Ts

Host2 T4 1734 791 AliFile.ReadMeta Start
Host2 T5 1734 791 AliFile.ReadMeta End

AliFile.ReadMeta AliFile.ReadData

e
Host3 3 so1 soif
AliFile.ReadData D — '

T9 T10

Host3 T9 1734 801 AliFile.ReadMeta Start
Host3 T10 1734 801 AliFile.ReadMeta End

Fig. 5. A request with request] D = 1734 passes through three hosts. When the SendRPC method at Host 1 invokes the ReadMeta method at Host 2
and the ReadMeta method at Host 3, it will generate the MIDs (791 and 801) for the two callees. CloudDiag can then recover the caller-callee

relationships according to the third and sixth log entries of Host 1.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

MI ET AL.: TOWARD FINE-GRAINED, UNSUPERVISED, SCALABLE PERFORMANCE DIAGNOSIS FOR PRODUCTION CLOUD COMPUTING...

o=1

Coefficient of Variation

Category Number

Fig. 6. An Example of detecting anomalous categories.

Normal and anomalous replicas exist simultaneously
when performance problems occur. For a component, the
same service requests may pass through normal instances
as well as anomalous instances. The response latency of a
request will be influenced by anomalous instances that it
passes through. Normal and anomalous requests may share
the same call tree and be grouped into one category; hence,
the latency distribution of requests within the same
category could be utilized to detect whether it contains
latency-anomalous requests or not.

Requests within one category have the same call tree;
hence, the response latencies should be close to each other.
A category is considered to be normal if the latencies of
requests within the category are clustered in a specific
range; on the contrary, a category is considered to be
anomalous if the latencies are over dispersed. In this
regards, we choose the coefficient of variation (CV) [15] to
measure the distribution of a set of data. Let a be the
threshold. A category is defined to be anomalous if its CV is
larger than «. Fig. 6 shows an example of identifying the
anomalous categories (« is set to be 1). Finally, note that CV
can also be easily replaced by other statistical approaches.
But in our field studies, we find that such a simple indicator
is good enough.

4.2 Identifying Anomalous Methods

In an anomalous category of requests, our aim now is to
pinpoint the anomalous method invocations that are
responsive for the performance anomaly of the requests.
For such a category of requests, we can create an m x n
matrix M, where n is the number of the invoked methods in
the corresponding call tree and m is the number of the
requests that bear the same call tree. M;; denotes the

1800C

18000

1249

execution time of the jth method when depth-first traver-
sing the call tree of the ith request. Column M(j) denotes
the invocation time vector of the jth method.

Intuitively, we can identify the anomalous method by
measuring the execution time deviation of each method one
by one. However, this cannot capture the correlations of the
invoked methods, and will, hence, cause imprecise diag-
nosis results. Furthermore, such a statistical analysis can
only identify anomalous methods, but cannot find out on
which replicas the anomalous methods are executed.
Hence, we design an unsupervised machine learning
algorithm to automatically learn the characteristics of the
invoked methods and identify which methods are anom-
alous together with on which replicas they are executed. We
discuss the details as follows:

First of all, most requests with the same call tree bear
similar performance data. In other words, most of the rows
are correlated. As a result, the performance matrix M
bears a low rank. Such a property is the basis of many
existing approaches [16], [17], [18], [19] to widely employ
principal component analysis (PCA) [20] in performance
anomaly detection.

Although PCA is one of the most popular algorithms for
anomaly detection, it only works well to the data in which
the errors (in our problem domain, errors in the data are
caused by the performance anomaly) follows the Gaussian
distribution. However, the execution time of the anomalous
methods is actually corrupted by large errors, which does
not follow the Gaussian-distribution assumption of PCA.
Such large errors caused by anomalous methods will cause
PCA to produce imprecise diagnosing results [11].

Fig. 7a shows a column with large errors in a 5,000 x
117 matrix. The matrix is composed of the requests of an
anomalous category which contains 5,000 requests. This
column denotes the invocation time vector of an anom-
alous method. The horizontal axis represents the request
identifier and the vertical axis denotes the microsecond-
level execution time. For this method, the normal execution
time is about 2,000 microseconds; however, parts of the
execution time reach to 16,000 microseconds. These large
errors cause the distribution of execution time to deviate
from the Gaussian distribution.

To solve the problem, we propose to use the RPCA [11]
for the anomaly detection task. RPCA is an algorithm for
high-dimensional matrix completion. When a matrix M is
corrupted by gross sparse errors, RPCA can decompose the

16000 16000

14000 14000
12000 12000
10000 10000

8000 8000

Latency (us)
Latency (us)

6000 6000

4000 4000

2000 2000

0

1800C

16000

14000

12000

10000

8000

Latency (us)

6000

4000

Bl i L 1

‘\H H‘
2000 3000

0 1000 2000 3000

Request Numbers

4000 5000 0 1000 2000

(a) Real Values

Request Numbers

(b) Recovered Values

0
0

3000 4000 5000 1000 4000 5000

Request Numbers

(c) Corrupted Values

Fig. 7. An illustration of RPCA recovering a column with gross errors to a noncorrupted column and a corrupted column.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

1250

full matrix M as: M = L + E, where L is a low-rank matrix
with noncorrupted columns and E is a sparse matrix with a
few nonzero corrupted columns.

The matrix M is the input of RPCA. Therefore, the
problem of identifying anomalous methods in a category is
transferred into the process of recovering a matrix with
unknown corrupted latency columns.

After obtaining the noncorrupted matrix L and error
matrix F, we can identify the corrupted columns (i.e., the
anomalous methods) from E. The anomalous methods refer
to those columns that are farthest from the true column
space. For the ith column in original matrix M and
noncorrupted matrix L, the extension of deviation can be
measured as:

M) - L),
1M (@)l 1L (@)l

where 6 represents the angle between column M (i) and
column L(7). The larger the angle is, the more deviation the
column L(7) is away from the true space. A method is defined
to be anomalous if 3 is smaller than a given threshold.

Fig. 7 plots an example of identifying an anomalous
method in one anomalous category. The original data of the
anomalous method are shown in Fig. 7a. After applying
RPCA, we can get a noncorrupted latency column (shown
in Fig. 7b) and an error latency column (shown in Fig. 7c).

For each anomalous method (i.e., the corrupted column),
anomalous replicas are located by checking the entries of the
corrupted column in Matrix E. With the row and column
indices of the corrupted entries, we can get the physical
addresses of anomalous replicas from physical paths.

Since the same method (running on the same compo-
nent replica) may be identified to be anomalous in
different categories, we calculate the times that it is
identified to be anomalous. The larger the number of
times is, the more suspicious the method is. CloudDiag can
then rank the methods in descending order of the number
of times that they are identified to be anomalous, which
can direct the operators to localize the primary cause of
performance anomaly.

B=cos = (1)

5 EVALUATION

CloudDiag has been launched in Alibaba Cloud Comput-
ing Company to perform anomaly diagnosis in its
production cloud computing systems. This section reports
three case studies during our experiences in using
CloudDiag in Alibaba.

Our target cloud system is a cloud facility for Aliyun
Mail, a production e-mail system that provides free e-mail
service to the public.2 ListMail, ReadMail, and SendMail are
three services that are utilized to handle requests of listing
mail titles, reading mail contents, and sending mails,
respectively. They are the typical services of our target
system, and are the focus of our experimental studies.
Services are composed of a series of components (e.g.,
storage and communication). Each component has many
homogeneous replicas that are deployed on different hosts.

2. The system can be accessed via http:/ /mail.aliyun.com.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

900
120 Million ———
g 800 160 Million .
o700 200 Million -
< 600 |
E .
€ 500 F |
*.
£ 300 f R
© 200 | R —
100 1 | |
512 256 128 64 32
Split Size(MB)

Fig. 8. Computation time under different volumes of split sizes.

Currently, more than 20 million user requests are
handled per day. On average, a request will typically go
through over 10 hosts, invoking over 100 instrumented
methods. By default, requests are sampled with the ratio of
1/200. Generally, the target cloud system would produce
about 30-50 gigabytes (around 120-200 million lines) of
tracing logs per hour.

CloudDiag is deployed in a small cluster with 10 nodes.
Each node is a typical low-end computer running Linux
RHEL 5.4. CloudDiag proactively pulls the tracing data
from the target cloud in a periodical manner (once every
hour in our experiments). It then runs a customized map-
reduce process to assemble and classify tracing data. First,
map tasks assign correlated tracing logs that belong to the
same requests to corresponding reduce tasks. Second,
reduce tasks generate and classify requests into categories.

For the map-reduce cluster, one important parameter is
the split size, i.e., the volume of data assigned to each Map
task. The split size determines the number of Map tasks. A
smaller split size indicates that more Map tasks are required
to process a given data set. We vary the split sizes from
32 to 512 MB for three data sets (with trace entries sizes
being 120, 160, and 200 million lines of trace logs). The
computational time of the map-reduce procedure is shown
in Fig. 8. We can see the cluster performs the best when the
split size is 128 MB. Hence, in the rest of our experiments,
we set the split size 128 MB.

Finally, CloudDiag adopts a state-of-the-art RPCA
implementation, called inexact ALM algorithm [21] in its
performance anomaly detection approach. It is a mature
open-source implementation, and can be used in a black-
box way for CloudDiag.

5.1 Scalability Evaluation

For efficiency consideration, CloudDiag is required to be
scalable to the massive performance data. Since CloudDiag
conducts the tracing data collection and assembly proac-
tively, the anomaly diagnosing step is the only issue that
will influence the scalability of CloudDiag.

We study the efficiency of the RPCA-based anomaly
detection approach. The inputs are the performance data of
a typical category of requests to the SendMail service,
which bears a critical call tree that contains 117 methods.
There are about 4 million of requests following this call tree
each day. Fig. 9 plots the computation time of the anomaly
detection approach under different request numbers. It
shows that the computational time of the approach also

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

MI ET AL.: TOWARD FINE-GRAINED, UNSUPERVISED, SCALABLE PERFORMANCE DIAGNOSIS FOR PRODUCTION CLOUD COMPUTING...

200
180 e
160 | ~ E
140 +
120 _— B
100 | pd E
80
60
40 | //;4» -
20 .
1 1 1 1 1 1 1 1

0
10 20 30 40 50 60 70 80 90 100
Request Numbers (103)

Computation Time (seconds)

Fig. 9. Scalability of the RPCA based anomaly detection.

scales almost linearly with the performance data volumes
of up to 100 thousand requests. This demonstrates the high
scalability of the RPCA-based anomaly detection algorithm.
The process of computing a 100,000 x 117 matrix takes less
than 200 seconds.

5.2 Evaluation of Diagnosing Results

In this section, we demonstrate how CloudDiag helps
operators detect real-world performance anomalies that
happened in Alibaba cloud computing platform.

We adopt the following two measures to evaluate the
effectiveness of CloudDiag. The first is precision = 757,
which measures the exactness of our approach. The second
is recall = Tﬁrﬁ' which measures the completeness. TP
refers to the number of true positives (i.e., the number of
anomalous methods); FP refers to the number of false
positives (i.e., the number of normal methods that are
mistaken for the anomalous); FN refers to the number of
false negatives (i.e., the number of anomalous methods that
are mistaken for the normal).

To show the advantage of adopting RPCA in CloudDiag,
we compare CloudDiag with a recent performance diag-
nosis approach based on the PCA algorithm [19]. The
approach employs PCA and the Mann-Whitney hypothesis
test to identify anomalous methods.

5.2.1 Case 1: Misconfiguration of Thread Pool Size

Performance anomalies due to misconfigurations are fre-
quently encountered in large scale systems like a production
cloud. But they are very difficult to be troubleshooted [22].
It is hard to correlate the performance degradation to the
relevant misconfigured parameters. Even with an approach

01K
17:00 17:20 17:40 18:00 18:20 18:40 19:00 19:20

19:40 20:00
W list mail avg 559.27 [read mail avg 204.47 0 send_mail avg 1051.63

Fig. 10. The average latency of ListMail service increases nearly by 1/2
in about 3 hours.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore.

1251

TABLE 1
Summary of Diagnosing Results with CloudDiag

Case Candidate Anomalous Request Anomalous Original Recovered

categories categories ratio req. ratio avg. rank avg. rank

1 98 23 47% 9% 129 68
2 87 30 53% 12% 117 56
3 137 27 11% 1% 87 51

that can identify anomalous physical nodes [2] or logical
components [3], the operators still have to manually infer
the correlation between the performance anomalies and the
parameters, which is time consuming and error prone. This
case study reports how CloudDiag can greatly help trouble-
shoot a misconfiguration of the thread pool size, which
causes the performance degradation.

After a series of software upgrade, the cloud operators
found the performance of ListMail service decreased nearly
by 1/2 in about 3 hours, as shown in Fig. 10. CloudDiag
quickly finds that the method with the highest suspicious
score was one relevant to the queuing time before a request
is handled by the storage service. The queuing time is long
because the requests are waiting for available handlers,
while all the handlers are busy processing requests. We can
instantly know that this is because the number of handlers
(implemented as threads) are set too small. This number is
directly controlled by a system-wide configuration file.
After setting the configuration of thread pool size to a more
reasonable number, the system is cured.

In Table 1, we can see that about one-fourth of categories
become anomalous. The number of requests in these
anomalous categories accounts for 47 percent of total
ListMail requests and about 9 percent requests are directly
impacted by the performance anomaly. On average these
anomalous categories pass through 129 invoked methods
(some are invoked many times in one request.). The average
rank of original and recovered matrices are 129 and 68,
respectively, which confirms the low dimensionality of
original categories.

The comparisons between CloudDiag and the PCA-
based approach are shown in the first row of Table 2. We
can see that the precision of the PCA-based approach is
only 67 percent. It indicates that the PCA-based approach
has mistaken more normal methods for the anomalous.
More false positives require more human effort to examine
the methods that are actually correct. Furthermore, the
recall of the PCA-based approach is 8 percent lower than
that of CloudDiag, which means that fewer anomalous
methods can be successfully identified by the PCA-based

TABLE 2
Comparison of CloudDiag and PCA-Based Approach

Case CloudDiag PCA-based approach
Precision Recall Precision Recall

1 95% 93% 67% 85%

2 98% 96% 71% 89%

3 97% 91% 76% 81%

Restrictions apply.

1252

approach. Hence, it requires much additional human effort
in diagnosing the defect.

Note that in Fig. 10, we can observe that the performance
of SendMail and ReadMail services are not influenced by
configuration as much as that of the ListMail service.
Without conducting a separation-of-concerns analysis, the
diagnosing result will be disturbed by the performance data
of SendMail and ReadMail services.

5.2.2 Case 2: Performance Bottleneck Caused by
Random Number Generator

Sometimes minor design defects will become the perfor-
mance bottleneck of the entire systems. Not like fail-stop
faults that will directly cause the breakdown of the system,
these subtle design defects that will, however, cause severe
performance degradation will not manifest until systems
are under specific conditions, which increases the complex-
ity of detection. This case study reports how CloudDiag
helps operators identify a minor design defect.

After the load was increased by 300 percent, the average
latencies of SendMail service rose by 35 percent in about 6
hours. Operators spent much time on checking the design
logic in the server and performance-relevant parameters;
however, nothing wrong was detected. Hence, CloudDiag
was then recommended to locate the primary cause of this
performance degradation.

The methods with the highest suspicious scores were the
front-end related ones. The most anomalous method
contains a process of waiting for a random number. Every
new mail was tagged with a unique string, which is
obtained with a random number generator /dev/random. It
generates random numbers through collecting the environ-
mental noises from hardware devices, which inevitably
suffers poor efficiency. When load increases, some front-
end nodes cannot generate random numbers timely. It
causes a considerable portion of the SendMail requests to
spend much more time in the frond-end nodes.

CloudDiag is effective to identify these fine-grained
defects that are not easily noticed. We can see that without
CloudDiag, even experts will have much difficulty in
locating the cause of such a performance defect. Further-
more, massive performance data is generated in 6 hours,
without CloudDiag proactively assembling the data, opera-
tors could not efficiently conduct the diagnosing process.
They need to wait extra time for the diagnosing result.

The quantitative results are shown in the second row of
Table 1. In this service, about one-third of the categories
become anomalous and 12 percent of the requests are
influenced. Table 2 shows that the precision of CloudDiag is
98 percent (27 percent higher than that of the PCA-based
approach), which again shows the advantage of CloudDiag
in eliminating the false positives.

5.2.3 Case 3: Periodic Request Bursts
Testing cannot cover all possible occasions in production
systems given the complexity of the real world, some
performance anomalies triggered by user access behaviors
are inevitable. This case study shows how CloudDiag
can help operators conveniently diagnose these perfor-
mance anomalies.

In Alibaba, the Service Level Agreement (SLA) for the
execution time of SendMail service was that the fraction of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

requests with response latencies larger than 300 milliseconds
could not exceed 0.05 percent. However, on every Wednes-
day and Thursday, the ratio rose to 1 percent and this
situation lasted for several weeks.

To debug this anomaly, we ran CloudDiag for the two
time windows, i.e., Wednesday and Thursday. Both results
revealed that the most anomalous methods were related to
the transaction begin operations. Through checking the
physical addresses of the anomalous methods, we found
that most of them were just located in a few replicas. In the
mail service, mails of the same user account would be
sequentially stored by one storage component replica.
Hence, we inferred that some user accounts in this replica
might be called to receive massive mails simultaneously.

Then, we presented the results to one operator. After
checking the replica, he confirmed our judgment. Two user
accounts belonging to the security department of Alibaba
cloud company would receive thousands of mails from
3:00 PM to 5:00 PM on every Wednesday and Thursday,
which caused a fraction of SendMail service to wait more
time for disk access.

When performance anomalies occur, it is hard for
operators to efficiently identify which teams should be
responsible for these anomalies. With CloudDiag, they can
quickly identify related causes and assign the bug reports to
the “culprits.”

The quantitative results are shown in the third row of
Table 1. We can see that about one-sixth of categories
become anomalous. These anomalous categories account for
11 percent of total SendMail requests. On average these
anomalous categories invoke 87 instrumented methods.
As shown in Table 2, the precision and recall are 97 and
91 percent, respectively, which again demonstrates the
effectiveness of CloudDiag.

5.2.4 Discussions

In the above three case studies, we compare CloudDiag
with the PCA-based approach in terms of precision and
recall. From Table 2, we can see that CloudDiag outper-
forms the PCA-based approach in both measures, espe-
cially in term of precision. Hence, CloudDiag can save
more effort in troubleshooting the primary cause of the
performance anomalies. This shows that the PCA-based
approach cannot well handle the performance data with
gross errors. It consequently generates more false positives
and false negatives. The RPCA-based approach CloudDiag,
on the other hand, can work well for such non-Gaussian
performance data.

There are two thresholds in our approach. a and 5 are,
respectively, utilized to detect whether categories or
invoked methods are anomalous or not. « is conventionally
set to 1 [15]. In our experimental study, we have set § in
range [0.4, 0.8]. Although anomalous methods can be
successfully identified by CloudDiag in our three case
studies, we observe that the value of beta can slightly
influence the precision. Empirically, the value 0.5 is a best
choice for .

6 RELATED WORK

Extensive work has employed explicit annotation-based
instrumentation to conduct performance monitoring,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

MI ET AL.: TOWARD FINE-GRAINED, UNSUPERVISED, SCALABLE PERFORMANCE DIAGNOSIS FOR PRODUCTION CLOUD COMPUTING...

tuning, and debugging for distributed systems, which is
surveyed as follows:

Magpie [23] applies application-specific event schemas
to correlate the resource consumption of individual
requests with the goal of understanding performance. Pip
[4] and Ironmodel [24] compare users” actual behavior with
self-defined expectation to determine whether a request is
anomalous or not. It is very hard to construct these models
because they require much specific domain knowledge.
Compared to them, CloudDiag considers the intrinsic
characteristics of request latencies to determine the anom-
alous method invocations, which requires no specific
domain knowledge.

Pinpoint [13] traces request call relationship in multi-
layers of web service components and adopts a clustering
algorithm to group failure and success logs. It can only find
out the anomalous components. In comparison, CloudDiag
can identify the latency-anomalous methods together with
corresponding physical replicas.

Dapper [25] introduces an infrastructure of performance
monitoring. It keeps tracing logs into Bigtable [12]. Yet this
approach does not describe how to use these logs to
diagnose performance problems. Spectroscope [7] aims to
find the primary cause of performance changes between
two time periods, while our work does not assume the
existence of a “correct” time period when the system
performs normally. P-Tracer [26] can be utilized to identify
the performance anomalies that manifest themselves as the
change in the ratios of the chosen call trees, while
CloudDiag can localize the latency-anomalous methods
within call trees.

There are also many performance diagnosing techniques
that rely on specific types of data. Xu et al. [27] combine
console logs with source codes to construct performance
features and conducts the PCA [20] to detect problems.
Similarly, Nagaraj et al. [28] model event logs and state logs
into performance features and engage the t-statistic to infer
the anomalies between components. However, these tech-
niques generally focus on locating anomalous logical
components instead of replicas.

7 DiscussION AND CONCLUSION

Request tracing technologies have been proven effective in
performance debugging. In this paper, CloudDiag resorts
to a white-box instrumentation mechanism to trace service
requests, because the source codes of services are
generally available in typical production cloud systems.
Note that such a white-box performance data acquisition
component of CloudDiag can also be substituted with
another tracing mechanism if it can obtain the latency data
of method invocations.

Another way to trace requests is via black-box mechan-
isms. Black-box tracing mechanisms (e.g., [29]) assume no
knowledge of the source codes. But, existing approaches
generally cannot directly obtain the latency data of method
invocations. In this regard, a black-box tracing mechanism
can be deemed as a tracing mechanism with the large
granularity (e.g., in node level). There is a tradeoff between
tracing granularity and debugging effort. As a result, more
effort will be increased in troubleshooting the performance

1253

anomalies if a black-box tracing mechanism is applied. To
incorporate black-box tracing mechanisms with CloudDiag,
a future direction is to explore black-box tracing mechan-
isms so that a fine granularity (i.e., in method invocation
level) can be achieved. To this end, the runtime instrumen-
tation (e.g., [30]) can be a promising technique.

In conclusion, this paper proposes CloudDiag, an
efficient, unsupervised diagnosis tool for locating fine-
grained performance anomalies. The experimental results
demonstrate that our approach scales well to massive
tracing data. We also report our experiences that CloudDiag
can effectively and conveniently help operators diagnose
three real-world performance problems with high precision
and recall.

ACKNOWLEDGMENTS

This research is supported by the National Basic Research
Program of China under Grant No. 2011CB302600, the
National High Technology Research and Development
Program of China under Grant No. 2012AA011201, the
National Natural Science Foundation of China (NSFC)
under Grant No. 90818028, 61161160565, 60903043,
61100077, the Basic Research Program of Shenzhen (Grant
No. JCY]J20120619152636275 and]JC201104220300A), and
the Research Grants Council of Hong Kong (Project No.
N_CUHK405/11).

REFERENCES

[1] V. Emeakaroha, M. Netto, R. Calheiros, I. Brandic, R. Buyya, and
C. De Rose, “Towards Autonomic Detection of SLA Violations in
Cloud Infrastructures,” Future Generation Computer Systems,
vol. 28, pp. 1017-1029, 2011.

[2] Z. Lan, Z. Zheng, and Y. Li, “Toward Automated Anomaly
Identification in Large-Scale Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 21, no. 2, pp. 174-187, Feb. 2010.

[3] H.Malik, B. Adams, and A. Hassan, “Pinpointing the Subsystems
Responsible for the Performance Deviations in a Load Test,” Proc.
IEEE 21st Int'l Symp. Software Reliability Eng. (ISSRE), pp. 201-210,
2010.

[4] P. Reynolds, C. Killian,]J. Wiener, J. Mogul, M. Shah, and A.
Vahdat, “Pip: Detecting the Unexpected in Distributed Systems,”
Proc. USENIX Third Symp. Networked Systems Design and Imple-
mentation (NSDI), pp. 115-128, 2006.

[5] E. Thereska and G. Ganger, “Ironmodel: Robust Performance
Models in the Wild,” ACM SIGMETRICS Performance Evaluation
Rev., vol. 36, no. 1, pp. 253-264, 2008.

[6] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek,
J. Lopez, and G. Ganger, “Stardust: Tracking Activity in a
Distributed Storage System,” ACM SIGMETRICS Performance
Evaluation Rev., vol. 34, no. 1, pp. 3-14, 2006.

[71 R. Sambasivan, A. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. Ganger, “Diagnosing
Performance Changes by Comparing Request Flows,” Proc.
USENIX Eighth Symp. Networked Systems Design and Implemen-
tation (NSDI), pp. 43-56, 2011.

[8] A. Chanda, A. Cox, and W. Zwaenepoel, “Whodunit: Transac-
tional Profiling For Multi-Tier Applications,” ACM SIGOPS
Operating Systems Rev., vol. 41, no. 3, pp. 17-30, 2007.

[9] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “X-Trace:
A Pervasive Network Tracing Framework,” Proc. USENIX Third
Symp. Networked Systems Design and Implementation (NSDI),
pp- 271-284, 2007.

[10] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer, “Path-Based Faliure and Evolution Management,”
Proc. USENIX Symp. Networked Systems Design and Implementation
(NSDI), pp. 23-36, 2004.

[11] E. Candes, X. Li, Y. Ma, and J. Wright, “Robust Principal
Component Analysis?” Arxiv Preprint arXiv:0912.3599, 2009.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

1254

[12] F.Chang,]. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” ACM Trans. Computer
Systems, vol. 26, no. 2, pp. 1-26, 2008.

[13] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem Determination in Large, Dynamic Internet Services,”
Proc. IEEE Int'l Conf. Dependable Systems and Networks (DSN),
pp. 595-604, 2002.

[14] D. Mills, “Network Time Protocol (Version 3) Specification,
Implementation and Analysis,” 1992.

[15] H. Abdi, “Coefficient of Variation,” Encyclopedia of Research Design,
N. Salkind, ed., pp. 1-5, SAGE, 2010.

[16] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online
System Problem Detection by Mining Patterns of Console Logs,”
Proc. IEEE Int’l Conf. Data Mining (ICDM), pp. 588-597, 2009.

[17] A. Oliner and A. Aiken, “Online Detection of Multi-Component
Interactions in Production Systems,” Proc. IEEE/IFIP 41st Int’l
Conf. Dependable Systems and Networks (DSN), pp. 49-60, 2011.

[18] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of PCA
for Traffic Anomaly Detection,” ACM SIGMETRICS Performance
Evaluation Rev., vol. 35, no. 1, pp. 109-120, 2007.

[19] H. Mi, H. Wang, G. Yin, H. Cai, Q. Zhou, and T. Sun,
“Performance Problems Diagnosis in Cloud Computing Systems
by Mining Request Trace Logs,” Proc. IEEE Network Operations and
Management Symp. (NOMS), pp. 893-899, 2012.

[20] L Jolliffe, Principal Component Analysis. Springer, 2002.

[21] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The Augmented Lagrange
Multiplier Method for Exact Recovery of Corrupted Low-Rank
Matrices,” Arxiv preprint arXiv:1009.5055, 2010.

[22] K. Nagaraja, F. Oliveira, R. Bianchini, R. Martin, and T. Nguyen,
“Understanding and Dealing with Operator Mistakes in Internet
Services,” Proc. USENIX Sixth Conf. Symp. Operating Systems
Design and Implementation (OSDI), pp. 5-20, 2004.

[23] P.Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie
for Request Extraction and Workload Modelling,” Proc. USENIX
Sixth Conf. Symp. Operating Systems Design and Implementation
(OSDI), pp. 259-272, 2004.

[24] E. Thereska and G. Ganger, “Ironmodel: Robust Performance
Models in the Wild,” ACM SIGMETRICS Performance Evaluation
Rev., vol. 36, no. 1, pp. 253-264, 2008.

[25] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure,” Technical Report
dapper-2010-1, Google, 2010.

[26] H. Mi, H. Wang, Y. Zhou, M.R. Lyu, and H. Cai, “P-tracer: Path-
Base Performance Profiling in Cloud Computing Systems,” Proc.
IEEE 36th Ann. Computer Software Applications Conf. (COMPSAC),
pp. 509-514, 2012.

[27] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan,
“Detecting Large-Scale System Problems by Mining Console
Logs,” Proc. ACM SIGOPS 22nd Symp. Operating Systems
Principles, pp. 117-132, 2009.

[28] K. Nagaraj, C. Killian, and J. Neville, “Structured Comparative
Analysis of Systems Logs to Diagnose Performance Problems,”
Proc. USENIX Ninth Conf. Networked Systems Design and Imple-
mentation (NSDI), pp. 26-39, 2012.

[29] B.Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, and Z. Zhang,
“Precise, Scalable, and Online Request Tracing for Multi-Tier
Services of Black Boxes,” IEEE Trans. Parallel and Distributed
Systems, no. 99, pp. 1-16, 2010.

[30] E. Gonina et al, “Fay: Extensible Distributed Tracing From
Kernels to Clusters,” Proc. ACM 23rd ACM Symp. Operating
Systems Principles (SOSP), vol. 13, pp. 5-20, 2011.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

Haibo Mi received the BEng and MEng degrees
from Communication Command University of
Wu Han, in 2005 and 2008, respectively, and is
currently working toward the PhD degree in
National Laboratory for Parallel & Distributed
Processing, National University of Defense
Technology, Changsha, China. His thesis fo-
cuses on performance maintenance in large-
scale distributed systems. He was a engineer at
Alibaba Cloud Computing Company for two
years. His research interests include distributed computing, cloud
computing, performance monitoring, and fault localization. He is a
student member of the IEEE.

Huaimin Wang received the PhD degree in
computer science from the National University of
Defense Technology (NUDT) in 1992. He is
currently a professor and the chief engineer in
department of educational affairs, NUDT. He
has been awarded the “Chang Jiang Scholars
Program” professor by Ministry of Education of
China, and the Distinct Young Scholar by the
National Natural Science Foundation of China
(NSFC), and so on. He has worked as the
director of several grand research projects and has published more than
100 research papers in international conferences and journals. His
current research interests include middleware, software agent, trust-
worthy computing. He is a member of the IEEE.

Yangfan Zhou received the BSc degree from
Peking University in 2000, and the MPhil and
PhD degrees from CUHK in 2006 and 2009,
respectively. He is currently a research staff
member with the Shenzhen Research Institute,
The Chinese University of Hong Kong (CUHK).
His research interests include distributed com-
puting and networking, particularly in the Internet
of Things, cloud computing, and sensor net-
works. His current research is on their software
engineering issues (e.g., fault management, fault tolerance, reliability
engineering, testing, and debugging) and their applications. Before
joining CUHK, for many years he has been working as an engineer in
information technology industry, where he is now also active in
technology consulting. He is a member of the IEEE.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

MI ET AL.: TOWARD FINE-GRAINED, UNSUPERVISED, SCALABLE PERFORMANCE DIAGNOSIS FOR PRODUCTION CLOUD COMPUTING... 1255

Michael Rung-Tsong Lyu received the PhD
degree in computer science from the University
of California, Los Angeles, in 1988. He is
currently a professor in the Department of
Computer Science & Engineering. He initiated
the First International Symposium on Software
Reliability Engineering (ISSRE) in 1990. He was
the program chair for ISSRE 1996, the general
chair for ISSRE 2001, the program cochair for
PRDC 1999, WWW 2010, SRDS 2005, and
ICEBE 2007, the general co-chair for PRDC 2005, and a program
committee member for many other conferences. His research interests
include software reliability engineering, distributed systems, fault-
tolerant computing, data mining, and machine learning. He has
published more than 400 refereed journal and conference papers in
these areas. He received IEEE Reliability Society 2010 Engineer of the
Year Award. He is fellow of the IEEE and AAAS.

Hua Cai received the BS degree from the
Shanghai Jiaotong University, Shanghai, China,
in 1999, and the PhD degree from the Hong
Kong University of Science and Technology
(HKUST) in 2003, all in electrical and electronic
engineering. He joined Microsoft Research Asia,
Beijing, China, in December 2003, and was an
associate researcher in the Media Communica-
tion Group. He is currently a senior expert in
Alibaba Cloud Computing Company and leads
the teams of cloud monitoring and storage. His research interests
include distributed system, cloud computing, digital image/video signal
processing, image/video coding and transmission, multiview video
coding and transmission, and mobile media computing. He is a member
of the IEEE and ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 03:00:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

