IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Random Priority-Based Thrashing Control
for Distributed Shared Memory

Yi-Wei Ci*”, Michael R. Lyu, Zhan Zhang, De-Cheng Zuo, and Xiao-Zong Yang

Abstract—Shared memory is widely used for inter-process communication. The shared memory abstraction allows computation to be
decoupled from communication, which offers benefits, including portability and ease of programming. To enable shared memory
access by processes that are on different machines, distributed shared memory (DSM) can be employed. However, DSM systems can
suffer from thrashing: while different processes update certain hot data items, the largest amount of effort is spent on data
synchronization, and little progress is made by each process. To avoid interference between processes during data updating while
providing shared memory at page granularity, more time is reserved for a writer to hold a page in a traditional manner. In this paper, we
report on complex thrashing, which can explain why extending the time of holding a page might not be sufficient to control thrashing. To
increase the throughput, we propose a thrashing control mechanism that allows each process to update a set of pages during a period

663

of time, where the pages compose a logical area. Because of the isolation of areas, updates on different areas can be performed
concurrently. To allow the areas to be fairly well used, each process is assigned with a random priority for thrashing control. The
thrashing control mechanism is implemented on a Linux-based DSM system. Performance results show that the execution time of the
applications that are apt to cause system thrashing can be significantly reduced by our approach.

Index Terms—Distributed shared memory, inter process communication, thrashing control

1 INTRODUCTION

IN a distributed computing system, to enable data shar-
ing and coordination between processes, shared mem-
ory [1], [2], [3], [4], [5] and message passing [6], [7], [8],
[9] techniques are often used. By orchestrating the inter-
actions between processes, message passing can provide
a high-performance implementation. In contrast, shared
memory hides the details of the interactions between the
processes. The update of data items can be automatically
propagated to the related processes by the underlying
system. Because in distributed shared-memory (DSM)
systems [10], [11], [12], [13], [14], [15], [16], [17] a uniform
address space can be used by the processes, it is possible
for processes to seamlessly access the data distributed
across multiple machines, which also provides an easy
way to refer to data items that have complex data struc-
tures without considering the location of each data item.
However, DSM systems can suffer from thrashing [18],
[19], [20] that results from data contention among pro-
cesses on different machines, which not only introduces

o Y. W. Ciis with the Institute of Software, Chinese Academy of Sciences,
Beijing 100190, China. E-mail: yiwei@iscas.ac.cn.

e M. R. Lyu is with the Department of Computer Sciences and Engineering,
The Chinese University of Hong Kong (CUHK), Hong Kong.
E-mail: lyu@cse.cuhk.edu.hk.

e Z.Zhang, D.-C. Zuo, and X.-Z. Yang are with the School of Computer Sci-
ence and Technology, Harbin Institute of Technology, Harbin, Heilongjiang
150001, China. E-mail: zz@ftcl.hit.edu.cn, {zuodc, xzyang|@hit.edu.cn.

Manuscript received 28 Dec. 2018; revised 8 Aug. 2019; accepted 8 Sept. 2019.
Date of publication 19 Sept. 2019; date of current version 10 Jan. 2020.
(Corresponding author: Y.-W. Ci.)

Recommended for acceptance by C. Krintz.

Digital Object Identifier no. 10.1109/TPDS.2019.2942302

intensive communication but also causes processes to be
frequently interrupted from their computations.

To address this problem, one method is to reduce the
granularity of memory unit, which avoids having data
items that are stored in a memory unit being visible to the
processes that are unlikely to use them; another method is
to make processes keep writing to reduce the frequency of
synchronization. One challenge in thrashing control lies in
determining the time to synchronization. In some consis-
tency models, the synchronization points can be determined
according to some specific operations. For example, in the
release consistency model [21], [22], the exclusive access of
memory is achieved by the use of acquire and release opera-
tions, and coherence actions can be performed on acquire or
release operations.

Because of the requirement of synchronization, the manage-
ment of shared memory is not totally transparent to applica-
tions. The eventual consistency model [23] provides another
way of reducing the frequency of synchronization, which is to
assume that the state of memory can be converged after a suffi-
ciently long time. Because the view of memory for each process
can diverge over a period of time, it is not straightforward to
utilize this model to implement an application in which depen-
dencies among operations are sensitive, such as Lamport’s
Fast Mutual Exclusion [24]. Sequential consistency remains
desirable because it can simplify programming and it makes
the reuse of existing shared-memory applications easy. To
achieve consistency efficiently without sacrificing ease of pro-
gramming, the synchronization points can be automatically
determined by the shared memory system.

Grappa [32] demonstrates that the performance of the
data-intensive applications can be improved through the
frameworks built on top a DSM system. By using Grappa,

1045-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1897-7536
https://orcid.org/0000-0002-1897-7536
https://orcid.org/0000-0002-1897-7536
https://orcid.org/0000-0002-1897-7536
https://orcid.org/0000-0002-1897-7536
mailto:
mailto:
mailto:
mailto:

664 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

the complexity of the data management can be hidden by
an user-level DSM system. In Grappa, to optimize the low-
locality data access, delegation operations [33] are employed
to perform the updates of the shared objects at certain loca-
tions. As a result, it is not necessary to obtain the latest ver-
sion of a shared object for tasks. However, to enable the
shared memory to be accessed without additional primitives
as the conventional memory, it is desired that any object con-
tained in the shared memory can be accessed via a pointer.
In addition, the knowledge of the objects contained in the
shared memory is not assumed to be known to the underly-
ing system.

Because different processes can keep updating certain
data items, it is possible for the processes to make no prog-
ress if each process cannot efficiently obtain the data items
for a sufficiently long time. A traditional approach [12] is to
delay synchronization points to provide each process with
more time to perform the updates. In this paper, we explore
memory management with respect to variable granularity.
We have found that extending the time to update a memory
unit for each process is not sufficient for thrashing control
because processes can wait before updating the memory
units which are no longer updated by their holders. If a cir-
cular wait appears (i.e., each of the two processes waits for
the page kept by the other process), although the frequency
of synchronization can be reduced, page thrashing is not
truly under control. In other words, a process can request to
update a set of memory units during a period of time, and it
is unwilling to be interrupted in the course of updating. We
show, through evaluation, that the write performance can
be improved for the thrashing-prone applications by con-
trolling the time to access memory units.

In this paper, we made the following contributions on the
prevention of thrashing;:

1. An approach is present to determine a logical area
which is frequently used by a process so that processes
can keep updating a set of pages during a period of
time, which can be used to reduce page thrashing.

2. The writer of each area is selected based on random pri-
orities, which enable the fair use of memory. Because
no control message is required for choosing the writer
of an area, the cost of changing the writer can be low.

3. An OS level implementation of the thrashing control
mechanism proves that the performance of the dis-
tributed shared memory system can be improved
through the underlying system.

The remainder of this paper is organized as follows. The
related work is described in Section 2. The background is
presented in Section 3. The priority-based method for con-
trolling the access of memory is given in Section 4. The
thrashing control is elaborated in Section 5. Optimizations
are given in Section 6. The implementation of the thrashing
control mechanism is given in Section 7. The evaluation of
the thrashing control mechanism is given in Section 8. Con-
clusions are given in the last section.

2 RELATED WORK

There is often a trade-off between the latency and the con-
sistency. A weaker consistency model can be used to

improve the system performance. However, the state of
memory could diverge temporarily or permanently.

In the eventual consistency model, because updates to
memory are eventually visible to the other processes with-
out the ordering restriction, non-commutative operations
cannot be supported. RedBlue consistency [25] provides a
way to enhance consistency when necessary by mixing
strong consistency and eventual consistency models. The
non-commutative operations and the operations that are
not invariant safe are colored red. When red operations are
encountered, a stronger consistency is required to ensure
that the red operations can be perceived in the same order.
The operations that are commutative and invariant safe are
colored blue. Blue operations appear to take effect accord-
ing to eventual consistency. They can be executed locally
without coordination. Thus, a performance gain can be
achieved if the blue operations account for a large propor-
tion of the operations. In this consistency model, additional
information is required to help the system determine the
colors of the operations. The efforts of collecting such infor-
mation and marking operations are non-trivial. Paper [26]
gives an enhancement of a causal consistency model [27]
to avoid the permanent divergence of a storage state. In a
traditional causal consistency model, although the order of
the operations that have causal dependencies is main-
tained, updates to storage could conflict because the con-
current operations can be executed in any order. To ensure
convergent behavior, a conflict resolution rule (e.g., the
rule of the last-writer-win) is required to handle the con-
flict updates. The causal+- consistency is an enhanced ver-
sion of causal consistency, but it is still weaker than
sequential consistency.

In a stronger consistency model, simultaneous updates to
the storage can also be ordered. However, the cost of order-
ing the updates from different processes is often expensive.
To address the performance issue, a release consistency
model is proposed. In this model, updates from an individ-
ual process can be performed locally. They are propagated
to other processes only when explicit synchronization
points are encountered. Because specific primitives are
required to mark the synchronization points, additional
programming complexity is required.

In release consistency, the synchronization points show
the boundaries of execution, and the boundaries are static.
BulkSC [28] provides a way to mark the boundaries in a
dynamic manner by hardware support. BulkSC enforces
sequential consistency with a coarse grain of chunks, each of
which is a set of consecutive instructions that are dynamically
grouped. In BulkSC, the synchronization points, which are
transparent to applications, are located at the boundaries of
the chunks. Because data synchronization can be less inten-
sive and updates can be batched, BulkSC achieves a similar
performance gain compared with release consistency. How-
ever, BulkSC does not guarantee the advancement of compu-
tation. Disambiguation operations are required to avoid
the violation of sequential consistency. In these operations,
chunks can be re-executed.

To support conventional shared memory applications
even if there are no explicit synchronization points, sequen-
tial consistency is considered in this paper. Thrashing often
occurs when processes all want to hold some data object for

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

CI ETAL.: RANDOM PRIORITY-BASED THRASHING CONTROL FOR DISTRIBUTED SHARED MEMORY 665

Mgr,

Area 1
Area2

w
& - B
g Dibtrihuted Shared Memory
Mgr, Areal
Area2
B Aread
&
4 kiril arefl MEMbry
Mgr.

Fig. 1. Memory areas.

updating but no one has the patience to wait. The central
problem is that there is a lack of mechanism to guide pro-
cesses in memory access. A method that uses specific primi-
tives to guide the memory usage provides an explicit way
to perform thrashing control. Another method is to deter-
mine the writer of the memory and the time for updating
implicitly, which is analogous to the work of process sched-
uling. To achieve thrashing control, the scheduling must
improve the overall writing speed of the system. When a
process is scheduled to be a writer, sufficient time should be
allocated to guarantee a sustained write. A straightforward
method is to select each process to be a writer in a round-
robin fashion [29], which allows the processes to be sched-
uled in a circular order. If the time slots are evenly allocated
to the processes, fair usage of the memory can be achieved.
For determining a writer, all of the requests can be sent to a
scheduler first; the scheduler will know who the next writer
is. However, the centralized management could lead to a
performance bottleneck. To alleviate the load of the sched-
uler, a distributed method for the memory management is
desired. Token passing [30] allows each process the oppor-
tunity to be scheduled. Once a process holds the token, it
can schedule itself to be a writer. After a period of time, the
scheduler must be altered, and the token is passed to the
next process. If a process is idling, then it can also reject
being scheduled, and it can pass the token to the next pro-
cess directly. However, with an increase in the rejections,
the efficiency of scheduling will be impaired.

In this paper, a scheduling scheme that has a distributed
design is proposed to reduce thrashing. The page accessing
of the processes can be controlled by a set of managers, each
of which manages an area of memory. Each area contains a
set of pages that might attract the interest of a group of pro-
cesses. The area managers provide the capability to suppress
the interference between processes that access different areas.
If a process has an interest in several areas, then its requests
should be processed by the managers of those areas in a coor-
dinated manner. Without such coordination, processes can
still suffer from the thrashing effect. To avoid sending control
messages for coordination, we propose a random priority-
based approach, which provides a fair use of the shared
memory.

3 BACKGROUHD

We assume a distributed system with a set of nodes. Each pro-
cess can be deployed on any of the nodes. Each shared

Process P, Process P, Process P,
p Pagep) Pagep Yy Pagep
Page q D Pageq Pageq
Pager Pager) p Pager

Fig. 2. Complex thrashing.

memory can be divided into N, logical areas at most. Each
area comprises one or more pages and is managed by a man-
ager. Here, the number of managers can be changed with
changes of the areas (as shown in Fig. 1). Sequential consis-
tency requires that the order of updates can be perceived by
all of the processes, and the ordered updates are extended
from the updates that are performed by each process. For
each memory unit (e.g., a page), sequential consistency is
maintained. Concurrent updates on different memory units
are allowed. Thrashing control can perform at page granular-
ity or at the granularity that is greater than a page.

In page-granularity thrashing control, extending the time
to keep updating a page can reduce the probability of being
interrupted. The time window should not be longer than the
time required for updating. However, it is often difficult to
know when a process stops writing. Even if the status of each
page can be checked periodically and a successor can effi-
ciently be found to take the place of the current writer, thrash-
ing can also appear. This scenario can be explained by the
following example (as shown in Fig. 2). Processes P; and P;
update pages p and q repeatedly. When process P; updates
page p, process P; updates page q. After a while, F; shifts to
updating page g, and P; shifts to updating page p. Each of the
two processes requires the page that has been updated by the
other process. In this example, extending the time for a writer
to hold a page cannot reduce the overall communication cost.
Let W; denote the set of memory units that are updated by
process P; in a period of time. Here, the memory unit is not
restricted to a page. To represent the dependencies between
the worksets required by different processes, the corelation
between memory units is defined as follows, denoted by «.

Definition 1. Suppose that there is a memory unit m,, such that
my, € Wi. my, is related to another memory unit m, (i.e.,m,
— my), iff the following condition holds:

W, : (m, € W) A (W, \W; #0).

Let < *denote the transitive closure of relation <. The com-

plex thrashing, which appears when processes have the same
interest in a set of memory units, can be defined as follows.

Definition 2. Complex thrashing occurs in processes P; and
P; (i # j) iff P, and P; access two memory units, m, and
my, (u # v), that satisfy the following condition:

(my = my) A (my, € Wi) A (my, € W)).

If two or more processes are involved in the interdepen-
dence between memory units in a period of time, thrashing
can occur.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

666 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Process P,
prio, > prio i i i
Page p ﬂ}pJ Page p jﬁ”_",f_”ﬂ“; 4 Pagep 4

Fig. 3. Priority degradation.

Process P/ Process P

4 PRIORITY-BASED METHOD

To prevent complex thrashing, the memory units that have
interdependencies cannot be managed independently. If
memory units are grouped for accessing and one process is
allowed to access a group for each period of time, more
memory units can be updated by the process in a period of
time. As there is the chance that each of the two processes
waits for some of the grouped pages that are kept by the
other process, each process can be assigned a priority to
avoid circular wait. If the priority of a process is sufficiently
high, the process can hold all the required memory units.

4.1 Priority Degradation

As the processes that access shared memory have the latest
copies of the content of memory units, they can be treated as
the content holders of the shared memory. The use of priority
makes the process that has the higher priority keep updating.
However, if each content holder also controls the access of the
corresponding memory units, the process with high priority
can be blocked because of priority degradation, which
appears when the processes fail to preempt at the content
holders. The definition of priority degradation is as follows.

Definition 3. The priority of a process P, is degraded iff 3P; : P,
sends a request to update the content that is provided by P; and
P; satisfies the following:

1) 3Py The priority of P; is lower than that of Py

2) The priority of P; is higher than that of P;, and P is
blocked since it requests to update the content that is
held by P,

An example (as shown in Fig. 3) is given as an illustra-
tion. In this example, each page holder can determine
whether a process is allowed to update the corresponding
page in terms of the priority of the process. If the priority of
a process is higher than that of the current writer of a page,
then the process can update the page. Suppose that the cur-
rent priorities of processes P;, P;, P, are prio;,prio;, and
prioy, respectively (prio; > prioj, prio; < prioy). Processes
P; and P; both request to update page p, which is held by
process Py. P; tries to become a new holder of page p.
Because prio; < prioy, P; cannot finish retriving page p.
When P; sends request to the new holder for updating page
p, because P; is retriving page p, even if prio; > prioj, P;
must wait also. There can be a chain of possible content
holders that request updating the same memory unit. Pre-
emption fails to be performed when the dependent requests
are processed independently. Although one process’s prior-
ity is higher than that of the requested process, if processes
request to update the same page, there is the chance that the
process with higher priority will require considerable time
to retrieve the required page.

4.2 Preemption

If there is a manager to control the access of memory units,
the write requests from the processes that have lower pri-
orities can be delayed by the manager, which can be used to
avoid priority degradation. In addition, if a process is
allowed to keep updating a set of memory units without
interruption for a period of time, then the interdependencies
among memory units can be hidden from the other pro-
cesses during that period. As a result, thrashing can be
inhibited. For example, as shown in Fig. 2, if pages p, g and r
can only be updated by a process whose priority is suffi-
ciently high, the processes with low priorities cannot block
a writer from updating.

To prevent a bottleneck of the manager, the memory
units can be grouped into a number of areas, each of which
has a corresponding manager. These memory units can be
dynamically allocated to an area according to the memory
access pattern. For example, if unrelated data items are allo-
cated to different areas, then the concurrency of the applica-
tions can be improved because updates on different areas
can be performed concurrently.

To avoid direct coordination when determining a writer,
a priority assignment method is adopted. Suppose that the
priority of each process is updated after each 7}, time inter-
val. Let prio;(t) be process P,’s priority as perceived by an
area manager at time t, where f is the local time of the area
manager. The area manager can detect whether a priority
expires according to the live-time that is assigned by the
writer. Let curr(t) be the highest unexpired priority that is
perceived by an area manager when the local time of the
manager reaches t. If all of the perceived priorities expire,
then curr(t) is set to 0. The access control of shared memory
can be modeled as follows.

Rule 1. Process P; is allowed to update an area when the
local time of the area manager reaches t if the area manager
perceives that prio; (t) is higher than or equal to curr(t).

Because the process with high priority can keep updat-
ing, the unnecessary interleaving of updates from different
processes can be reduced. Note that if a memory unit is
marked as read only, any process can read the unit directly
without blocking. When processes try to update an area, the
manager of the area must select a process to be a writer.
Given that a process can access many areas over a period of
time, the managers of these areas should provide the same
permission of memory access to the process. Otherwise, an
area that is opened to a process could turn to starvation sta-
tus because the requests of that process can be blocked by
the managers of the other areas. To ensure fair usage of the
memory, the priority of each process can be updated in a
round-robin fashion.

Let T, denote the period of the priority update, and I(¢)
the priority update interval when time reaches t, where
I(t) = |t/ T,]. Suppose that there are at most N processes
for accessing memory. The priority of P can be determined
as follows:

prio;(t) = (i + I(t)) mod N.

Table 1 shows an example for the priority assignment.
Suppose that processes P; and P both try to update a page
during time 0 to 47},. Because there is only one interval in
which the priority of P, is higher than that of %, can

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

CI ETAL.: RANDOM PRIORITY-BASED THRASHING CONTROL FOR DISTRIBUTED SHARED MEMORY 667

TABLE 1 TABLE 2
Priorities of Processes (N = 4) Priorities of Processes (N = 4)
Time Process P Process P, Process P; Process Py Time Process P Process P, Process P; Process P
0—T, 0 1 2 3 0—Ty 0 3 1 2
ﬂt}) - 21—‘141 1 2 3 0 Tup - 2T‘up 2 1 3 0
2T, — 3T, 2 3 0 1 2T, — 3T, 3 0 2 1
3Ty, — 4Ty, 3 0 1 2 3Ty, — 4Ty, 1 2 0 3

spend at most T, time for updating that page. In contrast,
P, can consume at most 375, time for its updating. Clearly,
the method does not provide sufficient fairness for appro-
priate memory access. To improve the fairness, a random
priority-based approach can be adopted, which will be
introduced in the next section.

4.3 Random Priority
To provide the fair use of memory, the system must ensure that
for any two processes P; and P}, they have the same chances to
access an area. In other words, the possibility that P has a
higher priority compared to P; should be equal to the possibility
that P; has a higher priority compared to P;. It is not desirable to
assign the same priority to different processes because this strat-
egy could allow more than one process to update an area.
Assigning different priorities to processes guarantees
that a process is allowed to update an area while the pro-
cesses with the higher priorities remain idle. Suppose that
N priorities can be assigned to processes in each round. To
ensure fairness, each process must have the same opportu-
nity to be assigned with any priority. The priority of each
process can be generated in a random manner. The priority
of a process P; can be generated as follows:

prio;(t) = rand(i, I(t)),

where rand is a random function. The random function can
have different forms. Here, the rand function provides a map-
ping of a random matrix Rand. Rand can be used to generate
priorities for each priority update interval. Suppose that there
are N rows of Rand.rand(i,j) = Rand; jmeq n. Each row of
Rand; j (j=0,1,...,N — 1) can be constructed as follows:

1) Initially, there are N different priorities to be selected
for process P;, and each item of Rand; ; is set as
uninitialized.

2) For each time, a priority is randomly selected from
the remaining priorities of process P, and an unini-
tialized item of Rand; ; is set to the selected priority.

3) After N times, the setting is finished, and each item
of Rand; ;is initialized with a priority for process P,.

The random function generated according to this method

guarantees the fairnes priorities, which are proved in Appen-
dix A. An example of generating priorities is given in Table 2.
It can be seen that every process has the same opportunity to
have the highest priority during an interval of 47,,. Processes
Py and P, have the same opportunity to preempt each other.

5 THRASING CONTROL

A priority collision occurs when a priority is assigned to
more than one process at the same time. A requirement for

the priority assignment is to ensure that priority collisions
are controllable. In the priority assignment, because it is dif-
ficult to synchronize the local timing of the processes, pro-
cesses might become aware of the new priority of a process
at different time points. If a priority is utilized by different
processes at the same time, then thrashing could occur. To
generate the priorities of the processes, an approach, called
random priority-based thrashing control (RPTC), is utilized.

In RPTC, the priority of each process is updated periodi-
cally, and the processes have the same opportunity to use
any priority. When a request arrives at an area manager, the
manager checks the priority of the requester for scheduling.
The priority can either be determined on the requester side
or on the manager side. In the priority-based approach, a
process with a high priority has the permission to access the
memory during a period of time. To avoid direct coordina-
tion, the priority of each process is converted according to
time. Determining the priority of each process is not
restricted on the manager’s side. However, it requires that
the managers can be aware of the change of priorities in an
effective way when the variations in the local time and the
transmission delays are taken into account.

To avoid the occurrence of priority degradation, the
requests for updating memory can be sent to the corre-
sponding managers first. The priority of a process can be
generated before sending a request. The generated priority
is piggybacked on the request. In each priority update inter-
val, the manager can select requests that are piggybacked
with higher priorities to be processed first. Let reg; be the
request that is sent from processes P,. Let ¢(regq;) denote the
local time of process P; when request reg; is sent. Suppose
that requests reg; and reg; are received by a manager during
the same priority update interval. If requests reg; and reg;
are sent from different priority update intervals (.e.,
I(t(req;)) # I(t(reg;))), there could be a collision between
the priorities that are piggybacked on reg; and reg;. Priority
collisions bring a risk of thrashing.

To reduce the above risk, one way is to extend the range
of the priorities that can be selected; namely, the maximum
priority can be far greater than the number of requesters. If
the range is sufficiently large, the possibility of priority col-
lisions can be small. However, it is possible that a process
is blocked by itself because of the uncertain offset in the
local time between processes. For example, as shown in
Fig. 4, if requests are sent by a process in different priority
update intervals but are received by a manager in the
same priority update interval, then the process can be
blocked by itself. This problem can be addressed by notify-
ing the manager of the live time of each priority. Managers
determine whether a priority expires according to the live-
time that is specified by the requester. Let reg;.live denote

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Priority: 78 Priority: 24
Requester 11 rority 1 rority |
1 X X 1
Manager

Fig. 4. Blocking effect.

the live time that is piggybacked on request req;. req;.live is
the duration of the current priority of P;. Here, reg;.live
can be expressed as follows:

reg;.live = (I(t(req;)) + 1)Ty, — t(req;).

Suppose reg; is a request that hits a memory area. If the
manager of the memory area finds that the priority of the
process P is higher than the priority of the process access-
ing the memory area, P; is allowed to be a writer. Here,
reg;.live is the time that is reserved for writing. If reg; is not
processed because the priority of P; is not sufficiently high,
it will be rescheduled after a period of time.

Although live time can be used to avoid interference
from the same process, it is still difficult to avoid interfer-
ence from different processes. The requests from the pro-
cesses with higher priorities can arrive at any time, which
could prevent a process from updating. We show this in
Fig. 5, where there are two processes, P and Pj, that both
try to update an area. First, the request of process P; arrives
at the manager of the area. The manager reserves time for
P,. During this period, the perceived priority is 27. When
the request of process P; has arrived, because the priority of
process P; is higher, P; is allowed to update the area. The
reserved time is recalculated according to the live time pig-
gybacked on the request of P;, and the perceived priority of
the current interval is updated to 138. Process P; also fails to
use the whole reserved time because a new request from P
is received by the manager and the perceived priority of the
current interval is changed to 156. To guarantee the writing
time for each process, the deviations of local time and trans-
mission delays should be controllable. Let 7, be the sum
of the maximum transmission delay and the maximum
deviation of local time. Assuming the execution delay can
be ignored, if 27,5y < T,,, then there exists T, — 2T,
time to safely use a priority.

To guarantee the updating of each process, the live time
of the priorities can also be determined on the manager
side. When a process is assigned with the highest priority, it
can update memory without any interruption. Because the
expected interval for being assigned the highest priority is
NT,,, it is possible for each process to safely update mem-
ory in a timely manner. Suppose that when the manager of
a memory area receives a request reg;, the local time of the
manager is t. Here, prio;(t) is the priority generated by the

Priority: 27 Priority: 156

\

Manager \ |] h |

Process P. |

Process P 1 PZ)rity: 138 1 Priority: 93 1

Fig. 5. Access interference.

Process P,

Priority: 79

Mgr
8T,
Process P
t " o t
Priority: 127
Mgrb i '
Priority: 102
Process P

Fig. 6. Cross-area access.

manager. If the manager perceives that the priority of B is
higher than that of any other requester in the interval
(I(t)Typ, (I(t) + 1)Tp), then it allows P, to update the mem-
ory area. Otherwise, request reg; will be rescheduled until
the priority of process P, is sufficiently high.

To provide a sustained write for a cross-area update,
managers should make the same decisions for the priority
assignment, which can be achieved by making the local
time of the managers synchronized. As shown in Fig. 6, for
example, managers Mgr, and Mgr;, determine the writing
time of processes independently. Because requests req and
req’ are received during the same time interval (¢y,¢;) and
process P; has a higher priority compared with processes P;
and P in that interval, the two requests can be processed by
both managers. While there is a considerable deviation
between the local time of the managers, the requests sent
from the same process to different managers still have a
chance to be concurrently processed if the managers per-
ceive that the priority of the process is higher compared
with the other requesters.

6 OPTIMIZATIONS

6.1 Priority Reusing

In a priority update period T,,, the process that has the
higher priority can be accepted to access an area. To
make each area accessed in a fair manner, the priority of
each process is updated after each T,, time. With the
increase in T, because the time required by a process
to access an area is uncertain, the possibility that an area
is not used by any process could increase. In contrast, if
T, is too short, then there could be insufficient time to
retrieve the required pages for a process, which impairs
the writing performance.

A method that allows the writer to be determined
according to the memory access pattern is adopted. In this
method, T}, remains short. To provide a writer with more
time when a sustained write is required, the priority of
each process is updated to a different value after o7,
time. « is called priority duplication rate. This approach is
different from extending 7., to « times because if the pro-
cess with the higher priority turns from busy to idle during
oT,, time, then the process with the lower priority can take
its place. As an illustration in Fig. 7, the priorities of pro-
cesses can stay for a time interval 37,,. From time ¢; to ¢,
because process P; does not update the memory, process
P;, which has a lower priority, is allowed to be a writer.
After time ty, process P; tries to update memory again;
then, P, has the chance to be a writer because its high pri-
ority has been retained

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

CI ETAL.: RANDOM PRIORITY-BASED THRASHING CONTROL FOR DISTRIBUTED SHARED MEMORY 669

Process P: 0(0[0}2|2F2|3|3|3|1|1]1
Process P: 3 (33 |(1|1|J1({0]|0]J0]2]2]|2
Process P : 111333 /12(2(2(0|0/0
Process P 212120100 f2|L|1}|3[3]|3
| T“V | | | | | | | | | | | |)
T bt

Fig. 7. Priority duplication (o = 3).

6.2 Detecting Hot Areas

Given that the data items allocated together could be of
interest to a different group of processes, each allocated
memory is allowed to be divided into areas. Each area can
be treated as an integrated data object. The minimum size of
an area is one page, which does not ensure that one area is
used to describe only one data item. The data items con-
tained in an area can be seen as members of the area.
Because the shared-memory system does not differentiate
the data items inside the allocated memory, the areas cannot
be obtained based on certain boundaries of the data items.
In RPTC, the areas are detected in terms of the assumption
that the requested content of the data objects eventually
composes the requested data objects. To simplify the detec-
tion of the data objects, combining the data objects is
allowed so that a group of objects can be detected together.
Let N, denote a visiting threshold. The rule for object combi-
nation is given as follows:

Rule 2. Objects obj; and obj; (i # j) can be combined to a
new object if obj; and obj; are accessed by a process for at
least N, times (N, > 0).

For example, process F; has an interest in objects
obji, 0bjs, and obj; (as shown in Fig. 8a), while process P;
has an interest in objects objs and objs. As a result, the five
objects can be combined into two objects obj, and obj,, each
of which represents an area. Because there is no intersection
of the two areas, processes P; and P; can access the areas
without interference. If another process P, joins the system
(as shown in Fig. 8b) and it has an interest in the objects obj,
and obj,, the requests of P, must be permitted by the man-
agers of both areas. The dependency between objects is
allowed in the thrashing control system. Even if a data item
is divided into parts that belong to different areas, the high
priority process has the chance to access these areas during
a period of time.

Dividing the memory into areas is utilized not only to
reduce the interference between the processes in the course
of updating the memory but also to offset the load of the
single manager. The method for determining areas is to
apply the access history of the processes. Initially, all of the
pages are managed by a manager Mgry. When a remote
requester tries to access a page, if Mgr, finds that the page is
still managed locally, Mgr, allows the requester to manage
the page. Eventually, the pages that are managed by the
same requester form an area. One issue is that there could
be some memory that is initialized by a process but is not
used further. If the manager of a page is determined once a
process accesses the page, then an area might not describe
the data objects of interest, which could introduce more
cross-area memory access. The cross-area memory access

Process P,

objﬁx ..\\objy objy ‘»\"b].y
o Oélz Ob]s - gé]z Ubjs
0. O
e Process [
Process P, Process P’ p “" Process Pj

®)

Fig. 8. Object finding.

requires managers to make decisions on priority assign-
ments in a coordinated manner.

To reduce cross-area memory access, there is a strategy
that a requester is allowed to be a manager of a page if it
has requested to access the page for at least IV, times. Note
that a large N, can slow down the construction of areas.
Another issue is that if there are too many areas to manage,
although the load of each manager can be alleviated, it is
difficult for the managers to track the use of the memory. In
the priority update method mentioned above, if a manager
of an area fails to detect the memory access behavior of the
process with the higher priority, it allows the process with
the lower priority to access the area, which is undesired by
the busy process with the high priority. To address this
problem, the number of areas should be controlled. In this
paper, the maximum number of areas is set to V,.

7 IMPLEMENTATION

The prototype is implemented as a component in a DSM
system. Here, we consider variable granularity thrashing
control. Basically, there are three roles in RPTC, namely the
requester, the holder, and the manager. The requesters in
each node issue page fault requests to the corresponding
area managers. The manager determines whether a request
can be processed according to the priority of the requester.
If the manager finds that the priority of the requester is low,
it will block the request of the requester until the priority of
the process accessing the area expires. When a request can
be processed, the manager sends the request to the holders
that maintain the content of the page. When all of the
required parts of a page are collected, the requester delivers
the page to the operating system.

A Linux-based distributed shared memory (LBDSM) sys-
tem is implemented to provide an operating system level
implementation. The memory management can be transpar-
ent to the applications. LBDSM is compatible with System V
IPC, which provides the system calls to create and release
the shared memory. There are three layers in LBDSM,
namely, the translation layer, the link layer, and the
resource layer (as shown in Fig. 9).

The resource layer provides an abstraction of distributed
resources, such as the memory, massage, and semaphore.
The positions of the distributed resources are transparent to
the applications. The link layer is a bridge between the
translation layer and the resource layer. The translation
layer translates the requests of the kernel. Next, the link
layer passes the translated requests to the resource layer.
When the results from the resource layer are obtained, the
link layer passes the results to the translation layer. The

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

SYSTM V IPC shm Interfaces

Node, Node,
% Resource Layer User Level Resource Layer User Level
% Link Layer ——— Link Layer —
Fig. 9. LBDSM.

translation layer translates these results to the forms in
which the kernel can be utilized. For the memory resource,
its consistency is maintained at the resource layer.

A sequential consistency model is applied in LBDSM,
which allows the shared memory to be employed without
synchronization primitives. The underlying system arranges
data synchronization. To prevent shared memory from being
used in a greedy manner, the thrashing control mechanism is
provided. The random priority-based thrashing control is
implemented as a part of the resource management in the
resource layer.

8 [EVALUATION

In this section, the performance of RPTC is explored. Some
applications that are prone to inducing thrashing are con-
sidered to test the effectiveness of the thrashing control. The
SPLASH-2 benchmark suite [31] is also used for evaluation.
In the evaluation, 17 VMs are used; 16 VMs provide compu-
tational and memory resources and one VM is used as the
metadata server. The metadata of resources, such as the
locations of shared-memory resources, is maintained by this
metadata server. All of the VMs run in the VMware ESXi 6.0
environment. Each VM has 1GB of RAM and 4 vCPUs.
10-Gb NICs are used to transfer data between VMs. The vir-
tual machines are deployed on two servers. Each of the
servers has one i7-4790 Intel processor and 16 GB of RAM.
Let T denote the time required to complete an experiment.

8.1 Thrashing-Prone Applications

If processes have the same interest in certain data items, and
each of the processes wants the opportunity to update them,
the data items can be frequently transferred between the
processes, which results in thrashing. It can be observed
that if there are data items that are commonly accessed by
the processes, it is likely to induce thrashing. To evaluate
the performance of the system when data contention is
high, the following applications are employed. Let sizecp,
be the size of distributed shared memory, let size,, be the
size of each page, and let Total,, be the number of pages of
the shared memory.

8.1.1 Hotspot

An application called Hotspot is developed to simulate the
behaviors that occur when processes focus on the same
parts of memory. In this application, different sizes of mem-
ory will be allocated for testing. In each round of testing for
each process, k different areas of the shared memory can be
updated, where k = log(Total,,). Let Area,, be the n-th area
that is selected to update in a round of testing, and start,
the start of Area, (starty = 0). The size of Area,,, denoted by

Areay,.size,is 2V - size,,. The start of Area, (n =1,2,...,k)
can be expressed as start, = start,_i + c, - Area,.size,
where ¢, is a Boolean value which is randomly assigned in
each round of testing.

Each area Area,, is utilized as a circular buffer. For each
time, a process updates r bytes of the buffer describing
Area,, where r is randomly selected and r < Area,.size.
The processes update the buffers in a concurrent manner.
While there are overlaps of the areas that are being
updated by the processes, thrashing can occur. In the
experiment, each process performs 10000 rounds of tests,
and sizemey, is 16KB. If the size of the shared memory is
larger, there is less chance that the processes access the
same areas of the memory.

In each round of testing, a process repeatedly divides the
area that it focuses on and randomly selects half of the area
to update. If the target area of a process is also accessed by
the other processes, the holders of the pages belonging to the
area can be altered. However, the process has a chance of
becoming the holder of these pages again in the course of
rewriting, which can be used to simulate the effect of thrash-
ing. With an increase in the number of processes that partici-
pate in updating the shared memory, the probability that
two processes update the same area and the probability that
the area updated by one process is a part of the area that is
accessed by another process can increase. Namely, thrashing
is more likely to take place when more processes participate.

In Hotspot, each process has a random manner for mem-
ory access. A process can update more than one logical area
determined by RPTC. Although the throughput of memory
accesses can be improved when using a larger logical area
number N,, there is a risk that the concurrency of updating
shared memory is reduced resulting from interdependen-
cies among areas. If the logical areas of shared memory can
be detected (as shown in Fig. 10), better performance can be
achieved. The visiting threshold N, determines the speed
that logical areas of shared memory can be formed. When a
smaller N, is chosen, the logical areas of shared memory
can be formed faster. A high workload that is placed on the
initial manager can be efficiently balanced if a small value
of visiting threashold N, is used. For N, = 1, all the memory
operations are performed in the same logical area. Namely,
though there exist independent operations updating differ-
ent memory areas, the operations must be interleaved,
resulting in performance degradation.

8.1.2 Shared Memory Mutual Exclusion

Mutual exclusion is an important primitive for controlling
access to shared resources. In a distributed system, mutual
exclusion can be implemented by either shared memory or
message passing. Supporting the shared memory version of
mutual exclusion makes it possible for the synchronization
and update operations to be performed together to test the
same shared memory system. Because the memory that is
protected by the mutual exclusion operations can be
updated by only one process, there is no contention for this
part of the memory. In contrast, when executing mutual
exclusion operations, the required states, which are stored
in distributed shared memory, can be changed by the pro-
cesses at any time.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

CI ETAL.: RANDOM PRIORITY-BASED THRASHING CONTROL FOR DISTRIBUTED SHARED MEMORY 671

100 100

80 80

60 60

T (sec)
T (sec)

40

20

D--.—I--I

a=2 a=8 =32
aNa=2(Nv=1) =Na=2(Nv=2)

(a) 4 Nodes

Na=4 (Nv=1) Na=4 (Nv=2) =Na=1 mNa=2 (Nv=1) =Na=2(Nv=2)

Fig. 10. Hotspot (sizemem = 16KB).
100 100
80 80

60 60

T (sec)
T (sec)

40 40

20 20

, mum Wl B I — I o
=2 =8 =32
aNa=2 (Nv=1) mNa=2 (Nv=2)

(a) 4 Nodes

Na=4 (Nv=1) =Na=4(Nv=2) =Na=1 aNa=2 (Nv=1) =Na=2(Nv=2)

Fig. 11. ME (N, = 4).

An application called ME is developed to simulate the
use of shared memory for mutual exclusion and random
update. Three operations, lock, update, and unlock, are exe-
cuted successively in each round of testing. The lock and
unlock operations are implemented based on Lamport’s Fast
Mutual Exclusion Algorithm [24] for the mutually exclusive
memory access. The operation update is used to randomly
update shared memory. A page of the shared memory is
reserved for storing the data that is required by the lock and
unlock operations. This page can be hot because the pro-
cesses can frequently read and write this part to acquire and
release a lock. The other pages can be used by the update
operation. In the update operation, n pages are randomly
selected from N,,, pages for updating.

In ME, it is desireded that the reserved page of the
shared memory can be updated without interruption. In
Fig. 11, if memory can be divided into logical areas, better
performance can be achieved. When more logical areas are
enabled, even if a process does not have a high priority, the
process has a chance of accessing the areas that are not
accessed by the processes with higher priorities. A larger
value of o can help the area mangers reserve more time for
a process that requests access to the memory.

8.2 SPLASH-2 Benchmarks
The Stanford Parallel Application for Shared Memory
(SPLASH) is a benchmark suite for evaluating shared-
memory; it comprises four computational kernels and some
applications. To make SPLASH?2 support System V IPC, we
implemented a set of PARMACS macros which are used by
SPLASH2. In this implementation, not all benchmark appli-
cations can be supported. Currently, the most of SPLASH
kernels can be performed, and they are used for evaluation.
In this section, we focus on the performance of the following
SPLASH kernels.

Radix. This kernel implements radix sort, which is a non-
comparative integer sorting algorithm. The algorithm is

=32

Na=4 (Nv=1)

(b) 8 Nodes

a=8 =32

Na=4 (Nv=1)

(b) 8 Nodes

100

80

: II I I |

a=32

T (sec)

Na=4 (Nv=2) =Na=1 mNa=2 (Nv=1) =Na=2(Nv=2)

(c) 16 Nodes

Na=4 (Nv=1) =Na=4(Nv=2) =Na=1

100

80

: II I | |

aNa=2 (Nv=1)

T (: sec)

Na=4 (Nv=2) =Na=1 #Na=2 (Nv=2)

(c) 16 Nodes

Na=4 (Nv=1) =Na=4 (Nv=2) =Na=1

performed iteratively. For each time, keys are sorted accord-
ing to their ranks, which are determined according to r bits
in each key. All-to-all inter-process communication will be
encountered when permuting keys to new positions. The
number of keys is 262114. The maximum key value is
524288. The radix size is 1024.

FFT. This kernel implements the FFT algorithm in which
the matrix transpose steps require all-to-all inter-process
communication. This implementation is optimized to mini-
mize the inter-process communication. The data set consists
of 1k data points to be transformed.

LU. This kernel factorizes a dense matrix as the product
of a lower triangular matrix and an upper triangular matrix.
The dense matrix is divided into blocks, which can be allo-
cated to different processes to balance the workload. A typi-
cal size of each block is 16 x 16. The size of the matrix is
128x128.

For the Radix kernel, shared memory content can be fre-
quently exchanged between processes. If a process requires
the pages distributed around logical areas of the shared
memory to be updated, it is better for the process to have
more time to access the areas, which can be achieved by
increasing priority duplication rate «. Otherwise, there is no
enough time for a process to update pages belonging to dif-
ferent areas, and the process can repeatedly request pages
that have been written by the other processes. In Fig. 12, if
more logical areas are allowed, the system can achieve bet-
ter performance. For the FFT and LU kernels (as shown in
Figs. 13 and 14), shared memory content is not frequently
exchanged between processes. When there is light workload
for the management of memory access, the shared memory
is not necessary to be divided into distinct areas. In this
case, the workload imbalance of the area managers is not
likely to have significant impact on the performance.

Table 3 shows comparisons of the performance of the
shared memory management with thrashing control at the
variable granularity (VG) and the fixed granularity (FG).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

672

100 100

0 - - -
a=2 a=8

=32 a=2

mNa=2 (Nv=1) sNa=2(Nv=2) =Na=4(Nv=1) =Na=4(Nv=2) mNa=1

(a) 4 Nodes
Fig. 12. Radix.
60 60
- 4

i

a=32
Na=4 (Nv=2) =mNa=1

l- 1 BB
a=8

aNa=2 (Nv=1) =Na=2(Nv=2) =Na=4(Nv=1)

S mmn] mme 1 B
a=8 a=32
aNa=2 (Nv=1) s=Na=2(Nv=2) =Na=4(Nv=1)

(b) 8 Nodes

a=8

mNa=2(Nv=1) sNa=2(Nv=2) =Na=4 (Nv=1)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

T (sec

a=32

mNa=2(Nv=1) =Na=2(Nv=2) =Na=4 (Nv=1)

(c) 16 Nodes

)
830
=
.I I)
0
a=8

a=32

Na=4 (Nv=2) =Na=1 Na=4 (Nv=2) =Na=1

a=32

Na=4 (Nv=2) =Na=1 mNa=2(Nv=1) mNa=2(Nv=2) =Na=4(Nv=1) =Na=4 (Nv=2) =Na=1

(a) 4 Nodes (b) 8 Nodes (c) 16 Nodes

Fig. 13. FFT.
Bl T W .I I"II Il Hl Il
mNa=2 (Nv=1) wmNa=2(Nv=2) wuNa=4(Nv=1) NaA(NV—Z)_ mNa=1 mNa=2 (Nv=1) mNa=2(Nv=2) wuNa=4(Nv=1) Naﬂt(NV:Z)i mNa=1 mNa=2 (Nv=1) =Na=2(Nv=2) = Na=4 (Nv=1) Na=4 (Nv=2) mNa=1

(a) 4 Nodes (b) 8 Nodes (c) 16 Nodes

Fig. 14. LU.
TABLE 3
Experiment Time (sec)

Thrashing Control Hotspot (16 Nodes) ME (16 Nodes) Radix (16 Nodes) FFT (16 Nodes) LU (16 Nodes)
VG 32.59 4421 146.31 31.97 58.95
FG 38.58 81.05 336.78 47.22 103.12
VG-noprio 840.62 600.77 215.86 59.78 68.88
FG-noprio 915.00 572.55 474.66 54.16 82.74

For the variable granularity thrashing control, the size of
each memory area is not determined, and the RPTC method
is utilized. Suppose that Na = 4, Nv =1, and « = 2. For the
fixed granularity thrashing control, the priority of each pro-
cess can be maintained in the same way as the RPTC. The
difference is that any writer of a page can become the owner
of the page. The priority of each accessor is recognized at
the page granularity by the owner of the relative page. The
location of the owner is tracked in terms of the dynamic dis-
tributed manager algorithm [4]. The thrashing-prone appli-
cations Hotspot and ME and SPLASH2 benchmark kernels
are used. For the Hotspot, sizey., is 16 KB. For the ME,
N,y = 4. The performance results show that for SPLASH
kernels FFT and LU, as shared data dose not intensively
accessed, thrashing control does not take effect. In addition,
there exists additional cost when using priority-based

thrashing control at the fixed granularity. In the evaluation
of thrashing-prone applications Hotspot and ME and
SPLASH kernel Radix, a performance gain can be achieved.
Compared with the fixed granularity thrashing control,
there is up to 2x performance improvement by using
the variable granularity thrashing control. In addition,
the experiment results show that after enabling the
priority-based thrashing control, the performance of the
thrashing-prone programs can be significantly improved.

9 CONCLUSIONS

To improve the performance of shared memory systems,
synchronization primitives are often employed to guide
synchronization, at the cost of sacrificing memory man-
agement transparency. Without explicit arrangement of

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

CI ETAL.: RANDOM PRIORITY-BASED THRASHING CONTROL FOR DISTRIBUTED SHARED MEMORY 673

synchronization points, the shared memory system may suf-
fer from thrashing due to data contention. To avoid thrash-
ing in a shared memory system in which synchroni-zation
points are transparent to applications, a random priority-
based approach, which allows the fair use of memory with-
out sending any control messages to determine the processes
that can access memory areas, is proposed. We report that
there can be priority degradation because of the exposure of
the interdependencies among memory units. To address this
problem, the shared memory is divided into logical areas
and sustained writes in each area are allowed. Because areas
can be formed according to memory access patterns, when
unrelated data are allocated to different areas, the data can
be visible to the processes that have interest in them and the
interference among the processes can be reduced.

ACKNOWLEDGMENTS

We thank colleague Law Hon Man for providing access to
computing resources. The work described in this paper
was supported by the Hong Kong Scholars Program, the
Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (No. CUHK 14210717 of the General
Research Fund), and Microsoft Research Asia (2018 Micro-
soft Research Asia Collaborative Research Award).

APPENDIX A
FAIRNESS

Suppose that the random function rand generates N differ-
ent priorities for N processes in each round. The function is
constructed by the method presented in Section 4.3. Because
the processes with higher priorities can be idle in a given
period of time, it is reasonable to allow the processes with
lower priorities to access the shared memory during that
period. Fairness of memory access does not imply that each
process has the same time available for memory access.
Fairness means that for any two processes the probability of
preempting one another is the same.

Lemma 1. For each process, the probability of having any given
priority is 1/N.

Proof. Suppose that process P, is the k-th (1 < k < N) pro-
cess that is assigned with priority v in a round. Let P be
the probability of assigning priority v. If k=1, P =1/N.
Otherwise, if £ > 1, P can be written as follows:

1 Y N-n 1
P= == (k> 1).
g § Gt GUEY

Thus, the probability of having any priority is 1/N. O

Theorem 1. For any two processes, the probability that one pro-
cess has higher priority than the other process is 1/2.

Proof. For any two processes P; and P;, without loss of gener-
ality, suppose that the priority of P is generated in advance.
By Lemma 1, the probability of selecting priority v for P, is
1/N. Suppose that v is the n-th lowest priority. Let x
be the priority that is selected from the remaining N — 1

priorities for process P;. The probability P(z > v|v) is
(N —n) /(N —1). The probability that P, has a higher pri-
ority than P; can be written as follows:

13N —n
P(x > v):]—VZN_l.
n=1

Therefore, the probability that one process has higher
priority than the other processis P(z > v) =1/2. O

If the highest priority is assigned to a process, then the
process can access memory without preemption for a given
period of time. The system must guarantee that each pro-
cess is assigned the highest priority at least once after a
finite expected number of rounds.

Theorem 2. For each round, if the probability of the process
being assigned a given priority is 1/ N, the expected number of
rounds for which it has that priority is N.

Proof. The probability of being assigned a given priority
after n rounds is (N — 1)""'/N™. The expected number of
rounds is as follows:

EUﬂ::E:EQYi%Xi<

n

Let f(z) =32". AsN - E(n) = f’(m)|IZ(N_1)/N_ For z €
[0,1), f'(x) = 1/(1 — x)°. Therefore, E(n) = N. 0
REFERENCES

[11 S. V. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial,” Comput, vol. 29, no. 12, pp. 66-76, 1996.

[2] G. Graunke and S. Thakkar, “Synchronization algorithms for shared-
memory multiprocessors,” Comput., vol. 23, no. 6, pp. 60-69, 1990.

[3] R.M. Karp, “A survey of parallel algorithms for shared-memory
machines,” Technical Report, University of California at Berkeley
Berkeley, CA, USA, 1988.

[4] K Liand P.Hudak, “Memory coherence in shared virtual memory
systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321-359, 1989.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and]. Hennessy, “Memory consistency and event ordering in scal-
able shared-memory multiprocessors,” in Proc. 17th Annu. Int.
Symp. Comput. Archit., 1990, pp. 15-26.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the MPI message passing
interface standard,” Parallel Comput., vol. 22, no. 6, pp. 789-828,
1996.

[7] G.Burns, R. Daoud, and J. Vaigl, “LAM: An open cluster environ-
ment for MPI,” in Proc. Supercomputing Symp., 1994, pp. 379-386.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J]. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Proc. Eur. Parallel Virtual Mach./Message Pass-
ing Interface Users” Group Meeting, 2004, pp. 353-377.

[9] C.]. Fidge, “Timestamps in message-passing systems that pre-

serve the partial ordering,” in Proc. 11th Australian Comput. Sci.

Conf., 1988, pp. 56-66.

U. Ramachandran, M. Yousef, and A. Khalidi, “An implementa-

tion of distributed shared memory,” Softw.: Practice Experience,

vol. 21, no. 5, pp. 443-464, 1991.

K. Li, “Ivy: A shared virtual memory system for parallel

computing,” in Proc. Int. Conf. Parallel Process., 1988, pp. 94-101.

B. Fleisch, G. Popek, “Mirage: A coherent distributed shared

memory design,” in Proc. 12th ACM Symp. Operating Syst. Princi-

ples, 1989, pp. 211-223.

J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distrib-

uted shared memory based on type-specific memory coherence,”

in Proc. 2nd ACM SIGPLAN Symp. Principles Practice Parallel Pro-

gram., 1990, pp. 168-176.

[10]

[11]

[12]

[13]

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

674

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

R. Bisiani, M. Ravishankar, “PLUS: A distributed shared-memory
system,” in Proc. 17th Annu. Int. Symp. Comput. Archit., 1990,
pp- 115-124.

J. B. Carter,]J. K. Bennett, and W. Zwaenepoel, “Techniques for
reducing consistency-related communication in distributed
shared-memory systems,” ACM Trans. Comput. Syst., vol. 13,
no. 3, pp. 205-243, 1995.

P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel,
“Treadmarks: Distributed shared memory on standard worksta-
tions and operating systems,” in Proc. USENIX Winter Tech. Conf.,
1994, Art. no. 10.

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, R. Rajamony,
W. Yu, and W. Zwaenepoel, “Treadmarks: Shared memory com-
puting on networks of workstations,” Comput., vol. 29, no. 2,
pp- 18-28, 1996.

B. Nitzberg, V. Lo, “Distributed shared memory: A survey of
issues and algorithms,” Comput., vol. 24, no. 8, pp. 52-60, 1991.

J. Protic, M. Tomasevic, and V. Milutinovic, “Distributed shared
memory: Concepts and systems,” IEEE Parallel Distrib. Technol.:
Syst. Appl., vol. 4, no. 2, pp. 63-71, Summer 1996.

V. W. Freeh and G. R. Andrews, “Dynamically controlling false
sharing in distributed shared memory,” in Proc. 5th IEEE Int.
Symp. High Perform. Distrib. Comput., 1996, pp. 403-411.

P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consis-
tency for software distributed shared memory,” in Proc. 19th
Annu. Int. Symp. Comput. Archit., 1992, pp. 13-21.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy, “Memory consistency and event ordering in scal-
able shared-memory multiprocessors,” in Proc. 17th Annu. Int.
Symp. Comput. Archit., 1990, pp. 15-26.

W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1,
pp- 4044, 2009.

L. Lamport, “A fast mutual exclusion algorithm,” ACM Trans.
Comput. Syst., vol. 5,no. 1, pp. 1-11, 1987.

D. Porto, A. Clement, J. Gehrke, N. Preguica, and R. Rodrigues,
“Making geo-replicated systems fast as possible,” in Proc.
10th USENIX Conf. Operating Syst. Des. Implementation, 2012,
pp- 265-278.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: Scalable causal consistency for wide-
area storage with COPS,” in Proc. 23rd ACM Symp. Operating Syst.
Principles, 2011, pp. 401-416.

M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto,
“Causal memory: Definitions, implementation, and programming,”
Distrib. Comput., vol. 9, no. 1, pp. 37-49, 1995.

L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk
enforcement of sequential consistency,” in Proc. 34th Annu. Int.
Symp. Comput. Archit. Conf., 2007, pp. 278-289.

R. V. Rasmussen and M. A. Trick, “Round robin scheduling-a
survey,” Eur. |. Operational Res., vol. 188, no. 3, pp. 617-636, 2008.
A. Israeli, M. Jalfon, “Token management schemes and random
walks yield self-stabilizing mutual exclusion,” in Proc. ACM
Symp. Principles Distrib. Comput., 1990, pp. 119-131.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. 22nd Annu. Int. Symp. Comput. Archit., 1995,
pp. 24-36.

J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, “Latency-tolerant software distributed shared memo-
ry,” in Proc. ATC, pp. 291-305, 2015.

R. Lublinerman, J. Zhao, Z. Budimli¢, S. Chaudhuri, and
V. Sarkar, “Delegated isolation,” ACM SIGPLAN Notices, vol. 46,
no. 10, pp. 885-902, 2011.

Yi-Wei Ci is currently an assistant professor of the
Institute of Software, Chinese Academy of Scien-
ces. He received his B.S., M.S. and Ph.D. degrees
in computer science from Harbin Institute of
Technology, PR China, in 2003, 2005, and 2010
respectively. His research interests include distrib-
uted computing and fault-tolerant computing.

Michael R. Lyu is currently a professor of Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong. He received the
B.S. degree in electrical engineering from National
Taiwan University, Taipei, Taiwan, R.O.C., in 1981;
the M.S. degree in computer engineering from Uni-
versity of California, Santa Barbara, in 1985; and
the Ph.D. degree in computer science from the Uni-
versity of California, Los Angeles, in 1988. His
research interests include software reliability engi-
neering, distributed systems, fault-tolerant comput-

ing, and machine learning. Dr. Lyu is an ACM Fellow, an IEEE Fellow, an
AAAS Fellow, and a Croucher Senior Research Fellow for his contributions
to software reliability engineering and software fault tolerance.

Zhan Zhang is currently an associate professor
of the School of Computer Science and Technol-
ogy at the Harbin Institute of Technology. He
received the Ph.D. degree in computer systems
from Harbin Institute of Technology, PR China, in
2008. His main research interests are fault-toler-
ant computing and mobile computing.

De-Cheng Zuo is currently a professor of the
School of Computer Science and Technology at
the Harbin Institute of Technology. He received
the Ph.D. degree in computer systems from Har-
bin Institute of Technology, PR China, in 2001.
His main research interests are fault-tolerant
computing and mobile computing.

Xiao-Zong Yang is currently a professor of the
School of Computer Science and Technology at
the Harbin Institute of Technology, PR China. His
main research interests are fault-tolerant comput-
ing and mobile computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

