
IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER 521

A Coverage Analysis Tool for the
Effectiveness of Software Testing

Michael R. Lyu

J. R. Horgan

Saul London

Bell Communications Research, Morristown

Bell Communications Research, Morristown

Bell Communications Research, Morristown

Key Words - Data-flow testing, Test effectiveness, Testing
coverage tool, Software metric, N-Version programming.

Reader Aids -
General purpose: Describe an analytic tool and its experimental
results
Special math needed for explanations: None
Special math needed to use results: None
Results useful to: Software testers & reliability-engineers

Summary & Conclusions - This paper describes the software
testing & analysis tool, “ATAC (Automatic Test Analysis for C)”,
developed as a research instrument at Bellcore to measure the ef-
fectiveness of testing data. It is also a tool to facilitate the design
& evaluation of test cases during software development. To
demonstrate the capability & applicability of ATAC, we obtained
12 program versions of a critical industrial application developed
in a recent universitylindustry N-Version Software project, and
used ATAC to analyze & compare coverage of the testing on the
program versions. Preliminary results from this investigation show
that ATAC is a powerful testing tool to provide testing metria and
quality control guidance for the certification of high quality soft-
ware components or systems.

In using ATAC to derive high quality test data, we assume
that a good test has a high data-flow coverage score. This hypothesis
requires that we show that good data-flow testing implies good soft-
ware, viz, software with higher reliability. One would hope, for
example, that code tested to 85% c-uses coverage would have a
lower field-failure rate than similar code tested to 20% c-uses
coverage. The establishment of a correlation between good data-
flow testing and a low (or zero) rate of field failures is the ultimate
& critical test of the usefulness of data-flow coverage testing. We
demonstrated by ATAC that the 12 program versions obtained from
the U. of Iowa & Rackwell N V S project (a project that has been
subjected to a stringent design, implementation, and testing pro-
cedure) had very high testing coverage scores of blocks, decisions,
e-uses, and p-uses. Results from the field testing (in which only
one fault was found) confirmed this belief.

The ultimate question that we hope ATAC can help us answer
is a typical question for all software reliability engineers: “When
is a program considered acceptable?” Software reliability analysts
have proposed several models to answer this question. However,
none of these models address the issues of program structure or
testing coverages, which are important in understanding software
quality.

1. INTRODUCTION

Software reliability analysts have traditionally proposed
several models [1 - 31 to help decide when a software program
is ready to be released. However, these methods have typically
not considered the program structure. ATAC (Automatic Test
Analysis for C) is a software tool which considers program
structure and supports data-flow coverage testing for C programs
[4,5,20]. Coverage testing, 1) helps the tester create a thorough
set of tests, and 2) gives a measure of test completeness. Each
of the structural coverage criteria proposed in the literature [6
- 81 attempts to capture some important aspect of a program’s
behavior. Rapps & Weyuker [8] define a family of data-flow
coverage criteria for an idealized programming language. Frankl
& Weyuker [9] extend these definitions to a subset of PASCAL
and describe a tool, ASSET, to check for test completeness bas-
ed on the data-flow coverage criteria. We have adapted these
data-flow coverage definitions to define realistic data-flow
coverage measures for C programs.

The concepts of coverage testing are well-described in the
literature, but there are few tools that actually implement these
concepts for common programming languages [9, lo]. Even less
evidence is found of the application of these concepts to realistic
projects in obtaining meaningful results. ATAC is a data-flow
testing tool which, to our best knowledge, incorporates the most
complete set of coverage measures for any common language.
To investigate ATAC in a realistic project, we apply the tool
to the 12 program versions developed by a recent university/in-
dustry joint project [l 11. This project started as an N-version
programming investigation on a critical automatic flight con-
trol application. We consider the multiple program versions ob-
tained from the project as an abundant resource for studying
testing-coverage and quality-metrics. ATAC facilitates this
study. Preliminary results showed that, by using ATAC to
analyze coverage of programs during testing, various program
execution aspects are revealed easily. Not only is an indicator
of testing quality revealed, but the nature of program structure,
or its testability (whether a program is easy to test or not),
becomes visible through the resulting measures. As shown by
the comparisons among the multiple program versions tested
with the same set of data, the structure of different programs
can have a major impact upon the faith in testing upon these
programs.

Section 2 presents ATAC in terms of its purpose, its im-
plementation, and its uses. Section 3 describes a recent industrial
project to obtain 12 program versions for a critical flight soft-
ware system. Section 4 discusses some experience & results ob-
tained in applying ATAC to the final program versions obtain-
ed in the project.

We intend later to investigate the relationship between the
quality of data-flow testing and the subsequent detection of field

0018-9529/94/$4.00 01994 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

528 IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER

faults, and hopefully, a unified technique combining testing
methodology and reliability theory could emerge to address the
program acceptance problem. We believe that ATAC can
facilitate software reliability researchers & practitioners to
establish the relationship in between structure-based testing
schemes and software reliability measurement techniques.

Acronyms & Abbreviations

ATAC Automatic Test Analysis for C
c-use computational-variable use
p-use predicate-variable use
NVP N-version programming
UlIowa University of Iowa.

2. ATAC SOFTWARE-COVERAGE TOOL

ATAC is a tool for evaluating test set completeness based
on data-flow coverage measures. ATAC allows the program-
mer to create new tests intended to improve coverage by ex-
amining code not covered. The steps to use ATAC are:

Prepare a program for testing with a preprocess-compile-link
phase. This creates an instrumented object module and data-
flow tables used during run-time.
Run tests and collect trace & coverage data with the ATAC
run-time routine.
Execute an analysis phase which provides feedback on the
tests that have been run.
Use ATAC to browse the code not covered. This allows the
programmer to understand the incompleteness of the tests and
to design new tests that enhance coverage.

The ATAC preprocessor analyzes C source code and pro-
duces a file containing data-flow information about the source
program for use in the analysis phase. The preprocessor also
creates a modified version of the source code instrumented with
calls to the ATAC run-time routine.

During testing, the ATAC run-time routine, invoked from
the modified program, maintains a compact coverage trace for
use in the analysis phase. In the analysis phase, the tester can:

request coverage values on the preceding test for any of the

display source code constructs not covered by the tests.

Blocks not covered are displayed in a context of surrounding
source code. Other constructs are also displayed by highlighting
the constructs not covered in the context of their surrounding
code.

Coverage analysis can be performed for each C function,
for each test, or some combination of tests and C functions.
Multiple source-files can be tested together or one at a time.
There are no explicit limits on the size of programs tested with
ATAC. However, for very large programs, testing can be con-
strained by, 1) available memory and disk space, and 2) test
execution time. The program-constructs measured by ATAC
include blocks, decisions, c-uses, and p-uses.

data-flow coverage measures,

Block coverage counts the branch free executable code
fragments that are exercised at least once. A block can be
more than one C statement if there is no branching between
statements. A statement can contain multiple blocks if there
is branching inside the statement. An expression can also con-
tain multiple blocks if branching is implied in the expression
(eg, a conditional expression or logical-and or logical-or ex-
pression). If block coverage is less than 100%, then some
statements are not exercised by any test.
Decision coverage counts the number of branches that have
been followed at least once. If a decision is not covered dur-
ing testing, an error in the decision predicate can not be reveal-
ed. Completely adequate decision coverage implies complete-
ly adequate block coverage except for functions with no
branches.
c-use coverage counts the number of combinations of an assign-
ment to a variable and a use of the variable in a computation
that is not part of a conditional expression. Since functions &
statements need not use or assign any variables, c-use coverage
is not comparable to most of the other measures.
p-use coverage counts the number of combinations of an
assignment to a variable, a use of the variable in a conditional
expression, and all branches based on the value of the condi-
tional expression.

The idea behind c-use & p-use coverage is that when a
variable can be assigned a value in more than one way, a good
test set insures that the uses of that variable are exercised for
each possible assignment. Completely adequate p-use coverage
implies completely adequate decision coverage except when
there are predicates that do not contain any variables (eg, “while
(getchar() ! = ’\\n’);”).

2.1 Purposes of ATAC

testing process:
ATAC can achieve the following objectives in the software

1. objectively measure test-set or test-session completeness,
2. display non-covered code to aid in test creation,
3. select effective randomly-generated tests,
4. reduce regression test-set size by eliminating redundant

Objective #1 is useful in evaluating the quality of the testing
procedure, and in establishing a level of assurance in the quali-
ty of tested programs. A low coverage-score indicates that the
tests do not effectively exercise the program. A high coverage-
score establishes faith that the program, in passing the tests,
works correctly.

Objective #2 is a programmer aid for unit testing. Since
a thoroughly-done unit-testing job can vastly reduce the overall
cost of testing a software system, a programmer can use the
coverage displays to reveal code constructs that have not been
covered by unit testing. By examining the code, the program-
mer can discover tests that will cause these, as yet not covered,
constructs to be covered. After running these additional tests,
the programmer can check which constructs are newly covered,
and examine the remaining non-covered constructs.

tests.

r

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

LYU ET AL: A COVERAGE-ANALYSIS TOOL FOR THE EFFECTIVENESS OF SOFTWARE TESTING

~

529

Objective #3 provides a mechanism for determining an ef-
fective, small subset of the many automatically generated tests.
For many applications it is possible to generate tests automatical-
ly [12 - 141. Coverage-measures provide a basis for such a
mechanism. While the number & complexity of data-flow ob-
jects associated with a program can pose a problem to the pro-
grammer trying to devise tests for the program, we see no
similar problem in our use of automatic test-selection.

Objective #4 relates to the tests run over the life of a pro-
gram that are collected into a regression test set. The regres-
sion test set is re-run each time the program is modified, to
verify that the modifications have not adversely affected the pro-
gram. A regression test set can grow so large that it is not prac-
tical to run the whole set of tests after small program modifica-
tions. Hence, this objective uses the coverage measure to select
a subset of the regression tests which can achieve a high level
of coverage. This technique can identify tests that add no
coverage at all to the regression tests, and are therefore can-
didates for deletion.

2.2 Design & Implementation of ATAC

ATAC is implemented as 5 C programs consisting of
about 36K lines of source code, several shell scripts, and
a run-time routine. ATAC is in its third incarnation. Version
#1 analyzed C properly but only did block-coverage. Version
#2 was rather complete but consisted of over 50K lines of
poorly engineered code. Version #3 (current) is well-engineered
and is designed to accommodate changes & extensions. ATAC
is running in a variety of UNIX environments (Sun 3, Sun
SPARC, Dec 3100, Vax 8650, Pyramid, erc) in several Bellcore
divisions and at Purdue University. It is reasonably easy to
port & install. ATAC has been run successfully on programs
up to lOOK lines. Disk-space utilization is, in our experience,
less than (3 +n) times the space needed for a “debug” (-8)
version of the test program (n = number of test runs). Execu-
tion time can increase appreciably (in one case by a factor
of 36), but usually less than a factor of 2 and commonly
20-30%. ATAC has never exceeded available memory on
an 8 MB system.

2.2.1 Preprocessor

The ATAC preprocessor is the heart of ATAC. The
preprocessor parses & analyzes C source code, and outputs,
1) an instrumented version of the source code, and 2) a file con-
taining static data-flow information. The C parser was originally
part of a language-based editor for C [151. A parser generated
by the YACC [16] parser generator tool creates an abstract syn-
tax tree in memory for each C function. A data-flow graph is
created for this syntax tree using well known techniques. A table
of DEF/USE information is generated from the data-flow graph
to be included with the instrumented source code. In order to
instrument the source code, a mark is placed in the syntax tree
for each node in the flow graph. The syntax tree is then de-
parsed to create the instrumented source code. Marks in the syn-
tax tree are translated to calls to the ATAC run-time routine.
Each call to the ATAC run-time routine mntains a block number

and a pointer to the current context. The context contains, 1)
pointers to the DEF/USE tables, 2) information about constructs
already covered, and 3) dynamic function call level.

To create the static data-flow information file, the data-
flow graph is searched for data-flow coverage constructs that
might be covered during testing. These constructs are saved in
a file with their original source-code positions.

2.2.2 Source Code Positions

In order to display non-covered constructs in the source
code, it is necessary to store original source-code positions in
the static data-flow information file. This is complicated by the
presence of C preprocessor macros and include files which are
expanded before the ATAC preprocessor reads the code. The
standard C preprocessor inserts line directives in the preprocess-
ed code to reveal the original source-file name and line number
of included code. However, this does not help with macros
which expand within a given line. To handle this problem we
have modified a C preprocessor to insert an escape sequence
(into the code) indicating which text is part of a macro expan-
sion and the size of the original text. The ATAC preprocessor
decodes these escape sequences and the line directives to get
original source-code positions which are saved in the static data-
flow information file.

2.2.3 Run-time Routine

The ATAC run-time routine recognizes data-flow con-
structs during execution of a test, and notes the first occurrence
of each construct in the trace file. The mechanism for this is
simple. For DEF/USE constructs it proceeds as follows.

Tables generated during source-code instrumentation indicate
which variables are defined & used in a given block.
The run-time routine keeps track of each variable that has
been defined and the block at which it was defined.
When a block that uses a defined variable is encountered, the
definition & use are recorded in the trace file. Multiple oc-
currences of the same DEF/USE pair are not recorded.
Because a single procedure can be invoked recursively, the
run-time routine maintains a separate list of defined variables
for every active procedure being tested. When the final block
of a procedure is executed, the list of defined variables for
that procedure is freed.
The methods for recording the other constructs (decisions,
c-uses, p-uses) are similar.

2.2.4 Analysis

The ATAC analysis program reads, 1) the static data-flow
information for each source file being tested, and 2) the trace
file from the execution of the tests. Constructs in the trace file
are matched with constructs in the data-flow information file
to determine, for each function, 1) the total number of constructs
in the function, and 2) the number of constructs executed by
the tests. The analysis results can be broken down by test files
or by program modules.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

530 IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER

2.3 Uses of ATAC

ATAC is a coverage-testing tool and does not directly aid
in functional testing. Therefore, the first step in testing a program
is for the tester to create tests which are intended to ascertain that
the program meets the functional characteristics of the specifica-
tions. ATAC can then be used to measure the coverage of those
functional tests. For example, for the 5K line Spiffprogram [17],
the functional tests presented the following coverage profile:

blocks decisions c-uses p-uses

62 % 54 % 46 % 42 %
1OO9/ 1622 471/869 1023/2242 69 1 / 1664

This means that 62% of the blocks, 54% of the decisions, 46%
of the c-uses, and 42 % of p-uses were covered by the tests which
were deemed adequate to gauge that the program implemented
the functions required in the specifications. If the tester is
satisfied with this coverage, then ATAC is of no further use.
Otherwise ATAC can aid in the selection of new tests.

The tester who wishes to improve coverage by hand-
crafting tests can request that ATAC display the code while
highlighting non-covered objects. For instance, blocks not
covered are displayed in situ (as in figure 1).

> s0rt.c: merge 6 blocks not covered <---------- - - - - - - - - -

cp =
If

putc (‘CP, os; ;
while (*cp++ ! = \n’);
if (ferrorlos)) (

Figure 1. ATAC Highlighting of Non-Covered Blocks

The tester can use this display to attempt to understand why
none of the tests touched the highlighted blocks. One can pro-
ceed through the code, analyzing the blocks not covered, and
constructing tests which are designed to increase coverage. This
is, of course, an interactive process. Tests are created & run,
the coverage is checked, and the blocks not covered are re-
displayed - until one is either satisfied with the coverage or
convinced that no tests can be added that will cover the remain-
ing blocks. The value of this approach, particularly in unit
testing, is that hand-crafted tests can be created (by the pro-
grammer) which are aimed precisely at constructs not covered.
This can lead to a very high-quality test set.

3. U/IOWA & ROCKWELL JOINT PROJECT

[181. This approach involves the statistidy-independent genera-
tion of N 1 2 functionally equivalent programs from the same
initial specification. NVP was motivated by the “fundamental con-
jecture that the independence of programming efforts will great-
ly reduce the probability of identical software faults occurring in
two or more versions of the program.” [18]

In late 1991, a real-world automatic (computerized)
airplane landing system (autopilot) was developed & programm-
ed by 15 programming teams at U/Iowa and the Rockwell/Col-
lins Avionics Division [113. 40 students’ participated in this
project to s-independently design, code, and test the computeriz-
ed airplane landing system - as a major requirement of a
graduate-level software engineering course.

3.1 Application Problem

The application in this NVP project is part of a specifica-
tion used by some aerospace companies for the automatic
(computer-controlled) landing of commercial airliners. The
specification can be used to develop the software of a flight-
control computer for a real aircraft, given that it is adjusted to
the performance parameters of a specific aircraft. All algorithms
and control laws are specified by diagrams which have been
certified by the US Federal Aviation Administration. The pitch
control part of the auto-landing problem (control of the ver-
tical motion of the aircraft) was selected for the project.

Simulated flights begin with the initialization of the system
in the Altitude Hold mode, at a point approximately 10 miles
from the airport. Initial altitude is about 1500 feet, initial speed
120 knots (200 feethecond). The Complementary Filters
preprocess the raw data from the aircraft sensors. Pitch-mode
entry & exit is determined by the Mode Logic equations, which
use the filtered airplane-sensor data to switch the controlling
equations at the correct point in the trajectory.

Pitch modes entered by the autopilotlairplane combination,
during the landing process, are: Altitude Hold, Glide Slope Cap-
ture, Glide Slope Track, Flare, and Touchdown. The Control
Law for each of them consists of two loops, outer & inner. The
Altitude-Hold Control Law is responsible for maintaining the
reference altitude. As soon as the edge of a glide slope beam
is reached, the airplane enters the Glide-Slope Capture & Track
mode and begins a pitching motion to acquire & hold the beam
center. Controlled by the Glide Slope Capture and Track Con-
trol Law, the airplane maintains a constant speed along the glide
slope beam. Flare logic equations determine the precise altitude
(about 50 feet) at which the Flare mode is entered. In response
to the Flare control law, the vehicle is forced along a path which
targets a vertical speed of 2 feetlsecond at touchdown.

Besides computing the flight control command according
to the above sequence, each program checks its final result (the
pitch control command) against the results of other programs.
Any disagreement is indicated by the Command Monitor out-
put, so that a supervisory program can take appropriate action.

NVP achieves faUlt-tOlerant Software systems (N-version
software systems) through development & use of design diversity

‘33 from ECE & CS departments at U/Iowa, 7 from the Rockwell
International.

r

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

LYU ET AL: A COVERAGE-ANALYSIS TOOL FOR THE EFFECTIVENESS OF SOmWARE TESTING 531

3.2 Software Development

There were 6 phases:

1. Initial design (4 weeks). The purpose was to allow the
programmers to get familiar with the specified problem, so as
to design a solution to the problem. At the end of this phase,
each team delivered a preliminary design document, which
followed specific guidelines & formats for documentation.

2. Detailed design (2 weeks). The purpose was to let each
team obtain some feedback from the coordinator to adjust, con-
solidate, and complete their final design. Each team was also
requested to conduct at least one design walk-through. At the
end of this phase, each team delivered, 1) a detailed design docu-
ment, and 2) a design walk-through report.

3. Coding (3 weeks). By the end of this phase, program-
mers had finished coding, conducted a code walk-through, and
delivered the initial, compilable code. Each team was required
to use the RCS revision control tool for configuration manage-
ment of their program modules.

4. Unit testing (1 week). Each team was supplied with sam-
ple test data sets for each module to check the basic functionality
of that module. They were also required to build their own test
harness for this testing purpose. 133 data files were provided
to the programmers.

5. Integration testing (2 weeks). Four sets of partial
flight-simulation test data, together with an automatic testing
routine, were provided to each programming team for integra-
tion testing. This testing phase was to guarantee that the
software was suitable for a flight simulation environment in
an integrated system.

6. Acceptance testing (2 weeks). Programmers formally
submitted their programs for a 2-step acceptance test. In step
#1 (ATl), each program was run in a test harness of 4 nominal
flight simulation profiles. In step #2 (AX!), one extra simula-
tion profile, representing an extremely difficult flight situa-
tion, was imposed. In total there were 23 930 executions
imposed on these programs before they were accepted and
then subjected to the final evaluation in the following stage.
By the end of this phase, 12 of the 15 programs passed
the acceptance test and were further evaluated.

3.3 Program Metrics & Statistics

Table 1 gives several comparisons of the 12 accepted
versions (identified by a Greek letter) with respect to some
common software static metrics. The objective of software
metrics is to evaluate the quality of the product in a quality
assurance environment. For this project, however, we com-
pare these program versions and observe their differences.

Notation

LINES number of lines of code, including comments and
blank lines

LN-CM number of lines, excluding comments and blank lines
STMTS number of executable statements, such as assign-

ment, control, 110, or arithmetic statements
MODS number of programming modules (subroutines, func-

tions, procedures, etc) used
STMIM mean number of statements per module
CALLS number of calls to programming modules
GBVAR number of global variables
LCVAR number of local variables.

96 Faults were found & reported during the life of the
project. Table 2 classifies the faults by fault type.

Notation (Fault Classification)

Implementation Related

Typo typographical (cosmetic mistake made in typing the
program)

Omiss error of omission (piece of required code was missing)
IncAlg incorrect algorithm (deficient implementation of an

algorithm) - most frequent fault type, eg, miscom-
putation, logic fault, initialization fault, boundary fault

Specification Related

SpecMis specification misinterpretation
SpecAmb specification ambiguity (unclear or inadequate

specification which led to a deficient
implementation).

TABLE 1
Software Metrics for the 12 Accepted Programs

[versions are designated by lower-case Greek letters
range = [highest value]/[lowest value] for each metric]

Metric p y e q B K X p Y t o range

LINES 8769 2129 1176 1197 1777 1500 1360 5139 1778 1612 2443 1815 7.46

STMTS 2663 708 706 720 1208 753 640 1366 759 810 932 858 4.16
MODS 53 11 6 15 6 47 17 17 21 24 17 11 8.83
STM/M 179 64 101 439 201 406 38 80 36 35 67 78 12.5
CALLS 84 123 16 23 37 76 31 626 100 106 30 66 39.1

LCVAR 1326 179 86 309 553 532 376 402 294 258 328 329 15.4

LN-CM 4006 1229 895 932 1477 1182 1251 2520 1168 1070 1683 1353 4.30

GBVAR 0 55 101 180 86 406 7 0 354 423 421 26 -

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACXIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER 532

TABLE 2
Fault Classification by Fault Types [19]

[see notes on table 11

Typo 0 0 0 1 2 2 0 0 0 0 0 0 5
omiss 0 0 4 0 1 0 3 1 0 0 1 0 1 0
IncAlg 7 1 3 6 2 1 3 3 4 3 6 2 41
S p e c M i s 2 2 0 1 1 4 3 3 4 2 2 4 28
S p e c A m b 0 4 3 0 0 0 0 1 0 0 1 0 9
Other 0 0 0 1 1 0 0 0 1 0 0 0 3
Total 9 7 1 0 9 7 7 9 8 9 5 1 0 6 96

Table 3 shows the test phases during which the faults were
detected, and the fault density of the original version and the
accepted version.

Notation

Coding Coding and Unit-Test
Integr Integration
ATi
Operat Operational
FD
Orig FD original FD
ATi FD after passing ATi.

mitted by two programs during the whole life cycle.

Acceptance Test i , i = 1,2

fault density (per lo00 lines of uncommented code)

There were only two incidences of identical faults com-

1. Committed by 8 & ~1 versions - due to an incorrect

initialization of a variable. Unit test data detected this fault very
early when both programs were initially tested.

2. Committed by y & X versions - an incorrect condition
for a switch variable (Boolean variable) for a late flight mode.
This fault was not detected until in the AT1 (step 1) when a
complete flight simulation was first exercised.

Latq in the operational testing phase, lk flight simulations,
or over 5M program executions, were conducted. Only 1 fault
(in 0 version) was found. This indicates that the program quality
obtained from this project is very high. For the 12 accepted pro-
grams, the average FD = 0.05 faults/(lk lines of code). This
number is close to the best current industrial software engineer-
ing practice. A detailed report on the U/Iowa & Rockwell Pro-
ject is in [ll].

4. PROGRAM ANALYSIS BY ATAC

Upon the completion of the U/Iowa & Rockwell Project,
its product (12 accepted and fully operational program versions)
was available for investigation. Our particular interest here is
the investigation of testing coverage metrics as a quality con-
trol mechanism to evaluate & analyze these programs. The
ATAC tool facilitates the generation of interesting results (sum-
marized in tables 4 - 7).

Table 4 shows some more static program metrics of the
12 programs which were not in table 1. These new metrics,
including blocks, decisions, c-uses, and p-uses, are program
constructs related to the quality of testing. ATAC can
automatically measure these program constructs which reveal
the testing-related program complexity. All the metrics in table

TABLE 3
Fault Classification by Phases and Other Attributes

[see notes on table 1)

~ ~~

Coding 2 2 3 1 3 3 5 3 2 1 2 2 2 9
Integr 4 3 4 4 1 0 3 2 2 2 3 1 2 9
AT1 1 2 3 4 1 2 1 2 3 2 5 3 2 9
AT2 1 0 0 0 2 2 0 1 2 0 0 0 8
Operat 1 0 0 0 0 0 0 0 0 0 0 0 1
Total 9 7 1 0 9 7 7 9 8 9 5 1 0 6 9 6
Orig FD 2.2 5.7 11.2 9.7 4.7 5.9 7.2 3.2 7.7 4.7 5.9 4.4 5.1
AT1 FD 0.5 0 0 0 1.4 1.7 0 0.4 1.7 0 0 0 0.48
AT2FD 0.2 0 0 0 0 0 0 0 0 0 0 0 0.05

TABLE 4
Testing-Related Program Metrics Measured By ATAC

[see notes on table 11

Metrics 0 y E (8 K h p Y 6 o range

blocks 511 711 531 554 679 537 367 1132 542 473 457 483 3.08
decisions 216 250 320 297 520 284 286 357 264 237 231 262 2.41
c-uses 935 755 395 696 1027 636 710 965 727 537 803 665 2.60
p-uses 413 340 349 520 611 463 459 419 355 310 279 392 2.19

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

LYU ET A L A COVERAGE-ANALYSIS TOOL FOR THE EFFECTIVENESS OF SOmWARE TESTING 533

TABLE 5
Single Execution Testing Coverage Measured By ATAC

[see notes on table 11

Metrics f l y E { 7 0 K h p U o average range

blocks 332 417 329 389 302 341 205 675 370 321 325 277 356.9 3.29
% 65 59 62 70 44 64 56 60 68 68 71 57 62.0 1.61

decisions 77 92 119 127 138 80 95 103 110 97 97 84 101.6 1.79
46 36 37 37 43 27 28 33 29 42 41 42 32 35.6 1.59

c-uses 557 431 220 347 460 364 310 670 405 295 446 368 406.1 3.05
% 60 57 56 50 45 57 44 69 56 55 56 55 55.0 1.57

p-uses 124 117 134 168 159 101 105 153 149 111 105 114 128.3 1.66
% 30 34 38 32 26 22 23 37 42 36 38 29 32.3 1.91

TABLE 6
Integration Testing Coverage Measured By ATAC

[see notes on table 11

Metrics f l y 6 5 1) 0 K h p U o average range

blocks

decisions

c-uses

p-uses

x
%

x
%

433
85

153
71

778
83

274
66

506
71

183
73

573
76

205
60

408
77

200
63

315
80

22 1
63

462
83

198
67

468
67

244
47 -

~

503 464
74 86

313 205
60 72

716 515
70 81

353 271
58 59

290
79

197
69

508
72

223
49

859
76

220
62

81 1
84

254
61

434
80

167
63

538
74

210
59

417
88

185
78

435
81

212
68 -

394
86

167
72

625
78

179
64

TABLE 7
Acceptance Testing Coverage Measured By ATAC

[see notes on table 11

385
80

172
66

544
82

239
61

462.9
80.4

196.7
68.0

568.8
77.3

240.4
59.6

2.96
1.24
2.05
1.30
2.57
1.25
1.97
1.45 -

Metrics f l y E { 7 0 K X p U 2: o average range

blocks
%

decisions
%

c-uses
%

p-uses
x

488 553 469 529 598 524 335
95 78 88 95 88 98 91

191 217 249 245 399 255 234
88 87 78 82 77 90 82

893 676 378 585 898 603 618
96 90 96 84 87 95 87

345 245 271 300 454 334 263
84 72 78 58 74 72 57

1033
91

280
78

92 8
96

297
71

487 461 443 453
90 97 97 94

208 218 206 223
79 92 89 85

624 513 744 625
86 96 93 94

256 262 223 311
72 85 80 79

531.1
91.8

243.8
83.9

673.8
91.7

296.8
73.5

3.08
1.24
2.09
1.19
2.46
1.14
2.04
1.49

4 have a tighter range than all the metrics in table 1. There are
no strong correlations among these 4 program constructs. For
example, the /3 version has an average value of blocks & p-
uses, the smallest number of decisions, but a very high value
of c-uses.

Tables 5 - 7 analyze the quality of different tests conducted
on the 12 program versions. Table 5 shows the testing coverage
of these programs upon a simple test case which includes only
one program execution.

This test case thus serves as a baseline to observe the testing
quality improvement when more test cases are executed. In table
5, a simple, common test case has a variety of effects on dif-
ferent program constructs of different program versions. Table
5 shows a fairly large range of coverage of blocks (44% - 71 %),
decisions (27 % - 43 %), c-uses (44 % - 69 %), and p-uses (22 %

- 38%). Moreover, the coverage of blocks and c-uses is higher
compared to that of decisions and p-uses.

Tables 6 & 7 give the testing coverage measures by the
Integration Test data and the Acceptance Test data, respective-
ly. The Integration Test data contains 4 test-data files for a total
of 960 program executions. The Acceptance Test data, a super
set of the Integration Test data, also contains 4 test-data files
(each represents a complete flight simulation) for a total of about
2 1 K program executions. Both test data sets include the test data
in table 5.

Tables 6 & 7 show that the programs have been tested with
fairly high quality. In particular, the Acceptance Test achieves
coverages as high as 98% of blocks, 92% of decisions, 96%
of c-uses, and 85 % of p-uses in some programs. Even though
some programs have consistent scores in these measures (eg,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

534 IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER

v version has very high values in all the measures; { version
has both the lowest % c-uses and % p-uses), some programs
do not (eg, 8 version has the highest % blocks, very high %
decisions and % c-uses, but relatively low % p-uses).

Tables 5 - 7 show that as the number of program execu-
tion increases, the quality of test increases, and the range of
fraction-of-coverage decreases. Nevertheless, considering that
these coverage results are obtained from the program versions
of the same application tested through the same data, the dif-
ferences in these measures are still important (eg, the 8 version
obtained 98% of block coverage while the y version only ob-
tained 78 %). On the other hand, there was a diminishing return
on the coverage after the acceptance test, and the operational
test data (5M program executions) did not increase this coverage
appreciably. This means that the 22% uncovered code in the
y version was probably not even executed during the opera-
tional phase.

There could be a correlation between the ‘number of faults
detected in a version’ and the ‘coverage of the program con-
structs of the version’; we hypothesize that the better a pro-
gram is covered during testing, the more faults are detected.
However, we did not see strong correlations between the total
faults detected in the program versions (table 3) and their
coverage measures during various testing conditions (tables 5
- 7). This could be due to the fact that each version has a dif-
ferent fault distribution to begin with, and therefore, the
coverage measures would not be a good predictor for the ab-
solute number of faults in the program. Besides, the number
of faults detected in each version is not very large, which can
reduce the statistical precision in the analysis.

Finally, in using ATAC capability in highlighting non-
covered code in the program, we can reveal the programming
style and the testability of a program easily by examining the
coverage of program constructs in detail. In the y version, for
example, we noticed that an untested error-handling function
accounts for 10% of the total blocks while the same function
accounts for only 1-2% of block coverage in most other ver-
sions. The y version used many function calls to pass each
parameter in the calling routine of the error-handling function,
and each function call was counted as an uncovered block. This
clearly indicates the need for an extra test case to test this func-
tion, which can increase the block coverage of the y version
appreciably.

REFERENCES

J.D. Musa, A. Iannino, K. Okumoto, Software Reliability - Measure-
ment, Prediction, Application, 1987; McGraw-Hill.
S.R. Dalal, C.L. Mallows, “When should one stop testing software?”
J. Amer. Sratistical Assoc, vol 83, 1988 Sept, pp 872-879.
M.R. Lyu, A. Nikora, “Using software reliability models more effec-
tively”, IEEE Software, vol 9, 1992 Jul, pp 43-52.
J.R. Horgan, S.A. London, “A data flow coverage testing tool for C”,
Proc. Symp. Assessment of Quality Sofrware Development Tools, 1992
May, pp 2-10.
M.R. Lyu, J.R. Horgan, S. London, “A coverage analysis tool for the
effectiveness of soilware testing”, Proc. ISSRE’93, 1993 Nov, pp 25-34.

W.E. Howden, Funcrional Program Testing and Analysis, 1987; McGraw-
Hill.
R.A. DeMillo, W.M. McCracken, R.J. Martin, J.F. Passafiume, SOB-
ware Testing and Evaluation, 1987; Benjamin/Cummings Publishing.
S. Rapps, E.J. Weyuker, “Selecting software test data using data flow
information”, IEEE Trans. Software Engineering, vol SE-11, 1985 Apr,

P.G. Frankl, E.J. Weyuker, “An applicable family of data flow testing
criteria”, IEEE Trans. Software Engineering, vol 14, 1988 Oct, pp

DeMillo, Gundi, King, McCracken, Offutt, “An extended overview of
the Mothra software testing environment”, Proc. Second Workshop on
Software Testing, Ver$cation, and Analysis, 1988; IEEE Computer
Society.
M.R. Lyu, Y. He, “Improving the N-version programming process
through the evolution of a design paradigm”, IEEE Trans. Reliability,
vol 42, 1993 Jun, pp 179-189.
P.M. Maurer, “Generating Test Data with Enhanced Context-Free Gram-
mars’’, IEEE Software, vol 7, 1990 Jul, pp 50-55.
D.C. Ince, “The automatic generation of test data”, The Computer J.,
vol 30, num 1, 1987, pp 63-69.
A.J. Offutt, “Automatic test data generation”, PhD ?his, 1988; Georgia
Institute of Technology.
J.R. Horgan, D.J. Moore, “Methods for improving language-based
editors”, Proc. Sigplun/Sigsofr Con5 Programming Environmenrs, 1984.
S.C. Johnson, “YACC: Yet Another Compiler-Compiler”, (internal
memorandum), 1975; AT&T Bell Labs.
D.W. Nachbar, “SPIFF % A program for making controlled approx-
imate comparison of files”, (internal memorandum), 1988; Bellcore.
A. Avifienis, “The N-version approach to fault-tolerant software”, IEEE
Trans. Sofrware Engineering, vol SE-11, 1985 Dec, pp 1491-1501.
M.R. Lyu, A. Avifienis, “Assuring design diversity in N-version soft-
ware: A design for N-version programming”, Dependable CO”
puting and Fault-Tolerant Systems (J.F. Meyer, R.D. Schlichting, Eds),
1992, pp 197-218; Springer-Verlag.
J.R. Horgan, S. London, M.R. Lyu, “Achieving software quality with
testing coverage measures”, IEEE Computer, vol27, 1994 Sep, pp 6069.

pp 367-375.

1483-1498.

AUTHORS

Dr. Michael R. Lyu; Bellcore; 445 South St; Morristown, New Jersey 07960
USA.
Internet (e-mail) : 1 yu@bellcore . com

Michael R. Lyu received his BS (1981) in Electrical Engineering from
National Taiwan University, MS (1984) in Electrical & Computer Engineer-
ing from the University of California, Santa Barbara, and PhD (1988) in Com-
puter Science from the University of California, Los Angeles. He was with
the Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
as a Member of the Technical Staff from 1988 to 1990. In 1990 he joined the
Electrical & Computer Engineering Department at the University of Iowa as
an Assistant Professor. Since 1992 June, he has been a Member of the Technical
Staff in the Applied Research Area of Bellcore. His research interests include
software engineering, software reliability, and fault-tolerant computing; he has
published over 40 papers in these areas. He is the editor for two book volumes:
So@re Fault Tolerance, 1995 and McGraw-Hill So@re Reliabilify Engineer-
ing Handbook, 1995.

Dr. J. R. Horgan; Bellcore; 445 South St; Morristown, New Jersey 07960 USA.
jrh@bellcore.com

Joseph R. Horgan received a BA & MA from the University of Delaware
in Philosophy and a PhD from the Georgia Institute of Technology in Computer
Science. Since 1983 he has been a member of the technical staff of the Bellcore
Information Sciences & Technologies Research Laboratory. His research is in
software analysis, testing, and reliability. Prior to his employment with Bellcore
he was with Bell Labs and on the faculty of Computer Science at the University
of Kansas. He has also worked at the University of Delaware and IBM.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

mailto:jrh@bellcore.com

LYU ET AL: A COVERAGE-ANALYSIS TOOL FOR THE EFFECTIVENESS OF SOFTWARE TESTING 535

Saul London; Bellcore; 445 South St; Momstown, New Jersey 07960 USA.
saul@bellcore . com

Research Laboratory at Bellcore. His research interests include software testing,
programming languages, and software reuse, and telecommunication software.

Saul London received his BA (1980) in Mathematics from Columbia
University and MS (1982) in Computer Science from New York University.
He is a member of technical staff in the Information Sciences & Technologies

Manuscript received 1994 May 15.

IEEE Log Number 94-06876

A R U M S A R U M S A R U M S ARWMS ARWMS A R U M S ARWMS ARWMS ARWMS A R W M S ARWMS ARWMS ARWMS

1995 Annual Reliability and Maintainability Symposium 1995
Plan now to attend 8c learn January 16-19 Washington, DC USA

Tutorials (no extra charge) Tutorials (no extra charge) Tutorials
“Failure Mode, Effects, and Criticality Analysis”
“What Markov Modeling Can Do for You: An Introduction”
“Basic Reliability”
“Reliability Growth: Management, Models, and Standards”
“Practical Maintainability”
“Practical Reliability Engineering & Management”
“Reliability Prediction for the Next Generation”
“Concurrent Engineering: An Overview”
“Reliability Program Planning in a Commercial Environment”
“Software Reliability Concepts”
“Basic Fault-Tree Analysis”
“Human Reliability: An Overview”
“Probabilistic Models and Statistical Methods in Reliability”
“Benchmarking: An Introduction”
“Accelerated Testing Techniques: Application in Design & Production”
“Statistical Design of Experiments: The Concepts”
“Using the Taguchi Method for Improved Reliability”
“Reliability Modeling Using Practical Iterative Techniques”
“Fault-Tolerant Computing”
“Experimental Analysis of Computer System Dependability”
“Understanding Part Failure Mechanisms”

John B. Bowles, Univ. of South Carolina
Mark A. Boyd, NASA Ames Research Ctr.

Augustus Constantinides, AC Sciences Ltd.
Larry H. Crow, AT&T Bell Labs

Jacques J. Durand, Gec Alsthom Transport
Ralph A. Evans, Consultant

John D. Healy, Bellcore
Dennis R. Hoffman, Texas Instruments

James A. Hough, Pitney Bowes
Samuel J. Keene Jr, Storage Technology Corp.

James M. Koren, Science Applications International Corp.
Kenneth P. LaSala National Oceanic & Atmospheric Admin.

Larry M. Leemis, College of William & Mary
Henry A. Malec, Storage Technology Corp.

Bruce A. McAfee, Magnavox
Chester H. McCall Jr., Pepperdine University

Timothy L. Reed, I T T TQM Group
Martin L. Rosman, Allied Signal Aerospace Co.

Martin L. Shooman, Polytechnic Institute of New York
Dong Tang, SoHaR Inc.

Ronald E. Twist Westinghouse Defense & Electronics Ctr.

This opportunity comes but once a year - 21 tutorials in 3% days - no extra charge. For more information:
Alfred Stevens 200 Cordoba Court Merritt Island, Florida 32953 USA

phone: [l] 407-861-0745 fux: [l] 407-861-5922 internet (e-mail): amstevens@aoI.com

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:58:31 UTC from IEEE Xplore. Restrictions apply.

mailto:amstevens@aoI.com

