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Abstract—Recommender systems are promising for providing personalized favorite services. Collaborative filtering (CF) technologies,

making prediction of users’ preference based on users’ previous behaviors, have become one of the most successful techniques to

build modern recommender systems. Several challenging issues occur in previously proposed CF methods: 1) most CF methods

ignore users’ response patterns and may yield biased parameter estimation and suboptimal performance; 2) some CF methods adopt

heuristic weight settings, which lacks a systematical implementation; and 3) the multinomial mixture models may weaken the

computational ability of matrix factorization for generating the data matrix, thus increasing the computational cost of training. To resolve

these issues, we incorporate users’ response models into the probabilistic matrix factorization (PMF), a popular matrix factorization CF

model, to establish the response aware probabilistic matrix factorization (RAPMF) framework. More specifically, we make the

assumption on the user response as a Bernoulli distribution which is parameterized by the rating scores for the observed ratings while

as a step function for the unobserved ratings. Moreover, we speed up the algorithm by a mini-batch implementation and a crafting

scheduling policy. Finally, we design different experimental protocols and conduct systematical empirical evaluation on both synthetic

and real-world datasets to demonstrate the merits of the proposed RAPMF and its mini-batch implementation.

Index Terms—Recommender systems, collaborative filtering, matrix factorization, missing data theory

Ç

1 INTRODUCTION

RECENTLY, online shopping and entertainment services
are growing explosively. Popular service providers,

e.g., Amazon, Netflix, iTunes Match, Yahoo! Music, etc.,
have contributed to building up platforms for consumers to
buy new products or rate them. As a coin has two sides,
these platforms can provide users attractive services to
improve their lifestyle, they also introduce inundated choice
which increases users’ information overload. Matching con-
sumers’ taste and presenting the most appropriate products
to them is a key to enhance users’ satisfaction and loyalty
in using these online services. Hence, recommender systems,
providing personalized favorite recommendations, have
been prevalently adopted in these services to boost the sales
of retailers and trigger the growth of business.

Due to the prominence of the commercial value and tech-
nical challenges, recommender techniques have attracted
the interests of researchers from academia and practitioners
from industry [2], [5], [6], [14], [17], [20], [37], [40]. Collabora-
tive filtering (CF) technologies, aiming to automatically
predict consumers’ preferences by analyzing their previous
behaviors, e.g., the transaction history or product ratings,
become mainstream techniques for recommender systems.
These techniques can usually be classified into memory-based

CF methods and model-based CF methods, see [2], [40] and the
references therein.

Overall, previously proposed CF methods mainly focus
on manipulating the explicitly observed rating scores to
understand users’ preferences for future prediction. An
explicit rating score clearly indicates a user’s preference on
a particular item as well as an item’s inherent features. The
scores that a user assigns to different items convey informa-
tion on what the user likes and what the user dislikes. The
rating values that an item received from different users also
carry information on intrinsic properties of the item. The
rating information indeed can present users’ preferences on
different items. However, valuable implicit information of
users’ response patterns, i.e., some items are rated while
others not, is usually less explored in existing CF methods.

Several pieces of research publications have been con-
ducted to exploit users’ response patterns. For example, the
original problem is formulated as the one-class collaborative
filtering task, where a heuristic weight in the range of 0 to 1
is introduced to calibrate the loss on those unseen ratings
[27], [28], [39], or the user information is embedded to
optimize the weight on the unseen ratings via users’ similar-
ity [19]. The multinomial mixture model is combined with
conditional probability tables with Bernoulli distribution to
model the non-random response [26]. This work is also
extended to specify the probability that a rating is missing
in a logistic form which depends on both the values of the
underlying ratings and the identity of the items [25]. The
previous work, however, may suffer from some practical
limitations: 1) the heuristic weight setting methods may
lack a systematic way to model users’ response patterns;
2) the multinomial mixture models may weaken the compu-
tational ability of generating data matrix and increase the
computational cost of training the model.
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To overcome the above limitations, in this paper, we
propose a response aware probability matrix factoriza-
tion (RAPMF) framework by expanding the Bernoulli
response patterns to probability matrix factorization
(PMF) for users’ ratings in [22]. Different from previ-
ously proposed methods, we present a succinct assump-
tion on response patterns and further investigate the
properties and effectiveness of the proposed RAPMF.
We highlight the key contributions of this article as
follows:

� First, our proposed RAPMF framework consists of a
data model and a response model. The data model
generates users’ ratings on items via the inner prod-
uct of two low-rank feature matrices captured by
probabilistic matrix factorization (PMF), a popular
model-based matrix factorization method. Mean-
while, the response model is assumed following a
Bernoulli distribution. That is, the response patterns
are assumed based on whether the ratings are
observed or not, where a deterministic Bernoulli
parameter is given to the observed ratings while a
step function is assumed on the unobserved ratings.
The treatment of the response for unobserved ratings
allows us to marginalize the underlying response
and the data model on the unobserved ratings. This
assumption is more precise and easy to marginalize
the missing responses. This is slightly different from
the setup in [22], where the responses may depend
on the latent features.

� Second, we seek the optimal solution of RAPMF by
gradient descent, which consumes the time complex-
ity of OðN �MÞ, where N and M are the number of
users and items, respectively. It is too expensive for
real-world recommender systems, which contain
over millions or even billions of users and items. To
resolve the computational issue, we realize a mini-
batch implementation for RAPMF and reduce its

training cost to OðB2Þ for each mini-block with B
users and B items. The mini-batch is executed in par-
allel via multiple threads with a crafting scheduling
policy. In an extreme case, when B ¼ 1, the algo-
rithm is equivalent to a parallel implementation of
stochastic gradient ascent. Hence, the mini-batch
implementation will reduce the training consump-
tion of RAPMF largely while maintaining the same
test cost.

� Third, we design different experimental protocols to
reveal different distributions on the training data
and the test data. We conduct model evaluation on
both synthetic and real-world datasets under differ-
ent protocols to compare the model performance.
Our experimental results demonstrate that our pro-
posed RAPMF contains several merits.

The rest of the paper is organized as follows. In Section 2,
we present the preliminaries on the basic model setup and a
motivating example, review several existing work, and
the motivation of the work. In Section 3, we develop the
proposed RAPMF model on how to incorporate response
models into PMF and elaborate its properties. In Section 4,
we present the mini-batch learning implementation for

RAPMF. In Section 5, we conduct comparison on the models
and present detailed explanation. Finally, we conclude the
paper in Section 6.

2 PRELIMINARIES AND RELATED WORK

In the following, we will first present the basic setup and the
objective of this paper with a motivating example. After
that, we will review three main topics related to our work.
They include missing data theory, collaborative filtering,
and online learning algorithms. We will emphasize how
these topics motivate our work.

2.1 Setup and a Motivating Example

Let D ¼ f1; 2; . . . ; Dg be the set of rating scores (grades) in
the range 1 to D. For example, in the Yahoo!Music’s
LaunchCast dataset, D is 5 and therefore the rating values
range from 1 (indicating no interest) to 5 (implying a strong
interest). Collecting all data of N users and M items from a
recommender system can form an N �M matrix X, where
a row of the matrix indicates a user’s ratings on the items
and a column of the matrix represents the ratings on a spe-
cific item. Usually, the observed matrix X is highly sparse.
For example, in the Yahoo!Music’s LaunchCast dataset,
only about 2 percent of the ratings are observed. Formally,
we denote V as the set of the indexes of the observations in

X and likewise �V for the unobserved data. Hence, we sepa-
rate X into two sets, XV and X�V, for the observed ratings
and unobserved ratings, respectively, where

Xij ¼
a 2 D; if ði; jÞ 2 V;
0; if ði; jÞ 2 �V:

�
(1)

Correspondingly, we can then construct the fully
observed response matrix R as

Rij ¼
1; if ði; jÞ 2 V;
0 if ði; jÞ 2 �V:

�
(2)

Hence, R ¼ RV [R�V and RV \R�V ¼ ;.
In most of previously proposed CF methods, users

response patterns are ignored, which is equivalent to
assuming the missing of users’ ratings on items occurs ran-
domly. That is, all users would rate all the inspected items,
or more generally they will randomly select the inspected
items to rate. It should be noted that in real-world recom-
mender systems, this assumption may be violated. To verify
this phenomenon, we show in Fig. 1 for the distributions of

Fig. 1. Distribution of rating scores from Yahoo!Music [26]. (a) shows the
probability of rating scores obtained from the system while (b) presents
the probability of ratings, where the songs are randomly selected from
the system and requested users to rate.
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rating scores collected from a real-world system, the Yahoo!
Music’s LaunchCast Radio service [26]. Fig. 1a shows the
distribution of rating scores on those items that users choose
to rate, while Fig. 1b shows the distribution of rating scores
for the songs which are randomly selected from the whole
music pool and asked for rating by the same group of users.
Obviously, these two distributions are dramatically differ-
ent. For those songs that the users have rated, more items
are rated on high scores than those randomly selected from
the music pool. This is a compelling evidence showing that
the assumption that all the users would rate all the
inspected items or randomly select items to rate is unlikely
to be true. The investigation of the Yahoo!Music Launch-
Cast data indicates that users are more likely to rate items
they do love or hate than those neutral to them [26], [38].

Table 1 again gives us a vivid example of skewed ratings
of five users on five items and their corresponding response
patterns. This extreme case (ratings skewed to either 4 or 5)
clearly shows that without considering users’ response pat-
terns, user-based approaches [3], [11] and item-based
approaches [9], [20], [35] are more likely to predict rating
values in the range of 4 to 5. The extreme example implies
that the response patterns have to be taken into account to
enhance model performance. Hence, in this paper, we
aim to boost the model performance by exploiting both
partially-observed rating matrix XV and fully-observed
response matrix R.

2.2 Missing Data Theory

In the literature, missing data theory [23] has established
a systematic framework to explore missing response
patterns. In the following, we review this theory and
elaborate how it can be utilized in collaborative filtering
because ignoring the missing responses will yield biased
parameter estimation.

Following missing data theory, we can model the avail-
able data in Eq. (1) and Eq. (2) as a two-step procedure.
First, a data model P ðXjuÞ parameterized by u generates the
full data matrixX. Then, a response model P ðRjX;mÞ deter-
mines which elements in X are observed. Hence, we can
take a parametric joint probability on the partially observed
data matrix XV and the fully observed response matrix R,
conditioned on the model parameters, u and m as follows:

P ðR;XVjm; uÞ ¼ P ðRjXV;m; uÞP ðXVjm; uÞ
¼ P ðRjXV;mÞP ðXVjuÞ:

(3)

In Eq. (3), the response parameter, m, is not related to users’
rating and therefore we discard it in calculating the proba-
bility P ðXVjuÞ. The probability, P ðRjXV;mÞ is also referred

to as the missing data model. In the following, we use response
model and missing data model interchangeably.

According to the missing data theory, there are three
kinds of missing data assumptions:

� Missing completely at random (MCAR). This is the
strongest independence assumption. Whether there
is a response is fully determined by a parameter,
which is irrelevant to users’ ratings and the model’s
latent variables. One typical example where MCAR
holds is that given an inspected item, whether it will
be observed or not is a Bernoulli trail with probabil-
ity m. That is,

P ðRjX;mÞ ¼ P ðRjXV;mÞ ¼ P ðRjmÞ: (4)

� Missing at random (MAR). The probability of observ-
ing a particular response can only depend on the
observed elements of the data vector. In other words,
the probability of response is not related to missing
data values or the model’s latent variables. The
assumption can be formulated as follows:

P ðRjX;mÞ ¼ P ðRjXV;mÞ: (5)

� Not Missing At Random (NMAR). The response pat-
terns depend on either the unobserved data vectors,
the unobserved values of latent variables, or the
observed data. This assumption requires an explicit
response model to learn unbiased model parameters.
The response model has to be incorporated into the
data model for estimating missing ratings.

In the following, we derive the likelihood of m and u

given the available data XV and R, Lðm; ujXV; RÞ, under
the MCAR or the MAR assumption for model parameter
estimation

Lðm; ujXV; RÞ ¼ P ðR;XVjm; uÞ

¼
Z
X�V

P ðR;Xjm; uÞdX�V

¼
Z
X�V

P ðRjX;mÞP ðXjuÞdX�V

¼
Z
X�V

P ðRjXV;mÞP ðXjuÞdX�V

¼ P ðRjXV;mÞ
Z
X�V

P ðXjuÞdX�V

¼ P ðRjXV;mÞP ðXVjuÞ
/ P ðXVjuÞ:

(6)

In the above derivation, the key to marginalizing the miss-
ing data is that the missing data model depends only on the
observed data. That is, the expression in Eq. (6) can be
replaced by the MCAR assumption in Eq. (4), or the MAR
assumption in Eq. (5). It is noted that if both MCAR and
MAR fail to hold, the marginalization in Eq. (6) cannot be
taken out easily. Hence, directly maximizing P ðXVjuÞ will
yield a biased u. In this case, the NMAR assumption has
to be explicitly made on the response model to learn an
unbiased model.

TABLE 1
Skewed Ratings of Five Users on Five Items and the

Corresponding Response Patterns
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2.3 Collaborative Filtering Techniques

Collaborative filtering approaches are effective recommen-
dation techniques to filter out irrelevant information only
based on users’ previous behaviors and to provide items/
products that users may be interested [2], [3], [14], [40]. Due
to effective performance, they have been successfully
deployed in various real-world recommender systems [20],
[40]. Based on different assumptions, CF approaches are
usually classified into two main categories: memory-based
methods and model-based methods [2], [3], [40].

Memory-based methods are very popular and applied
widely in commercial websites [20], [31]. These methods
make predictions based on users’ previous ratings to com-
pute similarity between users or items. They can further be
classified into user-based methods and item-based methods
with the facts that neighbor users share similar tasks and
users tend to assign similar ratings to similar items, respec-
tively [3], [31], [35]. The success of memory-based methods
relies on accurately computing the paired similarity
between users and items from previously observed ratings.
However, for those unobserved ratings, the information is
discarded. The response patterns are usually ignored in
these methods. Some other methods, e.g., nearest neighbor
regression [40], may be able to correctly identify relevant
neighbors for a user or an item in the presence of non-ran-
dom missing data using common similarity measures like
Pearson correlation. If data are not missing at random, these
models will yield the predicted results bias [25]. Clearly, as
referred to the data in Table 1, user-based approaches [3],
[11] and item-based approaches [9], [20], [35] are more likely
to predict rating values in the range of 4 to 5.

Model-based approaches, instead ofmanipulating the rat-
ings directly, train a predefined compact model based on
partially-observed user-item rating data to recover thewhole
matrix. Various models lie in this category, including the
aspect models [12], [13], [37], the latent factor model [4], [15],
the Bayesian hierarchical model [47], restricted Boltzmann
machines [34], SVD++ [16], [17] multi-domain collaborative
filtering [46], pair-wise tensor factorization [29], and matrix
factorization with social regularization [24], etc. Among
model-based approaches, low-rank matrix approximation
methods have demonstrated their efficiency and good per-
formance for real-world recommender systems in dealing
with large-scale data [14], [16], [17], [18], [30], [32], [33].

Currently, there are two main streams of work trying to
include the response patterns in the CF methods. One line
of work is to explore the response patterns into the one-class
collaborative filtering task [19], [27], [28], [39]. SVD++ with
implicit feedback [16], [17] follows similar framework, but
embedded users’ rating and un-rating behaviors by a latent
unknown matrix. In these methods, when the ratings are
unobserved, a heuristic weight in the range of 0 to 1 is intro-
duced to calibrate the loss [27], [28], [39] while the ratings
are set to 0. The weight on the unseen ratings is also opti-
mized by calculating users’ similarity from the embedded
users’ profile information [19]. However, these methods do
not directly explore users’ missing response patterns
and integrate them with the ratings. The other line of
work models the response patterns through missing data
theory [23]. In [26], the multinomial mixture model is com-
bined with conditional probability tables with Bernoulli

distribution to model the non-random response. This work
is also extended to specify the probability that a rating is
missing in a logistic form which depends on both the value
of the underlying rating and the identity of the item [25].
These methods model users’ ratings matrix via the multino-
mial mixture model and discard the effectiveness and
interpretability of the matrix factorization approaches [17],
[32]. The PMF for users’ data generation model has also
incorporated the Bernoulli response patterns [22]. However,
the assumption on the missing response patterns can fur-
ther be simplified. The insufficiency of previous work moti-
vates our exploration of the missing response patterns and
matrix factorization model in this paper.

2.4 Online Learning

Online learning is a family of efficient and scalable machine
learning algorithms [7], [44], [45]. Different from traditional
batch-trained learning algorithms which require that all
training data are available prior to the learning task, online
learning promptly update the predictive model when a new
instance appears [36], [48]. It can avoid the cost of retraining
effort largely when a new instance appears. Hence, it is
more appropriate for recommender systems to capture
users’ preference as in real-world systems, ratings are
obtained sequentially.

Nowadays, online learning has been extended and
explored in collaborative filtering. The implementation of
these algorithms can be categorized as Perceptron-like algo-
rithms [10] and stochastic gradient descent approaches [1],
[8], [21], [43]. In [10], the work casts online collaborative
filtering as an online ranking algorithm. However, it
requires to know users’ all preferences and it is undesirable
for real-world scenario. The implementation of collabora-
tive filtering in stochastic gradient descent is efficient and
allows to scale for building on-the-fly recommender sys-
tems. In [8], online collaborative filtering is conducted on
the probabilistic latent semantic analysis (PLSA) model for
the personalized news recommendation. In [1], online col-
laborative filtering is performed on the low-rank approxi-
mation matrix factorization with and without feature
models. In [21], online collaborative filtering is also con-
ducted on low-rank approximation matrix factorization
models to attain good rating fitting and ranking orders. The
online collaborative filtering framework is also extended in
[43] to deem each user as each task and reformulate the
problem as a multi-task learning problem. The performance
is boosted by including users’ similarity information as
the relationship of tasks. The previously proposed work is
also possible and promising for parallelization. The success
of previous work motivates us to explore the implementa-
tion of stochastic gradient descent in RAPMF. However,
since our RAPMF requires the information of both observed
and unobserved ratings, to allow balance, we consider the
mini-batch method [41], which requires a small bunch of
data to update the models, but enjoys the additional advan-
tages of parallelization speedups.

3 MODEL AND ANALYSIS

In this section, we first review the basic model of probabilis-
tic matrix factorization. After that, we present the response
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aware PMF and show how it can incorporate PMF with the
response models. The updating rules and complexity analy-
sis are provided accordingly.

3.1 Probabilistic Matrix Factorization

PMF [32] is one of the most popular matrix factorization
models in collaborative filtering, which represents the data
matrix as the inner product of two low-rank latent feature
matrices, U , V , and learns them from the partially observed

data matrix XV, where U 2 RK�N , V 2 RK�M , and K �
minðN;MÞ. That is,

X � UTV:

More specifically, PMF assumes Gaussian noise on the
observed ratings as follows:

P ðXVjU; V; s2Þ ¼
Y
ði;jÞ2V

NðXijjUT
i Vj; s

2Þ; (7)

and two zero-mean spherical Gaussian priors on the latent
feature matrices

P
�
U js2

U

�
¼

YN
i¼1
NðUij0; s2

UIÞ; P ðV js2
V Þ ¼

YM
j¼1
NðVjj0; s2

V IÞ;

(8)

where Nðxju; s2Þ is the probability density function of the

Gaussian distribution with mean u and variance s2.
The latent feature matrices can then be attained by maxi-

mizing the following log-likelihood of the posterior distri-
bution with respect to the user and item features:

LPMF ¼ logP ðU; V jXV; s
2; s2

U; s
2
V Þ

/ log P ðXVjU; V; s2ÞP ðUjs2
UÞP ðV js2

V Þ
� �

¼ � 1

2s2

X
ði;jÞ2V

ðXij � UT
i VjÞ2 �

kUk2F
2s2

U

� kV k
2
F

2s2
V

;

(9)

where k � k2F denotes the Frobenious norm.
After training the PMF model via gradient descent or sto-

chastic gradient algorithms [32], the predicted rating that

user i would assign to item j can be computed as the

expected mean of the Gaussian distribution X̂ij ¼ UT
i Vj.

3.2 Response Aware PMF

We now start to exploit the response patterns explicitly and
present how to include them in the data generation model.
Due to the effectiveness and interpretability of PMF, we
consider to unify it with explicit response models, which
we refer to as response aware PMF.

In RAPMF, the data generationmodel follows the same as
PMF, which can be decomposed into two low-rank feature
matrices, see Fig. 2. For the response patterns, we require a
correct and tractable distribution. Hence, we employ
Bernoulli distribution as it is an intuitive distribution to
explain data missing phenomena [26]. More specifically, we
propose the rating dominant responsemodel in the following.

As we have D discretized ratings, for simplicity, we only
take D discretized responses, i.e., m ¼ ðm1; . . . ;mDÞ. For
observed ratings, mi indicates the probability of whether a
user will rate the item when the preference score is i. For
unobserved ratings, since the recovered values for unob-
served ratings are continuous, we adopt a step function to
cover the whole range of all ratings. This gives the following
rating dominant response patterns assumption P ðRijjXij;mÞ:

P ð�j�; �Þ ¼
mXij

; if ði; jÞ 2 V;

1� mk; if ði; jÞ 2 �V and k� 1 < Xij � k:

�

(10)

Here, we assume that the probability of a user rating on an
item follows a Bernoulli distribution, which is illustrated in

Fig. 2. Graphical model representation of rating dominant response aware PMF. The shaded and unshaded variables indicate observed and latent
variables, respectively. An arrow indicates a conditional dependency between variables and stacked panes indicate a repeated sampling. Note that
in (a), both ratings and responses are observed while in (b), only responses are observed.

Fig. 3. Probability of observed ratings with Bernoulli distributions, unob-
served ratings in a step function, and the difference of cumulative distri-
bution function on the standard normal distribution.
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Fig. 3a. Different from [25], [26] we adopt a step function as
shown in Fig. 3b to approximate the probability of un-rating
for the sake of calculation simplicity. This assumption
makes sense as it encodes the habit of users who usually do
not like to rate lowly interested items. For example, suppose
k is the underlying score of the user i rating the item j. If
the user dislikes the item, the value of k is small, and the
corresponding probability mk is also small due to the rating
habit of users. This yields a large value of 1� mk. That is,
the probability of being an unobserved rating is high.

Moreover, for the expectations of Bernoulli distributions,
mk’s should be in the range of 0 to 1. With the analytical con-
sideration, the logistic function is usually adopted to con-
strain the range of mk’s as [25],

gðmkÞ ¼
1

1þ expð�mkÞ
; k ¼ 1; . . . ; D: (11)

Now, we can derive the posterior probability of

P ðU; V;mjR;XV; s
2; s2

U ; s
2
V Þ by

P ð�j�Þ / P ðU; V;m; R;XVjs2; s2
U ; s

2
V Þ: (12)

The above proportionality relationship holds since

P ðR;XVjs2; s2
U; s

2
V Þ is constant when R andXV are given.

To calculate P ðU; V;m; R;XVjs2; s2
U ; s

2
V Þ, we derive it by

separating the data into observed and unobserved ones
through the Bayesian inference as follows:

P
�
U; V;m; R;XVjs2; s2

U; s
2
V

�
¼

Z
X�V

P
�
U; V;m; RV; R�V; XV; X�Vjs2; s2

U ; s
2
V

�
dX�V

¼
Z
X�V

P ðRVjXV;mÞP ðR�VjX�V;mÞP ðXVjU; V; s2Þ

P ðX�VjU; V; s2ÞP
�
U js2

U

�
P
�
V js2

V

�
P ðmÞdX�V

/ P ðRVjXV;mÞP ðXVjU; V; s2ÞP
�
U js2

U

�
P
�
V js2

V

�
Z
X�V

P ðR�VjX�V;mÞP ðX�VjU; V; s2ÞdX�V:

(13)

The first equation is to separate the response patterns based
on the observed ratings and unobserved ratings, while mar-
ginalizing the unobserved ratings. The second equation is
to factorize the joint probability based on the graphical
model in Fig. 2. The last expression in Eq. (13) takes the
parts related to the observed ratings out of the marginaliza-
tion on the unobserved ratings and set the probability P ðmÞ
to a constant, which has proved its effectiveness in [22].

Based on the step function assumption on the response in
Eq. (10), we can marginalize the unobserved ratings in
Eq. (13) as follows:

S�V ¼
Z
X�V

P ðR�VjX�V;mÞP ðX�VjU; V; s2ÞdX�V

¼
Y
ði;jÞ2�V

X
k2D
ð1� gðmkÞÞcði; j; kÞ;

(14)

where cði; j; kÞ ¼ FðU
T
i
Vj�kþ1
s
Þ �FðU

T
i
Vj�k
s
Þ defines the differ-

ence of cumulative distribution function on the standard
normal distribution with the center in one unit difference

and FðzÞ is the cumulative distribution function for the
standard normal Gaussian distribution:

FðzÞ ¼ PrðfN ð0; 1Þ � zgÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z z

�1
e�s

2=2ds :

Substituting the data generation model on observed
ratings in Eq. (7) and Eq. (8), and the response pattern
assumption on the observed ratings in Eq. (10), and the mar-
ginalization of unobserved ratings in Eq. (14) into the poste-
rior probability in Eq. (13) and taking the log-likelihood, we
obtain the log-likelihood function on U , V , and m as follows:

LðU; V;mÞ ¼
X
ði;jÞ2V

log gðmXij
Þ � 1

2s2
ðUT

i Vj �XijÞ2

� kUk
2
F

2s2
U

� kV k
2
F

2s2
V

þ
X
ði;jÞ2�V

log S�Vij

� �
;

(15)

where S�Vij
is calculated by

P
k2Dð1� gðmkÞÞðF

ðU
T
i
Vj�kþ1
s
Þ �FðU

T
i
Vj�k
s
ÞÞ.

We can then obtain the gradients of the log-likelihood, L,
with respect to Ui and Vj in Eq. (16) and Eq. (17), respec-
tively. The gradient of Lwith respect to mk is calculated by

@L
@Ui
¼ �

X
j;ði;jÞ2V

1

s2
ðUT

i Vj �XijÞVj �
1

s2
U

Ui þ
X

j;ði;jÞ2�V

P
k2Dð1� gðmkÞÞ exp � ðU

T
i Vj�kþ1Þ2

2s2

� �
� exp � ðU

T
i Vj�kÞ2

2s2

� �	 

Vj

s
ffiffiffiffiffiffi
2p
p

S�Vij

;

(16)

@L
@Vj
¼ �

X
i;ði;jÞ2V

1

s2
ðUT

i Vj �XijÞUi �
1

s2
V

Vj þ
X

i;ði;jÞ2�V

P
k2Dð1� gðmkÞÞ exp � ðU

T
i
Vj�kþ1Þ2

2s2

� �
� exp � ðU

T
i
Vj�kÞ2

2s2

� �	 

Ui

s
ffiffiffiffiffiffi
2p
p

S�Vij

:

(17)

@L
@mk

¼ g0ðmkÞ
gðmkÞ

X
ði;jÞ2V

1ðXij ¼ kÞ

þ
X
ði;jÞ2�V

g0ðmkÞ F
UT
i
Vj�k
s

	 

�F

UT
i
Vj�kþ1
s

	 
	 


S�Vij

;

(18)

where 1ðXij ¼ kÞ is equal to 1 if Xij ¼ k and 0 for other
cases.

To learn the above parameters, U , V , and m, we
can update U , V , and m alternatively using the gradient
ascent algorithm with a learning rate h by maximizing the
log-likelihood as follows:

Ui  Ui þ h
@L
@Ui

; Vj  Vj þ h
@L
@Vj

: (19)

Then using the updated U and V , we update mk by

mk  mk þ h
@L
@mk

: (20)
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Similar to PMF [32], we linearly map the rating values in

½1; D	 to ½0; 1	 and pass UT
i Vj through the sigmoid function

as defined in Eq. (11). To avoid cluttered notations, we drop
all the logistic function in our derivation process. After
obtaining the trained model, we convert the expected value,

gðUT
i VjÞ, back to the scale of 1 toD and set it as the predicted

score of user i’s rating on item j. Hence, we summarize
the algorithm for rating dominant response aware PMF in
Algorithm 1.

Algorithm 1. Rating Dominant Response Aware PMF
(RAPMF-r)

1: Parameters:N;M;D;K; s; sU; sV

2: Input: Partially observed ratings,XV and response matrix, R

3: Initialize U 2 RK�N , V 2 RK�M , m 2 RD randomly
4: while stop criteria not met do
5: Update Ui and Vj: Ui  Ui þ h @L

@Ui
, Vj  Vj þ h @L

@Vj
.

6: Update m: mk  mk þ h @L
@mk

.
7: end while

3.3 Complexity Analysis

In Algorithm 1, to update the latent feature of a user, we
need to sum all items together. Hence, its computation cost
is OðMÞ. To update all the users, we have to run through all
users at least once, which yields the cost of OðNMÞ. This is
quite time consuming compared with that of PMF, which is
linear in the number of observations, OðjVjÞ. However, we
argue that the time spent on training is worthy since it can
boost the model performance. More importantly, the predic-
tion complexity of RAPMF is the same as that of PMF,OðKÞ,
which can be taken as a constant time given a moderate
sized K. Since the training procedure can be performed off-
line, RAPMF can accommodate the hard response time con-
straint in real-world recommender systems due to the
succinct prediction cost.

4 MINI-BATCH LEARNING

To speed up the computation of RAPMF, we adopt a mini-
batch learning implementation. The main steps include

� First, we divide the response matrix into blocks each
with B users and their corresponding B items. We
denote the corresponding mini-batch index set,
A ¼ BlockNðBÞ � BlockMðBÞ, where BlockNðBÞ indi-
cates the set of the selected B indexes from all users
and likewise for BlockMðBÞ.

� Second, we update the corresponding Ui and Vj in
the mini-batch set A. The corresponding updating

rule for a user is just to replace the index of V and �V
in Eq. (16) by AV and A�V, respectively, where AV

and A�V are the observed ratings and unobserved rat-
ings in the set A, respectively. The updating rule of
an item is changed similarly.

� When the user latent matrix and the item latent
matrix are updated, we update the rating probability

m by (18), where V and �V are replaced by AV and
A�V, respectively.

Similar to the analysis in [32], the updating of our pro-
posed mini-batch learning takes time linear in OðB2Þ. When

B is small, the updating is very efficient. We argue that we
still can attain good performance due to the sparse nature of
the data. This is verified in Section 5.

However, in parallel execution, one serious issue is
that if two threads update the blocks with the same set of
users BlockNðBÞ or items BlockMðBÞ, they may yield
inconsistency of U and V as they update the same
indexes of latent variables U or V simultaneously. To
avoid updating inconsistency and maintaining the effi-
ciency, we borrow the idea of free-block from [49] and
propose a precise scheduling policy.

First, we define a free-block if the block does not share any
users or items with all other blocks being executed. Fig. 4
gives an example of the scheduling with two parallel
threads. Suppose S1 and S2 are two blocks executing in two
parallel threads simultaneously. The schedule is performed
as follows: when a thread finishes the updating in a block,
e.g., US1 and VS1 , it will assign a new free-block with the

smallest updating count among all free blocks. It is observed
that all the executing blocks and free-blocks do not share the
same users or items. Hence, when a thread finishes the exe-
cution, it can fetch a mini-batch from the free-blocks to
update the corresponding user latent matrices and item
latent matrices. The updating can be continuously executed
without waiting. Therefore, we can conduct further speedup
on the execution. To meet this scheduling policy, the max
number of threads is bounded as minfbN=Bc; bM=Bcg � 1.
Algorithm 2 sketches the procedure of our proposed mini-
batch implementation in parallel version.

5 EXPERIMENTS AND RESULTS

We conduct empirical evaluation on both a synthetic dataset
and a real-world dataset, the Yahoo!Music’s LaunchCast
dataset, in a server with an eight-core 2.5 GHz Intel Xeon
processor and 64 GB main memory running Ubuntu 13.10
operating system. We compare the performance of the
following models:

� Probability matrix factorization [32] with the objec-
tive function shown in Eq. (9);

Fig. 4. Illustration about scheduling policy of our parallel mini-batch
implementation. If S1 and S2 are assigned to different threads by the
scheduler, only one free-block is left in the task queue managed by the
scheduler.
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� the multinomial mixture model combined with con-
ditional probability tables with Bernoulli distribution
parameterized by the ratings, namely CPT-v [26];

� the multinomial mixture model combined with
conditional probability tables with Bernoulli distri-
bution parameterized in a logistic form, namely
Logit-vd [25];

� SVD++ with implicit feedback [16]; and
� our RAPMF1 shown in Algorithm 1, namely

RAPMF–r, and its mini-batch implementation in
Algorithm 2, namely RAPMF–rmb, respectively.

Algorithm 2. Parallel Mini-Batch Learning for RAPMF-r
(RAPMF-rmb)

1: Parameters:N;M;D;K;B; s; sU ; sV

2: Input: Partially observed ratings, XV, and response matrix,
R

3: Initialize U 2 RK�N , V 2 RK�M , m 2 RD randomly
4: Grid the response matrix R into B�B blocks
5: Compute the number of threads P ¼ minfbN=Bc;
bM=Bcg � 1

6: while stop criteria not met do
7: for p ¼ f1; . . . ; Pg parallelly do
8: Obtain a B�B block from the scheduler
9: Update Ui and Vj within the block: Ui  Ui þ h @L

@Ui
;

Vj  Vj þ h @L
@Vj

.

10: Update m: mk  mk þ h @L
@mk

.
11: end for
12: end while

We try to answer the following questions:

1) How to design experiment protocols to evaluate the
performance of the models with and without
response models fairly?

2) What is the performance of these models on the
datasets?

3) How do the parameters affect the performance of
RAPMF-r?

4) What is the convergence property of RAPMF-r?
5) How efficient is the mini-batch learning implementa-

tion for RAPMF-r?

5.1 Evaluation Metrics

In a recommender system deployed in the real world, there
are exactly three types of relations regarding an item to
a user: un-inspected, inspected-unrated, and inspected-rated.
Traditional collaborative filtering approaches only focus on
inspected-rated data since they do not consider the response
patterns. These methods usually separate the inspected-
rated data into a training set and a test set and evaluate the
model on the test set. Since both the training set and the test
set belong to the inspected-rated type, their rating distribu-
tions are the same. However, in real-world recommender
systems, many items may be inspected but unrated. Users’
response patterns also reveal users’ preferences implicitly.
Hence, the traditional evaluation scheme may undermine
the significance of the missing response patterns. To explore

the difference, we will investigate different experimental
protocols as follows:

� Traditional protocol. Both the training set and the test
set are randomly selected from inspected-rated items
together with the users who have rated them and the
corresponding rating scores. This is exactly the tradi-
tional experimental protocol [32], which ignores the
response patterns.

� Realistic protocol. The training set is randomly
selected from inspected-rated items, but the test set
is randomly selected from un-inspected items. This
is an experimental protocol adopted in [25], [26].
This protocol captures the ultimate goal of a recom-
mender system, i.e., recommending un-inspected
items to potential users who are interested.

Moreover, we will design a new experimental protocol to
test the model performance when the distributions of train-
ing set and test set are divergent, or even complementary:

� Adversarial protocol. The training set is randomly
selected from inspected-rated items, but the test set
is randomly selected from inspected-unrated items.
This protocol clearly shows the divergence of the
training set and the test set since in real-world sys-
tems, e.g., the Yahoo!Music’s LaunchCast service,
most of the inspected-rated items receive very high
scores, while those inspected-unrated items have
low scores or average scores. This protocol can eval-
uate the performance of models in this scenario
whether they can capture users’ response behaviors.

In the experiment, we use root mean square error
(RMSE), a popular metric in collaborative filtering [26], [32],

[42], to evaluate the performance of different models. That

is, RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jT j

P
ði;j;xÞ2T ðx̂ij � xÞ2

q
, where T is the set of

ði; j; xÞ triplets reserved for testing and x̂ij is the model pre-

diction for user i’s rating on item j.

5.2 Datasets

We conduct empirical evaluation on both a synthetic dataset
and two real-world datasets. The synthetic dataset provides
both benchmark information on user-item ratings and user-
item response patterns. Hence, we can use it to evaluate all
the compared models under all three evaluation protocols.
The real-world Yahoo! dataset is collected from Yahoo!
Music’s LaunchCast Radio service and is particularly pre-
pared for evaluating the realistic protocol in real-world rec-
ommender systems [26]. For other benchmark real-world
datasets, we select MovieLens to evaluate the performance
on traditional protocol.

Synthetic dataset. The data generation process consists of
generating a full rating matrix and the corresponding
response matrix. To generate the full rating matrix, we first
generate the latent user features and item features from
zero-mean spherical Gaussian by Ui 
 Nð0K; s

2
UIKÞ; Vj 
 N

ð0K; s
2
V IKÞ, where i ¼ 1; . . . ; N , j ¼ 1; . . . ;M, 0K is a K

-dimensional vector with each element being 0 and IK is the
K �K identity matrix, and K ¼ 5. The full rating matrix X

1. Our codes can be downloaded in https://www.dropbox.com/s/
4h2tql4d1hk1f8s/rapmf.tar.gz
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is then obtained by re-scaling the sigmoid value of UTV to 1

toD byXij ¼ dgðUT
i VjÞ �De.

To generate the response matrix R, we first set the
inspection probability of a user inspecting an item, Pinspect.
Then, the partitioning of inspected ratings and un-inspected
ratings is done by the Bernoulli trials with success probabil-
ity Pinspect. For all the inspected ratings, we model their
response probability by a Bernoulli distribution with the
success probability Pk, where k 2 f1; 2; . . . ; Dg. Table 2 sum-
marizes the parameters used for generating the synthetic
dataset. The parameters are selected according to Fig. 1,
where high scores represent high response probability.
They are selected to faithfully simulate real users’ ratings
and response behaviors.

To minimize the effect of randomness, we generate the
dataset independently 10 times and test them to average the
results. On average, we provide about 3.3 percent of the full
matrix as the training set, around 3.4 percent as the test set
for traditional protocol, around 17.3 percent as the test set
for adversarial protocol, and all the remaining 80 percent as
the test set for realistic protocol.

Yahoo! dataset. The Yahoo! dataset2 consists of Yahoo!
Music ratings for User Selected and Randomly Selected songs,
version 1.0. More specifically, it contains 311,704 ratings col-
lected from 15,400 users on 1,000 songs during the normal
interaction between the users and the Yahoo!Music system,
with at least 10 ratings for each user. During a survey con-
ducted by Yahoo!Research, exactly 10 songs randomly
selected from these 1,000 songs are presented to the users to
listen and rate. In total there are 5,400 users participating
this survey and the resulting 54,000 ratings are the survey
ratings. It is noted that in [26], by carefully designing, the
1,000 surveyed songs are assigned to at least one user.

To get a complete evaluation, we select the ratings ini-
tially rated by the 5,400 surveyed users and the songs are in
the set of the randomly selected 1,000 surveyed songs. We
then construct a user intention (UI) set, which consists of
129,179 ratings and yields the density about 2.39 percent.
The distributions of the rating scores in the UI set and the
survey set are dramatically different, as seen in Fig. 1. In
evaluating different protocols, we adopt different settings.
To evaluate the models under the traditional protocol, we
have to select ratings following the same distribution.
Hence, we select ratings only from the UI set and separate
them as training set and test set in the ratio of 4 to 1. That is,
80 percent of data from the UI set are used in training the
models while the rest 20 percent are for the test. For the real-
istic protocol, we use all the data from the UI set for training

and use the ratings from the survey set as test set, since
these two datasets are dramatically different and contain
the benchmark of users’ response patterns.

MovieLens dataset. The selected MovieLens 100 K dataset3

consists of 100,000 ratings from 1,000 users on 1,700 movies.
Here, we focus on evaluating the performance on the tradi-
tional protocol. We use the default splitting provided in the
original dataset for training and test.

5.3 Settings

We tune the parameters to attain good performance via
cross-validation on a validation set. The parameters include

� K: For simplicity, we set K ¼ 5 for the synthetic
dataset and tune it for the other two real-world
datasets.

� �U ¼ s2

s2
U

and �V ¼ s2

s2
V

: they are first tuned by the grid

search in the range of f10�3; 10�2; 10�1; 100; 10; 102g
and fine-tune to achieve the best performance of
PMF.

� s: We first fix the optimal �U and �V obtained from

PMF and then tune it in f10�3; 10�2; 10�1; 1:0g and
fine-tune it further for RAPMF-r; see sensitivity anal-
ysis results in Fig. 5.

For CPT-v and Logit-vd, the hyper-parameters follow the
tuning in [25].

5.4 Model Performance

We report the average performance for all datasets in
Table 3. For the synthetic dataset, we run 10 independent
trials and test them on three protocols. For the Yahoo! data-
set, we run 10 independent trials on the traditional protocol
and 10 different initialization on the realistic protocol. We
do not test it under the adversarial protocol because we do
not have the inspected-unrated information. For the Movie-
Lens dataset, we only test the traditional protocol on the
default five-fold separating data. From Table 3, we have the
following observations:

� For the synthetic dataset, our proposed RAPMF-r
attains significantly better performance than other
benchmark methods under most protocols. More sig-
nificantly, when CPT-v and Logit-vd cannot beat
PMF under the adversarial protocol, our RAPMF-r
can obtain at least 37.0 percent improvement over
PMF. SVD++ can achieve slightly better performance
under the adversarial protocol. By observing the
detailed results, we find that the results of SVD++
fluctuate and obtain larger standard deviation, 0.042,
than that of RAPMF-r, 0.01. Our mini-batch imple-
mentation, RAPMF-rmb, can achieve similar perfor-
mance as the RAPMF-r.

� For the Yahoo! dataset, our proposed RAMPF-r also
beats other methods, including SVD++. The mini-
batch implementation can attain nearly the same
RMSE as the original implementation.

� For the MovieLens dataset, our RAPMF-r attains
at least 14.1 percent improvement over PMF, CPT-v,

TABLE 2
Parameters for Generating the

Synthetic Dataset

N M D K Pinspect

1,000 1,000 5 5 0.2

P1 P2 P3 P4 P5

0.073 0.068 0.163 0.308 0.931

2. http://webscope.sandbox.yahoo.com 3. http://grouplens.org/datasets/movielens/
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and Logit-vd. RAPMF-r only achieves slightly
worse performance than SVD++, a state-of-the-art
collaborative filtering model for recommender sys-
tem under the traditional protocol. However, we
also observe that SVD++ is very sensitive to the
implicit regularization parameter. The mini-batch
implementation of RAPMF-r, i.e., RAPMF-rmb,
achieves 0.969 RMSE, nearly the same as that of
RAPMF-r at 0.962.

� The above results imply that when we want to
apply our proposed RAPMF-r in real-world sys-
tems, we only need to tune the model which
achieves the best cross-validation performance on
the training set.

Moreover, we also observe that the learned response
probabilities, i.e., the learned Bernoulli parameters for the
five grades, are ½0:0232; 0:0052; 0:0089; 0:0149; 0:9928	, for a
typical run of RAPMF-r on the synthetic dataset. Obviously,
the values precisely follow the trend of the parameters used
in Table 2. This again explains the significant performance
boost for the synthetic dataset under the realistic and the
adversarial protocols.

5.5 Sensitivity Analysis

In the following, we investigate how the model parameters
affect the performance of RAPMF. All the sensitivity analy-
sis is done under the realistic setting in one-trial.

Impact of �U , �V . As observed in [22], regularization on m

plays not much effect. Hence, in this work, we only place
the regularization parameters � on U , V . Since in the data-
set, users and items are symmetric, we use the same regular-
ization parameter �UV for U and V .

Figs. 5a, 5b, and 5c show the impact of �UV on the
performance of RAPMF-r for the synthetic, Yahoo!, and
MovieLens dataset, respectively. It is observed that both
the curves of training RMSE and test RMSE change simi-
larly. When �UV is small, RAPMF-r cannot generalize
well. When it becomes larger, the performance becomes
smooth. For the synthetic dataset, when �UV ¼ 0:1,
RAPMF-r attains the best performance on both training
set and test set. For the Yahoo! dataset, when �UV ¼ 0:04,
RAPMF-r attains the best performance on both training
set and test set. For the MovieLens dataset, RAPMF-r
attains the best performance on the test set when
�UV ¼ 0:3.

Fig. 5. Sensitivity analysis of hyper-parameters of RAPMF-r on the synthetic, Yahoo!, and MovieLens datasets for one-trial test.

TABLE 3
Results of the Compared Models on the Synthetic, Y, and MovieLens Datasets

Dataset Synthetic Yahoo! MovieLens

Method Traditional Imp. Realistic Imp. Adversarial Imp. Traditional Imp. Realistic Imp. Traditional Imp.

PMF 1.109 � 0.005 58.7 1.507 � 0.01 51.5 1.534 � 0.002 37.0 1.580 � 0.004 18.9 1.592 � 0.003 28.3 1.182 � 0.041 22.9
CPT-v 1.108 � 0.015 58.5 1.482 � 0.020 48.9 1.642 � 0.018 46.6 1.801 � 0.005 35.5 1.793 � 0.006 44.5 1.168 � 0.073 21.4
Logit-vd 1.020 � 0.009 45.9 1.440 � 0.013 44.7 1.629 � 0.013 45.4 1.813 � 0.004 36.4 1.790 � 0.003 44.2 1.098 � 0.056 14.1
SVD++ 0.747 � 0.012 6.9 0.999 � 0.017 0.4 1.058 � 0.042 -5.5 1.330 � 0.008 0.1 1.295 � 0.011 4.4 0.938 � 0.090 -2.5
RAPMF-r 0.699 � 0.004 – 0.995 � 0.007 – 1.120 � 0.010 – 1.329 � 0.003 – 1.241 � 0.003 – 0.962 � 0.095 –
RAPMF-rmb 0.700 � 0.016 0.1 1.043 � 0.012 4.8 1.182 � 0.007 5.5 1.331 � 0.004 0.2 1.243 � 0.003 0.2 0.969 � 0.088 0.7

The improvement (Imp.) indicates the improvement of RAPMF-r over other models in percentage (%).
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Impact of s. As shown in Fig. 2, the parameter s is the
standard deviation of the noise. It defines the spread of the

data. From Eq. (15), when we multiply s2 for the log-likeli-
hood, it can also control the weight of marginalization on
the unobserved data.

Figs. 5d, 5e, and 5f plot the performance of RAPMF-r ver-
sus the logarithmic scale of s on the synthetic, Yahoo!, and
MovieLens dataset, respectively. Overall, as s increases, the
training RMSE and the test RMSE increase accordingly. For
the synthetic dataset, Fig. 5d shows that the best perfor-
mance attains when s ¼ 0:04, while it is 0.008 for the Yahoo!
dataset, and 0.02 for the MovieLens dataset. From Fig. 5e,
one may conjecture that the RMSE may be smaller when s

is smaller than 0.008. However, our experiment finds that
when s is smaller than 0.008, the algorithm diverges and
attain poor performance.

5.6 Convergence Analysis of Batched Training

In the following, we analyze how RAPMF-r converge in one
trial on all the evaluation datasets. In the experiments, we
have set the maximum number of iteration as 250, a suitable

value for the convergence. From the figures shown in Fig. 6,
we can see that RAPMF-r on the synthetic and Yahoo! data-
sets increase the objective (log-likelihood) values rapidly
and the values become stable soon, while for the MovieLens
dataset, the objective values follow similar trend and
becomes decrease when the number of iterations increases.
By examining the performance on the three datasets in
Figs. 6a, 6b, and 6c, we can see that RMSEs on both the train-
ing set and the test set decrease gradually when the number
of iterations increases and become stable when the number
of iterations is greater than a certain value.

5.7 Efficiency of Mini-Batched Learning

In the following, we demonstrate the correctness and
speedup of our mini-batch learning approach. In the experi-
ment, we employ the maximum number of threads com-
puted from minfbN=Bc; bM=Bcg � 1 to run the mini-batch
program. B is the number of users and items in a mini-block
of training data. To avoid the influence from the uncertain
scheduling time in operating system, we average 10 runs
of our results with the same configuration. Fig. 7 shows

Fig. 6. Convergence analysis of RAPMF-r on the the three evaluation datasets for one-trial test.

Fig. 7. Convergence curves of RMSE and objective function values of RAPMF-r and the mini-batch implementation on three evaluation datasets.
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the convergence of RMSE and objective function values
on three evaluation datasets. We have the following
observations:

� As the number of threads increases, RAPMF con-
verges faster. That is, RMSEs attain its local minimal
and the objective function values achieve its local
maximum much faster than the batch-trained
RAPMF-r. This reveals that our mini-batch imple-
mentation can take the advantage of multi-thread
technique to speed up the training process which is
usually a time-consuming task in many similar
approaches [26], [32].

� RMSEs of the mini-batch implementation of
RAPMF-r on the test set is slightly worse than that of
batched RAPMF. The error brought by mini-batch
learning may be caused by the in-consistent of latent
variables U and V in the mini-batch learning. This
situation is inevitable for all mini-batch learning [41].

6 CONCLUSION AND FUTURE WORK

In this paper, we establish a response aware probabilistic
matrix factorization framework to unify users’ response
behaviors and a popular model-based collaborative filtering
technique, probabilistic matrix factorization. More specifi-
cally, we model the probability of whether a user will rate
an item by engaging the Bernoulli distribution, where the
parameters are determined by the rating scores, and assume
the corresponding probability of unobserved ratings as a
step function. More significantly, we speed up the algorithm
by mini-batch implementation and conduct a crafting
scheduling policy on automatically selecting free-blocks
to further accelerate the original batch-trained RAPMF
algorithm. Empirically, we verify the performance of
RAPMF under carefully designed experimental protocols
and show that RAPMF performs best when it tries to fulfill
the ultimate goal of real-world recommender systems, i.e.,
recommending items to those users who do not see the
items before, but may be interested in them. The empirical
evaluation demonstrates the potential of our RAPMF model
in real-world recommender system deployment.

There are several interesting directions worthy of future
consideration. The first direction is to incorporate other side
information to boost the model performance. Another
promising avenue is to investigate how to model the
response when the response patterns are hidden. For exam-
ple, in location-based social network applications such as
Foursquare and Google Latitude, the check-in frequency
can be obtained explicitly, but the response regarding
whether a user will check-in a place or not is unknown. The
third direction is to design a smart way in efficiently tuning
the hyper-parameters or to design a learning scheme in
obtaining the model parameters automatically.
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