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1. Introduction

Most traditional learning algorithms with feedforward neural networks (FNN) are
to use the sum-of-square error criterion to derive the updated formulae. However,
these learning algorithms do not considered the network structure and the involved
problem properties, thus their capabilities are limited.13 In order to obtain better
generalization capability,1,3,4 many constrained learning algorithms that incorpo-
rate additional functional constraints into neural networks have been proposed in
literature.5–10,14–16

In literature,12 two learning algorithms were proposed that are referred to as
Hybrid-I method and Hybrid-II method, respectively. The Hybrid-I algorithm incor-
porates the first-order derivatives of the neural activation at hidden layers into the
sum-of-square error cost function to reduce the input-to-output mapping sensi-
tivity. On the other hand, the Hybrid-II algorithm incorporates the second-order
derivatives of the neural activation at hidden layers and output layer into the sum-
of-square error cost function to penalize the high frequency components in training
data. Nevertheless, all the above learning algorithms can almost improve the gen-
eralization performance to some degree, but do not show the best generalization
performance.

In this paper, a new modified learning algorithm based on Hybrid-I and
Hybrid-II algorithms is proposed. The additional cost terms of the new algorithm
are selected based on the first-order derivatives of the neural activation at the out-
put layer and the second-order derivatives of the neural activation at the hidden
layers. This new algorithm inherits the features from the original Hybrid-I and
Hybrid-II algorithms. Moreover, through experiments, it can be found that the
generalization performance for this modified algorithm is better than the one for
the original Hybrid ones.

2. The New Modified Learning Algorithm

Considering an FNN with one input layer, hidden layers, and one output layer, the
units in each layer apart from the input layer receive the inputs from all units in
the previous layer. For simplicity, the same activation function for all neurons at
all layers, i.e. tangent sigmoid transfer function is adopted:

f(x) = (1 − exp(−2x))/(1 + exp(−2x)). (1)

It can be deduced that this activation function has the following property:

f ′′(x) = −2f(x)f ′(x). (2)

Before presenting input-to-output sensitivity, the following mathematical nota-
tion is first created. Assume that xk and yi denote the kth element of the input
vector and the ith element of the output vector, respectively; wjljl−1 denotes the
synaptic weight from the jlth hidden neuron at the lth layer to the jl−1th hidden
neuron at (l − 1)th layer; wijL−1 denotes the synaptic weight from the ith neuron
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at output layer to the jL−1th hidden neuron at (L − 1)th layer; wj1k denotes the
synaptic weight from the j1th hidden neuron at the first layer to the kth element
of the input vector; f ′

l (·) is the derivative of the sigmoid function fl(·) at lth layer;
hjl

= fl(ĥjl
) is the activation function of the jlth element at the lth layer with

ĥjl
=

∑
jl−1

wjljl−1hjl−1 . The ti and yi denote the target and actual output values
of the ith neuron at output layer, respectively; Nl denotes the number of neurons
at the lth layer.

To obtain better generalization performance than Hybrid-I and Hybrid-II algo-
rithms, a new cost function for an L-layered FNN containing the additional output
layer penalty term and the weights decay term at the hidden layers is defined as
follow:

E =
1
N

N∑
S=1

ES (3)

where

ES =
1

2NL

NL∑
jL=1

(tSjL
− yS

jL
)2 +

L−1∑
l=1

γlE
lS
h +

γL

NL

NL∑
jL=1

f ′(ĥLS
jL

) (4)

and

ElS
h =

1
2Nl

Nl∑
jl=1

f ′(ĥlS
jl

)




Nl−1∑
jl−1=1

(wS
jljl−1

)2


. (5)

The cost function ES denotes the corresponding cost function for the Sth stored
pattern. The second term on the right-hand side of Eq. (4) is a kind of weights decay
term; the third term on the right-hand side of Eq. (4) denotes the additional output
layer penalty term at the output layer; the gains γl and γL represent the relative
significance among the cost terms; N denotes the number of stored patterns.

The network is trained by a steepest-descent error minimization algorithm, the
synaptic weight update for Sth stored pattern becomes:

∆wS
jljl−1

= −ηl
∂ES

∂wS
jljl−1

= ηlδ
S
jl

hS
jl−1

− ηl
γl

Nl
wS

jljl−1
f ′(ĥS

jl
) l = 1, 2, . . . , L − 1 (6)

∆wS
jLjL−1

= −ηL
∂ES

∂wS
jLjL−1

= ηLδS
jL

hS
jL−1

(7)

where δS
jl

denotes the negative derivative of the cost ES to ĥS
jl

at lth layer.
The negative derivative of the cost ES to ĥS

jl
at the hidden layer, i.e. δS

jl
, can

be computed by back-propagation style as follows:

δS
jl

= −∂ES

∂ĥS
jl

=
Nl+1∑

jl+1=1

δS
jl+1

wS
jl+1jl

f ′(ĥS
jl

)

− γl

2Nl
f ′′(ĥS

jl
)

Nl−1∑
jl−1=1

(wS
jljl−1

)2 l = 1, . . . , L − 1. (8)
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The negative derivative of the cost ES to the ĥS
jL

at the hidden layer, i.e. δS
jL

,
can be computed by back-propagation style as follows:

δS
jL

= − ∂ES

∂ĥS
jL

=
1

NL
f ′(ĥS

jL
)(tSjL

− yS
jL

) − γL

NL
f ′′(ĥS

jL
). (9)

3. Theoretical Analysis for this Modified Learning Algorithm

According to literature,11 for an L-layered feedforward neural network, the sensi-
tivity for yi to xk can be defined as:

∂yi

∂xk
=

∑
j1,...,jL−1

wijL−1wjL−1jL−2 · · · wj1kf ′
L(ŷi)f ′

L−1(ĥjL−1) · · · f ′
1(ĥj1). (10)

From this equation, it can be deduced that while ĥjl
becomes bigger, the deriva-

tive f ′(ĥjl
) may become smaller sharply. As a result, the low input-to-output sensi-

tivity will be achieved. For simplicity, consider a single-layered neural network with
tangent sigmoid neuron. If the input vector x is modified by ∆x, the change ∆yi,
at the ith output neuron may be approximated as:

∆yi = yi(x + ∆x) − yi(x) ≈

∑
k

∆xk
∂yi

∂xk
=

∑
k

wikf ′(ŷi)∆xk. (11)

Consequently, ∆yi/yi can be computed as follow:

∆yi

yi
=

∑
k wikf ′(ŷi)∆xk

f(ŷi)
=

f ′(ŷi)
f(ŷi)

∑
k

wikxk
∆xk

xk
=

f ′(ŷi)ŷi

f(ŷi)
∆xk

xk
(12)

g(ŷi) is defined as:

g(ŷi) =
f ′(ŷi)ŷi

f(ŷi)
=

4ŷi

exp(2ŷi) − exp(−2ŷi)
. (13)

The g(ŷi) has generally a maximum at ŷi = 0 and two minima at ŷi = ±∞.
When the value of ŷi becomes larger, the value of g(ŷi) becomes exponentially
decreasing. Consequently, a larger value of ŷi brings on better generalization capa-
bility. Apparently, it can be seen that the g(ŷi) and f ′(ŷi) have similar functional
forms according to literature,12 thus, the second additional cost term in Eq. (4)
can result in better generalization performance. As far as an L-layered feedforward
neural network is concerned, the same result can be obtained. According to the
above results, the network obtains lower input-to-output sensitivity in the first hid-
den layer, and it means that the changes of the input vector will lead to smaller
changes of the values of output vector in the first hidden layer. In a similar way,
the smaller changes in the first hidden layer will result in much smaller changes
of the values of the output vector in the second hidden layer, because the output
vector in the first hidden layer is the input vector for the second hidden layer. The
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remaining layers may be deduced by analogy. Hence, it can be easily seen that the
values of the output vector in the output layer have much smaller changes although
the input vector changes a lot.

From a Bayesian perspective, all the additional cost functions designed for the
above constrained learning algorithms can be interpreted as a negative logarithm of
the prior probability distribution of weights.2,16 In order to obtain good generaliza-
tion capability, this new hybrid algorithm tries to reduce the network complexity by
introducing weight decay term. For the weight decay form, Ec(w) = 1

2

∑
i w2

i , it can
be derived by taking negative logarithm on the Gaussian distribution of weights.
This weight decay method penalizes large weights and rewards small weights, but it
decays weights at the same rates regardless of its sizes.12 For simplicity, the weight
decay terms in the new hybrid learning algorithm, i.e. the first additional cost term
in Eq. (4), can be simplified as: Ec(w) = f ′

2

∑
i w2

i . It favors large weights only
when the corresponding hidden activation is saturated. The derivative of hidden
activation, f ′, can be regarded as a scaling parameter to control whether weights
are scaled up or down during learning process.

According to the above results, it can be concluded that in the course of train-
ing, the proposed learning algorithm can obtain better generalization performance
by penalizing both the input-to-output mapping sensitivity and high frequency
components in training data.

4. Experimental Results and Discussion

To demonstrate the improved generalization capability of the proposed modified
learning algorithm, in the following, experiments with two real-world benchmarks
of sunspot time series and chaotic laser pulsation data will be done. The latter is
obtained from Santa Fe competition data set A.

4.1. Single-step and iterative-step prediction for sunspot

time series

To compare the generalization ability of the proposed learning algorithm with one
of the two original Hybrid ones, a (12-8-1)-sized network to solve the sunspot time
series single-step and iterative-step prediction is used. Assume that sunspot data
from the year 1700 to 1920 are used as training set. The data after the year 1920
are used as testing set. In addition, as for single-step prediction, this testing data is
divided into four intervals, that is, from the year 1921 to 1955, 1956 to 1979, 1980
to 2003, and finally 1921 to 2003. As a result, the single-step prediction results are
shown in Figs. 1–4 for BP algorithm, Hybrid-I algorithm, Hybrid-II algorithm and
the proposed new learning algorithm, respectively. In the meantime, the iterative
prediction results are shown in Figs. 5–8 for the above four learning algorithms.

In order to statistically compare the prediction accuracies for sunspot data with
the above four algorithms, an experiment is done fifty times for each algorithm and
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(a) The predicted values (b) The predicted errors

Fig. 1. Results with single-step prediction for sunspot time series by using BP algorithm.
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Fig. 2. Results with single-step prediction for sunspot time series by using Hybrid-I algorithm.
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Fig. 3. Results with single-step prediction for sunspot time series by using Hybrid-II algorithm.
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Fig. 4. Results with single-step prediction for sunspot time series by using the new learning
algorithm.
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Fig. 5. Results with iterative-step prediction for sunspot time series by using BP algorithm.
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Fig. 6. Results with iterative-step prediction for sunspot time series by using Hybrid-I algorithm.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

06
.2

0:
12

9-
14

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

02
/1

0/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 9, 2006 14:55 WSPC/115-IJPRAI SPI-J068 00456

136 F. Han et al.

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

20

40

60

80

100

120

140

160

180

200

time

ta
rg

et
,p

re
di

ct
io

n

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

er
ro

r
(a) The predicted values (b) The predicted errors

Fig. 7. Results with iterative-step prediction for sunspot time series by using Hybrid-II algorithm.
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Fig. 8. Results with iterative-step prediction for sunspot time series by using the new learning
algorithm.

Table 1. The average values of mean squared errors of single-step prediction
for the sunspot time series data for fifty times by four algorithms.

Training Testing Testing Testing Testing
LA 1700–1920 1921–1955 1956–1979 1980–2003 1921–2003

BP 0.00090 0.00053 0.0095 0.0090 0.0055
Hybrid-I 0.00210 0.00037 0.0056 0.0040 0.0045
Hybrid-II 0.00210 0.00046 0.0050 0.0044 0.0042
New LA 0.00074 0.00030 0.0145 0.0129 0.0031

then its average accuracy value calculated. The corresponding results are summa-
rized in Tables 1 and 2 for single-step prediction and iterative-step prediction. From
these results, it can be seen apparently that the proposed learning algorithm has
better generalization capability than the BP algorithm as well as the two original
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Table 2. The average values of mean squared errors of iterative-step pre-
diction for the sunspot time series data for fifty times by four algorithms.

LA Training (1700–1920) Testing (1921–2003)

BP 0.0391 0.1881
Hybrid-I 0.0390 0.1380
Hybrid-II 0.0401 0.1330
New LA 0.0385 0.1285

hybrid algorithms, because the mean squared errors of the new algorithm for the
testing data set is smaller than the ones for the other three learning ones.

Below, the effects of the four parameters, η1, η2, γ1 and γ2, with the new modified
hybrid learning algorithm for single-step prediction performance on sunspot time
series is discussed. Case I: η1 = 0.3, η2 = 0.15 and γ1 = 0.001 are kept unchanged, γ2

is selected as 0.001, 0.003, 0.005 and 0.007, respectively. From the simulation results,
it can be seen that the bigger the γ2, the worse is the generalization performance.
Case II: η1 = 0.3, η2 = 0.15 and γ2 = 0.001 are kept unchanged, γ1 is selected as
0.001, 0.003, 0.005 and 0.007, respectively. From the simulation results, it can be
seen that for bigger γ1, the generalization performance is the worse. Case III: η1 =
0.3 , γ1 = 0.001 and γ2 = 0.001 are kept unchanged, η2 is selected as 0.15, 0.17, 0.19
and 0.21, respectively. From the simulation results, it can be seen that the bigger
the η2, the worse is the generalization performance. Case IV: η2 = 0.15, γ1 = 0.001
and γ2 = 0.001 are kept unchanged, η1 is selected as 0.30, 0.32, 0.34 and 0.36,
respectively. From the simulation results, it can be seen that for bigger η1 is, the
generalization performance is the worse. All the above results are shown in Table 3.

4.2. Single-step prediction and iterative-step prediction for chaotic

laser pulsation data

In this subsection, the proposed learning algorithm is also applied to the single-step
prediction and iterative-step prediction of chaotic laser pulsation data from the

Table 3. The effects of the parameters with the new modified hybrid learning
algorithm for single-step prediction performance on sunspot time series data.

Indices Mean Squared Errors (1921–2003)

η1 = 0.3, η2 = 0.15 γ2 = 0.001 γ2 = 0.003 γ2 = 0.005 γ2 = 0.007

γ1 = 0.001 0.0031 0.0041 0.0046 0.0050

η1 = 0.3, η2 = 0.15 γ1 = 0.001 γ1 = 0.003 γ1 = 0.005 γ1 = 0.007

γ2 = 0.001 0.0031 0.0039 0.0042 0.0049

η1 = 0.3, γ1 = 0.001 η2 = 0.15 η2 = 0.17 η2 = 0.19 η2 = 0.21

γ2 = 0.001 0.0031 0.0038 0.0043 0.0045

η2 = 0.15, γ1 = 0.001 η1 = 0.3 η1 = 0.32 η1 = 0.34 η1 = 0.36

γ2 = 0.001 0.0031 0.0036 0.0042 0.0046
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Santa Fe competition data set A. Likely, a (12-8-1)-sized network is also adopted
to address this problem. The first 1000 step data are used for the training, and the
following 200 steps are used for the testing. As a result, the single-step prediction
results are shown in Figs. 9–11 for Hybrid-I algorithm, Hybrid-II algorithm and the
proposed new learning algorithm, respectively. The corresponding iterative-step
prediction results are shown in Figs. 12–14 for the above three learning algorithms.

Similarly, in order to statistically compare the prediction accuracies for chaotic
laser pulsation data with BP algorithm, Hybrid-I algorithm, Hybrid-II algorithm
and the proposed new learning algorithm, an experiment is also done fifty times for
each algorithm and then its average accuracy value calculated. The corresponding
prediction accuracies are summarized in Tables 4 and 5. From these results, it can
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Fig. 9. Results with single-step prediction for chaotic laser pulsation data by using Hybrid-I
algorithm.
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Fig. 10. Results with single-step prediction for chaotic laser pulsation data by using Hybrid-II
algorithm.
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Fig. 11. Results with single-step prediction for chaotic laser pulsation data by using the new
learning algorithm.
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Fig. 12. Results with iterative-step prediction for chaotic laser pulsation data by using Hybrid-I

algorithm.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

time

ta
rg

et
,p

re
di

ct
io

n

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

er
ro

r

(a) The predicted values (b) The predicted errors

Fig. 13. Results with iterative-step prediction for chaotic laser pulsation data by using Hybrid-II
algorithm.
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Fig. 14. Results with iterative-step prediction for chaotic laser pulsation data by using the new
learning algorithm.

Table 4. The average values of mean squared errors of single-step predic-
tion for the chaotic laser pulsation data for fifty times by four algorithms.

LA Training Testing

BP 0.00029725 0.0059
Hybrid-I 0.0016 0.0040
Hybrid-II 0.0012 0.0043
New LA 0.00054626 0.0033

Table 5. The average values of mean squared errors of iterative-step predic-
tion for the chaotic laser pulsation data for fifty times by four algorithms.

LA Training Testing

BP 0.0082 0.0821
Hybrid-I 0.0418 0.0680
Hybrid-II 0.0391 0.0615
New LA 0.0310 0.0583

be seen apparently that the proposed learning algorithm has better generalization
capability than the BP algorithm as well as the two original hybrid algorithms,
since the mean squared errors of the new learning algorithm for the testing data
set are smaller than the ones for the other three learning ones.

Obviously, from the above experiments, the conclusion can be drawn that the
new learning algorithm has better generalization performance than the original
Hybrid-I and Hybrid-II learning algorithms as well as BP learning algorithm.
This result mainly rests with the fact that the new learning one incorporates
the additional functional constraints such as the input-to-output mapping sensi-
tivity and the weights decay term in training data into the sum-of-square error cost
function.
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5. Conclusions

In this paper, a new modified learning algorithm with respect to the Hybrid-I and
Hybrid-II learning algorithms introduced in literature12 is proposed. The additional
cost terms for this new algorithm are combined with the ones for Hybrid-I and
Hybrid-II learning algorithms, and both the input-to-output mapping sensitivity
and high frequency components in training data are penalized in the course of
training, thus the better generalization capability with respect to the original hybrid
algorithms can be easily obtained. The experimental results about benchmark data
of sunspot time series prediction and chaotic laser pulsation data prediction also
showed that the generalization performance of the proposed constrained learning
algorithm apparently outperforms that of the Hybrid-I and Hybrid-II learning ones
as well as BP algorithm. In addition, the effects of the parameters with the proposed
learning algorithm on the network performance were discussed. Future research
works will include how to apply this new constrained learning algorithm to resolve
more numerical computation problems.
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