
11

Automating App Review Response Generation Based on

Contextual Knowledge

CUIYUN GAO, Harbin Institute of Technology, Shenzhen, China

WENJIE ZHOU, The Key Laboratory for Computer Systems of State Ethnic Affairs Commission,

Southwest Minzu University, China

XIN XIA, Software Engineering Application Technology Lab, Huawei, China

DAVID LO, Singapore Management University, Singapore

QI XIE, The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu

University, China

MICHAEL R. LYU, The Chinese University of Hong Kong, China

User experience of mobile apps is an essential ingredient that can influence the user base and app revenue.

To ensure good user experience and assist app development, several prior studies resort to analysis of app

reviews, a type of repository that directly reflects user opinions about the apps. Accurately responding to

the app reviews is one of the ways to relieve user concerns and thus improve user experience. However,

the response quality of the existing method relies on the pre-extracted features from other tools, including

manually labelled keywords and predicted review sentiment, which may hinder the generalizability and flex-

ibility of the method. In this article, we propose a novel neural network approach, named CoRe, with the

contextual knowledge naturally incorporated and without involving external tools. Specifically, CoRe inte-

grates two types of contextual knowledge in the training corpus, including official app descriptions from app

store and responses of the retrieved semantically similar reviews, for enhancing the relevance and accuracy

of the generated review responses. Experiments on practical review data show that CoRe can outperform the

state-of-the-art method by 12.36% in terms of BLEU-4, an accuracy metric that is widely used to evaluate text

generation systems.

CCS Concepts: • Software and its engineering→Context specific languages; • Computing methodologies

→ Machine learning approaches;

Additional Key Words and Phrases: User reviews, retrieved responses, app descriptions, pointer-generator

network

This work was supported by the National Natural Science Foundation of China under project No. 62002084, the National

Natural Science Foundation of China under project No. 61502401, the Research Grants Council of the Hong Kong Special

Administrative Region, China (CUHK 14210717), the National Research Foundation, Singapore under its Industry Align-

ment Fund — Pre-positioning (IAF-PP) Funding Initiative.

Authors’ addresses: C. Gao, Harbin Institute of Technology, Shenzhen, China; email: gaocuiyun@hit.edu.cn; W. Zhou and

Q. Xie (corresponding author), The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, South-

west Minzu University, Sichuan, China; emails: zhouwenjie2@stu.swun.edu.cn, qi.xie.swun@gmail.com; X. Xia, Software

Engineering Application Technology Lab, Huawei, China; email: xin.xia@acm.org; D. Lo, Singapore Management Univer-

sity, Singapore; email: davidlo@smu.edu.sg; M. R. Lyu, The Chinese University of Hong Kong, Hong Kong, China; email:

lyu@cse.cuhk.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1049-331X/2021/10-ART11 $15.00

https://doi.org/10.1145/3464969

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3464969

11:2 C. Gao et al.

ACM Reference format:

Cuiyun Gao, Wenjie Zhou, Xin Xia, David Lo, Qi Xie, and Michael R. Lyu. 2021. Automating App Review

Response Generation Based on Contextual Knowledge. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 11

(October 2021), 36 pages.

https://doi.org/10.1145/3464969

1 INTRODUCTION

According to the report released by Reference [8], there are over 5 billion mobile users worldwide,
with global internet penetration standing at 57%. For these app users, they could choose the apps
for usage from a vast number of mobile apps; for example, Google Play and Apple’s App Store pro-
vide 2.5 million and 1.8 million apps, respectively [9]. An essential factor for apps to be successful
is to guarantee the quality of app functionalities and ensure good user experience. User reviews,
which serve as a communication channel between users and developers, can reflect immediate
user experience, including app bugs and features to add or modify. Recent research has leveraged
natural language processing and machine learning techniques to extract useful information from
user reviews to help developers test, optimize, maintain, and categorize apps (see e.g., References
[21, 26, 30, 33, 62]) for ensuring good user experience.

The app stores such as Google Play and App Store also allow developers to respond to the
reviews [5, 7] and encourage them to respond to reviews promptly and precisely for creating a
better user experience and improving app ratings. A recent study by Hassan et al. [34] confirmed
the positive effects of review reply. Specifically, they found that responding to a review increases
the chances of a user updating their given rating by up to six times in comparison with no response.
McIlroy et al. [51] discovered that users change their ratings 38.7% of the time following a developer
response, with a median increase of 20% in the rating. Despite the advantage of review response,
developers of many apps never respond to the reviews [34, 51]. One major reason is the plentiful
reviews received for the mobile apps, e.g., the Facebook app on Google Play collects thousands of
reviews per day [13]. It is labor-intensive and time-consuming for developers to respond to each
piece of review. Therefore, the prior work [27] initiates automating the review response process.

Review response generation can be analogical to social dialogue generation [41, 71] in the nat-
ural language processing field. Different from social dialogue generation, app review-response
generation is more domain-specific or even app-specific, and hence, its performance strongly re-
lies on the establishment of the domain knowledge. For example, the response for the review of
one app may not be applicable for the review of another app even though the reflected issues
are similar. As illustrated in Figure 1, both review instances are complaining about the Internet
connection issue, but developers’ suggested solutions are different. For the UC browser app, the
developer suggests to clear cache while for the PicsArt photo editor app, the developers undertake
to simplify the options of save and share edits.

To automatically learn the domain-specific knowledge, Gao et al. [27] proposed a Neural Ma-

chine Translation (NMT) [64]-based neural network, named RRGen, which can encode user
reviews with an embedding layer and decode them into developers’ response through a Gated Re-

current Unit (GRU) [19] model with attention mechanism. External review attributes, including
review length, rating, predicted sentiment, app category, and pre-defined keywords, are adopted
to better encode the semantics of user reviews. Although good performance is demonstrated, the
design of RRGen exhibits two main limitations. First, the performance of the external tools such as
SURF [62] (for determining pre-defined keywords) and SentiStrength [65] (for estimating review
sentiment) may impact the results of RRGen. For example, when the keywords in the reviews are
not in the pre-defined keyword dictionary provided by SURF, RRGen would fail to capture the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

https://doi.org/10.1145/3464969

Automating App Review Response Generation Based on Contextual Knowledge 11:3

Fig. 1. Review instances from two separate apps. The underlined texts highlight the main issues reported in
reviews and corresponding suggested solutions from developers.

semantics of the review. Second, RRGen faces a common problem of NMT-based approaches, i.e.,
they generally prefer high-frequency words in the corpus and the generated responses are often
generic and not informative [14, 73, 76].

To alleviate the above limitations, we propose a novel neural architecture, namely, Contextual
knowledge-based app Review response generation (CoRe), built upon official app descriptions
and responses of retrieved similar reviews from the training corpus. For mitigating the first limita-
tion, we incorporate app descriptions, which usually contain sketches of app functionalities [11].
Based on app descriptions, the neural model can learn to pay attention to app functionality-related
words in the reviews, without feeding pre-defined keywords into the model. For relieving the sec-
ond limitation, we involve responses of similar reviews based on Information Retrieval (IR)-
based approach. The IR-based approach [38] has proven useful in leveraging the responses of simi-
lar conversations for producing relevant responses, so the IR-based retrieved responses are highly
probable to contain the words in the expected responses (including the low-frequency ones). To
incorporate the words in the retrieved responses, CoRe utilizes pointer-generator network [59]
to adaptively copy words from the responses instead of simply from a fixed vocabulary obtained
from the training corpus.

Experiments based on 309,246 review-response pairs from 58 popular apps show that CoRe
significantly outperforms the state-of-the-art model by 12.36% in terms of BLEU-4 score [55] (an
accuracy measure that is widely used to evaluate text generation systems). Human study with 20
programmers through Tencent Online Questionnaire [6] further confirms that CoRe can generate

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:4 C. Gao et al.

Fig. 2. Graphical illustration of the attentional bi-LSTM encoder-decode model.

a more relevant and accurate response than RRGen. We release the whole replication package
through this link,1 including the dataset, experimental configurations, and source code.

The remainder of this article is organized as follows: Section 2 introduces the background of our
work. Section 3 illustrates the proposed approach. Section 4 and Section 5 detail our experimental
settings and the experimental results, respectively. Section 6 describes the human evaluation re-
sults. Section 7 discusses the advantages of the proposed approach and threats to validity. Section 8
surveys the related work. Section 9 concludes the article.

2 BACKGROUND

In this section, we introduce the background knowledge of the proposed approach, including at-
tentional encoder-decoder model and pointer-generator model.

2.1 Attentional Encoder-decoder Model

Encoder-decoder model, also called sequence-to-sequence model, has demonstrated the ability to
model the variable-length input and output, e.g., words and sentences. Figure 2 illustrates the
architecture of the attentional encoder-decoder model. Generally, tokens of the source sequence
w = (w1,w2, . . . ,wn) (n is the number of input tokens) are fed one-by-one into the encoder (a
single-layer bidirectional GRU [19], as shown in Figure 2), producing a sequence of encoder hidden
states h = (h1,h2, . . . ,hn). On each step t , the decoder (a single-layer unidirectional GRU) is often
trained to predict the next word yt based on the context vector c and previously predicted words
{y1, . . . ,yt−1}, and has decoder state st . The context vector ct depends on a sequence of encoder
hidden states h and is computed as a weighted sum of the hidden states [15]:

ct =

n∑
j

αt jhj ,

αt j = softmax(et j),

(1)

where et j measures the similarity degree between the input hidden state hj and decoder state
st−1. The attention weight αt can be viewed as a probability distribution over the source words,
and higher probabilities render the decoder pay more attention to the corresponding input during
producing the next word. The context vector is then concatenated with the decoder state st and

1https://bit.ly/3kv6WEl.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

https://bit.ly/3kv6WEl

Automating App Review Response Generation Based on Contextual Knowledge 11:5

Fig. 3. Graphical illustration of the pointer-generator model.

fed through two linear layers to generate the vocab distribution:

Pvocab
t (w) = softmax(v ′(v[st , ct] + b) + b ′), (2)

where v , v ′, b, and b ′ are learnable parameters, and Pvocab
t is a probability distribution over all

the words in the vocabulary. The decoder state st depends on the last decoder state st−1 and the
previous decoder output yt−1 at a decoder step t , where st=1 is the encoder’s final hidden state
and yt=1 is a special character that indicates the beginning of a sentence. The model is trained to
minimize the negative log likelihood:

loss = min
1

N

∑
i

− log P (yi |xi), (3)

where each (xi ,yi) is a (source sequence, target sequence) pair from the training set.

2.2 Pointer-generator Model

Pointer-generator networks [59, 68] allow sequence-to-sequence models to predict words dur-
ing decoding by either copying words via pointing or generating words from a fixed vocabulary.
Figure 3 depicts the architecture of the pointer-generator model. As can be seen, besides comput-
ing the context vector ct and attention weight αt , the generation probability γt ∈ [0, 1] for step t
is calculated for the context vector ct , the decoder state st , and the decoder input wt :

γt = σ
(
ωᵀ

c ct + ω
ᵀ
s st + ω

ᵀ
wwt + bptr

)
, (4)

where vectors ωc , ωs , ωw , and scalar bptr are learnable parameters. σ is the sigmoid function. γt

can be regarded as an indicator of which source the predicted word comes from. The probability
distribution over the overall vocabulary is computed as:

Pt (w) = γt · Pvocab
t (w) + (1 − γt) ·

∑
i :wi=w

αt i . (5)

If w is an out-of-vocabulary (OOV) word, then Pvocab
t (w) is zero. In this way, point-generator

models are able to generate OOV words. The loss function is the same as described in Equation (3).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:6 C. Gao et al.

Fig. 4. Overall architecture of CoRe.

3 METHODOLOGY

This section describes our proposed model CoRe, which builds upon the basic pointer-generator
model. Besides user reviews, two types of contextual knowledge, including app descriptions and
responses of the retrieved similar reviews from the training corpus, are regarded as the source se-
quence. The developers’ responses are treated as the target sequence. App descriptions generally
describe apps’ functionalities [11], so with app descriptions integrated, the words related to app
functionalities are prone to be captured. Semantically similar reviews are involved, since the se-
mantics of the corresponding responses tend to be identical. For each piece of review, the semantic
distances with other reviews in the training set are computed as the cosine similarity between the
unigram tf-idf representations, and only the responses of the topK reviews with highest similarity
scores are considered for the response generation.

The overall architecture of the proposed model is illustrated in Figure 4. CoRe is mainly com-
posed of four stages: Data preparation, data extraction, model training, and response generation.
We first preprocess the app reviews, their responses, and app descriptions collected from Google
Play. The processed data are then parsed into a parallel corpus of user reviews, corresponding re-
sponses, the retrieved responses, and app description. Based on the parallel corpus, we build and
train a pointer-generator-based model with the contextual knowledge holistically considered. The
details are elaborated in the following subsections.

3.1 Source Sequence Encoding

Let w = (w1,w2, . . . ,wn) be a sequence of source tokens, which can be the input review x, app

description d, or the response for each of top K retrieved similar reviews r(k), 1 ≤ k ≤ K . We first
obtain a trainable embedded representation of each token in the sequence and then adopt bi-GRU
to encode the sequence of the embedding vectors:

e (x), h(x) = bi-GRU(x), (6)

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:7

Fig. 5. Illustration of the hierarchical pointer network for copying tokens from the retrieved K responses.

e (d), h(d) = bi-GRU(d), (7)

e (r)(k), h(r)(k) = bi-GRU(r(k)), (8)

where eΔ and hΔ = (h1,h2, . . . ,hn) denote the final hidden state of the bi-LSTM and outputs of
bi-LSTM at all steps, where Δ ∈ [(x), (d), (r) (1), . . . , (r) (k), . . . , (r) (K)].

3.2 Contextual Knowledge Integration

Different from the basic pointer-generator network [59], CoRe also allows integrating tokens from
the contextual information besides the input reviews. At decoder step t , the decoder state st is used
to attend over the app description tokens and the retrieved response tokens to produce a probability
distribution over the tokens appearing in the description and retrieved responses, respectively.
These distributions are then integrated with the attention distribution obtained by the decoder
over the fixed vocabulary to compute an overall distribution.

3.2.1 Copying Tokens from App Description. Similar to the basic attentional encoder-decoder
model, we encode the description tokens d and apply attention to the encoder outputs at a decoder

step t . This produces the attention weights α (d)
t and a representation of the entire context c (d)

t . The

context vector is then employed to obtain the probability distribution P (d)
t (w) over the tokens in

the app description:

α (d)
t , c

(d)
t = Attention(h(d), st) (9)

P (d)
t (w) = д

(
st ,yt−1, c

(d)
t

)
, (10)

where h(d) indicates the encoder outputs as computed in Equation (7) andд is a non-linear mapping
function.

3.2.2 Copying Tokens from Responses of the Retrieved Reviews. To integrate the responses of the
K retrieved reviews, we adapt the hierarchical pointer network, as shown in Figure 5, for involving

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:8 C. Gao et al.

tokens from multiple extracted responses. Based on the token-level representations h(r)(k) , the
decoder state st is used to attend over the tokens in each retrieved response:

α (r)(k)
t , c (r)(k)

t = Attention(h(r)(k), st), (11)

α (r)
t , c

(r)
t = Attention

([
c (r)(1)

t , . . . , c (r)(K)
t

]
, st

)
, (12)

P (r)
t (w) = д

(
st ,yt−1, c

(r)
t

)
, (13)

where h(r)(k) is the output of the encoder for the response of the top kth retrieved reviews. The

context vector c (r)
t for all the retrieved responses are obtained based on the context vectors of all

the K responses, following the Equation (12). P (r)
t (w) means the probability distribution over the

tokens in the retrieved K responses.

3.2.3 Attention Fusion. We first fuse the two vocabulary distributions P (d)
t (w) and P (r)

t (w),
which represent the probabilities of copying tokens from the app description and retrieved re-
sponses, respectively. We compute the fused attention vector using the decoder state st , the overall

app description representation c (d)
t , and overall retrieved response representation c (r)

t (Equation
14). The computed attention weight γt is adopted to combine the two copying distributions as
Equation (15):

γt , c
fuse
t = Attention

([
c (d)

t , c
(r)
t

]
, st

)
, (14)

P fuse
t (w) = γt · P (d)

t (w) + (1 − γt) · P (r)
t (w). (15)

The overall distribution Pt (w) for the training vocabulary at each decoder step t is calculated
based on the context vector c fuse

t of the two contextual sources and decoder state st :

θt = σ
(
ωᵀ

f
c fuse

t + ωᵀ
s st + ω

ᵀ
x xt + bptr

)
,

Pt (w) = θt · Pvocab
t (w) + (1 − θt) · P fuse

t (w),
(16)

whereωf ,ωs ,ωx , andbptr are learnable parameters, xt is the decoder input, and Pvocab
t (w) indicates

the vocabulary distribution based on the input reviews only (referring to Equation (2)).

3.3 Model Training and Validation

3.3.1 Training. We train the whole network with the negative log-likelihood loss function of

Jloss (Θ) = − 1

|y |

|y |∑
t=1

log
(
pt

(
yt |y < t , x, d,

{
r(k)

}K

k=1

))
, (17)

for a training sample (x, y, d, {r(i) }Ki=1)) where Θ denotes all the learnable model parameters. The
attentional encoder-decoder model has various implementations. We adopt bidirectional Gated

Recurrent Units (GRUs) [19], which is a popular basic encoder-decoder model and performs
well in many text generation tasks [20, 72]. The hidden units of GRUs are set as 200 and word
embeddings are initiated with pre-trained 100-dimensional GloVe vectors [3]. The maximum se-
quence lengths for reviews, app descriptions, and retrieved responses are all defined as 200. We
save the model every 200 batches. The number of retrieved responses, the dropout rate, and the
number of hidden layers are defined as 4, 0.1, and 1, respectively. Details of parameter tuning are
discussed in Section 5.3. The whole model is trained using the minibatch Adam [40], a stochastic

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:9

Fig. 6. Length distribution of the reviews and responses in the benchmark dataset.

optimization approach that can automatically adjust the learning rate. The batch size is set as 32.
During training the neural networks, we limit the source and target vocabulary to the top 10,000
words that most frequently appear in the training set.

For implementation, we use PyTorch [4], an open-source deep learning framework. We train our
model in a server with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz, Tesla T4 16 G. The training
lasts ∼8 hours with three epochs following the setting in Reference [27].

3.3.2 Validation. We evaluate on the test set after the batch during which the trained model
shows an improved performance on the validation set regarding BLEU score [55]. The evaluation
results are the highest test score and corresponding generated response. We use the same GPU as
used in training, and the testing process cost around 30 minutes.

4 EXPERIMENTAL SETUP

In this section, we elaborate on the setup of our experiments, including experimental dataset, the
evaluation metric, and baseline approaches.

4.1 Experimental Dataset

We perform experiments for verifying the effectiveness of the proposed model on the recently
released review response dataset [27]. The dataset includes 309,246 review-response pairs from
58 popular apps, with 279,792, 14,727, and 14,727 pairs in the training, validation, and test sets,
respectively, following 8:1:1 random split. The statistics of the lengths of app reviews and responses
are illustrated in Figure 6. The average review length is ∼15 with maximum at around 200 on the
training, validation, and test sets. The maximum word number of user reviews may be attributed
to the length limit of Google Play reviews [2]. We also observe that the length distributions of the
reviews/responses are relatively consistent among the training, validation, and test sets. In this
work, we set the maximum sequence length as 200 following the prior study cited in Reference
[27] to ensure fair comparison. We also discuss the impact of the maximum sequence lengths in
Section 7.

Besides the review-response pairs, we crawled the corresponding app descriptions from Google
Play for the 58 subject apps. For the app descriptions, we remove all special characters such as “�”
and conduct similar preprocessing steps as the review preprocessing steps [27], including lower-
case and lemmatization. After the basic preprocessing, we observe that the maximum, median,
and minimum lengths of the app descriptions are 625, 300, and 43 words, respectively, with the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:10 C. Gao et al.

average length at 314. Since the semantics of long input texts are difficult to be effectively learned
by the basic attentional encoder-decoder model [75], we reduce the input description lengths by
manually filtering out the sentences irrelevant to the app features/functionalities (e.g., the sen-
tences explicitly encouraging users to download the apps, “download the highest rated travel app

now and join thousands of bookers like you finding unmissable hotel deals!”). The pruning process is
conducted by the first two authors together. One author first extracts the informative description
sentences for each app. We find that although the official app descriptions vary in content and
length, they present similar structure, i.e., introduction about the app functionality in general first
and then about specific functions and advantages, finally encouraging users to download and use
the apps. So, one author extracts one or two sentences from the general introduction, keeps the
sentences that describe specific functions, and extracts one or two sentences from the conclusion
words. The other author then checks the extracted sentences and marks the cases (4/58, 6.9%) for
which he disagrees with the first author, e.g., the other author finds that some sentences that are
irrelevant to the app functionality are included in the pruned description. For the disagreement
cases, the two authors further discuss to reach a consensus. The pruning process costs us around
1.5 hours for the 58 subject apps. The maximum, median, and minimum lengths of the reduced
descriptions are 198, 151, and 43 words, respectively, with the average length at 146. For the re-
trieved responses of CoRe as input, only the responses in the training set are considered instead
of those in the validation or test sets.

4.2 Evaluation Metric

BLEU is a metric widely used in natural language processing and software engineering fields to
evaluate generative tasks (e.g., machine translation, dialogue generation, and code commit mes-
sage generation) [35, 39, 41, 76]. It calculates the frequencies of the co-occurrence of n-grams
between the ground truth ŷ and the generated sequence y to judge their similarity:

pn (y, ŷ) =

∑
j min(h(j, ŷ),h(j,y))∑

j h(j, ŷ)
, (18)

where j indexes all possible n-grams, andh(j,y) orh(j, ŷ) indicate the number of jth n-grams in the
generated sequence y or the ground truth ŷ, respectively. To avoid the drawbacks of using a pre-
cision score, namely, it favors shorter generated sentences, BLEU-N introduces a brevity penalty:

BLEU-N := b (y, ŷ) exp ��
N∑

n=1

βn logpn (y, ŷ)�	 , (19)

where b (y, ŷ) is the brevity penalty and βn is a weighting parameter. We use corpus-level BLEU-4,
i.e., N = 4, as our evaluation metric, since it is demonstrated to be more correlated with human
judgments than other evaluation metrics [46].

Rouge [44] is a set of metrics used for evaluating the quality of generated sentences. Rouge-N
mainly counts the recall rate of N-grams contained in candidate and reference sentences. When
the unigram and bigram are extracted from sentences, the corresponding evaluation metric are
Rouge-1 and Rouge-2. Rouge-L is a F-measure based on the Longest Common Subsequence

(LCS) between a candidate and target sentence, where the LCS is a set of words appearing in two
sentences in the same order.

METEOR [16] creates an explicit alignment between the candidate and target responses, which
is based on exact token matching. Given the alignments, the METEOR score is the harmonic mean
of precision and recall between the generated and ground truth texts [46].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:11

4.3 Baseline Approaches

We compare the performance of the proposed CoRe with a random selection approach, a retrieval-
based model [47], the basic attentional encoder-decoder model (NMT) [15], a reinforcement
learning-based model for pull request summary generation [48], and the state-of-the-art approach
for review response generation [27], namely, RRGen. We elaborate on the first and last baselines
below.

Random Selection: The approach randomly picks one response in the training set as the re-
sponse to a review in the test set.

NNGen: NNGen is chosen as one baseline, since it shows better performance than the basic
NMT model [39] in producing commit messages for code changes. NNGen computes the cosine
similarity between new reviews and the reviews in the training set based on the “bags of words”
representations [50]. The nearest neighbor (NN) algorithm is adopted to retrieve the most rel-
evant five reviews. NNGen finally regards the response of the training review with the highest
BLEU-4 score as the result.

PRSummarizer: It is a sequence-to-sequence model for generating text summarization of the
pull requests in software project. PRSummarizer adopts the pointer generator to learn to copy
words from the source sequence to cope with out-of-vocabulary words in software artifacts. It
also designs a special loss function to bridge the gap between the training loss function and the
evaluation metric Rouge.

RRGen: It is the state-of-the-art approach for automating review reply generation. RRGen ex-
plicitly combines review attributes, such as review length, rating, predicted sentiment and app
category, and occurrences of specific keywords into the basic attentional encoder-decoder (NMT)
model.

5 EXPERIMENTAL RESULTS

In this section, we elaborate on the results of the evaluation of CoRe through experiments and
compare it with the state-of-the-art tool, RRGen [27], and another competing approach, NMT [15],
to assess its capability in accurately responding to user reviews. Our experiments are aimed at
answering the following research questions:

RQ1: What is the performance of CoRe in responding to user reviews?
RQ2: What is the impact of the involved contextual knowledge on the performance of CoRe?
RQ3: How accurate is CoRe under different parameter settings?

5.1 RQ1: What Is the Performance of CoRe in Responding to User Reviews?

Table 1 illustrates the comparison results with the baseline approaches. As can be seen, the pro-
posed CoRe shows the best performance among all the approaches. Specifically, CoRe outperforms
the baselines by 12.36%∼5.20 times in terms of the BLEU-4 metric. From the pn scores, we can ob-
serve that the responses produced by CoRe consist of more similar n-grams comparing to the
ground truth. For example, CoRe increases the performance of the baselines by at least 15.68%
with respect to the accuracy of 4-gram prediction. For the Rouge and METEOR scores, CoRe also
shows superior performance than all the baselines.

We then use Wilcoxon signed-rank test [70] to verify whether the increase is significant and
Cliff’d Delta (or d) to measure the effect size [10]. The significance test result (p-value < 0.01) and
large effect size on the metrics (|d | > 0.474) of CoRe and RRGen indicate that the proposed model
can generate more accurate and relevant responses to user reviews.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:12 C. Gao et al.

Table 1. Comparison Results with Baseline Approaches

Model BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
Random 6.55* 27.64* 6.90* 3.55* 2.78* 24.82* 5.81* 22.86* 18.71*
NNGen 14.09* 34.48* 13.85* 9.78* 8.59* 32.49* 12.31* 25.78* 24.93*

PRSummarizer 3.75* 13.05* 4.39* 2.3* 1.48* 18.26* 6.36* 19.22* 23.39*
NMT 21.61* 40.55* 20.75* 16.78* 15.47* 36.13* 15.47* 35.80* 29.27*

RRGen 36.17* 53.24* 35.83* 31.73* 30.04* 45.81* 29.82* 45.49* 42.16*
CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

Bold figures highlight better results. pn indicates the n-gram precision computed in Equation (18). Statistically

significant results are indicated with *(p-value < 0.01).

Table 2. Contrastive Experiments with Individual Knowledge Source Removed, where “-Retrieval”
and “-Description” Indicate the CoRe with the Retrieved Responses and App Description,

Respectively, Removed

Model BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
-Retrieval 38.65 54.73 37.91 33.71 31.90 52.39 36.12 51.31 49.26
-Description 38.58 54.00 36.71 32.55 30.71 52.36 35.85 51.05 48.54
Only review (NMT) 21.61 40.55 20.75 16.78 15.47 36.13 15.47 35.80 29.27

5.2 RQ2: What Is the Impact of the Involved Contextual Knowledge on the

Performance of CoRe?

We analyze the impact of the involved contextual knowledge, including app description and the
retrieved responses, on the model performance. We perform contrastive experiments in which only
a single source of contextual information is considered in the basic attentional encoder-decoder
model. Table 2 illustrates the results.

The integration of both app description and the retrieved responses presents the highest im-
provements. With either type of contextual information individually combined, the model achieves
comparative performance, i.e., ∼38 and ∼54 in terms of BLEU-4 and p1 scores, respectively. How-
ever, without the contextual information included, the performance shows dramatic decline,
achieving only 21.61, 35.80, and 29.27 in terms of the BLEU-4, Rouge-L, and METEOR metrics,
respectively. This implies the importance of integrating contextual knowledge for accurate re-
view response generation, and each type of the considered contextual knowledge is helpful for
improving the generation accuracy. We analyze deeper into the advantage carried by the contex-
tual knowledge in Section 7.1.

5.3 RQ3: How Accurate Is CoRe under Different Parameter Settings?

We also analyze the impact of different parameter settings on the model performance. Specifically,
we compare the accuracy of CoRe under varied parameters, including the number of retrieved
responses, the number of hidden units, the number of hidden layers, dropout rate, and the dimen-
sion of word embeddings. Grid search [42] is a common strategy to determine the optimal values
of the hyper-parameters for a given model. Since multiple parameters of CoRe are required to
be fine-tuned and each trial consumes ∼8 hours (cf., Section 3.3), we initialize the parameters fol-
lowing the prior work cited in Reference [27] to save time for parameter tuning. Specifically, we
first set the number of hidden units, word embedding dimension, number of hidden layers, and
dropout rate as 200, 100, 1, and 0.1, respectively. Based on these initial parameters, we first con-
duct grid search to find the optimal number of retrieved responses. With the number of retrieved

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:13

Fig. 7. Model performance under different parameter settings.

Table 3. Impact of Different Dimensions of Word Embeddings on the Performance of CoRe

Dimension
of Word Embedding

BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR

25 40.15 56.87 39.45 35.16 33.34 52.53 35.97 51.41 48.63
50 38.04 54.13 37.30 33.12 31.31 51.59 35.13 50.72 48.13
100 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
200 39.09 55.20 38.42 34.13 32.27 52.29 36.18 51.16 48.77

responses determined, we then use grid search to detect the optimal values of the other parameters
one-by-one.

Figure 7 and Table 3 show the influence of different parameter settings on the model perfor-
mance. We observe that the accuracy of the model varies as the parameters change.

Retrieved Responses: As can be seen in Figure 7(a), with the number of retrieved responses
increasing from 1 to 5, the BLEU-4 score fluctuates slightly, and when the number of retrieved
responses is set as 4, CoRe achieves the best performance. This indicates that more retrieved

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:14 C. Gao et al.

responses could be helpful for generating more accurate responses. However, since the relevance
between the retrieved response and the review reduces as the number of retrieved responses
increases, considering too many responses may bring interference to the final output.

Hidden Units: As shown in Figure 7(b), more hidden units may not be beneficial for improv-
ing accuracy. When the number of hidden units is larger than 200, the model performance exhibits
a downward trend. Thus, we define the number of hidden units as 200 during the evaluation.

Hidden Layers: Figure 7(c) depicts the variations of the model performance as the number of
hidden layers increases. We can observe that the performance of CoRe shows a dramatic decrease
when the layer number is greater than 4 in terms of the BLEU-4 score, and variations as the layer
number increases from 1 to 4 are not obvious, ranging from 39.96 to 40.34 regarding the BLEU-4
value. With more hidden layers, both model training and testing time will increase; thus, we set
the number of hidden layers as 1 during the evaluation.

Dropout Rate: As can be seen in Figure 7(d), as the dropout rate grows, the model accuracy
presents a decline trend, which implies that large dropout rates could greatly reduce the knowledge
learned by the previous layer, leading to poor generation performance. To reduce the information
loss during the forward and backward propagation and avoid overfitting, the dropout rate is set
as 0.1.

Dimension of Word Embedding: We compare the model performance under the four different
dimensions of word embeddings provided by GloVe [3], and the results are illustrated in Table 3. As
can be seen, CoRe achieves the poorest accuracy when the dimension of word embedding equals to
50 and the best when set as 100. The performance decreases as the embedding dimension increases
to 200, which indicates that more dimension may not be useful for enhancing the accuracy of the
response generation. In this work, we set the dimension of word embeddings as 100.

6 HUMAN EVALUATION

In this section, we conduct human evaluation to further validate the effectiveness of the proposed
CoRe. The human evaluation is conducted through online questionnaire. We invite 20 participants
totally, including 15 postgraduate students, four undergraduate students, and one senior researcher,
all of whom are not co-authors and major in computer science. Among the participants, 12 of
them have industrial experience in software development for at least a year. 95% (19/20) of the
participants read the user reviews or developers’ replies before downloading or updating an app.
Besides, 75% (15/20) of them have written at least one app review. The statistics indicate that a
majority of the participants are familiar with app reviews. Moreover, for the 58 subject apps, which
are from 16 app categories according to Google Play, 95% (19/20) raters have usage experience with
apps from more than five of the categories, and 70% (14/20) have used apps from more than 12 app
categories, which implies that the participants are likely familiar with the subject apps.

Each participant is invited to read 25 user reviews and judge the quality of the responses gen-
erated by CoRe, RRGen, and the official app developers. Each of them will be paid 10 USD upon
completing the questionnaire.

6.1 Survey Design

We randomly selected 100 review-response pairs and split them evenly into four groups, where
each group consists of 25 review-response pairs. We create an online questionnaire for each group
and ensure that each group is assessed by five different participants. In the questionnaire, each
question describes one review-response pair, comprising one piece of user review, the developers’
response, and its responses generated by RRGen and CoRe. The order of the responses is randomly
swapped for each review.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:15

Fig. 8. An example of questions in our questionnaires. Response 1, 2, and 3 correspond to the developer’s
response, the response produced by RRGen, and the output of CoRe, respectively. The two-dot symbols
indicate the simplified rating schemes for Response 2 and 3.

Following Reference [27], the quality of the responses is evaluated from three aspects, including
“grammatical fluency,” “relevance,” and “accuracy.” We explained the three aspects at the beginning
of each questionnaire: The metric “grammatical fluency” measures the degree of the readability of
the response; the metric “relevance” estimates the extent of semantic relevance between the user
review and response; and the metric “accuracy” relates to the extent of the response accurately
replying to the review. All the three aspects are scored based on 1–5 scale (1 for completely not
satisfying the rating scheme and 5 for fully satisfying the rating scheme). Besides the three aspects,
each participant is asked to rank the three responses based on their overall preference. The “pref-

erence rank” score is evaluated on 1–3 scale (1 for the most preferred and 3 for the least preferred).
Figure 8 shows a sample question in our questionnaire. The participants are not aware of which
response is written by developers or which one is generated by which model. They are asked to
complete the online questionnaires separately.

6.2 Results

We finally received 500 sets of scores totally and five sets of scores for each review-response pair
from the human evaluation. Each set contains scores regarding the four metrics, including “gram-

matical fluency,” “relevance,” “accuracy,” and “preference rank,” for the responses of CoRe, RRGen,
and official developers. The participants spent 1.72 hours to complete the questionnaire on aver-
age, with the median completion time of 1.40 hours. We compute the agreement rate on the four
aspects given by the participants, illustrated in Figure 9. As can be seen, 78.3%, 74.0%, 72.7%, and
65.0% of the total 100 review-response pairs received at lease three identical scores regarding the
“grammatical fluency,” “relevance,” “accuracy,” and “preference rank” metrics, respectively. Besides,
7.3%, 6.7%, 8.3%, and 10.0% of the pairs are rated with consistent scores from the five annotators in

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:16 C. Gao et al.

Fig. 9. Agreement rate among the participants in the human evaluation. The horizontal axis and vertical
axis indicate different evaluation metrics, and the percentages of 3/4/5 participants giving the same scores,
respectively.

Table 4. Comparison Results Based on Human Evaluation

Grammatical
Fluency

Relevance Accuracy
Preference

Rank

RRGen 3.58* 2.93* 2.89* 2.59*
CoRe 4.19 4.06 4.00 1.79

Developer 4.32 4.56 4.03 1.60

Average scores are computed and bold indicates top scores. Two-tailed t-test

results between CoRe and RRGen are indicated with *(p-value < 0.01).

terms of the respective metrics. This indicates that the participants achieved reasonable agreement
on the quality of the generated responses.

Table 4 and Figure 10 depict the results of human evaluation. As can be seen, the responses from
official developers received the best scores from the participants among all the three responses and
with respect to all the metrics. In terms of grammatical fluency, the average scores of the response
generated by CoRe and the developers’ response are rather close, i.e., 4.19 and 4.32, respectively.
As shown in Figure 10(a), most participants gave the responses generated by RRGen a 3-star rating,
while CoRe receives more 4/5-star ratings. This indicates that CoRe can produce more grammat-
ically fluent responses than RRGen. Regarding the relevance, the responses generated by RRGen
are rated much poorer than those output by CoRe. Combined with Figure 10(b), we can observe
that the more than half (62.5%) of the participants enter ratings lower than 4 for the responses gen-
erated by RRGen, and the number of 4/5-star ratings for the responses produced by CoRe is 1.15
times than those for the responses of RRGen. Developers’ responses receive the most 5-star ratings
compared to the generated responses. This implies that the responses output by CoRe tends to be
more relevant to the reviews than those generated by RRGen. In terms of the “accuracy” metric, we
find that the average scores for the responses output by CoRe and the developer’s responses are
much close, i.e., 4.00 and 4.03, respectively. As illustrated in Figure 10(c), the responses generated
by CoRe received slightly more 4/5-star ratings than the developers’ responses (391 vs. 384), and
1.22 times than the responses generated by RRGen (176). The results demonstrate that CoRe can
produce accurate responses to the user reviews, which is also reflected in the distributions of the
“preference rank” scores, as shown in Figure 10(d). We discover that most participants rank the re-
sponses output by RRGen as the least preferred (69.6%) and the developers’ responses as the most
favored (53.0%). Also, the responses of CoRe present similar preference score as the developers’

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:17

Fig. 10. Human evaluation results. For the metrics “grammatical fluency,” “relevance,” and “accuracy,” the
higher the scores, the better; while for the metric “preference rank,” the lower the scores, the better. The
vertical axis indicates the number of participants giving the scores.

responses on average, i.e., 1.79 vs. 1.60 (as shown in Table 4). The human study further validates
the effectiveness of the proposed CoRe for review response generation.

7 DISCUSSION

In this section, we discuss the advantages and limitations of our approach, as well as threats to the
validity of our findings.

7.1 Why Does Our Model Work?

We have conducted a deep analysis on the advantages of combining app descriptions and retrieved
responses for review response generation in CoRe.

7.1.1 App Descriptions. App descriptions generally contain keywords related to main app fea-
tures, aiming at convincing users to download the apps and facilitating user search through app
stores. By considering app descriptions, CoRe can recognize the topics/functionalities discussed
by users more accurately. For example, it can learn that the review “It lose your full charge.” is
related to the “power save mode” in the app and generate response providing the solution “trying

different save mode,” as shown in Figure 11, while the response generated by RRGen is rather in

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:18 C. Gao et al.

Fig. 11. A user review with the generated response where CoRe can generate responses based on the app de-
scription. The fonts in red are indicative of the partial topical words in corresponding texts. We only illustrate
the responses of the top two retrieved reviews here for saving space.

general purpose and not topically relevant to the review. Figure 12 visualizes the latent alignment
over the user review/app description based on the attention weights αt j from Equation (1) and

α (r)
t from Equation (9), respectively. Each column indicates the word distribution over the user

review/app description during response generation, which implies the importance of the words in
the user review/app description when generating the target word in the response. We can observe
the obvious correlation between the word “mode” (in the app description) and “save mode” (in the
response), and relatively weak correlations between “charge”/“minute” (in the review) and “save

mode” (in the response). This illustrates that CoRe can build implicit relations between the topi-
cal words in app descriptions and corresponding responses, which can help generate relevant and
accurate response given a review.

7.1.2 Retrieved Responses. NMT-based approaches tend to prefer high-frequency words in
the corpus, and the generated responses are often generic and not informative [14, 73, 76]. For
example, they may fail for the responses containing low-frequency words. In our experiment,
we find that 51,364/309,246 (16.61%) responses in the corpus contain low-frequency words
(frequency ≤ 100). Since similar reviews based on IR-based methods are generally related to the
same semantics, their responses could be semantically related and the words in the expected
responses (including the low-frequency ones) are also highly probable to appear in them. For
example, for the review in Figure 13, we retrieve most similar reviews with respect the semantics
(i.e., tf-idf representations in the article) from the training corpus. We only present the responses
of the top two similar reviews here for saving space. We can see that the low-frequency words
“localize” and “rss” (which is an abbreviation of Really Simple Syndication, a web feed that
allows users to access updates of websites in a standardized format) also appears in the retrieved

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:19

Fig. 12. A heatmap representing the alignment between the user review (left-top)/app description (left-
bottom) and generated response by CoRe (top). The columns represent the distribution over the user re-
view/app description after generating each word in the response. Darker colors indicate higher attention
weights and manifest a stronger correlation between the target word and source word. Red dotted rectan-
gles highlight partial topical words in corresponding texts.

response (i.e., Retrieved response-2). The words are ignored by RRGen but correctly predicted by
CoRe, since they appear in the retrieved responses and are effectively captured during attention
fusion (Section 3.2). In contrast, the response generated by RRGen is topically irrelevant to the
review, supposing the review is talking about “ads.” This exhibits that the retrieved responses in
CoRe are helpful for generating the responses with low-frequency words.

7.2 Automating the Combination of App Descriptions in CoRe

In CoRe, the input app descriptions require manual filtering to remove the sentences irrelevant to
the app functionalities. To render CoRe a fully end-to-end framework, we propose to automatically
extract keywords from app descriptions for replacing the manual filtering process. Specifically,
we adopt the RAKE algorithm [58] for automatic keywords extraction, with detailed steps shown
in Algorithm 1. RAKE first collects a set of candidate keywords at phrase delimiters and stop
word position and builds a graph of word co-occurrence for the candidate keywords (Lines 2 to
3). RAKE ranks the candidate keywords based on the degree and frequency of the vertices in the
graph (Lines 4 to 9). An example of the process is shown in Figure 14. We then replace the app

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:20 C. Gao et al.

Fig. 13. A user review with the generated response where CoRe can generate responses with low-frequency
words. The fonts in red are indicative of the low-frequency words (frequency ≤ 100), and the double-
underlined words mean they are topically irrelevant to the user review. Responses of the retrieved top two
reviews and the app description are also illustrated.

ALGORITHM 1: RAKE Algorithm.

Data: App description d .

Result: Extracted keywords.

1 Split d into an array of words arr (d);

2 Split d into a set of candidate keywords at phrase delimiters and stop

word position, denoted as Λ = (λ1, λ2, . . .);

3 Build a graph of word co-occurrence for the candidate keyword set Λ;

4 for w in arr (d) do

5 Compute the frequency f req(w) and degree deд(w), where

f req(w) is the number of candidate keywords containing w and

deд(w) is the total number of words in the candidate keywords

containing w ;

6 end

7 for λ in Λ do

8 Compute the ranking score sλ =
∑

w ∈λ
deд (w)
f r eq (w) ;

9 end

10 Return the first third of the ranked keyword candidates.

description sentences d with the corresponding extracted keywords as the input of CoRe during
experimentation and denote the new approach as CoRerake. The results are shown in Table 5. As
can be found, with only the keywords extracted from descriptions considered, CoRerake already
outperforms RRGen in terms of all evaluation metrics. Although the results of CoRerake are lower
than those of CoRe, they are rather close with respect to the Rouge-1 and METEOR scores. The

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:21

Fig. 14. Example of the extracted keywords for the Viber app using RAKE [58].

Table 5. Results of CoRe with the Keywords Automatically Extracted from App Descriptions

Model BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
RRGen 36.17 53.24 35.83 31.73 30.04 45.81 29.82 45.49 42.16

CoRerake-Retrieval 37.31 53.17 36.43 32.33 30.55 50.97 34.80 50.17 47.21
CoRerake 39.80 56.23 38.99 34.76 32.91 53.23 36.36 51.86 49.12

CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

“CoRerake” indicates CoRe with the keywords extracted from app descriptions as input, and “CoRerake-Retrieval”

means CoRerake without the retrieved responses considered, i.e., only considering the extracted keywords.

Table 6. Results of CoRe with Different Similarity Measurement Approaches Involved
During Retrieving Similar Reviews

Model BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
RRGen 36.17 53.24 35.83 31.73 30.04 45.81 29.82 45.49 42.16

CoReGloVe 39.42 55.46 38.55 34.46 32.76 53.15 36.86 52.07 49.34
CoReBERT 39.60 55.46 38.89 34.72 32.86 53.63 37.52 52.69 50.09

CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

“CoReGloVe” and “CoReBERT” indicate the CoRe with GloVe-based and BERT-based similarity measurement

approaches, respectively.

results indicate the effectiveness of the keywords that are automatically extracted from app
descriptions for the review response generation task, and we will further enhance the keyword
extraction component in the future.

7.3 Analysis of Different Retrieval Approaches

During retrieval of semantically similar reviews, we adopt the unigram tf-idf based similarity
assessment method, since it has been proven effective for other text retrieval tasks [47, 74].
However, the tf-idf representations are based on word frequencies, which may not well capture
the semantics of low-frequency words. Thus, we also explore more advanced similarity mea-
surement approaches, namely, word embeddings [52] and BERT [22]. Specifically, for the word
embedding-based approach, we compute the average 50-dimensional GloVe vectors [3] of the
words in each review as the review representation; while for the BERT-based approach, we first
use the pre-trained BERT to obtain 768-dimensional vectors of the reviews and then reduce the
dimension to 50 by using the PCA (principle component analysis) method [66]. We define the
dimension as 50 to save the time needed for computing millions of cosine similarities between the
review representations. For each approach, we take responses of the top 4 similar reviews as the
input of CoRe. The results are shown in Table 6. We observe that for all similarity measurement
approaches, CoRe outperforms the state-of-the-art baseline, RRGen. BERT-based approach shows
better performance than the GloVe-based approach with respect to all the evaluation metrics,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:22 C. Gao et al.

Table 7. Percentage Analysis for the Reviews of which the Similarity Scores with the Corresponding
Most Similar Reviews in the Training Dataset Are below a Similarity Threshold

Dataset
Similarity Threshold

<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9

Training 2.02% 2.43% 6.83% 22.70% 39.10% 50.05% 57.30% 62.95% 67.52%
Validation 1.88% 1.90% 4.50% 19.30% 35.80% 47.44% 59.98% 65.43% 70.06%

Test 2.12% 2.16% 4.85% 18.90% 35.60% 47.35% 59.95% 65.36% 69.59%

and even better than the tf-idf based approach considering the Rouge and METEOR scores.
This indicates that the similarity assessment method can impact the model performance, and
BERT-based method has an edge over the GloVe-based method. We will explore how to better
retrieve similar reviews for more accurate response generation in the future work.

7.4 Analysis of the Retrieved Responses

Due to the limited apps considered, the retrieved reviews may be irrelevant to the input reviews,
in which case the incorporated responses of CoRe could introduce bias into the corresponding
generated results. We analyze the similarity scores between the retrieved most similar reviews
and the given reviews, as shown in Table 7. Typically, values of cosine similarity greater than 0.5
mean that the examined vector representations have strong semantic relevancy [56]. According to
Table 7, more than 60% of the reviews possess similarity scores larger than 0.5 with the most similar
retrieved reviews, and only a small percentage of the reviews have similarity scores less than 0.1
on the training, validation, and test sets, respectively. We then conduct performance analysis on
the CoRe considering various similarity scores between the input reviews and retrieved reviews.
Specifically, we exclude the retrieved responses from the input of CoRe if the largest similarity
scores are lower than specific thresholds, i.e., only the app description is considered for response
generation. The results are shown in Table 8. We can observe that removing highly irrelevant re-
sponses, e.g., with similarity values less than 0.2, results in better performance than removing more
relevant responses, e.g., with similarity scores less than 0.9. The results demonstrate that incorpo-
rating relevant responses can benefit the model performance. However, excluding the responses
with similarity scores less than 0.1 does not boost performance. And still, involving the responses
without considering the similarity values achieves the best performance, which indicates that the
retrieved responses are helpful for the task despite the low relevancy. The phenomenon may be
because the retrieved responses could provide other hints such as the patterns or sentiment of the
generated responses besides topics/semantics of the given reviews.

7.5 Dataset Partition

In this article, we split dataset into training, validation, and test sets by following the prior study on
review response generation [27], i.e., splitting the dataset by review instead of by app. The dataset
partition strategy might cause information leakage from the training set apps into the validation or
test sets. Thus, we also evaluate the performance of CoRe based on the dataset split by app instead
of by review. Specifically, we randomly select 80%, 10%, and 10% of the studied apps as training
set, validation set, and test set, respectively. To ensure the reliability of the results, the random
selection process is conducted three times, and the average is computed. We also compare CoRe
with the best retrieval-based approach NNGen and the best generation-based approach RRGen.
The comparison results are shown in Table 9. We find that CoRe outperforms both baseline models,
and the performance of all the models decreases significantly, comparing to the performance when
splitting dataset by review. A reduced performance is reasonable, since less knowledge of the apps

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:23

Table 8. Results of CoRe with the Retrieved Responses Excluded when Their Largest
Similarity Scores Are below a Threshold

Threshold BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
0.0 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
0.1 40.50 57.69 40.57 36.33 34.60 53.05 36.67 51.68 49.24
0.2 40.50 57.70 40.57 36.33 34.60 53.05 36.68 51.68 49.24
0.3 40.43 57.67 40.56 36.32 34.60 52.97 36.62 51.62 49.15
0.4 40.14 57.42 40.39 36.19 34.47 52.49 36.30 51.18 48.65
0.5 39.79 56.82 39.89 35.75 34.04 51.89 35.89 50.66 48.19
0.6 39.60 56.41 39.55 35.45 33.74 51.53 35.67 50.38 47.94
0.7 39.47 56.14 39.30 35.22 33.51 51.32 35.51 50.21 47.78
0.8 39.45 55.98 39.16 35.08 33.36 51.22 35.44 50.13 47.73
0.9 39.38 55.85 39.03 34.95 33.22 51.13 35.36 50.05 47.66

The threshold “0.0” corresponds to CoRe with no retrieved responses removed.

Table 9. Comparison Results of Different Approaches Based on the Dataset Split by App

Model BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR

NNGen 3.07 31.57 6.76 1.78 0.52 28.33 6.11 19.80 18.32
RRGen 3.46 24.58 5.12 1.45 0.79 27.59 5.98 26.91 22.52

CoRe 7.14 30.06 9.39 4.84 2.80 29.58 9.94 27.53 24.51

in the test set will be learned during training. The phenomenon indicates that generating responses
for the reviews of unknown apps is more challenging, and we will try to tackle the challenge in
future work.

7.6 Study on the Impact of Trivial Responses

Trivial responses such as “Thank you” are not informative for users, and it makes little sense to
learn from or produce such responses through machine learning methods. Similar to Reference
[47], we manually derive some common patterns of trivial responses by skimming the responses
in the benchmark dataset. Table 10 presents our trivial response patterns. The proportions of the
identified trivial responses are 7,614 (2.72%), 415 (2.82%), and 398 (2.70%) in the training, validation,
and test sets, respectively. After removing the trivial responses, the performance of CoRe and the
baseline approaches are shown in Table 11. We choose the best retrieval-based model, NNGen,
and the best generation model, RRGen, as the baselines. We can find that removing the trivial
responses slightly reduces CoRe’s performance but increases the results of NNGen and RRGen
in terms of the Rouge and METEOR metrics. With respect to the BLEU-4 scores, although the
performance of RRGen and CoRe decreases, the decreasing degree is marginal. The phenomenon
may be attributed to the small percentage of the trivial responses in the benchmark dataset. Still,
among all the models, CoRe achieves the best results considering all evaluation metrics, which
further indicates the effectiveness of the proposed approach.

7.7 Analysis of Using BERT as Word Representations

In the work, we initiate the word embeddings with pre-trained GloVe vectors [3] in CoRe, which
may not be the optimal choice. We further analyze the model performance when using more ad-
vanced pre-trianed model BERT [22]. We first adopt the original pre-trained BERT model [1] to
obtain a 768-dimensional vector for each word in the vocabulary and then utilize PCA to reduce the
dimension to 25, 50, 100, and 200 for fair comparison with the GloVe vectors. The results are shown
in Table 12. We can find that CoRe achieves different performance with different dimensions and

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:24 C. Gao et al.

Table 10. Our Trivial Response Patterns

you are [always] welcome [<user>]

why? [what is wrong?]

we’ll fix this [<user>]

thank so much for your review [<user>]

thank you [<user>]

hello [<user>], any problem?

we be glad you be enjoy the <app>

thank [<user>/you] for [your] review/suggestion/comment/feedback

“[]” Means Optional, “/” Refers to “or,” “<user>” Indicates the User Name, and “<app>”

Is the App Name.

Table 11. Results on the Dataset with the Trivial Responses Removed

Threshold BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR

NNGen
14.91

(↑ 0.82)
36.02

(↑ 1.54)
14.71

(↑ 0.86)
10.41

(↑ 0.63)
9.19

(↑ 0.60)
34.38

(↑ 1.89)
13.17

(↑ 0.86)
27.00

(↑ 1.22)
25.99

(↑ 1.06)

RRGen
35.99

(↓ 0.18)
53.84

(↑ 0.60)
35.73

(↓ 0.10)
31.56

(↓ 0.17)
29.88

(↓ 0.16)
48.41

(↑ 2.60)
30.96

(↑ 1.14)
47.54

(↑ 2.05)
43.41

(↑ 1.25)

CoRe
40.32

(↓ 0.32)
56.25

(↓ 1.53)
39.50

(↓ 1.20)
35.41

(↓ 1.06)
33.60

(↓ 1.15)
53.39

(↓ 0.16)
36.88

(↓ 0.22)
52.12

(↓ 0.16)
49.37

(↑ 0.03)

The value inside each bracket indicates the change compared to using the whole responses.

Table 12. Results of Using BERT to Initialize the Word Embeddings

Dimension BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
25 39.01 55.35 38.23 34.02 32.17 52.46 35.87 51.21 48.65
50 39.93 56.24 39.15 34.88 33.09 53.00 36.38 51.85 48.63
100 39.23 55.19 38.54 34.30 32.48 53.48 37.34 52.41 49.75
200 39.68 55.55 38.91 34.77 33.00 53.35 37.22 52.31 49.47

shows relatively more promising results when the dimension is set to 50 or 100. Comparing with
the word embedding-based word representations, BERT-based approach (100-dimension) achieves
slightly better results in terms of the Rouge and METEOR metrics, but performs worse in terms
of the BLEU-4 score. Thus, we suppose that BERT-based word representations are also helpful
for accurate review response generation, but its advantage is not large as compared to the word
embedding-based representations.

7.8 Analysis of the Vocabulary Size

In this work, we directly follow the defined vocabulary size in Reference [27] for fair comparison,
but the parameter could also impact the model performance [45]. So, we analyze the model
performance when the considered vocabulary size ranges from 2,000 to 14,000 for the task. As
shown in Table 13, we can observe that CoRe could achieve better performance in terms of the
BLEU-4, Rouge and METEOR metrics, with a relatively small vocabulary size such as 4,000 or
6,000. This may be because the top 4,000 words already cover a significant proportion (∼99.17%)
in terms of the word frequencies, in spite of only accounting for a small percentage of the whole
vocabulary size (6.49%). With only the top 2,000 words involved, CoRe performs much worse

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:25

Table 13. Influence of the Vocabulary Size on the Model Performance

Vocab Size BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
2,000 39.33 55.71 38.55 34.31 32.47 52.64 36.11 51.43 48.60
4,000 41.06 57.17 40.33 36.06 34.19 53.93 37.73 52.96 49.91
6,000 40.83 56.82 40.10 35.92 33.98 54.21 37.84 53.33 50.38
8,000 40.61 57.11 39.99 35.65 33.73 53.28 36.80 52.34 49.18
10,000 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
12,000 40.26 56.42 39.50 35.28 33.42 53.63 37.33 52.41 49.80
14,000 40.34 56.16 39.58 35.44 33.60 53.95 37.74 52.90 50.34

than CoRe involving more top words, which indicates the importance of considering vocabulary
of sufficient size for the task.

7.9 Analysis of the Incorporation of Different Input Sources

CoRe can automatically learn the degree of the three input sources, i.e., user reviews, app de-
scriptions, and retrieved responses, are considered. According to Equation (15), CoRe captures the
incorporation weights of the vocabulary distributions from app descriptions d and retrieved re-
sponses r through the parameter γt at a decoder step t . CoRe also obtains the combined degrees of
the user reviews via the parameter θt in Equation (16). We use an example, as shown in Figure 15,
to elaborate the capacity of CoRe in adaptively combining the three input sources. We can observe
that some words in the response output by CoRe are from the app description and some from the
retrieved responses, with the words highlighted in Figure 15(a). We then normalize and visualize
the attention distribution weights for the review, app description, and retrieved responses, as il-
lustrated in Figure 15(b). We can find that the three input sources contribute to the generation of
the response words in varied degrees. For example, the app description plays the greatest role in
generating the words “local” and “international”; while the retrieved responses help most to pro-
duce the words “homescreen” and “arrow.” The example indicates that CoRe can integrate the three
input sources with differing weights during the generation of responses.

7.10 Analysis of the Human Evaluation Results

The human evaluation results show that the responses generated by CoRe are more preferred by
the participants than the developers’ responses. We find that the responses produced by CoRe re-
ceive better ratings from the participants than developers’ responses for 34, 34, 35, and 35 of the
studied reviews in terms of the average “grammatical fluency,” “relevance,” “accuracy,” and “prefer-

ence rank” metric values, respectively. The first and second authors then perform an elaborative
analysis of the cases and discover that CoRe’s responses describe more details or more concrete
topics than the corresponding developers’ responses. Figure 16 depicts two examples. In the first
example, we can find that CoRe’s response is clearly related to the user-concerned topic “water-

mark,” while the developer’s response does not address the user issue concretely and seems like
a bot message. For the second example, CoRe’s response provides an explanation about how the
user can provide more detailed information, i.e., by providing a “screenshot,” while the developer’s
response simply asks the user to forward more details without any further suggestion. The finding
also inspires us to generate responses containing more detailed descriptions in the future work.

7.11 Analysis of the Defined Maximum Sequence Length

In this work, we define the maximum sequence length for reviews and responses as 200 following
the prior work cited in Reference [27]. However, the maximum sequence length setting could

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:26 C. Gao et al.

Fig. 15. An example for illustrating the capability of CoRe in incorporating the three input sources differently.

impact the performance of the basic NMT model [15]. Generally, the maximum sequence lengths
for both source and target sequences are set between 50 to 100 [15, 39, 60]. To analyze the influence
of different sequence lengths on model performance, we set the maximum sequence length at 100
tokens for the target responses, since 100 is the largest preferred maximum length used by NMT in
natural language translation [39] and all the responses in the dataset have fewer than 100 tokens.
For the review sequences, we choose two settings: one is 200 and another is 100. We pick these two
settings because 100% and 98.9% reviews in the dataset are with fewer than 200 and 100 tokens,
respectively. The results are illustrated in Table 14. We can find that the maximum sequence lengths
can impact the model performance. For example, with the maximum sequence lengths set at 100
for both reviews and responses, the BLEU-4 score shows a slight increase compared to setting

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:27

Fig. 16. Two examples about the responses generated by CoRe are rated higher than the developers’ re-
sponses during the human evaluation.

Table 14. Influence of the Maximum Sequence Length Settings on the Model Performance

Review Seq.
Length

Response
Seq. Length

BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR

100 100 40.73 56.59 39.86 35.83 34.06 53.26 37.18 51.91 49.28
200 100 39.75 55.98 38.95 34.77 32.93 53.09 36.56 51.75 49.26
200 200 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

both parameters as 200. Since many configurations of the parameter are possible, optimizing the
maximum review/response lengths for generating responses is an area of future work.

7.12 Analysis on the Impact of Contextual Information on the Generated Responses

According to Table 2, CoRe with only the app description achieves similar performance as CoRe
with only the retrieved responses. To investigate further the difference between the responses
produced by the two approaches, the first two authors manually check the generated responses
by the two approaches. We find that CoRe with only the app description tends to integrate simple
reference of the app functionalities in the generated responses, while CoRe with only the retrieved
responses could generate responses with similar patterns as the retrieved ones. An example is
illustrated in Figure 17. We can observe that by combining the app description, the generated
response contains sentences related to the app functionalites, e.g., “clean cache, clean junk file,”
When integrating the retrieved responses, CoRe would learn to capture the topics/pattern from the
retrieved responses, e.g., “We notice that you ... We’d like to know if you encounter any issue when

use or the reason you dislike it” in the Retrieved Response-1, for the response generation. Although

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:28 C. Gao et al.

Fig. 17. One example for illustrating the difference between the responses generated by the CoRe without the
retrieved responses and the CoRe without the app description. The red fonts indicate the words describing
the app functionalites.

the two generated responses are generally similar in semantics, they are slightly different in the
descriptions.

7.13 Developer Survey

To obtain developers’ opinions about the generated responses by CoRe, we tried to get in touch
with the developers of the studied apps through the official emails collected from Google Play.
Since some of the 58 subject apps could not be accessed in Google Play, we only collected the de-
velopers’ emails for 43 apps. We then sent emails to these app developers, in which we provided
two examples of the generated responses of the corresponding apps and asked their opinions about
the quality of the generated responses. Unfortunately, no feedback was received within two weeks.
So, we contacted 12 industry practitioners from the engineering department in several IT compa-
nies such as ByteDance and Pinduoduo and asked their help to assess the quality of the generated
responses.

Specifically, we design a short survey that contains two questions that ask them about their
background, six questions about the quality of the generated responses, and one question about
their willingness of adopting our tool in practical development. The 12 participants include six
developers, five algorithm engineers, and one test engineer. Around 83.3% (10/12) have more than
one year of software engineering experience. For each question about rating the quality of the gen-
erated response, we provide a randomly selected review and the corresponding response produced
by CoRe and ask the participants to rate the quality on a 1–5 Likert scale [43] (5 for excellent, 4 for
good, 3 for undecided, 2 for marginal, and 1 for poor). We only ask six questions about the quality
of the generated responses for the purpose of saving the participants’ time. The collected results
show that 83.3%∼91.7% of the participants rate each of the six generated responses as good or ex-
cellent. For the last question, the willingness to adopt our tool is also scored on 1–5 Likert scale

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:29

Table 15. Results of CoRe with Retrieved Reviews Incorporated

Model BLEU-4 p1 p2 p3 p4 Rouge-1 Rouge-2 Rouge-L METEOR
NMT 21.61 40.55 20.75 16.78 15.47 36.13 15.47 35.80 29.27

NMT+Reviews 21.12 39.82 20.31 16.37 15.02 39.59 20.53 37.97 34.50

CoRe-Retrieval 38.65 54.73 37.91 33.71 31.90 52.39 36.12 51.31 49.26
CoRe-Retrieval

+Reviews
38.22 55.51 37.98 33.66 31.77 51.53 34.98 50.32 47.16

CoRe-Description 38.58 54.00 36.71 32.55 30.71 52.36 35.85 51.05 48.54
CoRe-Description

+Reviews
38.41 54.87 37.64 33.40 31.54 51.94 35.46 50.68 47.74

CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
CoRe+Reviews 40.26 56.29 39.47 35.31 33.48 53.54 37.17 52.26 49.75

Fig. 18. An example of the generated responses with the retrieved responses involved.

(5 for strong agreement, 4 for agreement, 3 for undecided, 2 for disagreement, and 1 for strong
disagreement). We find that 83.3% of the participants express that they strongly agree or agree
to use CoRe in practical development. The results demonstrate that the quality of the responses
generated by CoRe is acceptable and potentially beneficial for developers in practice.

7.14 Analysis of Incorporating the Retrieved Reviews

The design of CoRe considers the retrieved responses during the response generation. However,
the retrieved similar reviews may also be useful, since they could provide hints about the described
topics. We then conduct experiments by considering user reviews as additional contextual knowl-
edge. The results are illustrated in Table 15. As can be seen, with the similar reviews incorporated,
CoRe’s performance does not improve substantially and becomes worse in terms of the BLEU-4
and Rouge metrics. CoRe with only app description and CoRe with only the retrieved responses
also demonstrate the same trends, i.e., integrating the similar reviews does not benefit the model
performance. Although combining NMT with the similar reviews enhances the results of NMT in
terms of the Rouge and METEOR scores, the BLEU-4 score is not improved. The unimproved re-
sults may be attributed to the fact that the retrieved similar reviews may involve unrelated topics,
which could introduce noise. As shown in Figure 18, the retrieved reviews are obviously irrelevant
to the given review, so the generated response with the incorporated review does not correctly an-
swer the given review. Since the relevancy between the retrieved reviews and given reviews could
affect the model performance, we will investigate how to retrieve and employ relevant reviews for
more accurate response generation in the future work.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:30 C. Gao et al.

Table 16. Predicted Results of the Cross
Evaluation of the Quality Assurance Filter

Predicted Results
Actual Labels
Not Bad Bad

Predicted
Labels

Not Bad 73 15
Bad 5 7

7.15 Limitations of CoRe

Although the proposed CoRe enhances the performance of review reply generation, CoRe does
not handle two case types well, including the reviews that do not require responses and the re-
views with poor responses generated by CoRe. For the first case, we refer readers to the work on
summarizing which review features spur the responses [34, 63]. In this work, we are more focused
on the subsequent behavior for developers, i.e., responding to the reviews requiring responses.
For the second case type, we design a quality assurance filter based on the manually annotated
review-response pairs in Section 6 to automatically learn the cases in which the proposed CoRe
does not perform well. The poorly generated responses can be delegated to developers for further
inspection before posting.

Filter Design: The proposed quality assurance filter contains three main steps. We first prepare
the gold set for filter training. We employ the involved reviews and the corresponding responses
generated by CoRe in the human evaluation as our gold set. Each review and the corresponding
generated message are associated with scores that indicate the extent of accuracy to reply to the re-
view (as shown in Figure 10). To be conservative, we labeled the reviews that receive the “accuracy”
score of one, two, or three from one annotator as “bad” and all the other reviews as “not bad.” Then,
we extract the unigram tf-idf representations of the reviews as the features, since tf-idf has been
widely used in natural language processing for feature representation [23, 69]. We finally train a
Gaussian kernel SVM using stochastic gradient descent (SGD) as the learning algorithm based
on the dataset of reviews and their labels. The trained SVM will be adopted to predict whether the
CoRe model generates a “bad” response for a user review.

Filter Performance: We split gold set into 10 folds based on stratified shuffle. For each fold, we
train an SVM model on the other 9 folds and test the SVM model on the 1 fold. We finally obtained
the test results for every fold. Table 16 shows the predicts of all the folds. In terms of detecting
reviews for which the CoRe model will generate “bad” responses, the filter has 83.0% precision and
93.6% recall. Furthermore, it can reduce 31.8% of the “bad” responses. The results demonstrate the
usefulness of the proposed filter component for detecting the poorly generated responses. We also
deployed the trained filter to the test set used in Section 5 and observed that the model performance
showed 40.55 in terms of BLEU-4 score with 2,106/14,727 (14.3%) “bad” responses removed, which
is slightly higher than the BLEU-4 score (40.34) reported in our earlier experiment using all the test
samples. Developers can focus on examining the “bad” responses during using the proposed CoRe
model. For the other reviews, developers can directly adopt the responses generated by CoRe.

Discussion on the Bad Cases. As can be seen in Table 5, 22 responses are labeled as “bad”
by the quality assurance filter. The first two authors then skim through the “bad” cases to further
inspect the reasons behind the “bad” performance. We find that most responses are semantically
consistent with the given reviews, but may dissatisfy users for the following three reasons:

(1) It asks users to raise the review rating: In the 22 “bad” responses, 5 are about asking users
to increase the rating, e.g., “Hi there, thanks a lot for your continuous support. If you rate <app>
with 5 stars, it will really encourage us. Thank you..” Such responses generally respond to positive

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:31

feedback, such as “It’s the best camera app.” We find that among the 5 positive reviews, 4 are rated
below 4 stars. The responses reflect the importance of ratings to developers. Although asking users
to increase their given rating in responses is common for app developers [34], such responses may
not actually satisfy the users. For example, according to Reference [34], only 2.4% of users increase
the rating after a developer asks for a rating increase.

(2) It asks for more details about the reported issues based on template: We find that asking
users for more details about the reported issues accounts for the largest proportion (59.1%, 13/22)
among the responses, which is similar to the finding in Reference [34]. Such responses seem to be
template-based, e.g., “Thanks for your feedback. We always try to improve to keep our user happy. If

you have any suggestion for us on how we can do better, please let us know. Thanks..” Without specific
details included, users may feel unsatisfied with the responses.

(3) It provides insufficient details for solutions to the provided issues: For the other four cases,
they are all about providing guidance to users to solve their issues. The solutions may not be
sufficient for users to solve the problems. For example, one review complained that “...I still didn’t

know about saving picture with its actual size. Always the picture is compressed to a smaller size after

editing...,” the generated response is “...You can solve this issue by going to your device’s setting about

the maximum image size and clicking on the preferred image size....” Although a solution is provided
in the generated response, the users may still be unclear about the detailed steps for the setting.
More detailed steps for solving the reported issues could satisfy the users more.

7.16 Threats to Validity

There are three main threats to the validity of our study.

(1) The scale of dataset. We directly use the publicly released data of RRGen provided by their
authors. The data include only review-response pairs of 58 free apps from Google Play Store.
The limited categories and number of studied apps may influence the generalization of the
proposed CoRe. Since the dataset is the only one with huge quantities of review-response
pairs at this time, we will eliminate this threat as soon as larger-scale datasets are publicly
available.

(2) The retrieved reviews may not always present high similarities. One of the reasons may
be the similarity measurement approach is simply based on tf-idf representations, in which
the tf-idf may not be the best approach to represent the semantics of the review texts [52].
Another reason is the available review-response pairs may be limited. Since involving more
complex approach for retrieving similar reviews could increase the burden of model train-
ing and the effectiveness of tf-idf in review representation has already been demonstrated
in Reference [69], we investigate the lightweight tf-idf approach in the article. We will ex-
plore the impact of different retrieval approaches and datasets on automatic review response
generation in the future.

(3) Bias in manual inspection. We invite 20 participants to evaluate the quality of 100 randomly
selected review-response pairs. We cannot guarantee that the judgments fully reflect ordi-
nary app users’ perceptions of the responses. However, the participants also belong to ordi-
nary app users and are familiar with most studied app categories. Additionally, a majority of
them have the experience of skimming app reviews or developers’ replies, which makes us
more confident about their judgments. Besides, the results of the human evaluation can be
impacted by the participants’ experience and their understanding of the evaluation metrics.
To mitigate the bias in manual inspection, we ensure that each review-response pair was
evaluated by five different participants. Besides, we randomly disrupt the order of the three
types of responses for each review, so the influence of participants’ prior knowledge about
the response orders is eliminated.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:32 C. Gao et al.

8 RELATED WORK

We split the related work into three categories: (1) the work that conducts app review mining; (2)
the work that analyzes user-developer dialogue; and (3) the work that generates conversational
short text.

8.1 App Review Mining

App reviews are a valuable resource provided directly by the customers, which can be exploited
by app developers during the bug-fixing [12] and feature-improving process [25]. The essence of
app review mining lies in the effective extraction and summarization of the useful information
from app reviews. Iacob et al. [37] manually label 3,278 reviews of 161 apps into nine classes
and discover that 23.3% of the feedback constitutes requirements from users, e.g., various issues
encountered by users. Due to the ever-increasing amount of reviews, previous studies resort to
generic NLP techniques to automate the information extraction process. For example, Iacob and
Harrison [36] use pre-defined linguistic rules for retrieving feature requests from app reviews. Di
Sorbo et al. [62] build a two-level classifiers to summarize the enormous amount of information in
user reviews, where user intentions and review topics are, respectively, classified. Developers can
learn feature requests and bug reports more quickly when presented with the summary. References
[67], [18], [25], and [69], and so on, employ unsupervised clustering methods to prioritize user
reviews for better app release planning. Nayebi, Farrahi, and Ruhe [53] adopt app reviews besides
other release attributes for predicting release marketability and determining which versions to be
released.

Another line of work on app review mining is about predicting user sentiment towards the app
features or functionalities [29, 31, 32, 49]. For example, Guzman et al. [32] use topic modeling
techniques to group fine-grained features into more meaningful high-level features and then pre-
dict the sentiment associated with each feature. Instead of treating reviews as bags-of-words (i.e.,
mixed review categories), Gu and Kim [31] only consider the reviews related to aspect evaluation
and then estimate the aspect sentiment based on a pattern-based parser.

8.2 Analysis of User-developer Dialogue

Analysis of user developer dialogue explores the rich interplay between app customers and their
developers [24]. Oh et al. [54] discover that users tend to take a passive action such as uninstalling
apps when their request (e.g., user reviews) would take long time to be responded or receive
no response. Srisopha et al. [63] investigate which features of user reviews spur developers’ re-
sponses and find that ratings, review length, and the proportions of positive and negative words
are the most important features to predict developer responses. Both McIlroy et al. [51] and Has-
san et al. [34]’s studies observe the positive impact of developers’ responses on user ratings, for
example, users would change their ratings 38.7% of the time following a response. To alleviate the
burden in the responding process, Gao et al. [27] propose an NMT-based approach named RRGen
for automatically generating the review responses.

8.3 Short Text Conversation Generation

Short text conversation is one of the most challenging natural language processing problems,
involving language understanding and utilization of common sense knowledge [61]. Short text
conversation can be formulated as a ranking or a generation problem. The former formulation
aims at learning the semantic matching relations between conversation histories and responses
in the knowledge base, and retrieving the most relevant responses from the base for the current
conversation. Ranking-based approaches have the advantage of returning fluent and informative

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

Automating App Review Response Generation Based on Contextual Knowledge 11:33

responses, but may fail to return any appropriate responses for those unseen conversations. The
generation-based formulation treats generation of conversational dialogue as a data-driven statis-

tical machine translation (SMT) [17, 57] and has been boosted by the success of deep learning
models [64] and reinforcement learning approaches [41]. Gao et al. [28] perform a comprehensive
survey of neural conversation models in this area. The major problem of the generation-based
approaches is that the generated responses are often generic and not informative due to the
lack of grounding knowledge [73]. In this work, we propose to integrate contextual knowledge,
including app descriptions and retrieved responses, for accurate review response generation.

9 CONCLUSIONS AND FUTURE WORK

This article proposes CoRe, a novel framework aiming at automatically generating accurate re-
sponses for user reviews and thereby ensuring a good user experience of the mobile applications.
We present that employing app descriptions and the responses of similar user reviews in the train-
ing corpus, as contextual knowledge is beneficial for generating high-quality responses. Both au-
tomated quantitative evaluation and human evaluation show that the proposed model CoRe signif-
icantly outperforms the baseline models. The encouraging experimental results demonstrate the
importance of involving contextual knowledge for accurate review response generation. We also
analyze the advantages and limitations in this work, and we plan to address the latter in the future.

ACKNOWLEDGMENTS

Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National Research Foundation, Singapore. This
work is a non-Huawei service achievement.

REFERENCES

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2021. BERT repository. Retrieved from https:

//github.com/huggingface/transformers.

[2] Google Inc. 2021. Character limit in Google Play. Retrieved from https://support.google.com/googleplay/android-

developer/answer/9859152.

[3] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representa-

tion. Retrieved from https://nlp.stanford.edu/projects/glove/.

[4] Facebook Community Bot. 2021. PyTorch. Retrieved from https://github.com/pytorch/pytorch.

[5] Apple Inc. 2021. Ratings, reviews, and responses in App Store. Retrieved from https://developer.apple.com/app-store/

ratings-and-reviews/.

[6] Tencent Inc. 2021. Tencent online questionnaire. Retrieved from https://wj.qq.com/.

[7] Google Inc. 2021. View and analyze your app’s ratings and reviews. Retrieved from https://support.google.com/

googleplay/android-developer/answer/138230?hl=en.

[8] SOKO Media. 2019. App download and usage statistics (2019). Retrieved from https://www.businessofapps.com/data/

app-statistics/.

[9] Statista Inc. 2019. Number of apps available in leading app stores. Retrieved from https://www.statista.com/statistics/

276623/number-of-apps-available-in-leading-app-stores/.

[10] S. Ejaz Ahmed.2006. Effect sizes for research: A broad application approach. Technometrics 48, 4 (2006), 573.

[11] Afnan A. Al-Subaihin, Federica Sarro, Sue Black, Licia Capra, Mark Harman, Yue Jia, and Yuanyuan Zhang. 2016.

Clustering mobile apps based on mined textual features. In Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement. ACM, 38:1–38:10.

[12] Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. 2013. Trustrace: Mining software repositories to improve

the accuracy of requirement traceability links. IEEE Trans. Softw. Eng. 39, 5 (2013), 725–741.

[13] App Revenue. 2018. Mobile app usage. Retrieved from https://www.statista.com/topics/1002/mobile-app-usage/.

[14] Philip Arthur, Graham Neubig, and Satoshi Nakamura. 2016. Incorporating discrete translation lexicons into neu-

ral machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.

1557–1567.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

https://github.com/huggingface/transformers
https://support.google.com/googleplay/android-developer/answer/9859152
https://nlp.stanford.edu/projects/glove/
https://github.com/pytorch/pytorch
https://developer.apple.com/app-store/ratings-and-reviews/
https://wj.qq.com/
https://support.google.com/googleplay/android-developer/answer/138230?hl=en
https://www.businessofapps.com/data/app-statistics/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/topics/1002/mobile-app-usage/

11:34 C. Gao et al.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to

align and translate. In Proceedings of the 3rd International Conference on Learning Representations.

[16] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved cor-

relation with human judgments. In Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for

Machine Translation and/or Summarization@ACL 2005, Jade Goldstein, Alon Lavie, Chin-Yew Lin, and Clare R. Voss

(Eds.). Association for Computational Linguistics, 65–72.

[17] Grace Chen, Emma Tosch, Ron Artstein, Anton Leuski, and David R. Traum. 2011. Evaluating conversational charac-

ters created through question generation. In Proceedings of the 24th International Florida Artificial Intelligence Research

Society Conference.

[18] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang. 2014. AR-miner: Mining informative

reviews for developers from mobile app marketplace. In Proceedings of the 36th International Conference on Software

Engineering, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 767–778.

[19] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.

In Proceedings of the Conference on Empirical Methods in Natural Language Processin. 1724–1734.

[20] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recur-

rent neural networks on sequence modeling. CoRR abs/1412.3555 (2014).

[21] Adelina Ciurumelea, Andreas Schaufelbühl, Sebastiano Panichella, and Harald C. Gall. 2017. Analyzing reviews and

code of mobile apps for better release planning. In Proceedings of the IEEE 24th International Conference on Software

Analysis, Evolution and Reengineering. 91–102.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics,

4171–4186.

[23] Yuanrui Fan, Xin Xia, David Lo, and Ahmed E. Hassan. 2020. Chaff from the wheat: Characterizing and determining

valid bug reports. IEEE Trans. Softw. Eng. 46, 5 (2020), 495–525.

[24] Anthony Finkelstein, Mark Harman, Yue Jia, William J. Martin, Federica Sarro, and Yuanyuan Zhang. 2017. Investi-

gating the relationship between price, rating, and popularity in the BlackBerry World app store. Inf. Softw. Technol.

87 (2017), 119–139.

[25] Cuiyun Gao, Baoxiang Wang, Pinjia He, Jieming Zhu, Yangfan Zhou, and Michael R. Lyu. 2015. PAID: Prioritizing app

issues for developers by tracking user reviews over versions. In Proceedings of the 26th IEEE International Symposium

on Software Reliability Engineering. IEEE Computer Society, 35–45.

[26] Cuiyun Gao, Jichuan Zeng, Michael R. Lyu, and Irwin King. 2018. Online app review analysis for identifying emerging

issues. In Proceedings of the 40th International Conference on Software Engineering, Michel Chaudron, Ivica Crnkovic,

Marsha Chechik, and Mark Harman (Eds.). ACM, 48–58.

[27] Cuiyun Gao, Jichuan Zeng, Xin Xia, David Lo, Michael R. Lyu, and Irwin King. 2019. Automating app review response

generation. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. IEEE,

163–175.

[28] Jianfeng Gao, Michel Galley, and Lihong Li. 2019. Neural approaches to conversational AI. Found. Trends Inf. Retr. 13,

2-3 (2019), 127–298.

[29] Necmiye Genc-Nayebi and Alain Abran. 2017. A systematic literature review: Opinion mining studies from mobile

app store user reviews. J. Syst. Softw. 125 (2017), 207–219.

[30] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C. Gall. 2018. Exploring the integration of user feedback

in automated testing of Android applications. In Proceedings of the IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER’18). 72–83. DOI:https://doi.org/10.1109/SANER.2018.8330198

[31] Xiaodong Gu and Sunghun Kim. 2015. What parts of your apps are loved by users? (T). In Proceedings of the 30th

IEEE/ACM International Conference on Automated Software Engineering. 760–770.

[32] Emitza Guzman and Walid Maalej. 2014. How do users like this feature? A fine grained sentiment analysis of app re-

views. In Proceedings of the IEEE 22nd International Requirements Engineering Conference, Tony Gorschek and Robyn R.

Lutz (Eds.). IEEE Computer Society, 153–162.

[33] Mark Harman, Afnan A. Al-Subaihin, Yue Jia, William Martin, Federica Sarro, and Yuanyuan Zhang. 2016. Mobile

app and app store analysis, testing and optimisation. In Proceedings of the International Conference on Mobile Software

Engineering and Systems. 243–244.

[34] Safwat Hassan, Chakkrit Tantithamthavorn, Cor-Paul Bezemer, and Ahmed E. Hassan. 2018. Studying the dialogue

between users and developers of free apps in the Google Play Store. Empir. Softw. Eng. 23, 3 (2018), 1275–1312.

[35] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th

Conference on Program Comprehension, Foutse Khomh, Chanchal K. Roy, and Janet Siegmund (Eds.). ACM, 200–210.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

https://doi.org/10.1109/SANER.2018.8330198

Automating App Review Response Generation Based on Contextual Knowledge 11:35

[36] Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile apps feature requests from online reviews.

In Proceedings of the 10th Working Conference on Mining Software Repositories. 41–44.

[37] Claudia Iacob, Varsha Veerappa, and Rachel Harrison. 2013. What are you complaining about?: A study of online

reviews of mobile applications. In Proceedings of the 27th International BCS Human Computer Interaction Conference.

[38] Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An information retrieval approach to short text conversation. CoRR

abs/1408.6988 (2014).

[39] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generating commit messages from diffs using

neural machine translation. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 135–146.

[40] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for stochastic optimization. In Proceedings of the 3rd

International Conference on Learning Representations, Yoshua Bengio and Yann LeCun (Eds.).

[41] Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. 2016. Deep reinforcement learning

for dialogue generation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Jian

Su, Xavier Carreras, and Kevin Duh (Eds.). The Association for Computational Linguistics, 1192–1202.

[42] Petro Liashchynskyi and Pavlo Liashchynskyi. 2019. Grid search, random search, genetic algorithm: A big compari-

son for NAS. arXiv preprint arXiv:1912.06059 (2019).

[43] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of Psychology 140:5–55.

[44] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Proceedings of the Text summariza-

tion branches out (ACL-04). 8:74–81.

[45] Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2020. On the replicability and reproducibil-

ity of deep learning in software engineering. arXiv preprint arXiv:2006.14244 (2020).

[46] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How NOT

to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response

generation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Jian Su, Xavier

Carreras, and Kevin Duh (Eds.). The Association for Computational Linguistics, 2122–2132.

[47] Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and Xinyu Wang. 2018. Neural-machine-

translation-based commit message generation: How far are we? In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering. 373–384.

[48] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Automatic generation of pull request

descriptions. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. IEEE,

176–188.

[49] Washington Luiz, Felipe Viegas, Rafael Odon de Alencar, Fernando Mourão, Thiago Salles, Dárlinton Carvalho,

Marcos André Gonçalves, and Leonardo C. da Rocha. 2018. A feature-oriented sentiment rating for mobile app

reviews. In Proceedings of the World Wide Web Conference on World Wide Web. 1909–1918.

[50] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cam-

bridge University Press.

[51] Stuart McIlroy, Weiyi Shang, Nasir Ali, and Ahmed E. Hassan. 2017. Is it worth responding to reviews? Studying the

top free apps in Google Play. IEEE Softw. 34, 3 (2017), 64–71.

[52] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed representations

of words and phrases and their compositionality. In Proceedings of the 27th Annual Conference on Neural Information

Processing Systems. 3111–3119.

[53] Maleknaz Nayebi, Homayoon Farrahi, and Guenther Ruhe. 2017. Which version should be released to app store?

In Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Ayse

Bener, Burak Turhan, and Stefan Biffl (Eds.). IEEE Computer Society, 324–333.

[54] Jeungmin Oh, Daehoon Kim, Uichin Lee, Jae-Gil Lee, and Junehwa Song. 2013. Facilitating developer-user interac-

tions with mobile app review digests. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing

Systems, Wendy E. Mackay, Stephen A. Brewster, and Susanne Bødker (Eds.). ACM, 1809–1814.

[55] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A method for automatic evaluation

of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics

311–318.

[56] Gerasimos Razis, Georgios Theofilou, and Ioannis Anagnostopoulos. 2021. Latent Twitter image information for

social analytics. Information 12, 2 (2021), 49.

[57] Alan Ritter, Colin Cherry, and William B. Dolan. 2011. Data-driven response generation in social media. In Proceed-

ings of the Conference on Empirical Methods in Natural Language Processing. 583–593.

[58] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic keyword extraction from individual

documents. Text Mining: Applic. Theor. 1 (2010), 1–20.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

11:36 C. Gao et al.

[59] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-generator

networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Regina Barzilay

and Min-Yen Kan (Eds.). Association for Computational Linguistics, 1073–1083.

[60] Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler, Marcin Junczys-

Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone, Jozef Mokry, and Maria Nadejde. 2017. Nematus: A toolkit

for neural machine translation. In Proceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics, Andre Martins and Anselmo Peñas (Eds.). Association for Computational Linguistics,

65–68.

[61] Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. In Pro-

ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing of the Asian Federation of Natural Language Processing. The Association

for Computer Linguistics, 1577–1586.

[62] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Corrado Aaron Visaggio, Gerardo

Canfora, and Harald C. Gall. 2016. What would users change in my app? Summarizing app reviews for recommend-

ing software changes. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering. 499–510.

[63] Kamonphop Srisopha, Devendra Swami, Daniel Link, and Barry W. Boehm. 2020. How features in iOS app store

reviews can predict developer responses. In Proceedings of the Evaluation and Assessment in Software Engineering

Conference, Jingyue Li, Letizia Jaccheri, Torgeir Dingsøyr, and Ruzanna Chitchyan (Eds.). ACM, 336–341.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proceed-

ings of the Annual Conference on Neural Information Processing Systems. 3104–3112.

[65] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. 2010. Sentiment in short strength

detection informal text. J. Assoc. Inf. Sci. Technol. 61, 12 (2010), 2544–2558.

[66] Michael E. Tipping and Christopher M. Bishop. 1999. Probabilistic principal component analysis. J. Roy. Statist. Soc.:

Series B (Statist. Methodol.) 61, 3 (1999), 611–622.

[67] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimiliano Di Penta. 2016. Release planning

of mobile apps based on user reviews. In Proceedings of the 38th International Conference on Software Engineering,

Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM, 14–24.

[68] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In Proceedings of the Annual Conference

on Neural Information Processing Systems. 2692–2700.

[69] Phong Minh Vu, Tam The Nguyen, Hung Viet Pham, and Tung Thanh Nguyen. 2015. Mining user opinions in mo-

bile app reviews: A keyword-based approach (T). In Proceedings of the 30th IEEE/ACM International Conference on

Automated Software Engineering, Myra B. Cohen, Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society,

749–759.

[70] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Breakthroughs in Statistics. Springer, 196–202.

[71] Sixing Wu, Ying Li, Dawei Zhang, Yang Zhou, and Zhonghai Wu. 2020. Diverse and informative dialogue generation

with context-specific commonsense knowledge awareness. In Proceedings of the 58th Annual Meeting of the Associa-

tion for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association

for Computational Linguistics, 5811–5820.

[72] Zhizheng Wu and Simon King. 2016. Investigating gated recurrent networks for speech synthesis. In Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 5140–5144.

[73] Liu Yang, Junjie Hu, Minghui Qiu, Chen Qu, Jianfeng Gao, W. Bruce Croft, Xiaodong Liu, Yelong Shen, and Jingjing

Liu. 2019. A hybrid retrieval-generation neural conversation model. In Proceedings of the 28th ACM International

Conference on Information and Knowledge Management. ACM, 1341–1350.

[74] Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. 2016. Combining word embedding with information

retrieval to recommend similar bug reports. In Proceedings of the 27th IEEE International Symposium on Software

Reliability Engineering. IEEE Computer Society, 127–137.

[75] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. 2019. A review of recurrent neural networks: LSTM cells

and network architectures. Neural Comput. 31, 7 (2019), 1235–1270.

[76] Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham Neubig, and Satoshi Nakamura. 2018. Guiding neural ma-

chine translation with retrieved translation pieces. In Proceedings of the Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies. 1325–1335.

Received October 2020; revised March 2021; accepted May 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 11. Publication date: October 2021.

