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Abstract

Chinese information processing technique is one of the important aspects in the
computer science research because Chinese is one of the popular languages
besides English, especially in the Asia Pacific region. The number of electronic
Chinese documents is growing rapidly due to the fast expansion of the Internet.
There is an urgent demand on techniques for Chinese information retrieval and
archiving. In our research, we propose a generic Chinese PAT tree in handling
Chinese documents. By applying our generic Chinese PAT tree, we develop a

system framework for Chinese documents clustering.

PAT tree is a compact structure that can represent documents efficiently. The
PAT tree structure has also been applied to Chinese documents. The Chinese PAT
tree is derived to provide basic functionality in handling Chinese documents. We
propose a generic Chinese PAT tree that features the new concept of Essential
Node to improve the capability of the structure. The generic Chinese PAT tree can
capture information for document phrase for various purposes like segmentation,
word extraction, clustering, etc. With the concept of Essential Node, every
Chinese phrase in the document must be associated with a unique tree node. This
makes our generic Chinese PAT tree capable of handling Chinese phrases of

correct syntax properly. We evaluate the performance of various PAT trees. The
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result shows that our generic PAT tree approach consumes not much higher
computation time than the other PAT tree structures. Theoretically, our generic
Chinese PAT tree has the same storage and runtime complexity as the other PAT

trees. It is a O(m) structure that can perform searching in O(logn) and

traversing in O(#n) on average.

During the study of PAT tree, we discover a critical issue of large
computation overhead when using the “dynamic memory” implementation for the
PAT tree. We consequently propose a node production factory implementation
approach that can overcome this problem. Our evaluation shows that the PAT tree
structure using the node production factory implementation approach is practical

and feasible.

With the help of the generic Chinese PAT tree, we define a system
framework for Chinese documents clustering. The framework benefits from the
generic Chinese PAT tree in handling Chinese documents. We identify base
clusters from the documents collections. The system analyzes and filters the base
clusters to combine the result into final clusters of documents. From our
documents clustering experiment, our clustering framework is capable of
discovering large clusters and clusters with outstanding topics from the documents
collection. We further evaluate our clustering framework with documents
collection under different situations. The evaluation shows that using part of
documents as the abstract can produce suitable clustering result in faster response
time. The result provides positive argument to employ our proposed documents

clustering framework into the online Web environment in the future.
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Chapter 1

Introduction

Chinese information processing technique is an important aspect in the computer
science research because Chinese is one of the most popular languages. With the
large population of Chinese people and the fast expansion of the Internet and the
World Wide Web, the number of electronic Chinese documents is growing rapidly.
Despite the format and nature of Chinese characters, usual techniques that can be
applied to English information [41][43] cannot be directly adopted to handle
information in Chinese [13][32][37]. There is an urgent demand on the techniques

for Chinese information archiving and retrieval.

In the recent research on the Chinese information processing, many of the
research efforts focused on Chinese keyword extraction [10][14][16], sentence
segmentation [8][22][25], and document searching [11][12]. They combine the
understanding of Chinese information with fundamental techniques for text

retrieval [4][5][19], pattern matching [1][49], and word understanding [18][47].

From the topic of Chinese information processing, we focus on the
documents clustering problem in Chinese documents collections. Although the
clustering problem is a common topic in various domains, there is not much
research in the topic of documents clustering in Chinese documents collections.
Our goal then is to discover clusters from the documents collection with common

topics. Those topics should be the most popular topics among the set of



documents collection. Sometimes these topics are outstanding phrases that

represent a group of documents.

We propose a generic Chinese PAT tree data structure which benefits from
the design of PAT tree and is capable of handling Chinese information for the
clustering need. We further formulate a documents clustering framework that
makes use of the generic Chinese PAT tree data structure to conduct the Chinese
documents clustering. This clustering framework runs in linear time and is
suitable for real-time execution. Therefore, our document clustering solution is

also appropriate for clustering Chinese documents on the Web.

From the analysis of our generic Chinese PAT tree and experiments on our
clustering framework, the generic Chinese PAT tree is efficient in storing phrases
of documents correctly. The structure is able to maintain statistical information
from the clustering framework. Results from our clustering experiments

demonstrate the applicability of clusters that our framework produces.

1.1 Contributions

Our research work makes the following contributions:

1. We have proposed a generic Chinese PAT tree data structure. The
structure has linear storage complexity and has features of PAT tree. It is
an index structure that is capable of handling Chinese information. Our
generic design of the tree makes the structure itself consistence and

evolvable.

2. We have proposed a definition of Essential Node (EN) to indicate the
phrasal information in the generic Chinese PAT tree. Each Chinese phrase
inside the generic Chinese PAT tree is represented by one tree node,
which is called Essential Node. Essential Nodes are a subset of tree nodes

that are effective for storing Chinese phrases.

3. We have proposed a node production factory approach to address the



overhead issues in the memory management of PAT tree implementation.
We evaluate implementations of PAT tree that use static and dynamic
memory management approaches. The dynamic approach is common but
suffers from very large non-linear overhead in PAT tree. Our node
production factory approach is a solution to reduce such overhead and

make it linear to the documents processed.

4. We have proposed a Chinese documents clustering framework that makes
use of the generic Chinese PAT tree data structure. The clustering
framework can discover interesting groups of documents for a particular

set of documents collection.

5. We have implemented a system to demonstrate our work. The system can
collect news articles in advance from the Web as the documents
collection. It produces resulting clusters from the supplied news articles,

which highlight the interesting news topic among the given set of news.

1.2 Thesis Overview

We explain our research work in details in the following chapters.

In Chapter 2, we describe several work that is related to the clustering and
Chinese information processing. We review several clustering techniques and
introduce the suffix tree clustering, which is used as the reference model of our
clustering framework. In the area of Chinese information processing, we describe

typical problems and solutions in recent research.

In Chapter 3, we detail the structure of PAT tree and the requirement of the
Chinese PAT tree. We propose our generic Chinese PAT tree data structure with
detailed explanations and illustrations. We compare an existing design of PAT tree
for Chinese, which is the embedded node design structure, with our generic

structure design, and discuss the pros and cons of the generic Chinese PAT tree.

In Chapter 4, we evaluate the performance of PAT trees and discuss their



implementation issues. We address the overhead problems due to the
implementation issue of the PAT tree. We propose a node production factory

approach to overcome this overhead problem.

In Chapter 5, we describe our Chinese documents clustering framework. We
discuss the work in each of the clustering process. Several approaches for the base
clusters detection and base clusters filtering process with their pros and cons are

explained in more details in this chapter.

In Chapter 6, we evaluate our documents clustering framework. We apply
our clustering system based on the proposed framework on a set of online news
articles from the Web. We illustrate the effectiveness of our clustering result and

demonstrate the impact of the result from document sets on different situations.

We conclude our work in Chapter 7.



Chapter 2

Background Information

In this chapter, we discuss some clustering techniques and the research related to
Chinese information processing. In the clustering part, we introduce some generic
clustering techniques and their problems when applied to documents clustering.
We then introduce a specific clustering method, suffix-tree clustering (STC), that
performs better in document clustering problems when compared with the generic
clustering techniques. In the Chinese information processing part, we give an
overview on the related research for the sentence segmentation problem and the
keyword extraction problem. These problems provide us a better understanding of
difficulties on Chinese information processing, and give us an idea on how PAT

tree may be applied to benefit from these problems.

2.1 Documents Clustering

2.1.1 Review of Clustering Techniques

The documents clustering problem is a study of algorithms that analyze a

collection of documents to identify clusters among them. There are quite a lot of



literatures applying different clustering techniques and algorithms to perform
documents clustering [7][26][28][50]. Typical clustering methods include
Agglomerative Hierarchical Clustering algorithm [48], K-means algorithm [42],
Single-Pass method [27][40], and Buckshot and Fractionation [21], etc. Each of
these clustering algorithms is well known and each of them has their strengths as

well as their limitations.

Agglomerative Hierarchical Clustering algorithms are usually slow when the

size of the document collection becomes large. This method takes O(n°) time

with the single-link or group-average methods while it takes O(n’) time with the

complete-link methods.

K-means algorithm is a linear time clustering algorithm with O(nkT) time

complexity where £ is the number of desired clusters and 7 is the number of
iterations. This algorithm can produce overlapping clusters but it is only effective
when the clusters are in spherical sharp with respect to the similarity measurement.
Therefore, K-means algorithm may not perform well in realistic situation on

document clustering.

The Single-Pass method is also a linear clustering algorithm similar to the
K-mean algorithms. Besides the disadvantages mentioned in the K-mean
algorithms, the Single-Pass method also suffers from the disadvantages of order

dependency and tendency in producing large clusters.

Buckshot is a K-means algorithm where the initial cluster centroids are
created by applying the Agglomerative Hierarchical Clustering to a sample of the
documents of the collection. It is a fast and linear time clustering algorithm but

not incremental. Besides, it is not suitable for identifying small clusters.

Fractionation is an approximation to Agglomerative Hierarchical Clustering
algorithms but the search for the two closest clusters is performed locally and in a
bound region. It suffers the same disadvantages from the Agglomerative

Hierarchical Clustering algorithms.

Besides the previously mentioned clustering algorithms, Zamir [56] suggests



another clustering algorithm that is suitable for documents clustering. That
approach is known as suffix-tree clustering (STC), which is a special clustering
technique for document clustering problem. According to Zamir, STC is

especially suitable on clustering the Web documents due to its incrementally

property.

2.1.2  Suffix Tree Clustering

Suffix Tree Clustering (STC) is a novel, incremental, O(n) time algorithm

proposed by Oren Zamir and Oran Etzioni in 1998 [56]. It relies on a suffix tree to
identify the sets of documents that share common property and applies this

information to create clusters.

Unlike generic clustering approaches, the STC approach makes use of the
nature of documents for clustering. It does not treat a document as a set of words.
Instead, STC treats a document as string and makes use of proximity information
between words. This is one of the main reasons why STC is more suitable for

documents clustering compared with other generic clustering approaches.

The research on Web technology and search engine shows demand on the
documents clustering. Traditionally, techniques of documents clustering can
pre-cluster the entire corpus in order to improve the search engine in terms of
performance [41]. Besides, techniques of documents clustering can also be used
as a post-retrieval documents browsing technique [2][20][21][30]. Since STC is

an incremental clustering algorithm, it is suitable for clustering Web documents.

According to Zamir, the clustering result using STC approach out performs
the result using other generic clustering techniques. He conducted a series of
comparison in terms of average precision and time. In his result scale, the other
clustering techniques obtain their average precision varying from 0.21 to 0.36, and
STC has better average precision at about 0.39. On his run time execution
measurement, STC is comparable to any of the linear time clustering techniques.

In his experiment environment, the execution time of STC for a collection of up to



one thousand documents is around 7 to 15 seconds, which is in an acceptable

range for real-time clustering applications.

By observing the strengths of STC in documents clustering, we base our
proposed Chinese documents clustering framework on this method. We apply our
proposed generic Chinese PAT ftree data structure to handle the Chinese
information and apply several Chinese information processing techniques inside
the clustering framework to produce a feasible solution to the Chinese documents
clustering. We describe the details of our Chinese documents clustering

framework in Chapter 5.

2.2 Chinese Information Processing

Early techniques on Chinese information processing are adopted from the
techniques in English. These techniques are limited to applications on Chinese
characters. These approaches do not make much sense with the nature of the
Chinese language. Nie [37] and Chen [9] also suggest that the Chinese
information processing techniques should focus on Chinese words instead of
Chinese characters. However, the contextual information of Chinese sentences
provides no clue about Chinese words. This problem reveals the difficulties of the

research of Chinese information processing.

2.2.1  Sentence Segmentation

Chinese sentence segmentation is one of the fundamental problems in Chinese
information processing [31][33]. Many researchers have studied this problem
[81[25][51][54] and their solutions are mainly in two different approaches: the
dictionary approach and the statistical approach [44][45][53].

Early work on the sentence segmentation problem focuses on the dictionary
approach. It makes use of the general Chinese words knowledge and lexical

concepts to identify Chinese words. Since the dictionary approach is



understandable and human-oriented, we could easily verify the correctness of
results from this approach. However, vocabularies are evolving from time to time,
and we are unable to guarantee the existence of all possible words in one
dictionary. The dictionary in this approach cannot be complete no matter how
large it can be. Therefore, the dictionary approach performs poorly in the
environment with many newly evolved vocabularies and names, which are not

contained in the dictionary.

The statistical approach is a more sophisticated solution and it is more and
more popular recently. Nie [37] attempts to use the statistical approach to
complement the dictionary approach and comes up with a hybrid approach
solution. He suggests adopting the dictionary approach that would assign each
existing word with a default probability value. He tries to discover potential
vocabularies and new words from the statistic results in training data sets. Every
potential vocabulary and new word associated with a probability obtained from
the knowledge during the data training. He uses this probability information to
obtain the best segmentation scheme on the Chinese texts, which gives the highest
value of the product to their probabilities. The hybrid approach can provide
additional statistical information for the problem when the dictionary knowledge
is lacking. His study emphasizes more on using the statistical information with

dictionary as backup on the sentence segmentation problem.

Chen [9] suggests a pure statistical method on sentence segmentation without
using a dictionary. He builds the index list of words with one character long with
their occurrence frequencies. A list of potential words with » characters can be

generated from the list of potential words that have (n—1) characters. He applies

the Berkeley adhoc formula developed by Cooper [19] on his solution to obtain
the desired sentence segmentation scheme. Later on, Dai [22] improves over
Chen’s approach [9] on the method of identifying the two-character words. He
shows a better segmentation result when there is ambiguity during the
segmentation. His solution tends to identify the meaningful words by considering

the text context, rather than according to simple words from the dictionary.

Summarizing these approaches, there are mainly three different ways to



solving the problem. These approaches are namely the dictionary approach, the
statistical approach, and the hybrid approach. The comparison of them can be

found in Table 2.1.

Dictionary Approach \ Hybrid Approach \ Statistical Approach
Vocabularies
Vocabularies are from |»  Vocabularies are from |»>  No predefined
the selected dictionary training data knowledge of
The number of »  Has additional vocabularies
vocabularies is limited dictionary as a »  Vocabulary sets are
by the size of the back-end support learnt and generated
dictionary from data text
Methods
Simple matching rules |»  Use best probability |»  Usually based on an
can be applied directly searching with artificial measurement
(e.g., maximum probability value from functions
matching) the training data »  The method may be
»  The dictionary help for non-human natural
pre-calculation or tie
breaking
Advantages

Human understandable |»>  Give reasonable »  More accurate result
Easy to implement accuracy from can be obtained with an

combining both appropriate function

approaches model

Suitable Situation for Segmentation

Text with particular »  Text with particular »  General text
topics topics »  Text involves unusual
Has well-defined >  But the topic has or technical terms in no
dictionary to refer to evolving vocabularies particular field

over time

Disadvantages

There is no ideal »  Tuning the weighting |»  The statistic function
dictionary. from two approaches is can be quite
Result is poor when no quite complicated complicated in order to
words could be »  Difficult to balance the obtain a better accuracy
matched with the two approaches well
supplied dictionary

2.2.2

Table 2.1 Comparisons of different sentence segmentation approaches

Keyword Extraction

10

Keyword extraction is a critical problem in Chinese information processing




[16][17]. While the sentence segmentation is an effort to partition a single
document into a bag of words with sequence, keyword extraction is an approach
to identify the outstanding words from a single document or a group of documents
within a scope. Keywords are concepts of abstract and summarization. They are
main words to refer a text or document. Although keywords are commonly used
in everyday life to represent complicated content such as document text, people
usually need to produce and identify keywords manually. Automatic extraction of
keywords is not common because the automatic extraction techniques are difficult

and there is not much successful research in this area [10].

There are several techniques in handling the Chinese keyword extraction
problems. One of the methods is to make use of the character-level information to
construct a keyword extraction system [11]. The system replaces the word-level
information and ignores the concept of words. Another method is to apply the
lexicon analysis to perform the extraction process automatically [37][51]. This
method involves sophisticated sentence segmentation techniques as well as some

rigid lexicons and linguistic analysis for word-level information.

Because of the high complexity in the linguistic analysis and sophisticated
sentence segmentation techniques, Chien [14] suggests a statistical method for the
keyword extraction on the Chinese information. His method uses the PAT tree
data structure to perform the indexing and applies the statistic functions to detect
the resulting keywords. He avoids complicated linguistic measurement and
employs the word-level information embedded in the PAT tree structure. His idea
illustrates the capabilities of PAT tree data structure to help in solving some

problems in Chinese information processing.
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Chapter 3

The Generic Chinese PAT Tree

PAT tree [24] is a data structure that addresses the storage and representation
issues of documents. Since the original design of PAT tree considers documents
only in English, it cannot apply to Chinese documents directly. Chien proposed a
variation of PAT tree in [14] for Chinese documents. That variation is in
embedded node design, which combines the leaf nodes with the internal nodes,
and facilitates the usage of occurrence frequency. His structure applies in different
Chinese information processing applications including Chinese sentence
segmentation and Chinese keyword extraction. However, due to the embedded
node design of the structure, that Chinese variation has its own limitations and is
unable to expend or enhance on its functionality. Therefore, by adopting the idea
of occurrence frequency from that Chinese variation, we derive our Chinese PAT
tree data structure in a non-embedded design with the same functionality. Our

structure is a O(n) storage complexity structure that can represent sub-string
information. The searching of the sub-string information can be done in O(logn)
time

In the design of our Chinese PAT tree, we extend from the basic functions of
Chien’s Chinese PAT tree and propose the generic Chinese PAT tree. The generic

Chinese PAT tree not only includes all the features and functionality of the

fundamental PAT tree structure, but also facilitates the ability in handling Chinese
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information. A new feature in this proposed structure is the capability to represent
Chinese phrases in tree node with statistical information. This idea improves the
usage of PAT tree in Chinese information application. The generic Chinese PAT

tree will be used in our proposed Chinese document clustering technique.

In this chapter, we first detail the PAT tree data structure and the requirement
to support Chinese, and present our basic variation of Chinese PAT tree. Based on
our basic variation of Chinese PAT tree, we introduce the generic Chinese PAT
tree. We keep the figures and descriptions in a consistence way in the PAT tree,
the Chinese PAT tree as well as our generic Chinese PAT tree. Afterwards, we
discuss the details and problems in the embedded node design in Chien’s variation.
A brief summary of differences between these structures is given in the last

section of this chapter.

3.1 PAT Tree

PAT tree [24] is a data structure that is widely used in the area of information
processing. It is a Patricia tree [36] that stores every semi-infinite strings (sistrings)

[23] of a document into the leaf nodes of the tree.

3.1.1 Patricia Tree

Patricia Tree is a condensed trie that ensures all parent nodes must have exactly
two child nodes. We can obtain a Patricia Tree from tries by removing nodes that
contain only one single child. The links pointing to those removed nodes will
redirect to the child of that removed node. Since all nodes with single child are

removed (in other words, “merged with its parent™), Patricia Tree is very compact.

An example of trie and Patricia tree storing 2 (0103), 3 (011,)and 5 (101,)
are shown in Figure 3.1. The corresponding trie maintains the binary digital tree
structure to represent the three numbers. Since the structure of the trie itself is

sufficient to represent its content, node content is optional and may be omitted. By
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removing nodes with one child (the shaded nodes), we obtain the corresponding
Patricia tree with equivalent content. Patricia tree requires index information in
each node since the structure layout is not sufficient to provide all the tree content.
However, Patricia tree requires significantly fewer nodes, which ensures a better

construction time and search time.

Depth 0 Depth 0

Depth 1

Depth 2

Figure 3.1 [1lustration of trie and Patricia tree

3.1.2  Semi-Infinite String

Semi-Infinite String (Sistring) [23][34] is a subsequence of a string, taken from an
arbitrary starting point to the every end of the right, padded at end with infinite
number of null symbols. Conceptually, sistring, by its nature, would have infinite
length. However, no matter how much capacities do we have, it is not possible to
store a string of infinite length in computer memory. Therefore, in practice, we
may not physically store sistring in the form of infinite length. We usually append
the sistring with just enough number of null symbols, depending on applications
and requirements, in actual implementation. In general, the length of a sistring

should always be linear to the length of its original string.

Semi-Infinite String is useful in representing sub-strings information in a
document efficiently. We can treat a document as a single string with a long length.

When the document has n elements (characters), the number of all possible
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sub-strings would be O(#n”). Since the length of each sub-string can be up to »,
for a document with » characters, we require O(#’) memory to store all possible

sub-strings. This O(n’) storage requirement is impractical in most cases because,
not to mention a full document, even one sentence in English may already contain
hundreds of characters. With the aid of semi-infinite strings, however, we can
represent all sub-strings properly. Since a string with » elements (characters)

will only include » sistrings, the storage requirement could be reduced to

o®n?).

To show the effectiveness of sistrings representation, Table 3.1 and Table 3.2
give examples of sub-strings and equivalent sistrings representation over a simple
document. Table 3.1 illustrates all the sub-strings of the simple document contains
a single string ‘computer’. The example string has 8 characters. The total
number of sub-strings for the string is 36 (§+7+6+5+4+3+2+1=36). Instead
of explicitly storing all these 36 sub-strings individually, we store a list of all eight
sistrings, each of them representing one or more than one sub-strings. Every
possible sub-string is an arbitrary prefix of a sistring, and the former would be

represented by the latter. The details are shown in Table 3.2.

List of sub-strings of length i Number of sub-strings
computer
co om mp pu ut te er
com omp mpu put ute ter
comp ompu mput pute uter
Compu omput mpute puter
comput ompute mputer
compute omputer
computer

R|~1| N |tN| [ WD~
— N[ W| (| ON]| 0

Table 3.1 List of sub-strings of eight-character string: ‘computer’
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Sistring Corresponding Sub-strings represented
computer |Cc CcoO com comp compu comput compute computer
omputer(0 |0 om omp ompu omput ompute omputer
mputer00 |m mp mpu mput mpute mputer
puter000 |p pu put pute puter
uter0000 |u ut ute uter
ter00000 |t te ter
er000000 |e er
r0000000 |r

Table 3.2 Sistrings of eight-character string: ‘computer’

We notice the effect of the padded null symbol (0) in sistring. For the
example in Table 3.2, the sistrings would be stored into equal length and so they
are null-padded up to the one with maximum length. This is a tactical concern to
ensure all sistrings are fully aligned so that they are directly comparable to each
other. Although we can still pad more null symbols for the same effect, the extra

null symbols have no added value but occupying more memory. Therefore, by

assessing this example, we can verify that the storage requirement here is O(n°).

All possible sub-strings can be obtained by performing a prefix searching on
the full set of sistrings. For example, if we are looking for the target string ‘put’
in the document with a single string ‘computer’, we can perform the prefix
searching on sistrings as in Table 3.2. We illustrate the prefix searching process in
Figure 3.2. The process searches through the list of sistrings one by one. As long
as we discover mismatch of character in one sistring, we skip to the next sistring
to continue our searching. The target string will match on a prefix of sistrings if
and only if the target string is a sub-string of that document. The run time
complexity of this prefix searching, in the worse case, would be O(mn) where
m is the length of the target string and » is the number of sistrings. However,
when the sistring does not match with the target string, we will likely find a
mismatch before reaching the last character of the target string and skip to
compare the next sistring. Therefore, the actual run time would be much less then

O(mn) in general.
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Step Target String | Sistring to be Character Sub-string
compared with | Match or not? Found?

1 put computer No
2 put omputer0 No
3 put mputer00 No

4-a put puter000 Yes!

4-b put puter000 Yes!

4-c put puter000 Yes! Yes!

Figure 3.2 Prefix matching of ‘computer’ with target ‘put’

3.1.3 Structure of Tree Nodes

The structure of PAT tree is similar to that of a usual Patricia tree. The major
difference between them is the type of content to be stored. Since PAT tree is the
Patricia tree that stores every sistring of a document, the leaf node in PAT tree is

designed to store sistrings rather than general items like numbers.

There are two types of node in PAT tree data structure: the internal nodes and
the external nodes. These two types of nodes are storing different things and have
different node structures. External nodes are actually leaf nodes of the tree that
contains information about the sistring. Internal nodes are the non-leaf nodes that
serve for the indexing purpose. As sistrings plays an important role in the PAT tree,

we further discuss sistrings in this section.

3.1.3.1 The Internal Nodes

Index information of PAT tree is inside each internal node. Each internal node
contains two types of basic elements: a check bit and tree pointers to its children.
The internal node of PAT tree, from definition of Patricia tree [24], always links to
exactly two child nodes. Figure 3.3 outlines the basic structure of an internal node

of the PAT tree.
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Check Bit

zero(0)-path | one(1)-path

Left Right
Branch Branch

Figure 3.3 Structure of internal node of the PAT tree

Tree pointers are linked to their left child as well as their right child. Child
node can be either an external node or an internal node. That means tree pointers
are just ordinary tree pointer that can link to either an internal node or an external
node. By convention of PAT tree, we sometimes call the left branch of the tree
pointers zero-path while the right-branch of the tree pointers one-path. This

convention can better reflect the meaning and usage of these tree pointers.

The check bit is a number denoting a bit position. Depending on the check
bit value, we can classify the sistrings under an internal node into two partitions.
By inspecting the bit value of the sistrings at the position indicated by the check
bit, the sistrings are stored either in the partition of zero(0)-path or in the partition
of one(1)-path. Besides, the check bit of the internal nodes has an order restriction.
Check bits of the internal nodes must be in strictly increasing order along the tree
path. In other words, if the child node of an internal node is also an internal node,
the check bit of that child node must have a larger value than that of its parent

node.

3.1.3.2 The External Nodes

As we go along the path of the PAT tree, each internal node separates the sistrings
into two partitions until we reach an external node. External nodes are the leaf
nodes of PAT tree so that they have has no further tree branches. While each
internal node always partitions sistrings into two groups, each external node

always uniquely represents one sistring.
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Since sistring is not a simple element but the form of a string, external nodes
do not store the sistring directly. Instead, external nodes contain a pointer, which
refers to the location of the sistring. Therefore, the basic element in an external
node is just the pointer to the represented sistring. Figure 3.4 shows the basic

structure of the external node of PAT tree.

Link/Pointer to sistring

Figure 3.4 Structure of external node of the PAT tree

In some literatures, people suggest the external node should be combined
with one of the internal node. This means that each internal node would have an
additional pointer to sistring to simulate the same function as an external node.
Under this structure design, the tree will not end at some leaves, but pointing back
to an existing internal node. Since the check bit along the tree path of internal
node must be in strictly increasing order, the check bit is the indicator to denote
the nature of the node. When the check bit along the tree path agrees with the
strictly increasing nature, it will be generally an internal node. When the check bit
violates this rule, that corresponding node will not be a valid internal node in that
context. It acts as an external node for that path. This is the embedded node design
that merges external node into an existing node, so it can reduce the number of
nodes by half. However, the storage complexity in this reduced design does not
improve and the actual memory requirement does not change. On the other hand,
this reduced design makes the PAT tree looks complicated. The structure becomes
difficult to understand. The operations, like the tree construction process, are more
difficult to handle. More seriously, it makes the PAT tree more difficult to evolve
and to compare with its variations. Detailed discussions about the embedded node

design of PAT tree are in Section 3.4.
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3.1.3.3 Implicit Sistrings Representation

Storage complexity for sistrings of a string with n elements is O(n*) . We have
already discussed about this storage requirement in Section 3.1.2. However, the
quadratic complexity becomes the bottleneck for PAT tree. Instead of storing the
sistrings explicitly in O(n”) storage, we try to represent the sistrings implicitly
with the document. We use a simple document with one string ‘CUHK’ as an
example and illustrate the idea of implicit sistrings in Figure 3.5. When the
sistrings of ‘CUHK’ is explicitly present, we require O(n’), with »n equals 4,
memory for the sistrings. However, under the implicit representation, we store the
original document in the memory padded with virtually » more null symbols.
Although the sistrings are now fully embedded inside the document, we can still
have sistrings in equal length » . This approach effectively maintains the
equivalent sistrings information, but requires only O(#n)+O(n) memory, which
keeps a linear storage of O(n). As a result, the pointers in the external nodes, in

both approaches, are referring to indifferent kinds of information.

Instead of storing the sistrings explicitly, the external node will use the
pointer pointing to the document at the same position as the beginning of the
representing sistring. Therefore, we have a list of sistrings embedded in the PAT
tree structure without occupying extra memory for physically storing all sistring,

which is O(#’). In order to maintain the semi-infinite property, the original

document can be null padded to double the original document size. As a result,
although all sistrings are still embedded inside the document, they can still be of

equal length up to n.
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D D ? (External Nodes) (External Nodes)
K

null | null | null

C | U | H | K | nrull| null | null

=
~

null | null #

Document 'CUHK' includes padded null symbols

(Implicit Sistrings of 'CUHK")

U | H | K | nul

l

(Explicit) Sistrings
C|/U H K liciy Sis

Figure 3.5 Explicit vs. implicit sistrings representation

In conclusion, PAT tree has the tree nodes and its associated sistrings. Each kind
of tree nodes must contain the basic information as mentioned above. Because of

the design of the tree structure, PAT tree contains the following properties:

1.  When the internal node includes a check bit with value b, the
sistrings under the node branches are partitioned exactly into two
groups. One group of sistrings, with value ‘0’ at bit-b position, is
stored under the left branch (zero-path). Another group of sistrings,
with value ‘1’ at bit-b position, is stored under the right branch

(one-path).

2. We need not backtrack the branches when we are searching for a
particular sistring. It is because the branching decision in each
internal node is well-defined. We can ensure that, in each internal
node, the target sistring may exist in one branch but it must not exist

in another branch.

3. For the internal nodes that include a check bit with value b, all their
descendant internal nodes must have their check bit with a value

larger than b.
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4.  From the previous property, PAT tree ensures that any tree path along

the PAT tree must contain their check bits in strictly increasing order.

5. With the property of strictly increasing order of tree paths, the
sistrings under the same branch share not only a common value at
bit-b, but also a common prefix up to bit-b. It is because when two
different sistrings do not have a common prefix up to bit-b, it is
possible for them to have a common suffix after bit-b. In this
particular case, we cannot further separate it with any more internal
node with check bit larger than b. A contradiction occurs

consequently.

3.1.4 Some Examples of PAT Tree

Figure 3.6 shows an example of the PAT tree of a simple string ‘computer’. In
this example, we decompose it character-by-character and come up with eight
sistrings. Table 3.3 shows the bit pattern of each character for a reference. The
first 3 bits (bit-0, bit-1 and bit-2) of all the sistrings are the same, and they are 0, 1
and 1 respectively. The first position with bit difference is at the bit-3, the
sistrings ‘computer’, ‘omputer0’, ‘mputer00’, and ‘er000000° contain
value 0 and the other four sistrings contain value 1. Therefore, the root node will
have its check bit equals 3. Now we see four sistrings in its left branch and
another four sistrings in its right branch. In the left branch, the first position with
bit difference is the bit-4 and it further separates two sistrings to the left and two
to the right. By further examining its left branch, we note the bit-5 can distinguish
between these two sistrings. They finally reach their external node that links
directly to the sistring. The other remaining branches break down in a similar way
until all of them reach their external nodes. We obtain the final PAT tree

configuration as shown in Figure 3.6.
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Figure 3.6 Example of PAT tree with the document ‘computer’

Character Bit Pattern

c 01100011
01101111
01101101
01110000
01110101
01110100
01100101
01110010

B|ID|ct|c [T |8 |0

Table 3.3 Bit patterns of characters in ‘computer’

Here is another example of PAT tree. We use a simple sentence to illustrate
the word-by-word construction of sistrings. The sample text in this example is
‘chinese document clustering technique’. We can express it as four
sistrings. We show these four sistrings and their corresponding bit patterns in
Table 3.4. The resulting PAT tree contains four external nodes, each for one
sistring, and three internal nodes. Figure 3.7 shows the result of the PAT tree in

this example.
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Sample Text ‘ ‘chinese document clustering technique’
Sistring Bit Pattern
chinese document clustering technique 0110001101101000...
document clustering technique000.. 0110010001101111..
clustering technique000.. 0110001101101100...
technique000.. 0111010001100101...

Table 3.4 Bit patterns of sistrings in a short sample text

3
Internal Node 5‘/ Y
/ ‘
13
‘ External Node
Text | chinese | document | clustering | technique 000...

Figure 3.7 Example of PAT tree with the sample text in Table 3.4

3.1.5 Storage Complexity

The storage complexity of PAT tree is linear to the size of the document. We have
three kinds of component in PAT tree: external nodes, internal nodes and sistrings.
For a document that contains » characters, there are altogether » different
sistrings. Since each of the sistrings is pointed by one external node, the storage
complexity of the external nodes is O(n). The number of internal nodes in PAT
tree would be one less than the number of external nodes because all external

nodes must have two children. Therefore, the storage complexity of the internal
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nodes is O(n) also. For the storage of the sistrings, we could reduce the
complexity from O(n’) to O(n) when we apply the implicit sistrings
representation in the original document. The detail of implicit sistrings

representation has been discussed in Section 3.1.3.3. It turns out that PAT tree, as

a whole, would be in complexity of O(n). Figure 3.8 illustrates the overview of

PAT tree.

Internal DA
Node D 1 Size

External l:j E] l:j m ,
n Size

Node . - e L

S I

Figure 3.8 Storage overview of PAT tree

The above estimation assumes that PAT tree is built based on characters. In
other words, we treat character as the basic element of the document to come up
with the resulting sistrings. However, it is not common to interpret a document as
group of characters because characters are not a meaningful concept in
information processing problems. Usually, we prefer to use words to interpret a
document. In this case, words are treated as the basic elements for constructing
sistrings. A document with w words will only contain w sistrings, which is an
approach more realistic and commonly used. Since w <<n, the resulting PAT

tree becomes more compact, with the storage complexity in O(n +w), which is

still bounded by O(#n). The overview of this approach is illustrated in Figure 3.9.
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Figure 3.9 Storage overview of PAT tree for documents in word base

3.2 The Chinese PAT Tree

We introduce our variation of Chinese PAT tree in this section. This variation
derives from the PAT tree we discuss in the previous section with similar structure
layout. The Chinese PAT tree includes the same functionality as the PAT tree for
Chinese in [14], and the application on that PAT tree for Chinese can replace the
tree with our Chinese PAT tree. The main difference between the two is the node
design strategy. Our Chinese PAT tree includes a structure comparable to that of
PAT tree but the one in [14] is designed in a reduced-node structure. Comparing
the two structures, ours is easier to expend in functionality and more

understandable.

In this section, we detail the design and structure of our Chinese PAT tree.
Since it is derived from the PAT tree that we discussed in the previous section, we
can easily distinguish the difference. We leave the topic about embedded-node

design and its problem in the last section of this chapter.

3.2.1 The Chinese PAT Tree Structure

The techniques applied to Chinese are different from those applied to English.

Based on the existing techniques for English, we have to, at least, concern about
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the special property of Chinese and make corresponding changes to cope with the
problem due to the language difference. For the PAT Tree, we also need to
develop a corresponding Chinese PAT Tree that is suitable for Chinese

environment.

3.2.1.1 Chinese Sistrings

“When applying PAT tree on Chinese information processing, instead of recording
the semi-infinite strings at document level, we record them at sentence level.” [14]
This statement clearly points out one of the main differences in the design of
Chinese PAT tree. This is due to the nature of Chinese environment. English
exhibits the word-by-word sentence structure with each word separated by a space.
In Chinese, although there are word boundaries between each sentence, no
explicit word boundary can be found within a sentence. This nature is not only the
concern in applying PAT tree on Chinese environment, but also the major issue for

most information processing techniques in the Chinese environment.

For example, the Chinese sentence “FHE13 A2 » SRR | fHE
#” (The Chinese University of Hong Kong, Department of Computer Science

and Engineering) includes two phrases separated by a comma. We know that “Z&
HEFH A7 KBS is a phrase containing some words while “SHRMERIELEH T f2E A

is also a phrase containing some other words. Without any prior knowledge in

Chinese languages, we cannot tell what words are inside these phrases.

As we cannot identify words directly in Chinese document, we need to apply
the old-fashioned character-by-character formation of sistring in Chinese
document. For Chinese PAT tree, we make use of the punctuation information to
break down a Chinese document into a bag of Chinese sentences. We can then
prepare the list of sistrings from that bag of Chinese sentences. Figure 3.10 shows
the example of Chinese sistrings in the sentence level. We assume that each
sentence is separated by the punctuation marks. Each of the sentences is padded
with null symbols so that all of them are in equal length. Since Chinese characters

are double-byte characters, we use the Chinese characters (2-byte) as basic
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elements of our Chinese sistrings. The first sentence “FF#kH 3 A that

includes 12 bytes (characters) but only six Chinese characters, is represented by

six sistrings; the second sentence “EF{HEFERIEZEL T 222> that includes 20

bytes (characters) but ten Chinese characters, is represented by ten sistrings. As
the longest sistring is “FHEAERIEREAL T FE 2>, which is 20 bytes long, all

sistrings would be padded with null symbols to at least 20 bytes.

Chinese Text T SURE » GHAREEIEE TR
Sistrings | 1 Fverhar K2 00000000
2 sz KB 0000000000
3 a7 AE2 000000000000
4 A 00000000000000
5 £ 0000000000000000
6 24 000000000000000000
7 s AR R R
8 FHERIELE TFZEE A 00
9 FERLERE T 25232 0000
10 FBHELEL T F2E2 22 000000
11 EEH T AZE 2 00000000
12 B T 222 0000000000
13 TAZEZ 000000000000
14 F2E2 22 00000000000000
15 £ 0000000000000000
16 % 000000000000000000

Figure 3.10  Example of Chinese sistrings of a Chinese sentence

3.2.1.2 Problem of Identical Sistrings

Although the sentence level idea for Chinese sistrings suggests a way in handling
Chinese document, this approach creates a new problem for the Chinese PAT tree.
Chinese sistrings from the sentence level approach can be identical, which does

not appear in the original design of sistrings.

When we construct the sistrings in the document level, as mentioned in

Section 3.1.2, every sistring in the same document must be of different length
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before padding any null symbols artificially. Obviously, no matter these sistrings
are padded or not, none of them can be identical to another. We always ensure that
every sistrings, since they cannot be identical, would definitely locate in an
external node with no clashing. However, when the Chinese sistrings in the same
document is constructed in the sentence level, before the padding of null symbols,
some of them may be of enough length. Obviously, these sistrings with equal
length before padding null symbols may be identical. Therefore, we can no longer
guarantee that each sistring can locate in one dedicated external node. Namely,

collision of nodes is possible to occur in Chinese PAT tree.

Document Text “BIZEHE > SFoET

Sistrings BIIZE%E 00
S 0000
£ 000000
SRR
S HE 00
THEE 0000
£ 000000

NN R W -

Figure 3.11  Example of Chinese document with identical sistrings

For example, a document with text “BlJSZHE » SFET HE” produces seven
sistring as shown in Figure 3.11, and the third and seventh sistrings are identical
with content “#f£” and padded null symbols. Without a way to distinguish them,
node clashing becomes a problem in Chinese documents. In other words, the

resulting Chinese PAT tree will index these two sistrings into the same external

nodes, which cannot be handled in the PAT tree.

3.2.1.3 Frequency Count

To remedy the problem of identical sistrings that may occur in a Chinese PAT tree,
we introduce a new basic element, frequency count, in the external nodes of
Chinese PAT tree. The frequency count indicates the number of occurrence of

identical sistrings appearing in the document. Figure 3.12 shows the basic
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structure of an external node of the Chinese PAT tree.

Frequency Count

Link/Pointer to sistring

Figure 3.12  Structure of external node of the Chinese PAT tree

Although the resulting Chinese PAT tree will index these two sistrings into
the same external nodes, frequency count is a mechanism to capture that kind of
event. The frequency count indicates if there are more than one (identical)
sistrings referring to a node. For example, in Figure 3.11, the node that links to the

character “#t” includes a frequency count of two. The pointer of that external

node can points to either the third or the seventh sistring as they actually contain

the same content.

3.2.2 Some Examples of Chinese PAT Tree

We first use the sample text in Figure 3.10 to illustrate an example of the Chinese
PAT tree. The sample text has two sentences and it contains altogether 16 sistrings.
The bit pattern of each sistring is shown in Table 3.5. The document breaks down
into two null padded sentences and the sistrings are defined in this sentence level.
The construction of the Chinese PAT tree is quite similar to the previous PAT tree
example and it is shown in Figure 3.13. We can notice that the internal node
structure is the same as that of the previous PAT tree, but the external node
structure includes an additional frequency count. In this example, no two sistrings

are identical and all the frequency counts in the external nodes are equal to one.

The figure can be very complicated when the size of the text is increased.
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Although this is a simple example with only 16 external nodes (and 15 internal
nodes), the linkage of tree node and sistrings in this example is already quite
tedious to show. Therefore, it is not suitable to illustrate the PAT tree figure when
the size of document is very large. However, we can still examine the tree

structure by this example clearly.

Chinese Text | T SURE » GHAREEIEE TR
Sistrings Bit Pattern
AR s A 00000000 10100100111001011010...
wRP A AL 0000000000 10101101101110111011...
15z KB 000000000000 10110100111001001010...
3L AEE 00000000000000 10100100101001001010...
K2 0000000000000000 10100100011010101011...
£ 000000000000000000 10111110110001110000...
n{-ﬁfg%ﬁ%igﬁijﬁg # 10101101011100001011...
R T AZEL R 00 10111010111000101011...
fggﬂg:,igﬁgig % 0000 10111110111101111010...
B T #2222 000000 10101100111011001011...
ELE T FEE 2 00000000 10111110110001111011...
B T F2E 32 0000000000 10111011010100001010...
I$ B2 000000000000 10100100011101011011...
FEEL 2 00000000000000 10110101011110111011...
B2 0000000000000000 10111110110001111010...
% 000000000000000000 10101000011101000000...

Table 3.5 Bit patterns of sistrings in the Chinese text of Figure 3.10
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Tou [ | V6 | 50 [ 20 | [ 58 000 | [30 [ 2 [ B [ A% [ 56 80| T [ 72 = [ 7% [ 000..]

Figure 3.13  Example of Chinese PAT tree with the text in Table 3.5

To demonstrate the usage of frequency count in the external node, we now
use the text in Figure 3.11 for another Chinese PAT tree example. This text is with
smaller size with an identical sistring appearing twice. The bit pattern of its
sistrings is shown in Table 3.6. The corresponding Chinese PAT tree is shown in
Figure 3.14. In this example, the tree splits at bit-1, where the left branch
continues to split as usual and all the external nodes will point to a unique sistring
with frequency count set as one. However, for the right branch, the two sistrings

are identical. Both of them are ‘#t 000000° and they will be sharing the same

external node with the frequency count set as two. The link to the sistring in that
external node can connect to either of them. In Figure 3.14, it is linked to the latter
one and therefore, no links would be found from the Chinese PAT tree to the
former one. Figure 3.14 also shows a dotted line to link up the identical strings.
This is a possible treatment for us to traverse all the identical sistrings. However,
depending on application and usage, this dotted line treatment is not always

necessary and we will not further discuss it.
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Chinese Text ‘ CRISEHEE » PR

Sistrings Bit Pattern

BIZE%E 00 101100111101000010...
SEHE 0000 101101110111111011...
£ 000000 110000111111100000...
2 T A 101001100111010110...
SETEE 00 101101110111111010...
T EE 0000 101001111111001111...
£ 000000 110000111111100000...

Table 3.6 Bit patterns of sistrings in the Chinese text of Figure 3.11

|
A/ \A
I 5
Y o a
RENREEE 17
P
Textguﬁ%gooom g [ | F M| 000..

Figure 3.14  Example of Chinese PAT tree with the text in Table 3.6

3.2.3 Storage Complexity

In the examples above, the structure layout of the Chinese PAT tree we proposed
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here is indifferent with the PAT tree in Section 3.1.5. The Chinese PAT tree for a

Chinese document with w word contains maximum of w+(w—1) number of
tree nodes, which is bounded by O(w). The storage of text for sistrings usually
double the size of the document, 2w, which is also bounded by O(w). Therefore,

the storage complexity of the Chinese PAT tree is the same as in Figure 3.9, which

is a linear storage structure.

3.3 The Generic Chinese PAT Tree

We propose a variation of Chinese PAT tree, which is derived from the Chinese
PAT tree that we discuss before. Although the PAT tree for Chinese is widely used
in Chinese information processing, its structure contains some weaknesses. Our
generic Chinese PAT tree is extended from the Chinese PAT tree structure in the
previous section that features the basic Chinese capabilities. The generic Chinese
PAT tree enhances over the Chinese PAT tree so that it is more appropriate for
document clustering. Besides, the generic Chinese PAT tree helps simplifying the

clustering process and its structure is clear to understand.

3.3.1 Structure Overview

In the generic Chinese PAT tree, we do not distinguish the internal nodes and
external nodes explicitly. They share the same uniformed node structure. As we
know, there are four basic elements in the node of PAT tree: the check bit and
child pointers are the elements in the internal nodes while the link to sistrings and
the frequency count are the elements in the external nodes. All the tree nodes in
the generic Chinese PAT tree would include all these four basic elements. We
further extend the meaning and functionality of each of these basic elements such

as the meaning of check bit in the leaf node.

By eliminating the explicit boundary of internal and external nodes, we

introduce a new category of node called Essential Node (EN). It is a node with
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critical information related to the clustering process. While the essential node
contains the clustering information, the non-essential node solely serves as the
index to maintain the PAT tree structure. With this modification, we can simplify

our clustering process with the aid of this generic Chinese PAT tree.

3.3.2 Structure of Tree Nodes

In our generic Chinese PAT tree structure, each of the tree node consists of the
following components: (1) a check bit, (2) a link to a sistring, (3) a frequency
count of the phrase which is represented by the current node, and (4) left and right
pointers to the child nodes. Here we describe the details of each of these
components in our generic Chinese PAT tree. An example of the structure is

illustrated in Figure 3.15.

Check Bit
Frequency Count
Link/Pointer to sistring
zero(0)-path \ one(1)-path

Left Right
Branch Branch

Figure 3.15  Structure of tree node of the generic Chinese PAT tree

3.3.2.1 Check Bit

Check bit is the key information of the internal nodes in the original PAT tree. It
indicates the first bit of the underlying sistrings that differentiate them into two
groups, one storing in the left sub-trees while another group storing in the right

sub-trees. The branching decision in the internal nodes depends on this check bit.

The check bit is introduced in the leaf node of our generic Chinese PAT tree.

Although branching decision is not required in the leaf, we still include the check
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bit for the reason of consistency. We define the check bit of the leaf node to be
equal to the bit length of the associated sistring. For example, if the node is a leaf
node linking to the sistring ‘EEfi§f 000...°, the sistring will have two Chinese
characters occupying 4-byte length. Without considering the padding null symbols,

it contains 32 bits of useful content. So the check bit would be equal to 32.

3.3.2.2 Link to a Sistring

For the leaf nodes, this link can identify the sistrings uniquely. Each sistring can
only appear in exactly one leaf node. For example, ‘TS EEE is a string
consisting five sistrings: ‘FFHEHEEEE, ‘HEHEEEL 00°, ‘P2 EEE 0000, ‘HEH
000000’ and “BE 00000000°. If we construct the generic Chinese PAT tree with
these sistrings, we will produce exactly five leaf nodes with each of them linked
to one of the sistrings. Another example, ‘FFEELF » HFIF is a string consisting
six sistrings: ‘EFHEIF, “HELF 00, ‘4F 0000°, ‘HEiF, ‘I 00” and “%F 0000°.
Since there are two duplicated sistrings ‘4 0000°, there are only five unique

sistrings. In the corresponding generic Chinese PAT tree, we will see five leaf

nodes and the link to the sistring ‘%F 0000° will appear once in one of the leaf

node. That leaf node may link to either the former or the latter sistring ‘4F 0000”.

The link to sistring in the non-leaf nodes is newly introduced in the generic
Chinese PAT tree. We include this link information to maintain the consistency of
the tree node. By definition, the link will point to the sistring where any of its
children is pointing. Since any non-leaf node must include exactly two children,
for simplicity, we can assume that the link will always be the same as the one of
its left child. We notice that all these additional links are redundant because all the

sistring links in the non-leaf nodes are referring to one of its children.

Although the modification introduces some redundancy on sistring links, we
do provide new information for the non-leaf node. The traditional PAT tree
structure includes its internal nodes as the index and its external nodes as sistrings

information. Our modification treats these nodes equally, each of them will
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contain its check bit as well as the link to a sistring. While the leaf node will
represent the whole sistring it belongs to, the non-leaf node may also represent a
part (prefix) of a sistring up to the check bit position. Therefore, the generic
Chinese PAT tree does retain the indexing structure and it also enriches the
information for each tree node. The details about the relation of the representation
to the check bit and sistring link are formalized in the definition of Essential Node

(EN) to be discussed later.

3.3.2.3 Frequency Count

The frequency count indicates the frequency of the corresponding character string
(Chinese phrase) that the node can represent. For the leaf nodes, it is simply the
occurrence of their associated sistring, and for the non-leaf nodes, we define it as

the sum of the frequency counts of their left child and right child.

3.3.24 Pointers to the Child Nodes

Each non-leaf node must include pointers to both left subtree and right subtree.
The left subtree contains tree nodes with sistrings of value 0 in the check bit
position, and the right subtree, on the other hand, contains tree nodes with
sistrings of value 1 in the check bit position. The definition is the same as the

traditional PAT tree.

For the leaf nodes, they do not contain any child nodes and should not
include such pointers. Again, we retain such information in the leaf nodes mainly
for consistency. By convention, their child pointers are always pointing to null.

This can implicitly indicate that the tree node is a leaf node.

3.3.3 Essential Node

Essential Nodes (EN) can provide key information in the generic Chinese PAT tree.

It is, basically, PAT tree nodes that can represent a Chinese phrase in a meaningful
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way. With Essential Nodes, we can apply further techniques and analyses on the
PAT tree, based on the Essential Node information, correctly and efficiently. We
first give definition of Essential Length. Based on the definition of Essential

Length, we further define the Essential Node in our generic Chinese PAT tree.

3.3.3.1 Essential Length

In the generic Chinese PAT tree, we define the essential length of node x,
Essential Length,, to be equal to the check bit of x truncated to the nearest Chinese

character (16 bits). In another words,

Essential Length_ = check bit_ —(check bit_mod16)

Essential Length is a quantitative measure of how much Chinese information
a tree node can represent. As each of the tree nodes in the generic Chinese PAT
tree would link to a sistring, each of them may represent a prefix of that sistring.
When the tree node is a leaf node, it will represent the whole sistring it is linked to.
Although the check bit is useful in providing the information of the number of bits
the tree node can represent, it is only in the bit level. As we are interested in the
number of Chinese characters, not the number of bits, the tree node can represent,
we do count the check bit in a 16-bit step, which is the bit size of a single Chinese

character (in Big-5 encoding).

Check Bit = 38
Frequency Count
Link/Pointer to sistring
zero(0)-path \ one(1)-path \

Lot Right AL
Branch Branch

Figure 3.16  Example of tree node of the generic Chinese PAT tree

For example, a tree node shown in Figure 3.16 contains a pointer that links to
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the sistring ‘“ZHELF with a check bit equals 38. This indicates that the tree node
may represent the first 38 bits of the sistrings ‘“FE#E{F and all its children will
also include the first 38 bits (bit-0 to bit-37) in common. Although this tree node
can represent altogether 38 bits of the sistrings, it cannot represent the whole
sistring ‘“Z&¥ELF’, which is 48 bits. However, it can represent the first two Chinese
characters, ‘Z#E’, which is 32 bits. The essential length of the node in Figure
3.16 would be 38—-(38mod16)=38-6=32.

The above Essential Length definition is a particular case of Chinese
characters. We assume that Chinese characters are double-bytes characters, which
are each 16-bit long. While we are referring these Chinese characters in Big-5
encoding scheme, it is the same for GB encoding scheme. However, the above
definition does not hold in all encoding schemes. For example, in UNICODE
encoding scheme, Chinese characters are 32-bit long, and we need to revise the

definition into,
Essential Length, = check bit_ —(check bit_mod 32)

In fact, we can generalize the definition of Essential Length into,

Essential Length, = check bit . —(check bit, mod bit-size)

where bit-size 1is the number of bits for a Chinese character.

For documents in Big-5 or GB encoding scheme, bit-size for each Chinese
character is 16; and for documents in UNICODE, bit-size for each Chinese
character is 32. If there is a new Chinese encoding scheme with bit-size of 64 or
otherwise, we can still use our generalized definition to determine the Essential
Length. For simplicity, our study assumes that we use Big-5 encoding scheme so

the bit-size is always 16.
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3.3.3.2 Essential Node

In the generic Chinese PAT tree, a node (x) is an Essential Node (EN) if and only
if
(1) Essential Length, =2 X% bit-size ; and

(2)  Essential Length, — Essential Length, 2 bit-size (if such y exists),

where node (y) is the nearest ancestor of x such that y is also an EN.

In particular, we assume that bit-size of Chinese documents is always 16, so
we have our restricted definition for simplicity. The restricted definition tells that

anode (x) is an Essential Node (EN) if and only if

(1)  Essential Length 232 ; and
(2)  Essential Length, — Essential Length, 216 (if such y exists),

where node (y) is the nearest ancestor of x such that y is also an EN.

The above definition ensures that each essential node represents a Chinese
phrase and no two essential nodes overlap to represent the same Chinese phrase.
When there is an essential node (y), which is an ancestor of x, we compare their
Essential Lengths. If their Essential Lengths differ in less than 16, that means x
and y are representing exactly the same Chinese phrase. Therefore, x cannot be an
Essential Node. On the other hand, if their Essential Lengths differ in at least 16,
that mean x can represent a Chinese phrase different from y. Therefore, x is an

Essential Node.

However, when x has no such ancestor y, the second rule is not applicable. In
that case, the first statement of the definition provides the minimum criteria of an
Essential Node. A node with Essential Length less than 16 can represent no
Chinese character, and a node with Essential Length less than 32 can represent no
more than one Chinese characters. Since a Chinese phrase should be composed of
at least two Chinese characters, x must contain its Essential Length of at least 32
to be an Essential Node, meaning that x represents a phrase of at least two Chinese

characters.
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In the generic Chinese PAT tree, we can determine Essential Nodes with a
top-down decision approach. We consider the structure of the generic Chinese
PAT tree from the root. By locating the top most Essential Nodes from the first
rule, we can derive the remaining Essential Nodes along the tree path. The next
Essential Node must include its Essential Length greater than its ancestral
Essential Node by at least 16. In other words, the next one would represent at least
one more Chinese character than the previous one. The process requires only one

parse of the generic Chinese PAT tree. No revisit of nodes is required.

From the Essential Node definition, each Essential Node can represent a
Chinese phrase, p, which equals to its linked sistring from bit-0 up to the
Essential Length —1. Each p must contain at least two Chinese characters (32-bit)
and is represented by at most one Essential Node. Figure 3.17 and Figure 3.18 are
examples of a generic Chinese PAT tree with their Essential Nodes being
highlighted (their check bit is shaded). These figures will be described in details in

the following section.

3.34 Some Examples of the Generic
Chinese PAT Tree

Here we show two examples of the generic Chinese PAT tree. In these examples,
we notice a major difference in generic Chinese PAT tree, as all nodes are in a
unified structure. The first one is a simple example without identical sistrings and

the second one contains a pair of identical sistrings inside.

In the first example, we construct the generic Chinese PAT tree of the

Chinese Text “ZSHEFEEEE”. The bit pattern of its sistrings is shown in Table 3.7.

The first bit-difference among these five sistrings is at bit-1, where three sistrings
have value 0 and two sistrings have value 1. Therefore, the root node of the tree
include check bit equal to 1 and frequency count equal to 5. For the left branch,
comparing bit-3 further separates the sistrings. The following right branch

includes a remaining sistring and it reaches the leaf node. The tree pointers in the
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leaf node are kept null, which is an implicit signal to denote the leaf node. The
check bit in the leaf node is equal to 64, which is an artificial value that equals to
the bit length of the sistring by omitting the null padded symbols. As we
mentioned before, the link to the sistring in the non-leaf nodes is a redundant link
and we will assume that it is the same as the link in its left branch. This example
also demonstrates this property and the final tree configuration is shown in Figure

3.17.

Chinese Text ‘ “HHEEE
Sistrings Bit Pattern
IS E 10101101..
RS EEE 00 10110100...
HEEHEE 0000 11000101...
B 000000 10101000...
£ 00000000 11000000...

Table 3.7 Bit patterns of sistrings in the Chinese text: “HHEFa B8

| —

3/ ‘ —’\5
3 2

\ \

/ ~a P J

5 64 16 48

2 1 1 1

| | | 7 7Y 7
/ ~a Leaf Nodes
32 80
1 1
T | 77

v v
Text‘%‘%‘ﬁ%‘ﬁ‘ﬁﬁ‘ooom‘

Figure 3.17  Generic Chinese PAT tree with the text in Table 3.7
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The second example illustrates the generic Chinese PAT tree of a Chinese

text that contains identical sistrings. We use a short text “ZFFH#Elf » L in this
example. You can denote that a sistring “4F 000...” appears twice and it is the

identical sistrings pair in this example. Table 3.8 shows the bit pattern of the
Chinese text and the corresponding generic Chinese PAT tree is presented in

Figure 3.18. The tree node with a check bit equal to 16 represents the sistring “4F

000...”. Since this sistring appears twice in the Chinese text, that tree node is
recorded with frequency count equal to two and the link to the sistrings will
connect to either of these two sistrings. In this example, it is connected to the

latter one.

From this example, we notice that although the complexity of PAT tree is

bounded by O(n), the actual memory requirement may be reduced to a certain

extent. The original Chinese text contains six Chinese characters, which is of 12
bytes size (i.e. n = 12). The memory required for the sistring is, however, less than
2n size and it requires only 20 bytes (including padded symbol). The number of
leaf nodes usually equals the number of Chinese characters, which is 0.5%x#n=6.
Due to the existence of identical sistrings, the actual number of leaf nodes is one
less than this number (i.e. five leaf nodes) and the actual number of non-leaf
nodes is four leaf nodes, which is the number of leaf nodes minus one. Therefore,
the actual memory consumption in generic Chinese PAT tree could be reduced

depending on the Chinese text with a known upper bound.

Chinese Text ‘ CEERLF o PRI
Sistrings Bit Pattern
LT 1010110110111011...
&4t 00 1011010011100100...
4 0000 1010011001101110...
o 1010010010100100...
Bt 00 1011000011101010...
4 0000 1010011001101110...

Table 3.8 Bit patterns of sistrings in the Chinese text: “FHEIF » FIHIF”
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48 3 32
1 1 1
\ | | | 77 |
/ ~a Leaf Nodes
48 16
1 2
777778 77

.l

¢ 4 A A
Text| 7% | ¥k | #F | 000... | | o7 | & | #F | 000... |

Figure 3.18  Generic Chinese PAT tree with the text in Table 3.8

The nodes with their check bits shaded in Figure 3.17 and Figure 3.18 are
Essential Node. From these examples, we notice that each Essential Node would
represent a Chinese phrase. Although the Essential Nodes in the previous
examples are all leaves, Essential Nodes may also appear in the non-leaf nodes.
The next generic Chinese PAT tree example will illustrate the case where the
Essential Nodes are in the non-leaf nodes. With the Chinese Text in Table 3.9, we
can construct the generic Chinese PAT tree as shown in Figure 3.19. This tree
includes ten leaf nodes while eight of them are Essential Nodes. For the non-leaf
nodes, two of them, one with check bit of value 53 and another with check bit of
value 37, satisfy the definition of Essential Node. The tree altogether includes ten
Essential Nodes inside, each representing the linked sistring up to its Essential

Length.
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Chinese Text | “RTREBRRIE  STRBCR

Sistrings

Bit Pattern

SRR

10101101011100001011101011100010101111...

011..

R 00

10111010111000101011111011110111101011...

111..

RS 0000

10111110111101111010110011101100101111..

000...

FHZ 000000

10101100111011001011111011000111000000...

000...

E2 00000000

10111110110001110000000000000000000000...

000...

R

10101101011100001011101011100010101111...

010..

FHERAE 00

10111010111000101011111011110111101010...

100...

AR 0000

10111110111101111010100001110100101100...

000...

Rt 000000

10101000011101001011001011001110000000...

000...

#1 00000000

10110010110011100000000000000000000000...

000...

Table 3.9 Bit patterns of sistrings in the Chinese text: “GTHRAREIE S AR

[
B
5 4
4 6
[ [
35/ 7 18/ \—‘\3
1 3 1 5
| =g = ==
32 53 37 10
1 | 2 2 || 3
/7 [ [
= =L
80 80 64 64 16 21
! ! ! ! ! 2
V. 7. /7. /Y. V. [
; ] 1 ==
8 48
LA 1
A 77.
i) | | — |
Tet| iF [ H [ B[R [Z2Jo00. ] [FF[HE[B]F ][4 [ ooo. |
Figure 3.19  Generic Chinese PAT tree with the text in Table 3.9

3.3.5

Storage Complexity

From the different examples shown above, we notice a number of changes in the
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generic Chinese PAT tree that we propose. Although our generic Chinese PAT tree
has extended functions and abilities that make the node structure look more
sophisticated, our changes do not deform the structure of the PAT tree. Since our
enhancements are about the internal structure of a tree node as well as its usage
and interpretations. These changes do not affect the storage complexity of the PAT
tree. Besides, identical Chinese phrases are located in the same node, so that the
number of tree nodes is usually much less than this expected maximum bound in
practice. Therefore, the complexity analysis of the PAT tree in Section 3.1.5 and
the Chinese PAT tree in Section 3.2.3 still hold. For a document with w words,

the storage complexity of the generic Chinese PAT tree is O(w), which is a linear

data structure.

In fact, our size of the tree node in the generic Chinese PAT tree is slightly
larger. Extra memory is required to maintain the generalized structure as well as
the information of Essential Length and Essential Node. However, this drawback
is insignificant due to the advancement of computer technology. The cost of
computer memory is dropped dramatically over 60 percent in five years of time.
At the same time, modern computers are capable to equip large amount of
memory. A personal computer (PC) can easily contain gigabytes of memory. The
extra memory consumption of tree node is minor drawback to our generic Chinese
PAT tree structure design; however, the generic Chinese PAT tree still maintain the

data structure in linear storage complexity.

3.4 Problems of Embedded Nodes

In this section, we illustrate the weaknesses or limitations of embedded nodes
design for the PAT tree data structure for Chinese. This embedded node design is
the way of handling Chinese information in the PAT tree that was proposed in [14].
The reduced structure embeds the internal nodes with external nodes, which
reduce the actual number of nodes. Although it is an elegant way that tries to
reduce the tree size, the reduced structure does not reduce much of the memory

consumption. At the same time, we notice a number of weaknesses and
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disadvantages in the reduced structure of PAT tree. This section discusses this

embedded node design in [14] and the disadvantages of the reduced structure.

3.4.1 The Reduced Structure

Figure 3.20 is an example that shows the PAT tree for Chinese in reduced
structure with the typical example text, “{ff A, AJE”. This structure is a

reduced structure to combine the leaf nodes with an internal node, so that the
number of nodes in the tree is reduced by about half. As we have seen, the node
structure is more complicated and difficult to understand because the nodes are
over-loaded with information mixed together. Here is the interpretation of the
structure: that tree contains no leaf nodes physically, and the nodes we can see in
the structure are internal nodes. From the definition, a PAT tree with » (identical)
sistrings should include » leaf nodes and »—1 internal nodes. So the example
in Figure 3.20 includes five identical sistrings, and there should be five leaf nodes
and four internal nodes. The structure of the embedded design attempts to
combine a leaf node with an internal node. By doing so it artificially creates one
more internal node above the tree root. Therefore, in the reduced design, each
internal node represents one and only one leaf node at the same time, depending

on its context.

In Figure 3.20, Node 4 was the root node of the PAT tree, but there is an
artificial node, Node 0, that is created on top of Node 4. The tree contains totally
five nodes. They form the internal nodes of the PAT tree with their corresponding
check bit information. Since the PAT tree requires that the check bit information
along the tree path must be strictly increasing, this becomes the hints to determine
whether the accessed node serves as an internal node or not. When the tree
reaches a node without an increase on check-bit, we know that it has reached its
leaf node. In Figure 3.20, all the links pointing back to themselves or any other

ancestral nodes are the links to leaf nodes.
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Figure 3.20  Typical example of PAT tree in reduced node design

3.4.2

3.4.2.1

Disadvantages of Reduced Structure

Violate the PATRICIA Structure

As we know that PAT tree is a kind of PATRICIA tree, each of the internal nodes

of the PAT tree must have exactly two branches to their children. However, in the

embedded node design, the reduced structure does not contain enough internal

nodes to combine with those leaf nodes. As a result, the artificial node is created

at the top of the tree and it becomes the root node. Unfortunately, that artificial

node only includes has one child, the original root of the PAT tree. This violates

the assumption of the PAT tree and the PATRICIA tree. Although this violation

does not harm the functionality of PAT tree, it makes the tree structure more

difficult to maintain. Special treatment is needed and the structure becomes very

specific.
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3.4.2.2 Ambiguity

Regardless of the existence of the artificial internal node, the reduced structure is
still ambiguous. The PAT tree in the reduced structure is ambiguous in the
information they are storing. By inspecting a tree node, the information is all there
but we never know it is for internal node, for leaf node or actually for both.
Usually, the check bit information is the key for the internal node, but it also acts
as an indicator to detect a “leaf node” in the reduced structure. The frequency
count and the data position pointer are actually information for the leaf node. The
backward tree link at the end of every branch makes the tree structure even more

complicated.

In fact, the reduced structure can only reduce the number of nodes by about
half, but it does not reduce the memory requirement of the data structure. By
means of memory storage, the combination of internal nodes with leaf nodes still
requires the same amount of memory for the check bit, pointer links, frequency
count, etc. By means of big-O storage complexity, although the reduced structure
eliminates half of the number nodes, it does not improve the complexity any

further, and the overall is stilla O(n) structure.

3.4.2.3 Limiting Expansion

In the reduced structure, it is very complicated, if not unlikely, to make
improvement on the functionality of the tree. One of the important changes in our
generic Chinese PAT tree is to utilize the tree nodes such that every node is
capable of maintaining useful information, so we can enhance the overall
functionality through the formal definition of essential node properties and
expendable node information capability. However, in the reduced structure design,
the information in a single node is very confusing in storing the same type of
information to represent the different types of node simultaneously. This design is

undesirable and it limits the expansion that we require.
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3.4.3 A Case Study of Reduced Design

To illustrate the problems and confusion in the reduced structure design, we
conduct a case study that refers to the example of PAT tree in the reduced design
in Figure 3.20. We demonstrate the effect of the reduced structure design that can

cause confusion or complicated interpretation.

Since the reduced structure of the PAT tree combines the leaf node with an
internal node, it only retains information for the sistrings on the tree. In other
words, all strings that are not sistrings cannot retain the same kind of information
as in the sistring. For example, “EEf&” is a sistring, so we can retrieve the phrase
“EEfi& from the tree and its node (Node 4) tells us that the frequency of “EEfi&” is
1. However, “ff| A" is not a sistring. When we try retrieve it from the tree, we
move down the tree and reach the node “ffil A BB~ (Node 0) only. We may not
know the correct frequency of “fi| A”. Although we still obtain the frequency 1
by inspecting the node “ffi A ZEfE”, which is correct frequency for “ffi| A as well,
that reported frequency is not necessarily the correct frequency for all strings.
When we consider “ A ”, which should have frequency 2, in this example, we
finally reach the node “ A Ji” (Node 9) and only obtain the frequency 1 from that
node. This is because the node “ A" is containing frequency of “ A i, which

is 1, but not the frequency of “ A

In fact, the correct frequency count of the phrase “ A is still maintained in
this reduced structure of PAT tree, which is indicated as the “number of external
node” in Node 9. Since a node is representing a leaf node and an internal node at
the same time, the correct frequency of phrase “ A is in the “number of external
node”, which is part of the internal node information. As we can see, although it is
not totally impossible for reporting the frequency count, the way to maintain the

correct and persistent information becomes very tricky and non-uniform.

This case study uses the frequency count to illustrate how confusing and

complicated the reduced design is. When the tree requires containing a more
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sophisticated value, which is not just a matter of frequency counting, the problems

of the reduced structure design can be more critical.

3.4.4  Experiments on Frequency Mismatch

The case study is an example that illustrates the potential problem of the reduced
structure. With the assumption that one kind of information is in the leaf nodes,
the reduced structure cannot retain that information in the internal node. Since the
leaf nodes and internal nodes are equally important to represent Chinese phrase
information, the reduced structure confuses the information on a tree node. To
quantify the mismatch caused by this problem, we conduct experiments that use a
simple value in the tree node, frequency count, to illustrate the potential problems

and difficulties in the reduced structure of PAT tree.

3.4.4.1 Analysis using Phrase Strings

We analyze the number of phrasal information of a Chinese document and
measure the percentage of mismatch reported directly from the reduced structure

of PAT tree. For example, The number of phrases in “fff A B is ten: “ff”,
“A” “Erg‘” “H{«” cc{.kaa “Aa‘g‘” “EEH{«” “,{.A/ﬂ‘g‘” “AEEH{«” “{.AEEH{«”

query the reduced structure of PAT tree, examine the frequency count of that
associated node, and record the number of mismatch of frequency count to the

actual frequency of phrase.
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Number of Phrases Reported Mismatch Percentage (%)
1. 4584 372 8.12%
2. 3372 126 3.74%
3. 4096 200 4.88%
4. 2539 146 5.75%
5. 1171 67 5.72%
6. 4894 274 5.60%
7. 4252 255 6.00%
8. 1666 116 6.96%
9. 4411 254 5.76%
10. 4007 208 5.19%
Total 34992 2018 5.77%

Table 3.10  Analysis of phrase strings in reduced structure of PAT tree

The experiment repeats ten times on different articles. Table 3.10 shows the
result of the experiment. Among the samples, the percentage of reported
mismatch is between 3.74% and 8.12%. On average, there is about 5.77%

mismatch of frequency report for all possible phrases string.

Since phrase string is a well-defined elements. The measurement in this
experiment is objective. It can reflect the effect of reduced structure in terms of

phrases information.

3.4.4.2 Analysis using Phrase Nodes

This experiment uses the same setup of ten documents to analyze the effect of the
reduced structure in terms of tree nodes. Since a node may represent more than
one phrase string, depending on the actual content of the document, the
experiment result in Section 3.4.4.1 includes the over-counts of PAT tree nodes.
To obtain the similar figure in terms of nodes, our second experiment counts the
number of tree nodes that should represent Chinese strings, and report the
mismatch among these nodes. The mismatch may happen when a string is

expected to locate in an ‘internal node’ and the frequency value of that node,
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which should be an information for the leaf node, does not match with the string.

Table 3.11 presents the measurement of this observation.

Number of Nodes Reported Mismatch Percentage (%)
1. 847 136 16.06%
2. 442 34 7.69%
3. 616 59 9.58%
4. 359 41 11.42%
5. 220 18 8.18%
6. 779 86 11.04%
7. 610 76 12.46%
8. 282 38 13.48%
9. 647 82 12.67%
10. 599 70 11.69%
Total 5401 640 11.85%

Table 3.11 Analysis of phrase nodes in reduced structure of PAT tree

From the result, the percentage of the reported mismatch is between 8.18%
and 16.06%. It is 11.85% on average. Compared with the result in Table 3.10, the
percentage of affected nodes is more than the percentage of affected strings. We
can expect this difference in the result because most of the strings are represented
by leaf node and they always contribute a correct frequency count in the first
experiment. The second experiment evaluates in terms of nodes, which are in
reduced structure so that an internal node and a leaf node are embedded into a
single node. Consequently we miss the correct frequency count due to ‘leaf nodes’.
This experiment is also based on an objective measurement in the perspective of

tree nodes.

3.4.4.3 Analysis using Chinese Vocabularies

The third experiment employs the same set of documents in terms of Chinese

vocabularies. Chinese vocabularies are human sensible words that contain
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particular meanings in Chinese language. The analyses by using words are more

meaningful. It can reflect application needs in general.

The experiment engaging Chinese vocabularies is more complicated than the
previous two. We identify words from each of the ten test documents manually to
determine the number of words in the document. The count includes simple
vocabularies with dedicated meanings, for example, “{ff§f A contains two

words, which are “fff§ A\ and “ZEfi§f”. Only the well-defined words are included in

this measurement.

Number of Words Reported Mismatch Percentage (%)
1. 200 65 32.50%
2. 106 22 20.75%
3. 154 37 24.03%
4. 87 20 22.99%
5. 67 11 16.42%
6. 167 41 24.55%
7. 138 34 24.64%
8. 67 15 22.39%
9. 137 35 25.55%
10. 146 33 22.60%
Total 1269 313 24.67%

Table 3.12  Analysis of Chinese words in reduced structure of PAT tree

The result in this experiment analysis shows that meaningful Chinese
vocabularies are likely to retain in the internal node and their actual frequency
report to mismatch with the frequency count value. In the test set, the percentage

of mismatch is between 16.42% and 32.50%. It is 24.67% on average.

This experiment result is a subjective measurement because the definition of
Chinese vocabularies does not have a strict boundary. However, with the reference
to the previous two objective measurements, we have the overall ideas on how the

reduced structure can affect the performance of the PAT tree. It becomes a critical
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problem especially when we are dealing with Chinese words.

3.5 Strengths of the  Generic
Chinese PAT Tree

The generic Chinese PAT tree contains a number of differences from the one in
the reduced design. It also improves in functionality over the Chinese PAT tree.

Without affecting the O(n) storage complexity, the generic Chinese PAT tree has
the following strengths:

First, the node structure in the generic Chinese PAT tree is uniform. There is
no physical difference between the internal node and the external node. We avoid
the heterogeneous structures in handling the internal node and the external node
separately. This advantage makes our generic Chinese PAT tree more

understandable and easier to maintain.

Secondly, the generic Chinese PAT tree nodes are rich in information. Each
of the generic Chinese PAT tree nodes has all four basic components: check bit,
frequency count, link to sistring, and child pointers. By extending the definition of
each of these components in the original data structure, we make the tree nodes
capable of keeping information on each node. The enriched node content,
especially in the internal nodes, can contain meaningful information. That can

also improve the expressiveness of the tree.

Thirdly, the generic Chinese PAT tree node has the new attribute called
Essential Length, which is a dependent value of the check bit. This Essential
Length provides important information for the tree related to the Chinese
document. It is a higher-level description that reflects the expressiveness of

Chinese phrases in a node. It also determines if the node is an Essential Node.

Finally, we introduce a special type of node called Essential Node, which is a
node in the generic Chinese PAT tree that can represent a Chinese phrase (a series

of Chinese characters) properly. Essential Node is a node property from the
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Essential Length information as well as the tree structure. We can only obtain that
information after we unify the external node and internal node into a common
node structure. The definition of Essential Node can classify a group of useful
nodes in the tree. This is more meaningful then classifying a tree node as external
or internal. The Essential Nodes highlight the most interesting part of the generic
Chinese PAT tree. This property is very useful in our Chinese document clustering

Process.
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A brief summary of comparison between the PAT tree, the PAT tree in reduced

design, and our generic Chinese PAT tree is shown in Table 3.13.

The PAT tree The PAT tree for Our generic
Chinese in Chinese PAT tree
deduced design
Text Component | Document Level Sentence Level Sentence Level
Node Type Heterogeneous Heterogeneous Uniform Structure
1. Internal Node 1. Internal Node 1. Tree Node
2. External Node 2. External Node
Basic Node  |Internal Node: Internal Node: Tree Node:
Components 1. Check bit 1. Check bit 1. Check bit
2. Child pointers 2. Child pointers 2. Frequency count
External Node: External Node: 3. Link to sistring
1. Link to sistring 1. Link to sistring 4. Child pointers
2. Frequency count (With revised attributes)
Essential Length No No YES!
Essential Node No No YES!
Tree Complexity O(n) O(n) O(n)
Advantages 1. Compact in 1. Has all the 1. Has all the
structure advantages of the advantages of the
2. Linear Storage PAT tree PAT tree
Complexity 2. Capable of storing (2. Capable of storing
3. Quick Searching Chinese documents Chinese documents
Time 3. In uniform structure
4. Utilize the usage of]
tree node content
5. Has Essential Node
to represent the
Chinese phrases
6. Easy to maintain
7. Easy to expand in
functionality
Drawbacks 1. Cannot handle 1. Always requirc an |1. Needs more
Chinese document additional tree root memory for a tree
correctly artificially nodes
2. May need some 2. Does not obey the
adjustments to suit PATRICA structure
a particular 3. Ambiguous
application need structure contents
4. Difficult to expand
in functionality
Table 3.13 Summary of PAT tree and its Chinese variations
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Chapter 4
Performance Analysis on the

Generic Chinese PAT Tree

This chapter focuses on the performance and the usability of the generic Chinese
PAT tree. We address the practical issues of the generic Chinese PAT tree, which

include the run time analysis and the implementation analysis.

We conduct several experiments to evaluate the performance of the generic
Chinese PAT tree. In our experiment setup, we prepare a set of articles collected
from the local news sections in MingPao News [35]. The whole set contains 1750
pieces of news from 1st September 2001 to 30th September 2001. Each of the

articles contains around 300 Chinese characters on average.

The experiments are performed on a 900MHz Pentium IIT with 256MB RAM
running the Windows 2000 Operating System. Since Windows 2000 is a
multitasking environment, we always conduct the same set of experiment on the
same machine in the same period of time to minimize the randomness factor of

the load on background jobs.
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4.1 The Construction of the Generic
Chinese PAT Tree

This experiment evaluates the actual running performance of our generic Chinese
PAT tree. We partition the PAT tree construction process into three phrases. The
first phrase is the loading of documents, the second phrase is the construction of
the PAT tree nodes, and the last phrase is the detection of Essential Nodes. To
simulate some operations acting on the nodes directly, we include a benchmark for

quick sort on the essential nodes.

We expect that the main task in the PAT tree construction is to build and
index the PAT tree nodes. Our result agrees with the expectation. From the result,
the building of tree nodes consumes most of the computation time in the PAT tree
construction process. It consumes about 70% of the construction time. The
loading of documents into the memory, due to the technology advancement of the
secondary storage device, is not a major factor affecting the runtime performance.
It is increasing slowly, steadily, and linearly. The essential node detection takes
some processing time, however, but it just plays in a minor role. When we
construct the generic Chinese PAT tree for all the 1750 articles in the test set, the
documents take about one second to load, the tree take about 12 seconds to build,
and then the Essential Node detection takes about three seconds to complete.

Figure 4.1 presents this experiment result.
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Figure 4.1 Run time for the generic Chinese PAT tree construction

In Figure 4.1, the black line shows the time for the generic Chinese PAT tree
construction. Due to the non-uniform factor of the size of each document and the
nature of the operating system in multi-tasking environment, the result we
obtained is not steady as we expected. However, we still observe a linearly
growing line. The building of PAT tree dominates the construction process. The
run-time of other phrases is much lower than that of the tree building, and the
Essential Node detection comes the second regarding the actual run-time.
Although the process should be expected to perform in linear time, the result here
does not produce sharp lines, due to the randomness of the document size and the
tree shape. However, the growth of this curve is very slow and it will not affect

the process time much.

To simulate some processing work in this experiment, we perform the sorting
on the newly constructed PAT tree. We discover that the processing time is very

fast. It is kept under one second through this experiment. This result reveals that
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operations on the generic Chinese PAT tree are usually fast, and the run time

overhead is mainly in the building of tree nodes.

4.2 Counting the Essential Nodes

We conduct an experiment to illustrate the relation between the number of
Essential Nodes and the number of leaf nodes in the generic Chinese PAT tree. In
Figure 4.2, the dash line is a reference line to indicate the number of tree nodes in
the generic Chinese PAT tree. The dotted line shows the number of leaf nodes,
which is linearly related to the number of Chinese characters. These two lines
represent the upper bound and the lower bound. The number of Essential Nodes
should fall within this range. The figure shows that the number of Essential Nodes,
surprisingly, is much closer to the number of leaf nodes, the lower bound side.
Although the number of Essential Nodes is an arbitrary value that depends on the
document context, our result shows that, in general, the number does not increase
dramatically. This result provides a positive argument for the applicability of

Essential Nodes in actual environment.
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Figure 4.2 Relationship between number of Essential Nodes and leaf nodes

4.3 Performance of Various PAT

Trees

To compare the run-time performance of the various PAT trees, we perform an
experiment to construct the PAT tree, the Chinese PAT tree, and the generic
Chinese PAT tree for the same set of articles. The experiment compares the
building time of tree node since it is a necessary operation for all kinds of PAT
trees. The building process is also a major factor affecting the run-time
performance. Because of the extended structure of the generic Chinese PAT tree,
we expect the building time, in exchange with new functions and abilities, to be a
bit longer than the Chinese PAT tree. On the other hand, the original PAT tree

performs worse than any of the Chinese PAT trees because of the incompatibility
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with our Chinese documents in the test set. Since the original PAT tree does not
care the double-byte nature of Chinese characters, it consumes extra time in

generating unwanted sistring information for the PAT tree.

20 T T T T

7

18 - P

-
-
3
16 - i
#
v
~
14+ % -
-

3 e
5 ;
g 12 - P il
= oA
é o
= 10+ . -
= s
S 5
§or . 1
g ~
Q - /

6 - &

-
-
~
4t -7 i
-
.
~
=
2- -7 —— PAT Tree -
e PAT Tree for Chinese documents
i —— Our generic Chinese PAT Tree
o == | ! I I ! 1 !
0 200 400 600 800 1000 1200 1400 1600
Number of Documents

Figure 4.3 Construction time performance of various PAT trees

Figure 4.3 shows the tree building performance result. The PAT tree is the
worst among them. Much of its time is wasted in constructing node for
non-Chinese sistrings. Since the tree includes non-Chinese sistrings, we include
this result mainly for comparison purpose. The resulting tree is, in fact, not useful
for Chinese processing. For the Chinese PAT tree and the generic Chinese PAT
tree, they are growing in the same rate while the generic Chinese PAT tree

requires only slightly more building time compared with the Chinese PAT tree.

This result demonstrates that our generic Chinese PAT tree is a feasible
structure. Although the run-time performance is affected by the increase in tree

node size, which is due to the unification of node structure, the actual run-time
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does not increase too much when compared to the Chinese PAT tree.

4.4 The Implementation Analysis

In the previous section, we address the overhead issue on our new structure and
conclude that the overhead is a controllable factor. However, we reveal an
uncontrollable factor that affects all kinds of PAT tree during the experiments.
That uncontrollable factor is due to the PAT tree implementation issue. Our first
implementation attempt in dynamic memory allocation approach produces a very
large clean-up overhead. Later we revise our implementation and propose the

node production factory approach. We can then finally overcome this problem.

4.4.1 Pure Dynamic Memory Allocation

The common way to implement a tree structure is to use pointers. It is the most
flexible and economical way of implementation. We allocate memory for each
node during its insertion. The memory is released when we no longer require it in
the tree, most likely at the end of the process. At the first glance, this dynamic
pointer memory allocation approach sounds good and reasonable. It is also
commonly used and widely adopted in handling list, stack and tree kind of data
structures. However, in our experiment, we discover an unreasonable overhead of

PAT trees in this implementation.

treenodes hastobe &g "5 %
disposed individually. ifg%\ <.
< :\'%

(This creates a large

Lz;: —
clean-up overhead) (% 3
=4 “
=& 2

System =2,
Resources

2. Each of the allocated (%&K <i§i§;

1. One tree node is

A -
dynarplcally allocated for / PAT Tree
each insertion

Figure 4.4 Dynamic memory allocation approach of PAT tree construction
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Figure 4.4 illustrates the situation of the dynamic memory allocation
approach. The tree node is allocated from the system resources on demand, one at
a time, to build the PAT tree. After the process, the tree node has to be disposed,
again, one by one. Thus the clean-up of tree node generates a very large run-time
overhead. Figure 4.5 shows the overhead the dynamic memory allocation method
introduces. The figure is similar to those in the previous section but we include
the clean-up time. It shows that the clean-up time is far more than the actual
processing time and even reaches an unacceptable value. While the tree node
construction time is in the scale of several seconds, the clean-up time for a
thousand documents can be as high as hundreds of seconds. Our result records up
to one thousand documents only, because the result beyond that takes even more
time. From this observation, we discover that the system takes a long time to
clean-up the dynamically allocated memory. When we declare hundreds or
thousands of tree nodes, the process takes a huge amount of time to release that

hundreds or thousands of memory allocations piece one by one.
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Figure 4.5 Clean-up overhead of dynamic memory allocation approach
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4.4.2 Node Production Factory Approach

To overcome the tedious clean-up overhead problem, we introduce a factory
approach to regulate the PAT tree construction process. Our concept is to create a
node production factory behind the PAT tree. The node production factory, which
acts as the primary source of tree nodes, reserves a larger piece of memory to
produce a number of tree nodes. It is a one-time reservation of memory so that the
system needs to handle the clean-up of memory one time only, instead of
hundreds or thousands of times. In the new implementation, every time we need
to create a tree node, instead of allocating it dynamically, we ask the node
production factory to produce a pre-manufactured tree node. The tree should
return the tree node to the node production factory after its use. In short, the tree
structure and the involved tree algorithm do not change, but the memory
allocation is done via the help of the node production factory. Figure 4.6 illustrates

the concept of node production factory.

5. The node
production factory is
responsible for the

one time disposal of
nodes at the end

System | el

Resources 1. The node

production factory
prepares a group
of N nodes for
PAT tree

PAT Tree

to the PAT tree

Figure 4.6 Node production factory approach of PAT tree construction

The idea of node production factory is a trade-off between the static memory
allocation approach and the dynamic memory allocation approach. In the pure
static memory allocation approach, we need to reserve a large enough memory for
our need. This limitation makes it unsuitable for PAT tree. On the other hand, the

pure dynamic memory allocation approach gives an unreasonable overhead during
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run time. The result makes the pure dynamic memory approach impractical. Node
production factory is a solution to overcome the problems. We can define a size
parameter (N) for the node production factory to indicate the number of tree node
it will produce. When N is large, it is more capable of handling a larger document,

but the memory is wasted when the document is actually small.

Although the node production factory is a remedy to the clean-up overhead
problem, we have no way to determine a suitable N for one factory that fulfills all
possible situation at all time. In order to make the node production approach
adaptive, we can include a chain of factories to backup the main factory. When the
nodes in the main factory are used up, it breeds a new identical factory to supply a
new stock of tree nodes. This approach is recursive such that each factory, with
the help of its associated sub-factory, can theoretically supply any number of tree
nodes, up to the physical size of memory. When size=1, the factory chain would
be a special situation that is similar to the pure dynamic memory allocation

approach. Figure 4.7 shows the idea of a chain of factory.

PAT Tree

SyStem E:?{‘xssociated
Resources NodeN  Sub-Factories

Although one factory can only produce N nodes, the

ability for the factory to include an associated sub-

factory produces a factory chain. Factory chain can
supply, conceptually, any number of tree nodes.

Figure 4.7 The factory chain concept of node production factory approach
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4.4.3 Experiment Result of the Factory
Approach

We conduct an experiment to show the effect of the node factory implementation.
The result is presented in Figure 4.8. We can compare Figure 4.8 with Figure 4.5
to show the improvement in using the node production factory approach. The
construction time in the node production factory approach is shifted by a constant
time about one second, due to the initialization of the factory. However, it pays off
soon because the clean-up time is kept at a very low constant value of about 0.33
seconds. Compared with the dynamic memory allocation implementation, this is a
significant run-time improvement. PAT tree becomes practically usable in this
approach. By tuning the size of production parameter (N), we may reduce the
overhead on the factory initialization. A factory with a large N produces more tree
nodes that require less spawning of associated sub-factories, and a factory with
smaller N produces less tree nodes that may improve the overhead on the factory

initialization.
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Figure 4.8 Clean-up time of node production factory approach

This result shows the importance of implementation design of the PAT tree.
A general tree implementation approach using dynamic memory allocation of
node on demand will significantly affect the overall processing time for real-life
applications. The node production factory implementation is a trade-off solution.
Since we must maintain and provide an additional tree node factory to control the
usage of node, our solution requires some more tree construction time. However,
this overhead is not significant when we compare it with the clean-up time

overhead in the dynamic memory allocation approach.
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Chapter 5
The Chinese Documents

Clustering

In this chapter, we discuss the design of our clustering framework that can classify
a set of Chinese documents into clusters with interesting topics. We describe the
overview and details in our clustering framework, and give an overall picture in

our clustering process.

5.1 The Clustering Framework

We propose our method for the Chinese document clustering. Document
clustering is a problem to separate a collection of documents into groups such that
each of the groups forms a cluster. Documents inside a cluster should contain
similar content or point of interest. The clusters may not be partitions of the
document collection. A document in the collection set is possible to be
categorized into several clusters. For example, a collection of articles from sport
magazine may be categorized into different kind of sports like football, basketball,
and more. It can also be categorized into events that happened in each year.

However, if it is a sport magazine related to NBA basketball, it is obviously
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meaningless to categorize the articles into football, basketball, volleyball, and
others since all articles is generally basketball news. On the other hand, if the
articles do not come with the chronological information, none of the articles can
be in the category of any year. This example illustrates the situation that a

predefined category for the group separation may not be appropriate.
Our clustering involves the following steps:

Documents cleaning,
PAT tree construction,
Essential Node extraction
Base clusters detection
Base clusters filtering
Base clusters grouping

Documents assigning

® N o R WD =

Result presentation

The first three steps are the data preparation process on the raw collections of
Chinese document. Step four to step six are the process to identify the cluster
bases. Step seven is the clustering process to group documents together according
to the cluster bases. The final step deals with the formatting issues for review and

visualization. Figure 5.1 gives an overview of the clustering flow.
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5.1.1 Documents Cleaning

Cleaned
Documents

Documents

- 1. Documents
Collection |

Cleaning

Figure 5.2 Documents cleaning process

Figure 5.2 shows the documents cleaning process. The documents collection for
the clustering can be in various formats. They may contain non-Chinese
characters as well as some unwanted information, such as the signature label, time
stamp, or copyright notice, etc. The cleaning of data is an important
pre-processing step to take out the unwanted information from the raw data. Since
the formats of the documents collection can be different, there is no universal
cleaning filter for the clustering process. Sometimes we require several filters to
complete the cleaning process. We discuss the cleaning of dedicated Chinese

documents and Chinese Web documents as examples of the cleaning process.

5.1.1.1 Cleaning of Dedicated Documents

Dedicated documents are Chinese documents containing pure Chinese contents.
We assume that the documents do not contain any non-Chinese contents. In other
words, the documents should be error-free. In the cleaning process, we apply the
segmentation filter to remove all the punctuation marks. According to the
punctuation symbols, we decompose the document into chunks of Chinese

sentences.

Figure 5.3 illustrates the basic function of the cleaning process. In this
example, we have a document in the collection with a simple sentence. The
cleaning process applies the segmentation filter. It treats the punctuation marks as
delimiter, and three short sentences are detected. The output is three chunks of

Chinese sentences. Each of them is punctuation free and ready for the next step.
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Figure 5.3 Example of a dedicated document after cleaning

5.1.1.2 Cleaning of Web Documents

Although the previous data cleaning process is very simple, we are unlikely to
obtain the error-free document in the real situation. When documents are collected
from the Web, it is more likely that contents may contain noises and errors. In this
situation, the cleaning process becomes more important. As we cannot guarantee
the documents to be error-free, we need some noise removal and error detection
techniques during the data cleaning process. For example, English and Chinese
characters may exist and interleave each other. One byte of the double-byte
Chinese character may be missing due to various unknown errors from the source.
When we tried to collect documents from various Web sites, including Apple
Daily Online [3], MingPao News [35], Oriental Daily News [39], and The Sun
Web [46], we found that their content structures are different. Therefore, we need
to customize the cleaning process for documents from a particular site. There is no
single universal filter to clean up them all. However, we still can come up with a

generic flow to filter the web documents.

Web documents are in HTML files. When we need to clean up the web

documents, we need to apply several filters on the cleaning process. They are:

Site-Content Filter,
HTML Filter,

1.
2.
3.  Error Correction Filter, and
4.

Segmentation Filter.

We first apply the site-content filter to remove the decorative details of the
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document, including, but not limited to, advertising banners, navigation bars,
images, and image descriptions. All these decorations are part of the HTML file
but not part of the content. This filter is dedicated to documents from one type of

source but not reusable for documents from another source.

The result from the site-content filter is an HTML document containing only
the text content. We apply the HTML filter to the result to obtain the text
document. The HTML filter can remove all the unnecessary HTML tags from the
HTML document. It can also correctly convert the HTML newline symbol (<br>)
to line break in the output text document. As a result, the output from the HTML

filter is a plain text of Chinese document.

Since the web document may contain unpredictable character and the
filtering process may also inject some errors, we apply an error correction filter to
filter out any suspicious symbols from the plain text document. The filter will
ensure the content to be limited to Chinese characters and the punctuation mark
symbols that we allow it to retain. As a result, all unrecognized characters are
removed from the text, including those Chinese words that miss a single byte of

content.

Finally, we apply the segmentation filter as previously mentioned to break
down the text into document level. The obtained result after cleaning is ready to

process in the next step.
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5.1.2 PAT Tree Construction

Cleaned | | | 5 PAT Tree Generi
Dw — Construction cﬁﬁi

PAT Tree

Figure 5.4 PAT tree construction process

In the PAT tree construction process, shown in Figure 5.4, we insert the sistrings
of the cleaned documents to the generic Chinese PAT tree. The insertion of
sistrings is a fast operation in O(logm) where m is the size of the PAT tree.
The PAT tree provides information to guide the clustering process. It provides
various information about the documents collection. Each node in the generic
Chinese PAT tree contains a check bit, a link to sistring, a frequency count, and a
pair of pointers to its left child and right child. Besides these basic components,
we also record the number of documents (V) in each node, indicating the number
of documents, which contain the sub-strings represented by that node. For

example, if there are three documents, the first one includes 'JE:4:' once, the
second one includes "AE4:' two times, and the third one includes no "AKZ:4:" in
the text, then we have a tree node in the generic Chinese PAT tree representing 'A
B4 The number of documents (V) in that tree node is two, indicating that there

are two documents in the collection contain "AE2 4",

We also need some other measure of collection information for the clustering
need. These measurements are easy to obtain from the generic Chinese PAT tree.
When we discuss the possible clustering functions, we give details of these
measurements and we show the way to obtain them from the generic Chinese PAT

tree.

After we construct the generic Chinese PAT tree successfully, we can then

feed the resultant tree to the next step for clustering.
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5.1.3 Essential Node Extraction

3. Essential .
Essential
Node Nodes :>
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Figure 5.5 Essential Node extraction process

Essential Node Extraction, as shown in Figure 5.5, is a process to detect Essential
Nodes from the generic Chinese PAT tree. Since each essential node can uniquely
identify a Chinese phrase in the document collection, the extraction process can

effectively retrieve all Chinese phrases related in the Essential Nodes.

The Chinese phrases contained in the Essential Node must be syntactically
correct, for example, ‘G132 f%” may be a phrase in an Essential Node 4 while ‘.
#§ may also be a phrase in an Essential Node B. If there is another node C that
can represent ‘ST’ only, it will duplicate the node 4 and it is not an Essential
Node (otherwise node A4 is not an Essential Node). If there is a node D that can

only represent the bit pattern, say, ‘10011110 1000°, it cannot represent any

Chinese phrase, so it must not be an Essential Node.

The Essential Node Extraction is a very important step in the clustering
process. This process can extract the most useful information, which is the
Chinese phrases, from the document collections. When we consider the Essential
Node, the result is with respect of the Chinese information inside the tree. On the
other hand, if we consider the content of the whole PAT tree for the clustering,
those unrelated nodes might contribute to the result. The unrelated nodes that do

not contain Chinese information will affect the result.

In order to capture the Essential Nodes from the generic Chinese PAT tree,
we compare all the tree nodes against their ancestor node by the rules defined in

Section 3.3.3.2. A node (x) is an Essential Node (EN) if and only if its
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(1)  Essential Length_ =32 ; and
(2)  Essential Length, — Essential Length, 216 (if such y exists),

where node (y) is the nearest ancestor of x such that y is also an EN.

In the Essential Node detection process, we initially assign all each tree node
as a non-Essential Node. We traverse the generic Chinese PAT tree from the root
node in a pre-order sequence. At the beginning, we apply the first rule to check
against every tree node. When the node contains an Essential Length greater than
32, we mark it as an Essential Node. For the nodes under this tree node, we use
the second rule to determine whether the node is an Essential Node. Since the
detection process is deterministic upon pre-order traversal, we only need to seek
every node once to determine the Essential Nodes from all tree nodes. The

algorithm for the Essential Node detection is shown in Figure 5.6.
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Essential Node Detection()
Essential Node Detection Rule 1(tree.Root)
End

Essential_Node_Detection_Rule_1(x)
x.essential — FALSE
if (x.essentialLength >= 32)
x.essential — TRUE
Essential Node Detection Rule 2(x.path0, x.essentiallLength)
Essential Node Detection Rule 2(x.pathl, x.essentialLength)
otherwise
Essential Node Detection Rule 1(x.path0)
Essential Node Detection Rule 1(x.pathl)
endif
End

Essential Node Detection Rule 2(x,y length)
x.essential — FALSE
if (x.essentialLength - y length >= 16)
x.essential —~ TRUE
Essential Node Detection Rule 2(x.path0, x.essentiallLength)
Essential Node Detection_Rule 2(x.pathl, x.essentialLength)
otherwise
Essential Node Detection Rule 2(x.path0, y length)
Essential Node Detection Rule 2(x.pathl, y length)
endif
End

Figure 5.6 Essential Node detection algorithm
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5.1.4 Base Clusters Detection
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Figure 5.7 Base clusters detection process

Base Clusters Detection, a process shown in Figure 5.7, is the most important step
in our clustering process. This process attempts to detect clusters from the
document collection. It analyzes the Essential Nodes among the generic Chinese
PAT tree. The base clusters are a subset of the Essential Nodes and the clustering

algorithm determines the base clusters result.

To determine the base clusters from the Essential Nodes, the process
basically involves the computation of a weight value. The importance of each
Essential Node depends on its weight value. The higher the weight value, the
greater the chances that Essential Node contains a representative phrase as a base

cluster.

We study several ranking functions to compute the weight of the Essential
Nodes. While there is no objective measurement for the goodness of each ranking
function, we analyze the characteristics of these functions to distinguish their

strengths and weaknesses.
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5.14.1 Frequency Count

Frequency count is one of the basic components in the generic Chinese PAT tree.
It indicates the occurrences of a node in the tree. In other words, it reveals the
popularity of a phrase represented by the Essential Node. Therefore, frequency
count is one of the simplest metrics to determine the weight value. For each

phrase p in a document i, we denote its frequency as

frequency,
when we consider the whole document collection, we denote the frequency of a

phrase p in the document collection as
N :
Jrequency , = Z (frequency,)
i=1

Since the above frequency is equivalent to the frequency count of the
Essential Node representing the phrase p, the weight value using the frequency as

ranking function would be
weight , = frequency ,

As the frequency reflects the popularity of phrases, this ranking function can
efficiently remove those insignificant phrases from the popular ones. Besides, it
involves minimal computation because the frequency count is the default value
existing in each node of the generic Chinese PAT tree. However, using the
frequency count directly as the ranking criteria contains several disadvantages. It
is sensitive to several kinds of noise. If the document collection is noisy with
several documents containing unusually high occurrences of some phrases, their
frequency counts will be increased drastically to affect the ranking result. Besides,
the ranking result is in favor of long documents: the phrases in a long document
tend to have higher frequency. In addition, phrases with a very high frequency in a
single document may rank high in this ranking function, but such a phrase is
obviously not suitable to become a base cluster. Therefore, although direct
measurement of frequency count is a simple ranking method in favor of

computation time, it is too sensitive to various kinds of noise. The advantages and
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disadvantages are listed in the Table 5.1.

Frequency count is an obvious measurement
No additional calculation is needed

Advantages

ANIAN

Sensitive to noise in a document

Sensitive to irrelevant documents

Sensitive to the size of document

Long document may have phrases that dominate the
ranking

Disadvantages

X X %X X

Table 5.1 Summary of the frequency count ranking method

5.1.4.2 Total Term Frequency (ttf)

Total term frequency is another measurement for the ranking of base clusters. The
term frequency is a value to indicate the importance of a phrase in a particular
document. By definition, the term frequency of a phrase p in the document i

would be,

= frequency,
" max(frequency)
p

The nominator is the frequency count of the phrase p in the document i, and

the denominator is the maximum of these frequency counts in the document i. If

the phrase p does not exist in the document i, its term frequency #f’ ; would be

equal zero. If the phrase p is the most dominating phrase in the document i, its

term frequency ¢ }f will be equal to one.

In order to determine the importance of a phrase p in the documents
collection, we define the total term frequency by summing up the term

frequencies in all documents together,

N
weight , = ttf, = Z(tf;)
i=1
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The #tf is a better ranking criterion over the simple use of frequency count. It
is because the value of term frequency is a polished value of the raw frequency
count. It can avoid an over-emphasis of frequency count in a long document.
Besides, this value can reflect the importance of one phrase to another in a single
document, so that it prevents long documents from dominating the ranking result
of base clusters. However, term frequency is not a measurement directly available
from the generic Chinese PAT tree. We need to construct an additional generic
Chinese PAT tree for each document in order to collect the term frequency in each
of them. Besides, there are still many disadvantages in using total term frequency
as in the frequency count method. The summary of advantages and disadvantages

of ranking by total term frequency is listed in Table 5.2.

Advantages v/ Tt is a reasonable ranking method
v' Tt can avoid the result dominated by long documents

Disadvantages % Still sensitive to noise in a document

x  Still sensitive to irrelevant documents

x  To measure the value, we require an additional generic
Chinese PAT tree for each individual document

Table 5.2 Summery of the total term frequency ranking method

5.1.4.3 Inverse Document Frequency (idf)

Inverse Document Frequency is a measurement of how rare the phrase occurs in
the collection of document. The value of inverse document frequency of phrase p

is defined by

. N
idfy = log(—)
np

where N is the total number of documents in the document collection and

n, is the number of documents in the document collection that contains the

phrase p.
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If a phrase p appears in every document, N and n, are equal and idf,

becomes zero. This implies p appears too frequent so p is not significant to be a

base cluster. Therefore, the inverse document frequency is a common modifier

applies together with the total term frequency. The ranking function then becomes,
weighty = ttfy <idfy

The ranking function that involves the inverse document frequency is

commonly used in document clustering. The definition of #f, and idf, ,

however, is contradicting. When a phrase p has high #f, it is more likely to have

high 7, resulting in a very low idf,. On the other hand, a phrase p with low

ttf, is more likely to have low n,, so the idf, is usually high. When either

p 2
uf, is very low or idf, is very low, weight, would be low. Therefore this

ranking function is not in favor of either extreme.

uf, idf, weight , The possible nature of the phrase p

LOW LOW LOW [Insignificant to the documents collection
May not have rich meaning semantically

LOW HIGH LOW [Insignificant to the documents collection

May have rich meaning semantically

HIGH LOW LOW  |Common in natural language

May not have rich meaning semantically

(e.g. FAM)
HIGH HIGH HIGH |Common in the documents collection

Should have rich meaning semantically

(So it is suitable to be base cluster)

Table 5.3 Interpretation of #f, and idf, in the ranking function

Although this ranking method is reasonable and it is popular in clustering

problems, the method is not quite suitable for our problem. The value of #f, and
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idf, are not in the same scale. While the #f, linearly reflects the number of
occurrences with no upper bound, idf, is a logarithmic value always bounded by

log(N) where N is the number of documents in the collection. Therefore, the

importance of #ff, and idf, is not equal but depends on the size of the
collection. #f, plays a very important role in a small document collection and

the effect of idf, slowly increases when the size of the collection increases.

This ranking method is described in [29]. From the numerous testing result

with this method, we discover this unbalanced nature for #f, and idf,. We
attempt to normalize the idf, in the range between 0 and 1 inclusively to avoid
its uncertain upper bound. However, this modifier reduces the influence of idf,
in the weight function. We then attempt to normalize #f, into a bounded range
O<#f, <1 by dividing its value by max(#tf,). However, the normalization

involves heavy computation and the obtained result does not show much

improvement.

5.1.4.4 Weighted Frequency

Weighted frequency is an adjusted value from the frequency count. We define it as

weight, = frequency, % (baseScorep)’

where baseScore, = max(ChineseCharacterLengthy, topScore)

The baseScore, is an adjustment value of the frequency,. It is based on

the length of the phrase, in terms of the number of Chinese characters. The reason
for this adjustment is because a longer phrase tends to contain richer meaning and
is more likely to be a base cluster. At the same time, we know that a meaningful
and representative phrase should not be a very long phrase [56], so the

baseScore, limits the upper bound of baseScore,. In Chinese documents, a

vocabulary usually consists of two to three Chinese characters (e.g. K3a, [,
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%73H), and names and special phrases usually consist of three to four Chinese

characters (e.g. F{EEE, PR ZLAE, PkAMEMT). Sometimes a meaningful short
phrase contains six or more Chinese characters (e.g. FHEF AR, HPHEH

BE).

Frequency is one of the most relevant measurements to indicate how

important a phrase is [17]. But since the baseScore , which is related to the

p 2
phrase length, is additional information related to representative power of a phrase,
weighted frequency is a better ranking function over the total term frequency. On
the other hand, since the computation of weighted frequency is easy and

straightforward, it is a more preferable ranking function than the #f-idf function.

Although the weighted frequency has its advantages over the other ranking
measurement, it still suffers from the noise problems. Some frequently appearing
word combinations may not be any meaningful words but are still ranked high.

For example, “/["|i*)’can be possibly in high ranking if there are quite a number of
A, ARATIEY. .., etc., and ‘{9 is not meaningful to be a cluster. To avoid

this situation, we have to apply filtering techniques after this ranking process. In
the next section we discuss some segmentation techniques that can help in the

word filtering for the next process phrase.

5.1.5 Base Clusters Filtering

Base 5. Base Filtered
] Clusters Clusters Base
Filtering Clusters

Figure 5.8 Base clusters filtering process

The base clusters from the previous process may not be noise-free, therefore, the

base clusters filtering step is responsible for filtering out the improper base
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clusters that are wrongly detected in the previous step. This process is shown in
Figure 5.8. In this filtering step, we apply the sentence segmentation techniques to

verify if the phrase in the base clusters is a valid and complete phrase.

This filtering is based on the contextual information of the document
collection. By inspecting the phrase itself without language knowledge, we cannot
know if the phrase is a real Chinese phrase with actual meaning or if it is just a
group of character with no meaning at all. However, with the contextual
information, an important real phrase is more likely to appear together again and
again. We study some algorithms that serve such purpose. These include the
Significant Lexicon Patterns (SLP) analysis [14], Left Context Dependency/Right
Context Dependency (LCD/RCD) analysis [17], and Complete Lexicon Patterns
(CLP) analysis [16].

5.1.5.1 SLP Analysis

SLP analysis [14] focuses on the mutual information on the text. Its aim is to
detect significant phrases, which are self-contained in certain level. The

candidates are selected when they are not likely to be part of a longer phrase.

SLP analysis is a filtering algorithm based on the significance estimation (SE)
function. When there is a phrase ¢ composed of the lexicon pattern ¢, c,,...,c,,
we have two longest composed sub-strings of ¢ with the length n-1. These two
sub-strings a, b are in the form of a=c,,c,,..,c, ,, and b=c,,c,,..,c, . The

definition of SE for the phrase ¢ is

A —
fa+f;7 _fC

where f,,f,,and f, are the frequencies of phrases a,b,andc ,

respectively.
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The algorithm of SLP analysis is outlined in Figure 5.9. The second and third
rules of the algorithm make use of the SE function for the analysis.

SLP_Detection_Algorithm()
foreach (node;) in tree
node;.SLP ~ UNKNOWN
SLP Detection Rule 1(tree.Root)
End

SLP_ Detection Rule(a)
if (a.essential is TRUE) and (a.frequency >= frequencyureshold)
if (a.SLP is not FLASE)
SLP Detection Rule 1(a)
endif
endif
if (a is not leaf)
SLP Detection Rule(a.path0)
SLP Detection Rule(a.path1)
endif
End

SLP Detection_Rule 1(a)

if (a is leaf)
aSLP ~ TRUE

else
¢ « one of the successor essential node(a)
b ~ node with phrase(c,,cs,...,c,)
SLP Detection Rule 2(a,b,c)

endif

End
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SLP Detection_Rule 2(a,b,c)
SE, = c¢.frequency / (a.frequency + b.frequency — c.frequency)
if (SE; >= SEquesnola)
aSLP ~ FALSE
b.SLP ~ FALSE
else
SLP_ Detection Rule 3(a,b,c)
endif
End

SLP Detection_Rule 3(a,b,c)
SE, = c¢.frequency / (a.frequency + b.frequency — c.frequency)
if (SE; < SEteshola)
if (a.frequency >> b.frequency)
aSLP ~ TRUE
endif
endif
End

Figure 5.9 SLP detection algorithm

This method helps eliminating some incomplete phrases inside a more
complete phrase. However, this method cannot comprehensively consider all the
situations for the phrases. For example, when we consider a phrase a =“fEK”,
phrase ¢ can possibly be “fEKE”, or phrase ¢ can possibly be “fEKEE” too.
The algorithm contains no restriction on the selection of phrase c, and it
considers only one possible phrase c. In this situation, the analysis results of

choosing “}EKER” or “RKEE” or others can be greatly different. If SE, for “f&
Kf)y” is greater than SE, , . (rule 2), than the phrase a is “¥E>K” and the

phrase b is “’Kfiy”. Both phrase a and b will not be considered as SLP.
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When we choose phrase ¢ as “fKEL”, the immediate difference we can notice is
that the phrase b will not be “’f” anymore. Since b depends on ¢, when c is
“RESKEE”. b will be “KEE”. In this case, we evaluate the “FEK, <KL, “fEk
F£” combination and ignore the “fE>K”, “Kfi”, “fKER” combination. As a
result, we fail to take out “>kf” as non-SLP. This leads to incomplete analysis of
the phrase “>Kf}y” eventually. In fact, when we choose phrase ¢ as “fEKER”, we
also miss the evaluation of b as “’Kf£”. Therefore, this SLP algorithm cannot

perform a complete analysis for every situation and the result can be arbitrary. It is

possible that quite a number of phrases remain uncertain because of this problem.

We work on improving the SLP algorithm to make it more complete and

accurate. We attempt to consider all the possible a, ¢ pairs so that we will not
miss any possible a,b,c combination for the analysis. However, this leads to
another difficulty in resolving conflicts. Consider if the “fE K>, “KEE”, “REKEEL”
combination with SE, isless then SE, . ., (rule 3), depending on a.frequency
and b.frequency, phrase a “}E>K” may be considered as SLP or remains
uncertain at this time. It conflicts with the “fEK”, “RBEKER, “KE” combination
that “f522K” is non-SLP. Since there is no order for the a,b,c¢ combinations with

the same phrase a, each result cannot override one another. Although we
performed many case studies on the SLP with complete phrase ¢ analysis, it still

cannot provide a better solution to solve these conflicts.

Currently, the SLP analysis is useful in certain level but it contains
limitations. As there is no significant improvement over the SLP algorithm, we

require a better analysis technique to perform the base clusters filtering.

5.1.5.2 LCD/RCD Analysis

LCD/RCD analysis [17] is a measurement of external dependency of a phrase.
The method bases on the belief that meaningful phrase would be self-contained.

So we expect to see a rich variety of characters in the phrase boundary. In other
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words, when there are always the same few varieties of characters adjacent to a
particular phrase, that phrase should be dependent on these characters. Thus the
phrase is less likely to be a meaningful phrase, but a part of a longer phrase.

With the phrase X on an essential node, we assume L is a set of phrases in
the document collection such that each phrase in L must be in the form bX

where b is a single character. For each phrase in L, /,, the frequency of that

phraseis f, . The definition of Left Context Dependency (LCD) is

IL| <t or max(i) >1,

X

where ¢; and ¢, are threshold values.

Similarly, we assume R is a set of phrases in the document collection such
that each phrase in R must be in the form Xa where a is a single character. For

each phrase in R, 7,, the frequency of that phrase is f, . The definition of Right

Context Dependency (RCD) is

R|<t, or max(é) >1,

X

where ¢, and ¢, are threshold values.

When the base clusters filtering process is based on the LCD/RCD analysis,
we filter out those tentative base clusters that have LCD or RCD. For example, the
phrase “FE/3” is possibly not a good phrase as it is a part of the name “TE/RIE",
we expect the phrase “FE#E™ has Right Context Dependency. Another example is
the phrase “f£IE”, the phrase itself does not have meaning but should be part of
the name “H|fiEIE". The phrase “fEHE” should have Left Context Dependency.

The word analysis using LCD/RCD is an efficient way to filter out the partial
phrases that usually contain high dependency on their left or right side. However,
a self-contained phrase may not be a meaningful phrase. For example, the phrase

“BAJEE” may be self-contained, such that it does not have LCD or RCD, as seen on
the phrase “ZFJEEHIRIK, “1HJFESERI L, “RRRTHIRCAR”, “BERSEHYBER, ete.
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Although the phrase “HYf,” is self-contained, it is not a meaningful base cluster.

As we can see, LCD/RCD analysis is good, efficient, and more understandable
than SLP analysis, but it is also limited. Therefore, we use another method, CLP
analysis that is based on the LCD/RCD analysis, and consider the phrase as in

SLP to eliminate phrases with incomplete meaning.

5.1.5.3 CLP Analysis

CLP analysis [16] is a method to determine Complete Lexicon Patterns. The word
“complete” means that we are looking for complete phrases in the result. In other
words, the CLP analysis aims to remove the phrases with incomplete lexicon
meaning. CLP analysis uses the LCD/RCD information together with the mutual
information to determine the completeness of a phrase. It assesses whether a
phrase is independent of the context and highly associated within the contained

text in a certain level.

When we apply the CLP analysis for the base clustering filtering, we apply
several criteria in deciding whether a phrase node should be put into result or filter
out from the set. We measure its left and right external dependency, as well as its

internal association.

With the phrase X on an essential node, we assume R to be a set of phrase in
the document collection such that each phrase in R must be in the form Xa

where a is a single character. For each phrase in R, r,, the frequency of that

phraseis f, .
We define X to be Right External Independent (REI) if

O R =1,
[

Emax(];j;) <t,

where ¢, and ¢, are threshold values.

Similarly, we assume L to be a set of phrase in the document collection such
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that each phrase in L must be in the form bX where b is a single character. For

cach phrase in L, /, the frequency of that phrase is f, .

Then, X is Left External Independent (LEI) if

O L] =1,
1 7

ax(—-
5

X

)<t
where ¢, and ¢, are threshold values.

For the association, we assume Y to be a phrase with length one less than X,
such that X is in form of Yc¢. We also assume Z to be a phrase with length one
less than X, such that X is in form of dZ . We define X to be Internal Associated
(TA)if

|:| fX
T
H 1>,

where ¢, and ¢, are threshold values.

With the above definitions, a phrase X is CLP if X is REIL LEI, as well as TA.
The definition of LEI and REI is derived from the LCD/RCD analysis. The
definition of TA is derived from the SLP analysis. When X is REI, X should be
independent from the character to the right of X. So the right boundary of X is a
good boundary in certain level. Similarly, LEI is for the left boundary of X. When
XisIA, X should be highly associated with its inner contents ¥ and Z.
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5.1.6 Base Clusters Combining

Filtered 6. Base
Base Clusters -
Clusters Combining

Figure 5.10  Base clusters combining process

The base clusters are the reference for the clustering. It is the center of a cluster.
However, some of the base clusters may be highly similar to each other, it is
undesirable to treat them as two different clusters with similar contents. Therefore,
the grouping process tries to combine the base clusters with high similarity into a

single cluster. This process is shown in Figure 5.10.

We use the single-link clustering algorithm to combine the base clusters. This
method is similar to the one used in Suffix Tree Clustering (STC) [56]. We denote

the set of documents belonging to the base cluster m as B, and the size of that
cluster m as |Bm| When there are two clusters B, and B, , with size |Bm| and

|Bn| respectively, we merge the clusters B, and B, into new cluster if and

only if

B nB

m n

o
3B, n B, s
H

Bn

>0.5

After the above procedure, similar base clusters are joined together and the

result forms the final clusters for the set of documents.
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5.1.7 Documents Assigning

— 7. Documents Clustered :>
Assigning Documents

Figure 5.11  Documents assignment process

Up to this moment, the clusters of the document collections are highlighted. We
can now assign the documents into the suitable clusters, as shown in Figure 5.11.
A cluster should contain as least one phrase for reference. The clusters combined
in the grouping process should include more than one reference phrases. We
assign a document to the cluster if the document contains all the reference phrases
in that cluster. It is possible that a document belongs to more than one cluster.

To make this clusters assigning job efficient, we apply the generic Chinese
PAT tree again. We construct a generic Chinese PAT tree for a document. The
reference phrases in the clusters can check against the tree efficiently. The process
is quite straightforward. Since we can apply the generic Chinese PAT tree for
searching of phrases, this cluster assigning process can be done in linear time,

provided that the number of discovered clusters is always a finite number.
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5.1.8 Result Presentation

Clustering
Output

Clustered 8. Result
Documents Presentation

Figure 5.12  Result presentation process

When the documents are assigned to clusters, the final step is the presentation of
the clustering result, as shown in Figure 5.12. The result formalizes into expected
presentation format. However, the presentation format is application-dependent. It
could be the further analysis of the clustering output, the distribution statistics of

documents in the clusters, the detailed list of clusters and its documents, etc.

If the clustering of documents is purely for archiving purpose, the clustering
result may be used directly for archiving the collection into clusters. In this case,
presentation step may be ignored and will be replaced with the proper follow-up

action instead.

Since the presentation of result is application-dependent, we leave this part
open. In particular, our clustering result can organize documents for browsing on
the Web page by making an HTML layout of result displaying the clusters with
links to the documents. This kind of presentation is especially good for improving

the Web browsing experience on a large collection of non-indexed text.

5.2 Discussion

5.2.1  Flexibility of Our Framework

Our Chinese document clustering framework is a general overview for the

96



clustering of Chinese document collection. Each of the involved steps is well
defined with a short-term goal, and the output of each step prepares for the next
step. Therefore, it is easy to improve over a single step as long as the target result

and requirement does not change.

Our clustering process is adaptive; we can fine-tune each for the processing
part so that it is more suitable for a particular application need. For example, the
document cleaning process governs the format and style of the raw data. With a
suitable documents cleaning engine, the clustering process can accept any kind of
documents from the file or from the Web, in pure text format or embedded format.
We can select a suitable PAT tree construction process to build our PAT tree.
Although we should usually use the generic Chinese PAT tree in the clustering
because of its enhancement over the previous design, we still have options on
implementations. As we mentioned, dynamic link approach is typical but poor on
large document size. Node production factory approach, on the other hand, is very
capable for large document with a minor initialization overhead. If the document
size is very small in particular, we can select the dynamic link approach or any
other approach to build up the generic Chinese PAT tree. In addition, we maintain
the option in choosing different ranking functions as the clustering model
reference, and we can customize our base clusters filtering method as well as the

combining method. All the components are flexible for improvement.

5.2.2  Our Clustering Model

Throughout the research, we try to replace the engine model in different steps. We
focus on the clustering of Web-available documents and we target for presentation
of results on the Web. In particular, the following engine models are selected in
our particular clustering system: (1) we apply the customized cleaning engine for
the desired web documents; (2) we use the node production factory approach to
handle the construction of the generic Chinese PAT tree; (3) we traverse the tree
once to perform the Essential Node detection; (4) we use the weighted frequency

as reference to extract the base clusters from the tree; (5) CLP analysis is adopted

97



to filter out the unwanted base clusters from the initial based clusters; and (6) we

apply single-link algorithm to combine the base clusters into final clusters.

5.2.3 More About Clusters Detection

It is important to detect the desired clusters for our documents clustering
framework. Although our ranking functions consider the phrase ranking based of
the frequency, which is a reasonably measurement reference [13], our weight
function still has some weakness in certain rare situation. We discuss these and
introduce the adjusted weight. We also introduce the artificial stop-word list

method that helps improving the clustering result.

5.2.3.1 Ranking by Adjusted Weight

In the base cluster detection, we measure the weight of phrases to determine the
set of base clusters. From the general knowledge, a phrase appearing only in one
document cannot form a cluster, so it is undesirable for this phrase to get into the
base clusters set. However, the ranking function based on the frequency cannot
guarantee to avoid this. A phrase with very high frequency in a single document,
based on the ranking functions, may still be considered as base cluster. Although
there is a rare possibility for this to happen, it is still a possible noise due to the

unbalanced high frequency.

To avoid this, we suggest a modifier on the ranking function. We define an

adjusted weight (weight' ) for a phrase p, such that,

weight' = weight , X s
O ifn,>1
S =
d %) otherwise

where n ) is the number of documents in the document collection

containing the phrase p.
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When we rank according to weight',, we can avoid the noise resulted from

the phrase that appears only in a single document. Since the value of 7, can be
captured form the generic Chinese PAT tree during the PAT tree construction
process, this adjustment does not consume much computation time. When the
document collection is large, the weight of the real base cluster should be much
larger than the noise of single document phrase and the noise will not affect the
ranking result. This means the adjusted weight has no effect and it is not necessary
to apply the adjusted weight. However, a small set of documents can be very
sensitive to these noises. In this case, the adjusted weight becomes an important

factor for improving the ranking result.

5.2.3.2 Artificial Stop-word List

In addition to the adjusted weight, artificial stop-word list can improve the base
cluster result by filtering out the unwanted phrases in advance. We prepare a list
of stop-words that excludes the undesirable phrase to be the base cluster. We take
one preprocessing step to mask out the phrases from the stop-word list in the tree.
As these phrases are masked out, they are prevented from ranking. Therefore, they

can never become the result in the base clusters set.

Common words and domain-specific words are example phrases in the
stop-word list. These are not the interesting result for clustering. For example, the
phrase “Z7R~” is usually not a significant phrase but it may frequently appear in
some type of documents. It is a possible base cluster but not for our interest.
Moreover, the phrase “§f[H]” is a meaningful phrase as base cluster in general, but
it would not be interesting when the set of documents is actually a set of
newspaper articles. The former example is a common word, and the latter
example is a domain-specific word. Artificial stop-word list can prevent them

from appearing in the base cluster result.
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5.2.4  Analysis and Complexity

Our algorithm is a linear algorithm. We assume that, with a set of N documents,
the number of words per document is bounded by a constant. Since the
construction and searching of a PAT tree is logarithmic to the number of words in
the document, the algorithm can perform in linear time. The extraction and

grouping processes are similar to those of STC, which are also linear algorithms.
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Chapter 6
Evaluations on the Chinese

Documents Clustering

We conduct experiments to illustrate that our proposed Chinese document
clustering framework is feasible to organize a set of documents into groups. We
further investigate the clustering result using the document abstract as well as the
clustering result using the document title. The experiment shows that we can
cluster the documents with document abstract. Since the abstract is shorter than

the original document, this can improve the computation time.

6.1 Details of Experiment

We select the first hundred articles from the local news sections in MingPao News
[35] in September 2000 as our documents collection. This collection includes the
news from 1st September 2001 to 2nd September 2001. The original articles are
HTML documents available on the MingPao News Web site. Figure 6.1a is a
sample of the articles, which was published in 1st September 2001.

The documents collection went through the eight steps of our Chinese

document clustering process in the experiment. They are 1) Document cleaning; 2)
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PAT tree construction; 3) Essential Node extraction; 4) Base clusters detection; 5)
Base clusters filtering; 6) Base clustering combining; 7) Document assigning; and

8) Result presentation.

Document cleaning applies to the articles to extract the Chinese content
inside. We apply three filters to the original HTML document and obtain the
desired cleaned documents. The three filters are: 1) Content filter: It detects the
decoration text such as page title, date, time, and copyright footnotes and remove
them from the document; 2) HTML filter: It effectively removes any HTML tags
or elements from the documents and keeps the plain text information; and 3)
Punctuation filter: It strips out the punctuation symbols and any non-Chinese
characters and replace them with line breaks. It also handles and suppresses
multiple line breaks accordingly. These three filters are incorporated in the Web
documents extraction engine. After we collect the documents collection from the
Web, those articles are processed and stored in the cleaned form. Figure 6.1b is

the sample of the first article in the cleaned form.
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Figure 6.1 a) Original HTML article b) Cleaned article

With the cleaned documents, the second step of the process constructs the
generic Chinese PAT tree of the documents collection. The following third step

marks the tree with their Essential Node information.

Step four applies the weighted frequency method on the Essential Nodes of
the tree. Each of the Essential Nodes has a weighted frequency value. The
Essential Node with a higher weighted frequency value contains Chinese
characters segment that is more representative, according to the context of the
documents collection. Those with high weighted frequency value become
potential base clusters. In this experiment, the threshold value for the lower limit

of the weighted frequency value is weight, ., . =(weight  Xp, ), where

weight _ is the maximum weighted frequency, and p, is the parameter of

max

relative lower bound, where 0< p, <1. Our experiment takes p,6 =0.2 so that,
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according to the document collection context, the most unimportant Chinese

characters segments are grossly excluded.

Step five applies the CLP analysis to further filter the potential base clusters.
CLP analysis measures the completeness of Chinese characters segment
statistically. With documents collection of reasonable size, CLP analysis can
distinguish Chinese word phrases from incomplete characters segments. After the
base clustering filtering, the base clusters that contain meaningful Chinese phrases

or vocabularies should remain. They become the filtered base clusters.

Step six applies single-link method to combine base clusters with high
similarity. We measure the number of documents common to two base clusters:
The more the common documents, the higher the similarity. The result after the

combination produces final clusters.

Although the number of final clusters must be less than or equal to the
number of filtered base clusters, the actual number of final clusters varies
depending on the documents collection. To restrict the number of clusters, we can
use a threshold value v to obtain the top v% of clusters, or set a fixed value n
to obtain maximum of » clusters. In our experiment, we set » =15 to retrieve a

fixed number of clusters.

Documents assignment in the step seven assigns documents to each final
cluster. Any document with one or more Chinese phrases in a final cluster belongs
to that final cluster. It is possible for a document to become multiple clusters in
this documents clustering framework. A cluster is a set of non-trivial documents

in the documents collection with topics in common.

Presentation is the final step in the clustering framework to store or present
the result. It is of little concern in our experiment. In the result, we present the
cluster key of the clusters, which is the Chinese phrases, as well as the cluster

size.
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6.1.1 Parameter of Weighted Frequency

In the base clusters detection process, the weighted frequency of phrase p is,

weight, = frequency, % (baseScorey)’

where baseScore, = max(ChineseCharacterLengthy, topScore)

We define the parameter fopScore =8 in our experiments. This parameter is
a tunable value that can adapt to different situations. It indicates the cut-off length
of Chinese phrase we want to emphasize. Under this parameter setup, the range of
each (baseScorep)’ is 1 to 64 inclusively. It emphasizes the Chinese phrases of
eight characters or less in quadratic scale, and any longer phrases would not be

over-emphasized.

We observe that Chinese vocabularies are usually up to four characters and
short phrases are usually within ten characters long. However, phrases with ten or

more characters are rare, and the setup of fopScore =10 shows an excessive
. . ., . 100 .
weight, value for a very long phrase in our early test, which is 1 =1.56 times

larger. By restricting the fopScore value to 8, the weighted frequency value can

highlight short phrases and vocabularies more effectively, and avoid excessive

increase.

6.1.2  Effect of CLP Analysis

Our base clusters filtering use the CLP analysis method described in Section
5.1.5.3. CLP analysis is a statistical measurement method that checks Right
External Independent (REI), Left External Independent (LEI), and Internal
Associated (IA) of phrases in the base clusters. The measurements of LEI and REI
analyze the external association of a cluster key. The measurement of [A detects

the internal quality of the cluster key.

The phrases of base clusters that pass these checks are regarded as Complete
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Lexicon Pattern (CLP). The remaining base clusters are filtered out. In our
experiment with one hundred documents in the documents collection, the process

maintains the threshold parameters for the CLP analysis as ¢, =4, ¢, =0.7,

t,=05,and 1, =2.

During the CLP analysis process, base clusters that do not include enough
statistical support to become a complete or meaningful Chinese phrase are filtered
out from the base clusters set. Table 6.1 is a short list of unwanted base clusters
during CLP analysis. They obtain high enough weighted frequency to pass the last
detection process. Their key phrases, however, contain little meaning in Chinese.

CLP analysis can effectively discriminates them in the base clusters filtering

Process.

Weighted Frequency Base Cluster Key Filtered Reason
153 FRIET . Not Right External Independent
144 .. Not Right External Independent
144 LBEIRE. Not Left & Right External Independent
135 RS Not Left External Independent
125 CHEEREE Not Left External Independent
108 +=p% Not Internal Associated

(Thirteen years old)

Table 6.1 Examples of removed clusters in the CLP analysis process

For example, the base cluster key “f&EH5™ is not CLP because it is not REI,
which means that the key should have some missing Chinese characters on its
right side to produce complete lexical meaning. The base cluster key “HEREHE”
indicates similar situation because it is not LEI, which means that the key should
contain some missing Chinese characters on its left side to present complete
lexical meaning. The example like “}#5E]%" is neither LEI nor REI as there
should be Chinese characters appended on both sides in order to produce a

complete lexicon meaning. These clusters are bad clusters and the CLP analysis
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filters them out.

independent of the document context statistically. That key is a Chinese phrase
with the meaning of “thirteen years old”. However, it is not IA because that key is

a loosely connected word expending from another Chinese word “-=", which

means “thirteen”. Since the analysis detects the poor internal quality, “} =% is

The example of base cluster key “f =j5%”, which is LEI and REI, is

not CLP in our documents collection. We also filter out that cluster.

high weighted frequency. Their base clusters key should also contain reasonable

After the CLP analysis process, the clusters set contains base clusters with

lexical meaning. Table 6.2 is a short list of base clusters after CLP analysis.

Base Cluster Key Number of Weighted Number of
Articles Frequency Appearances

1. |35 29 452 113
(Economy)

2.| 33 344 86
(Hong Kong)

3.\ B 27 340 85
(Government)

4.9 14 288 72
(Defendant)

5. | RERM 6 270 30
(Antony Leung)

6. |FEIEIe R 9 256 16
(Economic Growth)

7|30k 13 252 28
(Legislative Council)

8.|HEH 35 248 62
(Yesterday)

9. |84 12 244 61
(Student)

10. 185 11 212 53

(Grow)

Table 6.2 Short list of filtered base clusters from a hundred of documents
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6.1.3  Result of Clustering

Final clusters are the result after combining the base clusters. Base clusters with
high correlation merge together into single clusters. Table 6.3 presents the detail

of the top 15 final clusters.

Final Clusters Number of Articles
LR U 40
(Economy, Government)
2. | E 33
(Hong Kong)
3.8 IR 17
(Defendant, Legal Case Number)
4|5 6
(Antony Leung)
5.8 R BR 11
(Economic Growth, Grow)
6.1 FEE IEERA g 19
(Legislative Council, Legislative Council Member, Conference)
7.|WEH 35
(Yesterday)
8. | &L 12
(Student)
9. [Fame_E I TRBEST 2
(Mentally lost of ability)
10.| SIS RS REE IS T RER 5 3
(International Cop, You attack the wrong person)
11| BT HE5 5
(Police reports to the scene)
12/ &7 %4 33
(Police, Case)
13. | S EREE 2
(West-side pass way)
14,385 26
(Consider to)
15.|44F 22
(This year)

Table 6.3 Final clusters result from a hundred of documents

According to this result highlight, our clustering framework can locate large

clusters such as “%&¥ BURF” (40 out of 100 articles), “Z#E” (33 out of 100
articles), “Zf Z4 (33 out of 100 articles). These are the most representative

topics and documents among the whole set of documents collection. Besides, the
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result detects medium size clusters with significant clusters keys such as “Z2gH
FA” (6 articles), “4&PEE” (11 articles), “VHE UHEEHE 9% (19
articles). These are well-defined and well-known topics inside our news document

collection.

Since we apply an effective CLP analysis process, all the keys of the final
clusters are known Chinese phrases or vocabularies. As our framework is based
on the statistical analysis of a particular set of documents collection, our result

contains clusters with less semantic value such as “HFH”, “54”. These temporal

markers may be essential for some other documents collection, but they are not
that important in our news documents collection. To prevent these phrases with no
contextual text, we can provide a stop-word list with these phrases. The clustering

detection process ignores any words in the stop-word list for being base clusters.

As our document collection is the news articles collection from 1st
September 2001 to 2nd September 2001, the obtained clustering result is able to
extract the most interesting sets of articles among our selected input documents

collection.

6.2 Clustering on Larger Collection

Using the same setup and parameters, we perform another document clustering
experiment with a larger set of documents collections. We collect one thousand
news articles from Ist September 2001 to 17th September 2001. In this
experiment, we expect to extract the most valuable news topics from this

upper-half month of September 2001.

6.2.1 Comparing the Base Clusters

Table 6.4 is the intermediate result with the highlights of base clusters just before

the base clusters combining process. We can compare this table with Table 6.2 to
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see the effects of larger set of documents.

the weighted frequency. This is due to the difference between the sizes of two
documents collections. The phrase in the larger documents set tends to show
higher occurrence frequencies, which directly leads to high weight frequency
values. Therefore, the weighted frequencies between the different documents

collections cannot compare. They are only the relative measurements within their

The main difference between the two base clusters sets is the magnitude on

own collection.

Base Cluster Key Number of Weighted Number of
Articles Frequency Appearances

1. | & 343 4312 1078
(Hong Kong)

2. |BURF 314 3528 882
(Government)

3.|ZER 241 3416 854
(America)

4.[fHE& 71 2368 148
{World Trade Center)

5. K& 203 2252 563
(Economy)

6. |24 132 2192 548
(Student)

7.\HEH 334 2184 546
(Yesterday)

8. | B B A 40 2058 42
(Chief Secretary for
Administration Donald
Tsang )

9.|23F] 194 1940 485
(Company)

10. |24 115 1888 472

(School)

documents are from the same source of news articles. Therefore, they contain
similar base clusters such as “&#E”, “BURF”, and “#Z3%”. This result is natural
and it reveals that they are the most popular news topics among them. Besides, all

clusters key contains the well-defined Chinese phrase, which is similar to that in

Table 6.4 Short list of filtered base clusters from a thousand of documents

Despite the difference on the scale of the weighted frequency, the two sets of
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the previous experiment.

6.2.2

Details of the final clusters result from the set of one thousand documents are
listed in Table 6.5. From the result under these documents, the cluster process still

detects the most popular topics in the top clusters, namely, “Z&#E” (343 out of
1000 articles) and “E{FF” (314 out of 1000 articles). This result naturally reveals

Result of Clustering

the fact that most of our news articles are related to these topics.

Final Clusters

Number of Articles

1| 343
(Hong Kong)
2.|BURF 314
(Government)
3.EH 241
(America)
4. M R 133
(WTC, New York, World Trade)
5. 589 203
(Economy)
6.| 24 Bz 177
(Student, School)
7.HEH 334
(Yesterday)
8. BRI R ETatE TiatE 47
(Chief Secretary for Administration Donald Tsang)
9.1 8] 194
(Company)
10.| A igeEE GHEE RLH 156
(Terrorist Event, Attack, Terror)
11,404/ 247
(Them)
12| T 196
{(Work)
13,385 254
(Consider to)
14135 266
{(Without)
5. 1FEREE FE 46

(Suspension of the ownership housing scheme, ownership

housing)

Table 6.5 Final clusters result from a thousand of documents
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Besides, this clustering result successfully identifies the most important news

during the upper half month in September 2001. They are grouped in clusters “t
Hrfuls #i#9 fHE” (133 articles) and “RMHEEE BLE: 2L (156 articles).
Another issue “{SEfRZE JHE” is also a local hot news topic during that period
of time. Our clustering result reports it with 46 related articles. The cluster “B%5
ARTERE TTEME” (47 articles) is also a hot topics related to the public affair

issues of Hong Kong during that time.

This experiment illustrates how the document clustering extract clusters with
interesting topics from a set of documents in an unsupervised manner. Final
clusters include valid Chinese topics and the most interesting topics are ranked
high according to the statistical measurements. However, some final clusters
contain common vocabularies like “BEH” or “fth{"]”, which present limited
semantic values by themselves. All these clusters contain two characters words as
topic. If we do not want them to become clusters in our result, we can avoid them

with additional work discuss in the next section.

6.2.3 Discussion

6.2.3.1 Words with Two Characters

From these two clustering experiments with smaller and larger document sets,
their results of simple vocabularies, particularly those with two Chinese characters,
are quite consistent. Their high ranking is based on their number of occurrences.
Since there is no way to evaluate the semantic value of the simple vocabularies in
the CLP analysis, those with low semantic values may still be regarded as noise

even they are most likely good clusters.

One of the ways to remove them from the result is to simply ignore all
two-character words because most of them cannot form clusters of interest.

However, some clusters with two-character topic word may still be valuable
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clusters, like “Z&FHE”, “EFH]”, “#&KE”. Since the existence of noise clusters does

not affect other good clusters, ignoring all clusters of two-character words

becomes undesirable. It harms the clustering result.

On the other hand, we can practically put those unwanted vocabularies into
the stop-word list to eliminate them from the final clusters. Stop-word list helps
ignore particular words we do not want in the result. The list can be dependent on
or independent of a particular type documents collection. We may always provide
a list of vocabularies that contain no dedicated semantic values for themselves,

such as “¥&4”, “{HLZ”, etc. We can also provide on demand a list of undesirable
vocabularies for particular type of document collections, such as “45K”, “HEH"”,
“H7IH”, in news collections. Stop-word list is a flexible solution on the documents

clustering framework. At the same time, the stop-word list would not affect the

results of any other clusters.

6.2.3.2 Clusters Independence

The clusters discovered in our clustering process are independent. Their weighting
depends on the statistic value of the cluster key. Therefore, the result of one
cluster does not affect the result of another. This property ensures the stop-word
list can apply on our clustering framework safely. The words on the stop-word list
will be filtered out from the result set, and the result affects no more than these

words. The overall result of other clusters is kept as if there is no stop-word list.

6.3 Clustering with Part of
Documents

The experiments in this part focus on the clustering result in different variation of
documents collection. We use the same set of one thousand documents as our base

set, which is identical to the collection set in Section 6.2. We use the clustering
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result of the base set as the result reference for comparison. In the first variation,
we extract only their news headlines to perform the clustering. Since the size of
news headlines is much smaller than the size of the whole documents, this
experiment perform very fast in processing time. However, the resulting clusters
are not outstanding, as much of the valuable result from our base reference does
not appear in the top ranks. In the second variation, we extract not only the news
headlines, but also the first paragraph of the news articles as news abstract. The
clustering on this abstract, although slower than using news headlines alone, still
performs much faster than the original experiment. Compared with the result of
the base reference, clustering on news abstract can preserve the outstanding
clusters. At the same time, clusters with low lexical value tend to rank lower, and

clusters with higher lexical value tend to rank higher.

6.3.1  Clustering with News Headlines

In the clustering of news headlines, we use only the headlines of each article in
the documents collection. We use the collection of one thousand news articles,
which is identical to the collection set in Section 6.2. The clustering process
collects text from the headlines of each article to construct the generic Chinese

PAT tree.

The headlines of news draw captions and focus of a piece of news articles.
We expect that the clustering news result by using news headlines would not be
affected much by common vocabularies when compared with the previous result
by using full contents of the articles. However, our experiment does not meet this
expectation. Table 6.6 is the clustering result by using news headlines of one
thousand news articles. These clusters are obviously not as good as those from full

document contents shown in Table 6.5.
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Final Clusters

Number of Articles

JEEEE BE

(Suspension of the ownership housing scheme, ownership
housing)

46

[T

{(Words of the Court)

(Government claims the telephone network. Telephone to the
New York was jammed)

(B B

(Student, School)

177

(Economics)

203

[ETRM

(Reply to Citizens)

[BUR

(Government)

314

|Gl

(Redeem)

20

|t

(Mainland)

114

10.

TN
(Hong Kong Citizen)

84

11.

L=
{World Trade, New York)

133

12.

B
(Youth)

29

13.

IO
(Wise question and wise answer)

14.

RE
(University)

107

15.

A

138

(Investigate)

Table 6.6 Final clusters result from headlines of a thousand of documents

significant to our documents collection. In the first 15 clusters, four of them are

” (8 articles), “BUREH
RIS, (2 articles), “Z&TiERY” (5 articles), and “PPRYPE (3 articles). By

clusters with less than ten articles. They are “ff7['J5E

inspecting the cluster size and the lexical meaning of the cluster, these clusters are
not quite relevant to the documents collection. On the other hand, some
representative large clusters, like “FF@k”, “ZE[K”, and “LiEEEE” in the
previous experiment result do not show high score to in ranking at this time.

Although clustering with headlines indicates the benefit in reducing clustering
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time in this experiment, the resulting clusters are far less representative.

From this unsatisfactory result, we further investigate the effect of using

news headlines. The reported frequencies of Chinese phrases, which affect

ranking of clusters as shown in Table 6.7, provide us some clues. This table

illustrates that the number of appearances of Chinese phrase in news headlines is

very low. In a thousand of documents, all phrases contain a frequency value less

than 30. Consequently, none of the phrases discovered from the news headlines

are representative enough for the clustering result. As the range of the number of

appearance is only between 1 and 30, the resulting weighted frequency also falls

in a limited range. Therefore, the clustering result from the news headlines cannot

distinguish the outstanding clusters in its result.

Base Cluster Key Weighted Number of Appearances
Frequency in the news headline

1.2 ERZE 176 11
(Suspension of the ownership housing scheme)

2. |[ff TR 128 8
{(Words of the Court)

3. [BURFEB R AR A B RS R 128 2
(Government claims the telephone network.
Telephone to the New York was jammed)

4. |24 104 26
(Student)

5. K& 80 20
(Economics)

6. BmEM 80 5
(Reply to Citizens)

7.\ BRF 76 19
(Government)

8.|EE 72 18
{Ownership housing)

9. |11 64 16
(Redeem)

10.| A3l 56 14

(Mainland)

Table 6.7 Reported frequencies from filtered base clusters of headlines

This experiment demonstrates the usability of our documents clustering

framework. It requires large enough document samples to support the statistical

measurement in the result. In fact, news headlines are always short sentences with

116




only one or two phrases, and they are not descriptive enough to represent one
document. Consequently, the clustering result from using the news headlines
alone cannot efficiently categorize the documents collection into outstanding

clusters.

6.3.2  Clustering with News Abstract

We define the news abstract as the news headlines together with the first
paragraph of the news article. In a piece of news article, the main concept and
caption about the news are usually described shortly in its news headlines, and the
overview of the whole piece of news is usually presented in its first paragraph.
While news headlines are too brief in content for the clustering purpose, we
extend our idea to perform the clustering using the first paragraph including the
news headlines. The news abstract is the essence of the news. Since the news
abstract is usually much shorter than the whole article, the clustering process

requires less time to perform on news abstract.

Table 6.8 presents the result of clustering from the news abstract. Comparing
with our reference result in Table 6.5, the news abstract provides useful
information for the clustering process. In the top 15 results, we observe the large

clusters like “ZF#E” (343 articles), “ZE[H” (241 articles), “BF” (314 articles).

We also include the outstanding clusters with topics of high lexical values like “F
BRI e (47 articles), “tHEHu0 #H49 tHE” (133 articles), “72
WREEHEE BEEZE L (156 articles), and “{EEJEZE JEH/E" (46 articles). These are

the interesting clusters that we discover in the clustering using the whole

documents in the documents collection.

Apart from these interesting topics, results from this experiment show some
more clusters with interesting topics that push some ‘two-character word’ with

less lexical meaning into a lower rank. The newly discovered interesting clusters
in the top ranks includes “BA B G| REZ2EFN REHFA" (37 articles), “TTRREE
EIE” (21 articles), and “|RBSHEfEEHIREAES” (7 articles). These are famous
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politicians mentioned in the news on government affairs. The result with these
clusters appearing in high rank positively supports the usage of news abstract in
our clustering framework. With these three new interesting clusters from this
experiment, we further examine the original clustering result from our base
reference. The first two clusters appear in the result of the clustering using whole

document while the cluster “[BFEEAEFEICEAEL" does not exist there. The two

existing clusters were ranked 22 and 43 respectively in the reference clusters

result.
Final Clusters Number of Articles

1| 343
(Hong Kong)

2.|ZEH 241
(America)

3. BERIRETEE CTatE 47
(Chief Secretary for Administration Donald Tsang, Donald
Tsang)

4. | BURF 314
(Government)

5.\HEH 334
(Yesterday)

6.(THE L0 fHFT R 133
(WTC, New York, World Trade)

7. [RiMiEe R R R 156
(Terrorist Event, Attack, Terror)

8.\ B FI RIS TR 37
(Financial Secretary Antony Leung, Antony Leung)

S.7EER ERE 46
(Suspension of the ownership housing scheme, ownership
housing)

10. |35 203
(Economics)

11. B4 Big 177
(Student, School)

R2fTHRREHRE 21
(Chief Executive Tung Chee-Hwa)

13.| BB e A B A 7
{Chu Yong-Chi)

14.|/3F] 194
(Company)

15. | EvERsis 43
(Hong Kong Economy)

Table 6.8 Final clusters result from abstract of a thousand of documents
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Chapter 7

Conclusion

Chinese information processing technique is an important aspect in the research of
Chinese computing. The major challenge of Chinese information processing is
due to the nature of ambiguous Chinese word boundary in Chinese documents.
Much of the related research efforts are trying to overcome this problem. They
mainly focus on topics of keyword extraction, sentence segmentation, and
document searching. This thesis is a study of Chinese information processing
technique emphasizing the documents clustering problem on Chinese documents

collection.

We studied the PAT tree data structure, which is an efficient indexed tree
structure in handling sub-strings information of documents, and its variation
proposed by Chien for Chinese documents. By identifying the necessary
requirements for PAT tree to handle Chinese information and disadvantages of
embedded design of Chien’s variation, we derived our own variation of Chinese

PAT tree.

Based on our variation of PAT tree, we proposed a generic Chinese PAT tree
data structure, which benefits from the design of PAT tree and is capable of
handling Chinese information. We defined a type of node called Essential Node in
the generic Chinese PAT tree. Chinese phrasal information was stored correctly

and uniquely inside the Essential Nodes of the generic Chinese PAT tree. Our
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generic Chinese PAT tree can handle Chinese documents, contains uniform node
structure, and is capable of storing correct Chinese phrasal information in the

Essential Nodes of the tree.

We identified the large overhead problem for the PAT tree construction. We
proposed a node production factory implementation approach to replace the
general approach using the dynamic memory management. This solution
successfully overcomes the overhead issues. We evaluated the performance of the
generic Chinese PAT tree. We showed that construction time the critical process of
the PAT tree, and our generic Chinese PAT tree maintained the construction

performance in linear time scale, which was comparable to the original PAT tree.

We proposed a system framework for the Chinese documents clustering
problem. We applied the generic Chinese PAT tree that we proposed to the
clustering framework. The framework is in modular design that can support
heterogeneous type of documents and use different Chinese information analysis

techniques to perform the detection, filtering, and combining of clusters.

We evaluated the Chinese documents clustering with online news articles
from the Web. We applied the weighted frequency ranking criteria and CLP
analysis techniques for clusters detection and filtering. The clustering result
successfully detect large clusters and clusters with non-trivial topics from the

documents collection.

Finally, we evaluated the clustering result with the same collection of news
articles using part of the document contents. The result showed that the clustering
performs poorly when supplied with only the news headline because news
headlines are the over-simplified information for the clustering needs. However,
the news headline together with the first paragraph effectively summarizes a piece
of news articles. Clustering with this abstract information can perform efficiently
and produce result in high quality. Large clusters and clusters with non-trivial

topics were contained in the result.

Our Chinese documents clustering framework is an application of our

generic Chinese PAT tree. With the satisfactory clustering results and the linear
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complexity performance, our solution is suitable for the real-time environment

such as result clustering systems on Chinese online search engine.

121



Bibliography

[1] K. Abrahamson. Generalized String Matching, SIAM Journal of
Computing, volume 16, pages 1039-1051, 1987.

[2] R. B. Allen, P. Obry and M. Littman. An interface for navigating clustered
document sets returned by queries. In Processings of the ACM Conference

on Organizational Computing Systems, pages 166-171, 1993.
[3] Apple Daily Online. http://appledaily.atnext.com/.

[4] R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In
Proceedings of the 12th International ACM SIGIR, Cambridge, MA, pages
168-175, 1989.

[5] R. Baeza-Yates and G. H. Gonnet. Efficient text searching of regular
expressions. In Proceedings of 16th International Colloquium on

Automata, Languages, and Programming, pages 46-62, 1989.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval,
Addison Wesley, 1999.

[7] L. Baker and A. McCallum. Distributional Clustering of Words for Text
Classification. In Proceedings of the 25th International ACM SIGIR,
Melbourne, Australia, pages 96-103, 1998.

[8] J. S. Chang. Chinese Sentance segmentation Through Constraint
Satisfaction and Statistical Optimization. ROCLING-IV, Taiwan, pages
147-165, 1991.

[9] A. Chen, J. He and L. Xu. Chinese Text Retrieval Without Using a
Dictionary. SIGIR'97, pages 42-49, 1997.

[10] K. J. Chen. Word Identification for Mandarin Chinese Sentences.
COLING’92,1992.

[11] L. F. Chien. Csmart -- A High Performance Chinese Document Retrieval

System. In Proceedings of the 1995 International Conference on

122



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Computer Processing of Oriental Languages, ICCPOL’95, pages 176-183,
1995.

L. F. Chien. Fast and Quasi-Natural Language Search for Gigabytes of
Chinese Texts. SIGIR 95, pages 112-120, 1995.

L. F. Chien and H. T. Pu. Important Issues on Chinese Full-text
Information Retrieval. Computational Linguistics and Chinese Language
Processing, Computational Linguistics Society of Republic of China Press,

number 1, volume 1, pages 205-221, 1996.

L. F. Chien. PAT-Tree-Based Keyword Extraction for Chinese
Information Retrieval. SIGIR'97, pages 50-58, 1997.

L. F. Chien. Exploration of Fundamental Techniques towards Intelligent
Chinese Information Retrieval for the Internet. Institute of Information and

Computing Machinery Communication, number 1, volume 3, 1998.

L. F. Chien. PAT-Tree-Based Adaptive Keyphrase Extraction for
Intelligent Chinese Information Retrieval. Special issue on Information

Retrieval with Asian Languages, Information Processing and Management,

Elsevier Press, 1999.

L. F. Chien. Incremental Extraction of Domain-specific Terms from
Online Text Resources. Recent Advances in Computational Terminology,

Ed. By D. Bourigault, C. Jacquemin and M. L'Homme, 2001.

K. Church and P. Hanks. Word Association Norms, Mutual Information,
and Lexicography. In 27th Annual Meeting of the Association for
Computation Linguistics, pages 76-83. Association for Computational

Linguistics, 1989.

W. S. Cooper, A. Chen and F. C. Gey. Full Text Retrieval based on
Probabilistic Equations with Coefficients fitted by Logistic Regression. D.
K. Harman, editor, The Second Text Retrieval Conference (TREC-2),
pages 57-66, March, 1994.

W. B. Croft. Organizing and Searching Large Files of Documents, Ph.D.
Thesis. University of Cambridge, October 1978.

123



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. R. Cutting, D. R. Karger, J. O. Pedersen and J. W. Tukey.
Scatter/Gather: a cluster-based approach to browsing large document
collections. In Proceedings of the 15th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages

318-329, 1992.

Y. Dai and T. Loh. A New Statistical Formula for Chinese Text
Segmentation Incorporating contextual Information. SIGIR’99, pages
82-89, 1999.

T. Gaston. New Indices for Text: PAT Trees and PAT Arrays.
Information Retrieval Data Structures <& Algorithms, Frakes and

Baeza-Yates (editors), Prentice Hall, pages 66-82, 1992,

G. H. Gonnet, and R. Baeza-Yates. Handbook of Algorithms and Data
Structures in Pascal and C, 2nd Edition, 1991.

K. K. He, H. Xu and B. Sun. The Design Principal for a Written Chinese
Automatic Segmentation Expert System. Journal of Chinese Information

Processing, volume 5, pages 1-14, 1991.

M. A. Hearst. The use of categories and clustering information access
interfaces. In T. Strzalkowski (ed.) Natural Language Information

Retrieval, Kluwer Academic Publishers, 1999.

D. R. Hill. A vector clustering technique. Mechanized Information Storage,
Retrieval and Dissemination, North-Holland, Amsterdam, 1968.

H. Kim and S. Lee. A Semi-Supervised Document Clustering Technique
for Information Organization. In Proceedings of CIKM 2000, pages 30-37,
2000.

K. Kwok, M. Lyu and I. King. A Novel PAT-Tree Approach to Chinese
Document Clustering. In Proceedings of the International Symposium on

Information System and Engineering, pages 85-91, 2001.

A. V. Leouski and W. B. Croft. An evaluation of techniques for clustering
search results. Technical Report IR-76, Department of Computer Science,

University of Massachusetts, Amherst, 1996.

124



[31]

[32]

[33]

[34]

[35]
[36]

[37]
[38]

[39]
[40]

[41]

[42]

[43]

M. Y. Lin, T. H. Chiang, and K. Y. Su. A preliminary study on unknown
word problem in Chinese sentance segmentation. ROCLING, volume 5,

pages 147-176, 1992.

K. T. Lua. From character to word — An application of information theory.
Computer Processing of Chinese and Oriental Languages, volume 4,

pages 304-312, 1990.

K. T. Lua and G. W. Gan. An application of information theory in Chinese
sentance segmentation. Computer Processing of Chinese and Oriental

Languages, volume 1, pages 115-124, 1994.

U. Manber and R. Baeza-Yates. An Algorithm for String Matching with a
Sequence of Don’t Cares. Information Processing Letter, Volume 37,
pages 133-136, 1991.

MingPao News. http.//www.mingpaonews.com/.

D. Morrison. PATRICA-Practical Algorithm to Retrieval Information
Coded in Alphanumeric. Journal of the ACM, volume 15, pages 514-534,
1968.

J. Nie, M. Briscbois. On Chinese Text Retrieval. SIGIR'96, 1996.

T. Ong and H. Chen. Updateable PAT-Tree Approach to Chinese Key
Phrase Extraction Using Mutual Information: A Linguistic Foundation for
Knowledge Management. In Proceedings of the Second Asian Digital
Library Conference, Taipei, Taiwan, 1999.

Oriental Daily News. http.//orientaldaily.com.hk/index. html.

E. Rasmussen. Clustering Algorithms. Information Retrieval, pages

419-442, Prentice Hall, Eaglewood Cliffs, N. J., 1992,

C. J. van Rijsbergen. Information Retrieval, Butterworths, London, 2nd

edition, 1979.

J. J. Rocchio, Document Retrieval System — Optimization and Evaluation.

Ph.D. Thesis, Harvard University, 1966.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval,
McGraw-Hill Computer Science Series, McGraw-Hill, New York, 1983.

125



[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

R. Sproat and C. Shih. A statistical method for finding word boundaries in
Chinese text. Computer Processing of Chinese and Oriental Languages,

volume 4, pages 336-351, 1991.

M. S. Sun and e. al. Some issues on the statistical approach to Chinese
Word Identification. 3rd International Conference on Chinese Information

Processing, pages 246-253, 1992.
The Sun Web. http.//the-sun.com.hk/index. html.

C. H. Tung and H. J. Lee. Identification of unknown words from a corpus.
Computer Processing of Chinese and Oriental Languages, supplement,

pages 131-145, 1994.

E. M. Voorhees. Implementing agglomerative hierarchical clustering
algorithms for use in document retrieval. Information Processing and

Management, Volume 22, pages 465-476, 1986.

P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th
Annual Symposium on Foundations of Computer Science, pages 1-11,

1973.

P. Willet. Recent trends in hierarchical document clustering: a critical
review. Information Processing and Management, Volume 24, pages

577-597, 1988.

Z. Wu and G. Tseng, Chinese Text Segmentation for Text Retrieval:
Achievements and Problems. Journal of the American Society for

Information Science, volume 44, number 9, pages 532-542, 1993.

F. Xu, K. Netter and H. Stenzhorn. MIETTA -- A Framework for Uniform
and Multilingual Access to Structured Database and Web Information. In
Proceedings of the 5th International Workshop Information Retrieval with
Asia Languages, pages 41-48, 2000.

Yiming Yang. An Evaluation of Statistical Approaches to Text

Categorization. Kluwer Academic Publishers, 2000.

126



[54] C. L. Yeh and H. J. Lee. Rule-based word identification for mandarin
Chinese sentences: A unification approach. Computer Processing of

Chinese and Oriental Languages, volume 2, pages 97-118, 1991.
[55] J. Yen, P. C. Ma, V. Sivakumar and H. Chen. A Software Agent for

Analyzing Financial Documents. Journal of Management Information
Systems, 1999.

[56] O. Zamir and O. Etzioni. Web Document Clustering: A Feasibility
Demostration. SIGIR'9S, 1998.

127



