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Online Nonlinear AUC Maximization
for Imbalanced Data Sets
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Abstract— Classifying binary imbalanced streaming data is
a significant task in both machine learning and data mining.
Previously, online area under the receiver operating charac-
teristic (ROC) curve (AUC) maximization has been proposed
to seek a linear classifier. However, it is not well suited for
handling nonlinearity and heterogeneity of the data. In this paper,
we propose the kernelized online imbalanced learning (KOIL)
algorithm, which produces a nonlinear classifier for the data
by maximizing the AUC score while minimizing a functional
regularizer. We address four major challenges that arise from our
approach. First, to control the number of support vectors without
sacrificing the model performance, we introduce two buffers with
fixed budgets to capture the global information on the decision
boundary by storing the corresponding learned support vectors.
Second, to restrict the fluctuation of the learned decision function
and achieve smooth updating, we confine the influence on a new
support vector to its k-nearest opposite support vectors. Third,
to avoid information loss, we propose an effective compensation
scheme after the replacement is conducted when either buffer
is full. With such a compensation scheme, the performance of
the learned model is comparable to the one learned with infinite
budgets. Fourth, to determine good kernels for data similarity
representation, we exploit the multiple kernel learning framework
to automatically learn a set of kernels. Extensive experiments on
both synthetic and real-world benchmark data sets demonstrate
the efficacy of our proposed approach.

Index Terms— Area under the ROC curve (AUC) maximiza-
tion, budget, imbalanced data, kernel.

I. INTRODUCTION

MBALANCED streaming data are prevalent in various
real-world applications, such as network intrusion detec-
tion [41], purchasing or clicking analysis for customer
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relationship [12], [16], and so on. These data exhibit the
following prominent characteristics.

1) Huge Volume: The volume of the data increases
tremendously, from petabyte to exabyte, or even
zettabyte.

2) High Velocity: They are streaming data, generated in
seconds or microseconds, from various online applica-
tions. The data may change dynamically.

3) Extreme Imbalance: The imbalanced ratio can be 100:1,
or even 10000:1 for a standard binary classification task,
where the important class is very rare due to the nature
of human attention.

4) Nonlinearity and Heterogeneity: Only nonlinear classi-
fiers can produce a more accurate decision boundary
[see Fig. 1(a) for an example]. The heterogeneity poses
difficulty in defining data similarity.

Learning binary classification models from imbalanced
data has become an important research topic in both
machine learning and data mining [3], [30], [45], [49].
In the literature, researchers aim at maximizing the
area under the receiver operating characteristic (ROC)
curve (AUC) instead of accuracy, because the AUC score
is effective in measuring the performance of classifiers for
imbalanced data [1], [2], [17], [19], [23]. To deal with the
imbalanced streaming data, researchers have proposed the
online AUC maximization approach [15], [55]. However,
the resulting algorithms only produce a linear classifier
and are not well suited for handling the nonlinearity and
heterogeneity of the data.

In this paper, we focus on seeking an online nonlinear
classifier with kernels—a less explored but important research
topic in the literature. There are three major obstacles to this
approach. First, the learned kernel-based estimator becomes
more complex as the number of samples increases [27], [52].
Without a suitable stream oblivious strategy, the number of
learned support vectors may grow to infinity, which is obvi-
ously undesirable for the large-scale applications. In the litera-
ture, various refinement techniques have been proposed. They
include projection-based methods [9], [13], [32], fixed-budget
strategies [4], [10], and sparse kernel learning via weighted
sampling [53]. However, extending the above-mentioned meth-
ods to tackle the imbalanced data seems to be a nontrivial task.
Second, fluctuation due to outliers is unavoidable in online
learning [6], [25], [35]. Thus, additional effort is required to
achieve smooth updating. Third, the kernel representation is
effective in capturing nonlinearity and heterogeneity of the
data [21], [27]. However, it is not clear how to effectively
determine a good kernel representation.
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Fig. 1.

(b) (©

Tlustration of the KOIL algorithm with the k-nearest neighbor confinement and the extended updating policy on a synthetic data in 2-D space.

(a) Decision function in black solid curve, the new instance in big e, the positive samples in small x’s, the negative samples in small e’s, the positive support
vectors in big +’s, and the negative support vectors in big o’s. It is shown that the decision function learned by our proposed KOIL algorithm with the extended
first-in-first-out (FIFO) updating policy can classify the data well. (b) Local region of a new instance z; and how its influence is being controlled. Here, it can
only affect its k-nearest opposite support vectors (big +’s), where k = 5. Obviously, restricting the influence of the new instance to a local region is safe
since it will not affect those positive support vectors that are far away from it. (¢) Removed support vector x;, in the dotted arrow, the compensated support
vector X, in the solid arrow, and the angle € between them. By the two assumptions k(x,x) < X 2 and k(x,, Xc) > 522, we have [|¢(xc)[l7¢ cosd > (622 /X),

where ¢ (x¢) = k(X¢, *).

To overcome the above obstacles, we propose the ker-
nelized online imbalanced learning (KOIL) algorithm with
fixed budgets to achieve online nonlinear AUC maximization.
We highlight our contributions as follows.

1) To better control the computational cost, we fix the
budget (buffer size) of the buffer for each data class in
the KOIL algorithm to store the learned support vectors.

2) We propose a smooth update rule by confining the
influence on a new instance to its k-nearest opposite sup-
port vectors (see Fig. 1(b) for an example). Our KOIL
algorithm can thus limit the effect of outliers.

3) We design an effective scheme to compensate for the
loss when a support vector is removed. The idea is to
transfer the weight of the removed support vector to its
closest support vector in the buffer (see Fig. 1(c) for
an illustration). As a result, the learned model typically
approaches the one learned with infinite budgets.

4) We exploit the online multiple kernel learning (MKL)
framework to automatically determine a good kernel
representation. Specifically, we try to learn multiple
kernel classifiers and the corresponding linear combi-
nation coefficients from a pool of predefined kernels
in an online mode. Different from existing online
MKL (OMKL) algorithms [22], our KOIL algorithm
focuses on the pairwise loss function and discounts the
weights of multiple kernel classifiers when there are
errors. Empirical results show that OMKL is effective
in determining the kernel representation.

II. RELATED WORK

We review some prior work in closely related areas:
machine learning from imbalanced data, online learning,
and MKL.

Learning from imbalanced data is an important task in
machine learning and data mining [3], [30], [45]. Some algo-
rithms have been developed to train classifiers by maximizing

the AUC metric, such as Wilcoxon—-Mann—Whitney statistic
optimization [48] and RankOpt [19]. Some investigations
extend support vector machine (SVM) to optimize the AUC
metric [2]. A general framework for optimizing multivariate
nonlinear performance measures, such as AUC and FI, is
proposed in [23]. Cost-sensitive multilayer perceptron (MLP)
is also proposed to improve the discrimination ability of
MLPs [3]. One major weakness of these methods is that they
train the model in the batch mode, which is inefficient when
new training samples appear sequentially.

Online learning algorithms are important as they can adap-
tively update the models based on the new training samples.
The oldest and most well-known online learning algorithm
is the perceptron [34]. Many variants have been proposed in
the literature [5], [14]. Some are inspired by the maximum
margin principle [8], [29], [54]. To learn from imbalanced data,
algorithms for online AUC maximization are proposed in [11],
[15], and [55]. Several works have established the generaliza-
tion error bounds for online learning algorithms with pairwise
loss functions [24], [44]. However, these algorithms only focus
on linear classifiers, which are not sufficient to capture the
heterogeneity and nonlinearity embedded in the data [50], [51].
In the literature, various kernel-based online learning algo-
rithms have been proposed. They include online learning
algorithms in a reproducing kernel Hilbert space (RKHS) [10],
[27], [32], [39], online Gaussian process [9], [18], [26], [38],
kernelized recursive least-square algorithms [13], [42], and
so on. A key challenge in online learning with kernels is
that the computational complexity scales with the number of
training samples. To tackle this challenge, various strategies
have been proposed, including projection-based methods [9],
[13], [26], [32], fixed-budget strategies [4], [10], and sparse
kernel learning via weighted sampling [53]. However, these
strategies aim at directly maximizing the accuracy and can-
not handle the task of imbalanced learning properly. Some
other methods adopt the strategy of projecting or deleting
support vectors to maintain the buffer size [9], [32], [42].
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However, such strategy could lead to unbounded support
vectors or information loss.

The MKL framework is a well-known and effective tool for
kernel learning. It aims to combine multiple kernels by opti-
mizing the performance of the kernel-based learning methods
(e.g., support vector machine) [33], [40]. To attain good model
performance, MKL with different norm regularizers have been
proposed [28], [47], [51]. Recently, OMKL has been proposed
to simultaneously learn multiple kernel classifiers and the
corresponding coefficients from a pool of predefined kernels
in an online mode [20], [22]. Similar ideas have been applied
to solve problems in image search and regression [36], [46].
However, existing algorithms do not consider the task of
imbalanced learning.

In summary, all the aforementioned algorithms cannot han-
dle well the nonlinearity and heterogeneity in imbalanced
streaming data. This motivates us to seek for a nonlinear
classifier for the imbalanced data classification in the online
training mode.

III. KOIL FOR AUC MAXIMIZATION
A. Notations and Problem Definition

Throughout this paper, bold small letter, e.g., X, denotes a
vector. Letter in calligraphic font, e.g., A, indicates a set. We
use R? to denote a d-dimensional Euclidean space and H to
denote a Hilbert space. The inner product of x and y on H is
denoted by (X, y)x.

We are interested in the imbalanced binary classification
problem, where our goal is to learn a nonlinear decision
function f : RY — R from a sequence of feature-labeled
pair instances {z; = (X;,y;) € Z,t € [T]}, where Z =
XxYV,x, e X SR y, €Y ={—1,+1}, and [T] =
{1,...,T}. Without the loss of generality, we assume that
the positive class is the minority class while the negative
class is the majority class. We denote by Nf: «(z) the set of
feature-labeled pair instances that are the k-nearest neighbors
of z and have the label of y at the rth trial. Here, the
neighborhood is defined by the distance or the similarity
between two instances, i.e., the smaller the distance between
or the more similar the instances, the closer the neighbors.
We define the index sets ;" and I, to record the indices
of the positive and negative support vectors at the rth trial,
respectively. Moreover, for simplicity, we define two buffers
IC,+ and /C; to store the learned information, namely, the
weight and support vector, from the two classes at the zth trial,
respectively

IC,Jr.A = {a;|a:} #0,i € It+}
Kf.B={z|yi=+1,i €'}
K A={a|a;, #0,i €17}
K;.B={zlyi=—-1,i el }.

Here, a;; denotes the weight of the support vector that first
occurred at the ith trial and updated at the ¢th trial. We fix the
budgets (the buffer sizes) to be the same, i.e., |I,+| =\l |=N
for all 7.

At the rth trial, our proposed KOIL algorithm computes a
decision function f; of the form

[0 =" afk(xi,x) + D a; k(x,%) (1

el jel”
where k X x X — R is a predefined kernel [27].
The corresponding weights and support vectors are stored in
IC,+ and K, , respectively. Then, given a new instance x, we
can predict its class by sgn(f;(x)), where f; encodes the
nonlinearity and heterogeneity of the data and is generally
an element of an RKHS H, i.e., f;(x) = (f; (), k(x, -))p for
all x € X, where k(x,-) € H [37]. In the following, we will
motivate and describe our strategy for updating f;.

B. Learning With Kernels for AUC Maximization

Given the positive data set DT = {z;]|y; = +1,i € I} and
the negative data set D~ = {z;|y; = —1,j € I"}, the AUC
metric for a kernel representation function f is calculated by

Diert 2jer- Wf(xi) — f(x;) > 0]
Pasiven
Diert 2jer- W (xi) — f(x;) < 0]
Pasiven
where [z ] is the indicator function, i.e., I[[z] = 1 when 7
is true and I[z] = 0, otherwise. It is clear that maximizing
AUC(f) is equivalent to minimizing » ;. ;+ Zjel_ I f(xi)—
f(x;j) < 0]. Since the direct maximization of the AUC score
is an NP-hard problem [7], the indicator function is usually
replaced by a convex surrogate, which may yield suboptimal
performance. A widely used surrogate is the pairwise hinge
loss function [15], [55]
=y
2

AUC(f) =

=1-

th(f2,2)

1500 -rwn] @
+

where [v]+ = max{0, o}. This gives rise to the problem of
regularized minimization as follows:

1
L) =51 I+ C 20 D tnlfo2in2)). 3)
ielt jel~
Here, (1/2)| f ||%_[ is a regularization term that controls the

functional complexity and C > 0 is a penalty parameter
associated with the training errors.

C. Online AUC Maximization by KOIL

Following the derivation in [21], we update the kernel deci-
sion function by minimizing the following localized instanta-
neous regularized risk of AUC associated with the arrival of a
new instance z;:

A A 1

L) =L =51 F+C > Glfizz) ()
zeN, " (z)

where k is a predefined constant. Two remarks are in order as

follows.

1) The risk defined in (4) measures the pairwise losses
between z; and its k-nearest opposite support vectors in
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Algorithm 1 KOIL With Fixed Budgets

Algorithm 2 UpdateKernel

1: Input:
o penalty parameter C and learning rate 7
« maximum positive budget N and negative budget N~
« number of nearest neighbors k
2: Initialize KT A=K~ A=0, KT B=K".B=¥, N, =
N, =0
3:fort=1to T do
4: receive a training sample z; = (X, y;)
5. if y; == +1 then
6: Ny =N, +1
7 [K~, KT, a] = UpdateKernel(z,, K—, KT, C, 5, k)
8 K* = UpdateBuffer(a, z;, K*, k, N*, N,)
9: else
10: N, =N, +1
11: [K*, K™, a] = UpdateKernel(z,, K+, K, C, n, k)
12: K~ = UpdateBuffer(a, z;, K~, k, N, N,)
13:  end if
14: end for

the buffer. This can resolve the scalability issue and is
different from NORMA [27], whose risk only measures
the predictive error of the new instance.

2) The advantage of our approach is twofold. First, two
buffers with relatively large budgets can keep track of
the global information on the decision boundary. Second,
by considering the k-nearest opposite support vectors of
the new instance, we can utilize the local information
around the new instance and avoid the fluctuation of the
decision function.

Algorithm 1 shows the KOIL framework, which consists
of two key components: UpdateKernel (Algorithm 2) and
UpdateBuffer (Algorithm 3).

1) UpdateKernel: We apply the gradient descent method to
update the decision function at each trial, that is

foi= fio1 — 007 Le(fim1) 5)

where 0 is shorthand for 6/0f (the gradient with respect to f)
and 7 € (0, 1) is the learning rate, which can be a constant or
decreases with the number of trials, as long as it guarantees
descent, ie., L;(fy) =< L;i(fi-1). We initialize fo = 0.
To compute 97 L, (f), we first calculate 07y, (f, Z;, z;) by

0, Ch(f, 2,2;) =0
affh(')z h(ft 1)

©)
—0(z,2;), Cn(f,2:,2;) >0

where ¢(z;, z;) = yi (k(X, ) —k(X;, -)). Using (4) and (6), we
then obtain

af[:t(ft—l)

=fic1—C z

Zi€ N,Tk‘vt (1)

Men(fi-1,2:,2:) > Olp(z,2;). (7)

Now, define V; to be the set of indices for which tEe indicator
function in (7) evaluates to 1 (the valid set) and V; to be its

1: Input:
« newly received sample with label z;
o 7% and K for support vectors with the opposite
label to z, and the same label as z;, respectively
« penalty parameter C, learning rate 7z, and number of
the nearest neighbors k

2: Output: updated ™, K and weight a, , for z
3: Initialize: V; = ¢, compute f;_; by Eq. (1)
4 fori el do

5.0 1> y,(fio1(x) — fi—1(x;)) then

6V, =V, Uli)

7:  end if

8: end for

9: if |V;| > k then

10 Sim(i) = k(x;,%;), VieV

11:  [Sim’,idx] = Sort(Sim, ‘descend’)

12: idxy = idx(1:k)

13: V, = Vi(idxy)

14: end if

—
W

: update a;; by Eq. (8)
: return K7, K oy,

—
[=))

Algorithm 3 UpdateBuffer—RS-++
1: Input:

» received sample z; and its weight o;

« buffer IC to be updated

o buffer size N

o number of instances received until trial ¢, N;

2: Output: updated buffer K
3. if |[IC.B] < N then

4 KA=KAU{a}, K.B=K.BU/{z}

5: else

6: sample Z from a Bernoulli distribution with Pr(Z = 1) =
N/N;

7. if Z =1 then

8: uniformly select an instance z;

9; update KC.A: K.A=K.A\ {ar}U{os;}
10: update IC.B: K.B =K.B\ {z,} U {z;}

11: else
12: Zy =1Zt, Opy = Qg1
13:  end if

14:  find z, = arg irglzé).(g{k(xr, X;)}

15:  set a¢; = 0¢; + ar; and update a., in K.A
16: end if
17: return C

complement, that is
Vii=liel |z e thky’ (z) AN (fi—1,2¢,2;) > 0}
Vi =1\ V.
It then follows from (5) and (7) that:
fr= =) fio1 + nCyilVilk (e, ) = nCyr D k(xi, -).

ieV;
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In particular, since I, = ItyilU{t} and I, " = t__yf = V,uV,,
we see that if f;_; is of the form in (1), then so is f; as long
as we make the following correspondence between the kernel

weights at the (1 — 1)st trial and the tth trial:

nCy|Vil, i=t
aip =10 —=nai—1 —nCy;, i €V; (8)
(1 - ;/l)ai,ffl’ i€ Ityi] ) Vf'

It is instructive to take a closer look at the update rule
in (8). It divides the data into three classes. The first involves
the new instance z;. In this case, at most k of the opposite
support vectors are used in the pairwise loss calculation. This
prevents the fluctuation of the decision function. The second
involves the k-nearest opposite support vectors of the new
instance z;, i.e., the support vectors in N;ky’ (z;). In this case,
their corresponding weights change by a magnitude of [#Cy;|,
which favors a more balanced updating. The third covers the
case where the new instance does not incur errors or the labels
of the previously learned support vectors are the same as
that of the new instance. The corresponding weights of those
previously learned support vectors are then reduced by a factor
of 1 — 5, which is the same as NORMA [27].

2) UpdateBuffer: Since the buffers have a fixed budget,
they have to be updated when they are full. Traditional
stream oblivious policies, such as FIFO and reservoir sam-
pling (RS) [43], have been adopted in online linear AUC
maximization [55] and shown to be effective in that setting.
However, these policies will discard support vectors, which
could lead to a degradation in the performance of kernel-based
online learning algorithms [21].

To avoid information loss, we need to design a
more sophisticated compensation scheme. Toward that end,
let zz = (x/,yr) be the removed support vector. We find
the support vector z. = (X¢, yc) with y. = y, in IC,y’ that
is most similar to z, and update its corresponding weight to
compensate for the loss of information due to the removal
of z,. Specifically, let Aa.; be the updated weight of the
compensated support vector z.. By keeping the track of the
change in the value of the decision function, we would like to
find Ao, such that

Ji(X) ~ fi(X) = ok (X, X) + Ao - k(Xe, X).

This suggests that we should set Aa.; = o, ((k(x,,X))/
(k(x¢,X))) ~ a,;. Consequently, we propose the following
update rule for the compensated version of f;, which we
denote by £t

S == = norLi(£5)
+ar (k(Xe, ) — k(X,,-)). ©)]

Here, ft“j' is the compensated decision function from the
previous trial. When neither buffer is full, we have f,++ = f;
and the update is done by (5). Ideally, if k(x.,X) equals
k(x,, x), then f,JrJr incorporates all the learned support vectors
and is equivalent to the one learned with infinite budgets.

Algorithm 3 shows the procedure of the extended
RS (RS++). Some elaborations are in order as follows.

1) In lines 3-4, if the buffer is not full (i.e., |IC.B| < N),
then the new instance becomes a support vector and is
directly added into the buffer /.

2) In lines 6-10, if the buffer is full, then RS is per-
formed. Specifically, with probability N/N;, we update
the buffer by randomly replacing one support vector z,
in K - B with z,.

3) In line 12, if replacement is not conducted, then
the removed support vector z, is set to be the new
instance z;.

4) In lines 14-15, we extend the classic RS strategy by
finding the support vector z. that is most similar to
the removed support vector z,, updating its weight, and
putting its weight back to the buffer .. A.

In a similar manner, we can define the extended
FIFO strategy, namely, FIFO++. For FIFO+4-, we modify
lines 6-13 in Algorithm 3 so that the first support vector in
the buffer is removed and the new instance is added to the
end of the buffer as a new support vector.

IV. REGRET ANALYSIS

In this section, we derive a regret bound for the KOIL algo-
rithm with update rule in (5) under the nonsmooth pairwise
hinge loss in (2). Recall that the regret at time 7 is defined as
the difference between the objective value up to the T'th trial
and the smallest objective value from hindsight, that is

T
Rr =D (Li(f) = Li(£*)) (10)

t=1

where f* is the optimal decision function obtained in hind-
sight by minimizing (3) and { f; zT=1 are obtained by (5).

In the following, unless otherwise specified, we assume that
Z; € N;ky’ (z;), i.e., z; is one of the k-nearest opposite support
vectors of z,. We first establish some auxiliary results that will
be useful for our derivation of the regret bound.

Lemma 1: Suppose that for all x € R4, k(x,x) < X2,
where X > 0. Let 0 < & < X be such that k(x;, x;) > 512 for
all z; = (x;, yi) € thky’ (z;). With fy = 0 and the update rule
in (5), we have

I filln < Ckep

for t € [T], where

cpi=4/2X2 =28 (11)

Lemma 2: Suppose that the assumptions of Lemma 1 hold.
With fy = 0 and the update rule in (5), the pairwise hinge
loss function ¢, : H x Z x Z — Ry defined in (2) satisfies

Ch(fi1,2,2;) <U =1+ Ckclzj

for t € [T], where c), is defined in (11).

The proofs of Lemmas 1 and 2 can be found in
Appendixes A and B, respectively. Now, we are ready to
present the advertised regret bound.

Theorem 1: Suppose that the assumptions of Lemma 1
hold. With fy = 0 and the update rule in (5), where # € (0, 1)
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at each trial is chosen to guarantee descent, we have

%
Rr < ”fZ}yH + nCk ((U — D+ (k+ 1)Cc )T (12)
where ¢, is defined in (11).

The proof of Theorem 1 is given in Appendix C. Before we

proceed, let us make several remarks.

1) The regret bound R can be further bounded by O(+/T)
if we set 7 to O(1/+/T). This bound is the same as that
for standard online learning algorithms, but it is different
from the mistake bounds derived in [4], [10], and [32],
which aim at maximizing classification accuracy.

2) The expression in (12) seems to suggest that the smallest
regret bound is attained at k = 1. However, when k = 1,
the learned decision function cannot utilize the localized
information in the buffers and will yield suboptimal
performance. Our empirical evaluation shows that the
best choice of k is around 10% of the budget (see
detailed results in Section VII). We conjecture that a
more accurate surrogate of the AUC metric can provide
a better indication on the regret-minimizing value of k.
We leave this as a future direction.

3) By exploiting the convexity of the localized instan-
taneous regularized risk of AUC defined in (4) and
confining the range of |o;| to [0, y 5], we can derive
the corresponding regret bound for the update rule
in (9) [21]. However, the regret bound we obtained
via this approach is proportional to 7. We leave the
derivation of a tighter bound as a future work.

V. EXTENSION TO A SMOOTH PAIRWISE HINGE LOSS

In this section, we extend the results developed earlier to
the case of a smooth pairwise hinge loss function. Specifically,
consider the square of the pairwise hinge loss function, that is

ly =]
2

1 2
ton(f,2,7) =( [I—E(y—y/)(f(x) - f(X/))} ) .
+
13)

We substitute (13) into (4) and compute the decision function
by minimizing the following smooth localized instantaneous
regularized risk of AUC associated with z;:

1
=SIfB+C 3

zeN, " (z)

fsh(fa zl‘azi)‘ (14)

Et(f) = Et(f)

As before, we initialize fy = 0 and apply the standard
gradient descent method to update the decision function at
each trial, that is

fii= ficr = 007 Li(fizr)
where 7 € (0, 1) is the learning rate and

oL (fi—1)

=fin—20 >

Z; EN,Tkyl (21)

5)

[10n(fi1, 2, 2:) > O]

xCh(fi-1,2,2) - 9 (21, 2:) ).

In addition, we define the valid set V; and its complement Vv,
at the rth trial as follows:

V, = {i el |z,~ 1S N;ky’ @) AN eh(fiot, 2s,2i) > O}
Vt = Itiyt \ Vt.

Then, the corresponding update rule for the kernel weights at
the zth trial is given by

277Cy, th(ﬁ—lﬂztﬂzi)ﬂ l =1
eV,
ai;= ~ .
M A=maig-1 = 20Cyiln(fi-1, 20, 2), i €Vy
(1 - ”)al’,l‘fla l S Iyil U Vl"

Finally, we have the following update rule for the compensated
version f," " of f;:

K= = S = nor Lo(f1Y)

+ oy (k(xc, ) — k(x;, )

where f?j is the compensated decision function from the
previous trial. When neither buffer is full, we have f,++ = f
and the update is done by (15).

By defining the regret at time 7 as

T
Rr = > (L) — L(F*) (16)
=1
where f* is the optimal decision function obtained in hind-
sight by minimizing (3) with ¢, replaced by (g, defined
in (13), and { f, _, are obtained by the update rule in (15),
we have the followmg regret bound.

Theorem 2: Suppose that the assumptions of Lemma I
hold. Suppose further that (1/7) ZITZIE,(]F*) < L* for
some L* > 0. With ﬂ) = 0 and the update rule in (15),
where 7 € (0, 1) at each trial is chosen to guarantee descent,
we have

T
R < T ( 1F413, + (L + OnL )
where ¢ = 2Ck2cf, and ¢, is defined in (11).

The proof of Theorem 2 is provided in Appendix D. The
result shows that, in general, our KOIL algorithm can attain an
O (+/T) regret bound under the smooth pairwise loss function
in (13). Again, we leave the derivation of a tighter regret bound
as future work.

VI. KOIL WITH MULTIPLE KERNEL LEARNING

In this section, we exploit the MKL framework to obtain
an accurate data representation for good performance. Given
a set of kernel functions K = {k; : X x X — R, [ € [m]}, we
aim to learn a linear combination of these functions to obtain
the decision function

> qf - sen(fii(x))

=1

Fi(x) =

where q' = [¢{, ..., q},] is the normalized (i.e., >, g/ = 1)
weight for multiple kernel classifiers learned up to the rth trial
and f;, is an element of the RKHS Hj, endowed with the
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Algorithm 4 KOIL With MKL
1: Input:

o penalty parameter C and learning rates 7, 1
« maximum positive and negative budgets N* and N,
respectively
o number of nearest neighbors k
2: Initialize w' =1, K A=K, . A=0, K/ B=K, .B=
@, Npj = Np; =0, for | € [m]
3:fort=1to T do

4: receive a training sample z; = (X, y;)

5. forl =1 tom do

6: if BernSample(w; /[max; w;]) == 1 then

7: if yy == +1 then

8: Npi1=Np;+1

o: <, ICZ“L, a;] = UpdateKernel2(z,, K, ICZ“L, C,
1, k)

10: K = UpdateBuffer(a;, z;, K;", k, N*, N, )

11: else

12: Nyjg = Npy+1

13: [IClJr, K, ,ai] = UpdateKernel2(z, IC;r, K/ ,C,
1, k)

14: K, = UpdateBuffer(a;, z;, K, , k, N™, Np,1)

15: end if

16: Wit = wlexp(= AL (fir))
1 1 5

17: end if

18: end for

19: qt+1 — Wt+l/|wt+1|

20: end for

inner product k;. The /th kernel classifier at the rth trial is
defined to have the same form as in (1)

fu®) =" af k&) + > ap; ki (X, %).
el jel”
As before, we define two buffers IC;rI and K, to store the
corresponding information (i.e., weigflts and stipport vectors)
for the /th kernel classifier at the rth trial.
Algorithm 4 shows the KOIL algorithm with multiple
kernels.

1) In line 6, we select the classifier based on the Bernoulli
distribution that is proportional to the weight of the
classifier. Since the weight is divided by the maximum
weight of all classifiers, at least one classifier will be
selected at each trial.

2) In lines 7-15, we update the predictor of the
sampled classifier. To avoid excessive update fluctuation,
we define the loss function [:, as in (4) and (14),
but without the regularization term. This necessitates
a change in the update rule for a;, in the func-
tion UpdateKernel. Specifically, in UpdateKernel2, we
update a;; by

nCye|Vil, i=t
ait = Yir—1 —nCyr, i €V;
Oit—1, i € I,yil UV,

if the pairwise hinge loss function in (2) is used, and by

2’7Cyl‘ Z fh(j;fla Z, zi)a
ieV;

dii—1 = 2nCyilp(fi-1, 20, %), 1 €V,

el UV,

i=t
Oit =

ai,l—l;

if the smooth pairwise hinge loss function in (13) is
used.

3) In line 16, the weight of the sampled kernel is updated
by the exponential weighted average algorithm, where
the weight is discounted by a large factor when the loss
is large.

It should be noted that in order to avoid fluctuation, we do not
add a smoothing term to update the probability of selecting
classifiers as in [20], [22], [36], [46], and [52].

Similar to (10) and (16), we can define the corresponding
regret for {f;,} and obtain an expected regret bound for
Algorithm 4.

Theorem 3: Suppose that the loss function is nonnegative,
max;_; L;(fi;—1) < L, and 07 L(fi,i-1)lI3,, < G for some
L,G > 0. With f;o = 0 and suitable choices of # € (0, 1),
A > 0, we have

T m
E [Z Zq,’é(ﬁ,,)}
t=1 I=1

< min min
le[m] fe'Hk]

/15, + Loe? 16
2) 2

T v
D L)+
=1
where g/ = w}/[> )L w]].
Note that by assuming the boundedness of the optimal
kernel predictor and setting 7, 4 = O(1/+/T), we can obtain
a regret bound of O(+/T) by following the proof in [52].
Alternatively, we can utilize the inequality of arithmetic and
geometric means (AM-GM inequality) to remove the term
Inm/#n in [52]. Due to space limitation, we omit the proof
here.

VII. EXPERIMENTS

In this section, we conduct extensive experiments on both
the synthetic and benchmark data sets to evaluate the perfor-
mance of our proposed KOIL algorithm.!

A. Compared Algorithms

We compare our proposed KOIL algorithm with the state-
of-the-art online learning algorithms. Since our focus is on
online imbalanced learning, for fairness’ sake, we do not con-
sider the batch-trained imbalanced learning algorithms in our
comparison. Rather, we consider the online linear algorithms
and the kernel-based online learning algorithms with a finite
or infinite buffer size.

1) “Perceptron”: The classical perceptron algorithm [34].
2) “OAMgeq”: An online linear AUC maximization
algorithm [55].

I'Demo codes written in both C++ and MATLAB can be downloaded at
https://github.com/JunjieHu/koil.
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3) “OPAUC”: One-pass AUC maximization [15].

4) “NORMA”: Online learning with kernels [27].

5) “RBP”: Randomized budget perceptron [4].

6) “Forgetron”: A kernel-based perceptron on a fixed
budget [10].

7) “Projectron/Projectron++’: A bounded kernel-based
perceptron [32].

8) “KOILRs++/KOILFFo++7: Our proposed algorithm
with the pairwise hinge loss function in (2) and fixed
budgets updated by RS++ and FIFO++, respectively.

9) “KOILI%S n +/KOIL%IFO 44+ Our proposed algorithm
with the smooth pairwise hinge loss function in (13)
and fixed budgets updated by RS++ and FIFO++,
respectively.

B. Experimental Setup

To ensure a fair comparison, we adopt the same setup for
all algorithms. For KOIL, we set the learning rate # = 0.01
and apply a fivefold cross validation to find the penalty cost
C e 20710101 For the kernel-based methods, we use the
Gaussian kernel and tune its parameter o € 2[710:101 py a
fivefold cross validation. For NORMA, we apply a fivefold
cross validation to select A and v e 2[=10:10]1 For Projectron,
we apply a similar fivefold cross validation to select the

parameter of projection difference # € 2[~10:101,

C. Experiments on Synthetic Data Sets

To illustrate the KOIL algorithm and show the power of the
kernel method, we generate a synthetic data set in 2-D space
[see the example in Fig. 1(a)]. The positive samples are gener-
ated from the 2-D Gaussian distribution with mean (1/2, 1/2)
and standard deviation 0.1. The negative samples are generated
from a mixture of four Gaussians with the same standard
deviation as the positive samples and means at (1/6,1/2),
(1/2,1/6), (1/2,5/6), and (5/6, 1/2), respectively.

Following the above-mentioned setup, we generate different
synthetic data sets with different imbalanced ratios to explore
the performance of KOIL in different scenarios. The data sets
consist of the following.

1) Synl: A set of data with imbalanced ratio 1:4 consisting

of 200 positive samples and 800 negative samples.

2) Syn2: A set of data with imbalanced ratio 1:10 consisting

of 100 positive samples and 1000 negative samples.

3) Syn3: A set of data with imbalanced ratio 1:50 consisting

of 100 positive samples and 5000 negative samples.

4) Synd: A set of data with imbalanced ratio 1:100 consist-

ing of 100 positive samples and 10000 negative samples.
Obviously, these four data sets are linearly nonseparable
in the original space. From Table II, we can observe that
the kernel-based learning algorithms significantly outperform
the online linear algorithms. For example, in the Synl
data set, perceptron and the OAMseq with buffer size 100
for each class only attain AUC scores of 0.495 £ 0.031
and 0.467 £ 0.027, respectively. These are even poorer
than random guesses. For NORMA with an infinite buffer
size, it achieves an AUC score of 0.940 £+ 0.013. Our
proposed KOILgrs++ and KOILpro4+4+ with a buffer size

TABLE I

SUMMARY OF ALL DATA SETS (C* AND y* ARE THE CORRESPONDING
OPTIMAL HYPERPARAMETERS TUNED BY FIVEFOLD
CROSS VALIDATION)

Dataset T d | T7/TT c* ~y*
Synl 1,000 | 2 4 21 27
Syn2 1,100 | 2 10 279 | 25
Syn3 5,100 | 2 50 2710 | ot
Syn4 10,100 | 2 100 276 | 2%
sonar 208 | 60 | 1.144 21 1
australian 690 | 14 | 1.248 22 1
heart 270 | 13 | 1.250 27 | 278
ionosphere | 351 34 | 1.786 2° 2
diabetes 768 8 1.866 2% 2
glass 214 9 2.057 2° 2°
german 1,000 | 24 | 2.333 2" | 274
svmguide2 | 391 | 20 | 2342 28 | 27°
segment 2,310 | 19 | 6.000 28 28
satimage 4,435 | 36 | 9.687 26 2
vowel 528 | 10 | 10.000 21 28
letter 15,000 | 16 | 26.881 28 28
poker 25,010 | 10 | 47.752 25 | 274
shuttle 43500 | 9 | 328546 || 27 | 2%
of only 50 for each class and k = 5 can improve the

AUC scores to 0.961 £0.016 and 0.960 £ 0.014, respectively.
Our KOIL algorithm with the smooth pairwise loss function
can attain comparable or even better performance than that
with the nonsmooth loss function.

D. Experiments on Benchmark Real-World Data Sets

The 14 well-known benchmark data sets, whose imbalanced
ratios range from 1.144 to 328.546, are obtained from the UCI
and LIBSVM websites for evaluation. Table I summarizes the
detailed statistics of the data sets.

For each data set, we conduct fivefold cross validation on
all the algorithms, where four folds of the data are used for
training while the rest for testing. The fivefold cross validation
is independently repeated four times. We set the buffer size
to 100 for each class for all related algorithms, including
OAM;eq, RBP, and Forgetron. We then average the AUC
performance of 20 runs. The results are reported in Table III.
From the table, we have the following observations.

1) Our KOIL algorithm with the RS++ and FIFO++
updating policies performs better than the online lin-
ear AUC maximization algorithms in most data sets.
By examining the results of OAM;eq on australian, heart,
diabetes, german, and shuttle, as well as the results of
OPAUC on australian and german, we speculate that a
linear classifier is enough to achieve good performance
on these data sets while a nonlinear classifier can be
adversely affected by outliers.

2) Under the pairwise hinge loss function, the KOIL algo-
rithm significantly outperforms all competing kernel-
based algorithms in nearly all data sets. The results
demonstrate the effectiveness of our proposed approach.

3) We observe that the KOIL algorithm with nonsmooth
loss beats the one with smooth loss in five data sets
while being comparable in the remaining nine data sets.
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TABLE II

AVERAGE AUC PERFORMANCE (MEAN=£STD) ON THE SYNTHETICS DATA SETS. o /o (-) INDICATES THAT BOTH/ONE OF KOILRs 4 AND KOILE[FQ4++
ARE/IS SIGNIFICANTLY BETTER (WORSE) THAN THE CORRESPONDING METHOD (PAIRWISE #-TESTS AT 95% SIGNIFICANCE LEVEL)
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IData| KOILRs+ |[KOILFFO+4] KOILEZS " KOIL,?IFO .. Perceptron| OAM;q OPAUC NORMA RBP Forgetron | Projectron | Projectron++
Syn1.961+.016.960+.014967+.011{.968+.011| .495+.031e| .501+.021e| .5034-.0326( .940+.0136| .948+.021e( .878+.1476( .954+.019 | .953+.017
Syn2.959+4.022.958+.018[961£.017].962+.018 | .484+.037e| .502+.032e( .5084-.0326| .937+.0416| .887+.0620( .9544.023 | .941+.032e| .944+.0230
Syn3[939+4.029.941+4.025[943+4.022.9424.023 | .495+.025e| .499+.022e( .4924-.0200| .769+.087e| .872+.081e( .8071.1300| .901+.064e| .922+.039e
Syn4.965+.014{.966+.013968+.013|.966+.015| .5104-.023e| .495+.0260( .499+4-.0226( .834+.2056| .892+.069e( .8441-.0976| .962+.015 | .948+.024e
win/tie/loss 0/4/0 0/4/0 4/0/0 4/0/0 4/0/0 4/0/0 4/0/0 3/1/0 2/2/0 3/1/0
TABLE III

AVERAGE AUC PERFORMANCE (MEAN£STD) ON THE BENCHMARK DATA SETS. /o (-) INDICATES THAT BOTH/ONE OF KOILRs 44+ AND KOILF[Fpo++
ARE/IS SIGNIFICANTLY BETTER (WORSE) THAN THE CORRESPONDING METHOD (PAIRWISE #-TESTS AT 95% SIGNIFICANCE LEVEL)

IData KOILRs++ |[KOILFFO++ KOILIZ{SH KOILI%IFO++ Perceptron| OAM;eq OPAUC NORMA RBP Forgetron | Projectron | Projectron++
sonar .9554.028(.9554.028 .9571.031 [.957£.031 |.803+.083e| .843+.0566| .844-£.077e| .925+.044e .913£.0326| .896+£.0546( .896+.049e| .896+.0400
australian |.923+.023|.9224.026{919+.024 9204.026 |.869+.035e| .9251+.024 | .9234.025 |.9194.023 | .9114.017e| .9124.0266| .923+.024 | .9231+.024
heart .908+.040(.9104.040[9114.038 |[.908+.037 | .876£.066e| .912+.040 | .901+.0430| .890+.0516| .865+.0436 .900+.0530 .902+.038 | .905+.042
ionosphere .985+.015(.985+.015[9594-.0260/.9524-.03 10| .8511+.0560| .9051-.041e| .888+.0466| .9614-.0166| .960+.0300| .945+.0310| .9641-.0256| .9631-.027e
diabetes |.8264.036|.830+£.030|8174.0370.825+.028 |.7261.059¢ .827+.033 | .8051.035e| .792-+£.0326| .828+.034 |.8201.0270| .8324.033 | .833+.033
glass .887+£.053|.8844.054 | .885+.048 | 8854.048 | .810+.0656| .8271.064e| .800+.0746| .8111-.077e| .8114-.0716| .813+.0756| .811+.070e| .7811.0760
igerman  |.7694.032|.778+.031 | 7744.030 [ 769+.0370|.748+.033e .777£.027 |.787+.026-| .766+.0320| .699+.038e| .7121.0546 .7694.0280 .770+.024
svmguide2|.897+.040 | .885+.043[891+.042 |.8824.0400| .860+.037e| .886+.0450 .859+.050e| .865+.0466| .8904.038 | .864+.045e| .886+.0440| .886+.0450
segment |.983+.008(.985+.012|9704-.0126{.9594.0150| .875+.0200| .9194-.020e| .8821-.0196| .9104-.0426| .969+.0176| .943+.038e| .9791-.0136| .9781+-.0160
satimage |.924+.012(.923+.015[9224-.012 [9224.013 |.700+.0156| .7554-.018e| .7241.0166| .9144-.025| .899+.0186| .892+.0326 .9101-.0156| .9044-.011e
vowel 1.0004-.0001.000£.001/.998+.0076.9934.014 6| .848+.0706| .9051-.024 0| .885+.0346| .9961-.0056| .968+-.017 6| .987+.0276| .982+.0136| .9941-.019e
letter .9334.021{.9424.017 [926+-.0220{.932+.0170| .767£.029e| .827+.0216| .823+.018e| .910+.0276| .928+.0110| .815+.1026( .926+.0160| .926+.015e
poker .681£.031.6934.032|.6544-.0230.676+.031 6| .5144.0300| .503£.0246| .509+4.031e( .5774.0400| .501+.0316| .5724.0296| .6751.0276| .6751+.027
shuttle .950+.040{.956=4.021].9461.039 |.953£.020 |.520+.134e .999-+.000-| .754-£.043e| .725+.0530| .844£.0410| .839+.0600| .873+.0630| .795+.0630
win/tie/loss 6/8/0 711710 14/0/0 9/4/1 12/1/1 13/1/0 12/2/0 14/0/0 11/3/0 10/4/0
diabetes svmguide2 german segment
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06 —KOlL g 08 || KOlLgg 065 —KOlLg
055 ~-KOlLg o, —-KOlLgpo,, —o=KOlLpeo,
05 ) 0.75, ) 06! KOlLgieq
—-KOIL —-KOIL ’ —-KOIL_
04% 100 200 300 400 500 600 0 100 00 300 0 200 400 600 %0 500 1000 1500
Number of samples Number of samples Number of samples Number of samples
(@) (W) (© (d

Fig. 2. Average AUC performance on four data sets obtained by different updating policies of the KOIL algorithm. (a) Diabetes. (b) Svmguide2. (c) German.

(d) Segment.

4) In most of the data sets, kernel-based algorithms show
better AUC performance than the linear algorithms. This
again demonstrates the power of kernel methods in
classifying real-world data sets.

5) We observe that the performance of OAM;eq on satim-
age is not as good as that in [21] and [55]. This can be
attributed to the different partition of the training and
test data.

E. Evaluation of Updating Policies

We compare the compensation schemes RS++ and
FIFO-++ with the original updating policies RS and FIFO and
show the average AUC performance of 20 runs on four typical
data sets in Fig. 2. Here, KOIL;,r denotes KOIL learned with
infinite budgets and is used as a reference. From Fig. 2, we
have the following observations.

1) KOILRs++ and KOILfro4+ have nearly the same per-
formance as KOIL;y+. This confirms that the extended
policies indeed compensate for the lost information
when a support vector is replaced.

2) The KOIL algorithm with extended updating policies
significant outperforms the one with original stream
oblivious policy when either buffer is full. Without
compensation, the performance fluctuates and decays
when support vectors are removed. With compensation,
the performance is rather stable.

F. Sensitivity Analysis

In this section, we study the sensitivity of the KOIL algo-
rithm to the input parameters. First, we test the performance
of the KOIL algorithm as the buffer size varies. From Fig. 3,
we observe that the performance follows similar trend
in [21] and [55], i.e., improving gradually with the increase of
the buffer size and becoming stable when the size is relatively
large.

Next, we test the performance of the KOIL algorithm as the
number of localized support vectors k varies. From Fig. 4, we
have the following observations.

1) When k = 1, the smallest possible value of k, the

performance of the KOIL algorithm is usually poor,
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Fig. 3.  Average AUC of the KOIL algorithm with different buffer sizes.
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because it only considers the pairwise loss incurred by
the nearest opposite support vector of the new instance
and cannot fully utilize the localized information.

2) The KOIL algorithm usually attains the best perfor-
mance when k is approximately 10% of the buffer
size. As k further increases, the performance starts to
deteriorate. Our results consistently demonstrate that
the effect of outliers can be alleviated by utilizing the
localized information of the new instance.

3) For some data sets, such as svmguide2 and german, the
performance of the KOIL algorithm is not too sensitive
to k. The reason could be that the learned support vectors
in these data sets are well separated when the buffers are
full. As a result, new instances have little influence on
the updating of the decision function.

In sum, a key step in maintaining the model performance
is the compensation scheme; see the results in Fig. 2. The
setting of localized AUC is also crucial to good performance
as it can mitigate the effect of noise (see results in Fig. 4).
Fig. 3 suggests that the budget just needs to be sufficiently
large, say several hundreds.

G. Evaluation of the KOIL Algorithm With MKL

We evaluate the performance of the KOIL algorithm with
MKL using the setting in [22]. Specifically, we use 16 kernel
functions in our experiment, including 3 polynomial kernels
(ie., k(x;,x;) = (Xiij)p with degree parameters p = 1, 2,
and 3) and 13 Gaussian kernels (i.e., k(X;, X;) = exp(—||x; —
Xj||2/20'2) with kernel width parameter ¢ € 2076161y For
simplicity, the learning rates # and A are both set to 0.01.
A fivefold cross validation is applied to find the best penalty
cost C from 2[710:1:101 Table IV summarizes the results and
reveals the following.

1) The KOIL algorithm with MKL attains better or

comparable performance than the one with tuned

891
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Average AUC of the KOIL algorithm with different & values. Here, k£ = [1, 10:10:100] and the budget is 100 for each buffer.

TABLE IV

AVERAGE AUC PERFORMANCE (MEAN+£STD) ON THE BENCHMARK DATA
SETS. e (-) INDICATES THAT THE PERFORMANCE BY KOIL WITH
MKL Is SIGNIFICANTLY BETTER THAN (COMPARABLE TO) THAT
BY KOIL WITH THE TUNED OPTIMAL KERNEL (PAIRWISE
t-TESTS AT 95% SIGNIFICANCE LEVEL)

[Data KOILYRL [ KOILMRL T KOILMKL 2 T KOILMKE 2

sonar  [0.893%0.053 [0.899%0.047 [0.946%0.040-[0.949%0.031 -
australian [0.9224-0.027 -0.9194:0.028 -(0.9184-0.026 -(0.9110.024

heart 0.90640.044 -0.90740.042 - 0.9060.040 - 0.904+0.038 -
ionosphere[0.95340.062 0.95740.073 0.9724-0.039 - 0.97240.042e
diabetes  [0.8264-0.035 - (0.83140.032 - 0.827+0.0368{0.822+0.033 -
glass 0.890-£0.056 -0.891-0.051 - 0.890-0.053 - 0.8934-0.052 -
lgerman  {0.7714:0.042 -0.7694-0.033 -(0.77440.033 - 0.768+0.039 -

svmguide2 [0.906£0.0400|0.89640.0490(0.905+0.041/0.903£0.043 )

segment  [0.993+0.004/0.994+0.004/0.991+0.005(0.990+0.009
satimage [0.937+0.015/0.939+0.015/0.938+0.012(0.937+0.014
vowel 0.999+0.002 10.999+40.002 -10.999+4-0.002 -10.9984-0.003 -
letter 0.954+0.013/0.959+0.014(0.962+0.0110/0.968+0.008 @
poker 0.6901+0.0350(0.70740.027|0.709+0.023(0.70510.020e
shuttle 0.948+0.028 -|0.92640.032 |0.88840.029 |0.886+0.032
win/tie/loss| 5/6/3 5/3/4 6/7/1 6/6/2

optimal kernel. Indeed, under the smooth loss function,
the former has a better performance in at least 6 out of
the 14 data sets. On the other hand, under the nonsmooth
loss function, both versions of the KOIL algorithm have
comparable performance on most data sets. We conjec-
ture that this may be due to the nonsmoothness of the
loss function.

2) For some data sets, such as sonar and ionosphere, the
KOIL algorithm with MKL cannot beat the one with the
tuned optimal kernel. We conjecture that this may be due
to the limitation of the training data in these data sets.
Training with multiepoches [52] could be a promising
approach to improving the model performance.

VIII. CONCLUSION

We focused on the imbalanced streaming binary classifi-
cation problem and proposed a kernel-based online learning
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algorithm to seek a nonlinear classifier. Our algorithm is
based on three crucial ideas. First, we adopt two fixed-budget
buffers to control the number of support vectors and maintain
the global information on the decision boundary. Second,
we update the weight of a new arriving support vector by
confining its influence on only its k-nearest opposite support
vectors. Third, we transfer the weight of the removed support
vector to its most similar one when either buffer is full, so as to
avoid information loss. We also exploited the MKL framework
to determine the kernel our KOIL algorithm. Finally, we
conducted extensive experiments to demonstrate the efficacy
and superiority of our proposed approach.

Several challenging but promising directions can be con-
sidered in the future. First, the current KOIL algorithm only
explores a localized surrogate of the AUC metric. Investigating
more accurate surrogate functions for the AUC metric is
significant in both theory and practice. Second, the current
regret bound only applies to the case where there is no
compensation. A natural direction is to derive a regret bound
for the case where the compensation scheme is used. Third, it
would be interesting to investigate and evaluate more efficient
update rules for the KOIL algorithm with MKL.

APPENDIX A
PROOF OF LEMMA 1

Proof: First, the assumptions k(x, x) < X2 for all x € R?
and k(x;, X;) > 512 > 0 yield

lp @, 2i) lH = Vhk(Xe, X0) — 2k(Xs, Xi) + k(Xi, X;) < ¢
(17)

where ¢, is defined in (11). Now, using (5), (7), and the
triangle inequality, we compute

il < A =mllficilln
+77CZH[€h(fz—1,Zz,Zi) > 0] [lo(z, z:) |1«

Z

= (L =mlfi-1llx + nCkep

where the last inequality is due to (17) and the fact that the
number of elements in N;ky "(z;) is at most k.
By expanding || f; ]| iteratively and using fy = 0, we have

1—(1-pn)'
n

1 fillre < (L =m)" 1l follz + nCkep < Ckep

where the second inequality is due to the fact that when
n € (0,1), we have 1 — (1 — ) < 1 for t € [T]. This
completes the proof. U

APPENDIX B
PROOF OF LEMMA 2

Proof: Based on the pairwise hinge loss defined in (2),
we have

Ch(fio1, 24, 2;)

IA

L+ fim1(x) — fi—1(xi)]

L+ [(fi—1s k(X ) — k(Xi, )]
LIl frmilla - (e, ) — k(i )l
1+ Ckey (=U)

IA A

where the first inequality is due to the triangle inequality
and (1/2)]y; — yi| < 1; the second inequality is due to the
Cauchy—-Schwarz inequality; the third inequality is due to
Lemma 1 and (17). ]

APPENDIX C
PROOF OF THEOREM 1

Proof: Since the learning rate # € (0, 1) at each trial is
chosen to guarantee descent and L, is convex, we have

T
Z(@(fz) = Li(f) < D Li(fim) = Li(f*)

t=1

M'\]H

(aﬁt(ft 1) ft 1 — f >H~ (18)
t=1
Now, observe that
Ife = £¥15, = L fimr = £¥113,
= |l fi1 = 007 Lo (fi1) — f¥15, = I fimr — £¥ 13
= 10rLe(fimDIF, — 200 Le(fim1)s fimt — [¥)
By summing the above identity over ¢ € [T'], we have
I fr — 13, — ILfo — £*13
T
= =27 > (07 Li(fi1)s i1 — [*)n
=1
T A
7 D Mop Ly (fi-D - (19)
t=1

Upon combining (18) and (19) and using the fact that fy = 0,
I fr = f*II3, = 0, we obtain

||f*|| 7 <
Rp < —1H+ 52@«& Sl

We now proceed to bound ||6f[:, (f,_1)||%{. Observe that

o7 Le(fimn)l3

2
=|fin=C D We(fic1.z.2) > 0] ¢z, 2)
Z €N, ,T,;W (€2) H
=l fi-1l%
2
+|C D Mew(fiot.zz) > 01 ¢z 2)
zeN, " (z) H

Ien(fio1,2e,2) > ON fio1, (21, 2i))

-2 >

zi EN,Tkyt (€2)

From Lemma 1, we know that the first term above is
bounded by

I fi1ll3, < C*kPc). (20)
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Now, by (17) and the fact that the number of elements in
N, " (z;) is at most k, we can bound the second term by

2
C Z Ien(fi-1, 20, 2i) > O1 - (24, 2:)
z,eN I " (2) H
<C* D We(fior.z.z) > 01 oz, 21,
ZleNk (Zl)
< C%ker,. @1
Finally, since f;—; is an element of an RKHS and

Ch(fi—1,2:,2;) < U by Lemma 2, we have

1
(fi-1, 0@, 2:))n = E(yt = i) (fim1 (X)) — fi—1(xi))
>1-U.
It follows that the third term can be bounded by:

—2C Z I (fim1, 20, 2i) > ONfim1, 0 (20, 20)) 1
z,eN J: (z,)
<2C Z

z;eN, k "(zr)

<2Ck(U = 1)

I[ fh(ft—l;zl9zi) > O](U - 1)

(22)

where the second inequality is again due to the fact that the
number of elements in N, y "(z;) is at most k.
By combining (20), (21) and (22), we obtain

oy Le(fi-Dli3g < C2k(k+ Dej, +2Ck(U — 1),

The bound on R7 in (12) now follows by summing Gfﬁt (fi=1)
over t € [T]. This completes the proof. (]

APPENDIX D
PROOF OF THEOREM 2

Proof: The proof is similar to that of Theorem 1. The main
difference is to exploit the smoothness of the loss function.
First, since the learning rate n € (0, 1) at each trial is chosen
to guarantee descent and £~, is convex, we have

Et(ft) - Et(f*) = Et(ftfl) - Et(f*)
<@ L(fic), fir = ). (23)
We also have

I fe = F*03 = Il i — F* 13
= 107 Le(fr—DIF; — 210007 Li(fim1)s fim1 — F*)n.

(24)
Now, we compute
L I, I T
7 =T > Llue@.z)e.z)  (25)

2,2 eNIT,;W (z)

where we denote I[£,( fz,],zt, z;) > 0] by I, for simplicity.
It follows that for any f, g:

10 Li(f) —0rLe@In < A+ONIF -8l (26)

where ¢ = 2Ck2cf, is obtained by the summation in (25) and
the bound

(0 (e, 20), 02, 2))) 1 < 9@, 2) I - N9 (e, 2)) |90 < €

In particular, suppose that ft* minimizes L. Then, by the
convexity and smoothness of £;, we have 0rL;(f;") = 0.
This, together with (26) and [31, Th. 2.1.5], implies that

1oL (Fi-0)B; = |0rLi(fimt) — 07 Lo (F) |5,
<20+ O (Ll fin) = Li(F7))
<200+ OL(fi-1)
where the last inequality is due to £, ( f,*) > 0.
By combining (23), (24), and (27), we obtain
(1= A+ ML fe1) = Li(f)
IIﬁ i P P [
25 '

Upon summing the above inequality over f?
rearranging, we obtain

A

27)

e [T] and

T T
DA =A+OML i) = D Li(f

1 =1
t= 1 t 1 .
2—(||fo — N3 = I fr = F*1I5) < 21

Here, we use the fact that fo =0 and ||fT — f*||%{
follows that:

>0. It

T
D (Li(fo) = Li(f)

t=1

1
< m(—llf I3+ (1 +c)n2£,(f ))

t=1

1
— | — 1 L*T
S o ( 1513+ + O )
as desired. O
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