
Adaptive Performance Anomaly Detection for Online Service
Systems via Pattern Sketching

Zhuangbin Chen
The Chinese University of Hong Kong

Hong Kong, China

Jinyang Liu
The Chinese University of Hong Kong

Hong Kong, China

Yuxin Su∗

School of Software Engineering

Sun Yat-sen University

Zhuhai, China

Hongyu Zhang
The University of Newcastle

NSW, Australia

Xiao Ling
Yongqiang Yang
Huawei Cloud BU

Beijing, China

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China

ABSTRACT

To ensure the performance of online service systems, their status

is closely monitored with various software and system metrics.

Performance anomalies represent the performance degradation is-

sues (e.g., slow response) of the service systems. When performing

anomaly detection over the metrics, existing methods often lack the

merit of interpretability, which is vital for engineers and analysts to

take remediation actions. Moreover, they are unable to effectively

accommodate the ever-changing services in an online fashion. To

address these limitations, in this paper, we propose ADSketch, an in-

terpretable and adaptive performance anomaly detection approach

based on pattern sketching. ADSketch achieves interpretability by

identifying groups of anomalous metric patterns, which represent

particular types of performance issues. The underlying issues can

then be immediately recognized if similar patterns emerge again.

In addition, an adaptive learning algorithm is designed to embrace

unprecedented patterns induced by service updates or user behav-

ior changes. The proposed approach is evaluated with public data

as well as industrial data collected from a representative online

service system in Huawei Cloud. The experimental results show

that ADSketch outperforms state-of-the-art approaches by a sig-

nificant margin, and demonstrate the effectiveness of the online

algorithm in new pattern discovery. Furthermore, our approach has

been successfully deployed in industrial practice.

CCS CONCEPTS

• Computer systems organization→ Cloud computing; Reli-

ability;Maintainability and maintenance.

KEYWORDS

Cloud computing, performance anomaly detection, online learning

∗Corresponding author (suyx35@mail.sysu.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510085

ACM Reference Format:

Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang

Yang, and Michael R. Lyu. 2022. Adaptive Performance Anomaly Detection

for Online Service Systems via Pattern Sketching. In 44th International Con-

ference on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA,

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.

3510085

1 INTRODUCTION

With the emergence of cloud computing, many traditional soft-

ware systems have been migrated to cloud computing platforms as

online services. Similar to conventional shrink-wrapped software,

the performance of online service systems is an important quality

attribute. As online services need to serve millions of customers

worldwide, a short period of performance degradation could lead

to economic loss and user dissatisfaction. Therefore, proactive and

even adaptive system troubleshooting has become the core compe-

tence of online service providers. Enterprises that have promoted

the automation of system troubleshooting have already received

real gains in reliability, efficiency, and agility [6, 7, 21].

In industrial scenarios, online service systems are closely moni-

tored with various metrics (e.g., the CPU usage of an application,

service response delay) on a 24×7 basis. This is because the monitor-

ing metrics often serve as the most direct and fine-grained signals

that flag the occurrence of service performance issues. In addition,

they provide informative clues for engineers to pinpoint the root

causes. However, due to the large scale and complexity of online

service systems, the number of metrics is overwhelming the ex-

isting troubleshooting systems [6]. Automated anomaly detection

over the metrics, which aims to discover the unexpected or rare

behaviors of the metric time series, is therefore an important means

to ensure the reliability and availability of service systems.

Although many efforts, e.g., [13, 32, 37], have been devoted to

performance anomaly detection, most of the existing work does not

possess the merit of interpretability. Specifically, at each timestamp,

they calculate a probability indicating the likelihood of performance

anomalies. A threshold is then chosen to convert the probability

into a binary label – normal vs. anomaly. However, in reality, a

simple recommendation of the suspicious anomalies might not be of

much interest to engineers. This is because they need to manually

investigate the problematic metrics (recommended by the model)

for fault localization. For large-scale online services, this process

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

is like finding a needle in a haystack. The problem is compounded

by the fact that false alerts are not rare. Moreover, many state-

of-the-art methods train models with historical metric data in an

offline setting. As online services continuously undergo feature

upgrades and system renewal, the patterns of metrics may evolve

accordingly, i.e., concept drift [11, 12]. Without adaptability, these

models are unable to accommodate the ever-changing services and

user behaviors.

In this paper, we propose ADSketch, a performance anomaly

detection approach for online service systems based on pattern

sketching, which is interpretable and adaptive. The main idea is to

identify discriminative subsequences from metric time series that

can represent classes of service performance issues. This is similar

to the problem of shapelet discovery in time series data [28, 36].

Particularly, for multiple subsequences that describe the same type

of performance issue, we take the average of them and regard the

result as a metric pattern for the issue. For example, services may

be experiencing performance degradation when we observe a level

shift down on Service Throughput or a level shift up on CPU Uti-

lization. The advantages of such metric patterns are twofold. First,

the normality of the incoming metric subsequences can be quickly

determined through a comparison with the metric patterns. Second,

by associating the patterns with typical anomaly symptoms, we

can immediately understand the ongoing performance issues when

the metric subsequences exhibit known patterns. This is similar to

failure/issue profiling [18, 22, 27]. In this way, ADSketch provides

a novel mechanism to characterize service performance issues with

metric time series. Previous work on failure/issue profiling often

requires handcrafted features, which suffers from limited general-

ization. For example, Brandon et al. [4] manually defined a set of

features collected from metrics, logs, and anomalies to characterize

failures. Pattern sketching with metrics enjoys the advantages of

automation and accuracy. Moreover, ADSketch is able to adaptively

embrace new anomalous patterns when detecting anomalies on the

fly. Experimental results demonstrate the superiority of our design

over the existing state-of-the-art time series anomaly detectors on

both public and industrial data. In particular, we have achieved an

average F1 score of over 0.8 in production systems.

To sum up, this work makes the following major contributions:

• We propose ADSketch, an interpretable and adaptive ap-

proach for service performance anomaly detection. ADS-

ketch offers a way to characterize service performance issues

with monitoring metrics. Different from the existing work,

ADSketch is able to provide explanations (e.g., the type of

the underlying performance issues) for its prediction results

and accept new patterns on the fly. The implementation of

ADSketch and datasets are publicly available on GitHub1.

• We conduct experiments with public data as well as indus-

trial service metric data collected from Huawei Cloud. The

experimental results demonstrate the effectiveness of ADS-

ketch in terms of both anomaly detection and adaptive met-

ric pattern learning. Furthermore, our framework has been

successfully incorporated into the service performance mon-

itoring system of Huawei Cloud. Our industrial practice

confirms its practical usefulness.

1https://github.com/OpsPAI/ADSketch

Figure 1: Examples of performance anomaly patterns

2 BACKGROUND & PROBLEM STATEMENT

2.1 Performance Anomaly Patterns in Online

Service Systems

In online service systems, a large number of metrics are configured

to monitor various aspects of both logical resources (e.g., a virtual

machine) and physical resources (e.g., a computing server). Cloud

systems often possess an abundance of redundant components,

providing the ability of fault tolerance and self-healing (e.g., load

balancing, availability zones). Consequently, the majority of service

breakdowns tend to manifest themselves as performance anomalies

first instead of fail-stop failures [14, 20]. We observe when perfor-

mance anomalies of similar types happen, their impacts tend to

trigger similar reactions/symptoms on the metric time series, which

we refer to as metric patterns. For example, a level shift up on Inter-

face Throughput may indicate slow service response, which could

be caused by a load balancing failure; a level shift down on it may

suggest service unavailability, and the culprit could be performance

bugs (e.g., memory leak bugs). Similar observations have been made

in [8, 22]. The rationale behind such a phenomenon is twofold. First,

the design of the metrics is sophisticated and fine-grained, each of

which is dedicated to monitoring a specific problem, e.g., request

timeout, high API error rate. Second, cloud systems widely employ

the microservices architecture, where cloud applications employ

lightweight container deployment, e.g., cloud-native applications,

serverless computing. With this architecture, each microservice is

designated for well-defined and modularized jobs, e.g., user login,

location service. Thus, they tend to develop individual and stable

patterns, which can manifest through their monitoring metrics.

2.2 Metric Pattern Mining

Metric patterns (i.e., time-series subsequences describing the misbe-

having moments of metrics) can be leveraged to sketch the perfor-

mance issues for anomaly detection. This is essentially profiling the

mode of recurrent anomalies. For example, hardware failures often

come with a sudden drop in the corresponding metrics, and the

value remains zero for some time. If anomalies come into existence,

they can be immediately identified by matching the established

patterns. Such metric patterns can also facilitate problem mitiga-

tion. For example, when low service throughput and high CPU

usage are detected, engineers can scale up the microservice (by

adding local cores) to increase its capacity. The key challenge is

how to automatically discover what anomalous patterns a metric

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Adaptive Pattern
Learning

Anomaly-free metric

Metric for anomaly
detection

Metric Pattern
Discovery

New metrics
in online scenarios

Normal
Patterns

Abnormal
Patterns

O
ffl

in
e

P
ha

se
O

nl
in

e
P

ha
se

Offline Prediction

Online
Prediction

Figure 2: The Overall Framework of ADSketch

time series has experienced. For each identified pattern, engineers

can label the typical performance issues it often associates with.

In online scenarios, if a metric encounters any known anomalous

patterns, the underlying performance issues can be recommended.

Pattern sketching therefore provides a means to accumulate and

utilize engineers’ knowledge.

In real-world scenarios, the patterns exhibited in metrics are

extremely complicated and can have numerous variants in terms

of scale, length, and combination. Particularly, we have identified

the following challenges for metric pattern discovery, which are

illustrated in Fig. 1. Each metric time series records around one

week of monitoring data, whose anomalies are shown in red.

Background noise. Although a large amount of metric time

series is generated, a significant portion of them is trivial, which

only records plain system runtime behaviors. Moreover, due to

the dynamics of online services, some metrics may experience

concept drift [11]. For example, the Application CPU Usage in Fig. 1

drops abruptly, which could be caused by a role switch (e.g., from a

primary node to a backup node) or user behavior change. How to

distinguish anomalous patterns from normal ones is non-trivial.

Pattern variety. A metric curve can possess multiple distinct

patterns simultaneously. For example, in Fig. 1, the Interface Through-

put has two anomaly patterns, i.e., spike up and spike down. Also,

the patterns can have different scales, as indicated by the two spikes

in the Request Timeout Number. We need to consider the context

of each metric for pattern extraction.

Varying anomaly duration. Different performance issues may

vary in duration. The first two anomalies in the Interface Through-

put constitute such an example. Particularly, how long an anomaly

lasts is also an important factor that engineers rely on to understand

a service’s health state. When characterizing the issues, such a fact

should be properly considered.

2.3 Problem Statement

The goal of this work is to detect performance anomalies for mod-

ern software systems, especially online service systems, based on

monitoring metrics. To facilitate issue understanding and prob-

lem mitigation, we intend to improve the interpretability of the

detection results. To this end, we propose to sketch performance

issues with metrics based on our observation that similar issues

often exhibit alike patterns. By extracting such anomalous metric

Table 1: Summary of Variables

Variable Meaning

T𝑛 An anomaly-free metric time series

T𝑎 An input metric time series for anomaly detection

𝑡 A subsequence of metric time series

𝑚 The length of the metric subsequence 𝑡
𝑝 The percentile threshold to find deviated subseqs

P𝑛 The index set of normal metric patterns

P𝑎 The index set of anomalous metric patterns

𝜇𝐶 The vector of cluster mean vectors

S𝐶 The vector of cluster sizes

R𝐶 The vector of cluster radii

patterns, we can conduct performance anomaly detection by exam-

ining whether the incoming metric subsequences match the known

patterns. Moreover, by associating the extracted metric patterns to

specific performance issues, we can obtain a quick understanding

of the ongoing issues in online scenarios. Additionally, as online

services are continuously evolving, unprecedented metric patterns

may emerge. Thus, our algorithm should be adaptive to the new

patterns. The problem can be formally defined as follows.

The input of a metric time series can be represented as T ∈

R
𝑙 = [𝑡1, 𝑡2, ..., 𝑡𝑙], where 𝑙 is the number of observations. 𝑡

𝑚
𝑖 =

[𝑡𝑖 , ..., 𝑡𝑖+𝑚−1] is a consecutive subsequence of T starting from 𝑡𝑖
with length𝑚, where 𝑖 ∈ [0, 𝑙 −𝑚]. The objective of performance

anomaly detection is to determine whether or not a given 𝑡𝑚𝑖 is

anomalous, i.e., whether there are performance issues happening

from timestamp 𝑖 to 𝑖 +𝑚 − 1. Particularly, we also try to explain

the type of performance issues associated with 𝑡𝑚𝑖 . The anomalous

subsequences will be used to construct abnormal metric patterns,

while the benign ones will be regarded as normal patterns. Both

the normal and abnormal metric patterns will be updated as the

anomaly detection proceeds.

3 METHODOLOGY

3.1 Overview

In online service systems, performance anomalies often serve as

the (early) signals for critical failures, which should be detected

effectively. However, accuracy alone is far from satisfactory, as

it will be labor-intensive to manually investigate the problematic

metrics for issue understanding. ADSketch facilitates this process

by providing prompt anomaly alerts with explanations.

The overall framework of ADSketch is shown in Fig. 2, which

consists of two phases, namely, offline anomaly detection and online

anomaly detection. In the offline phase, ADSketch takes as input a

pair of metric time series. One metric time series is anomaly-free,

which serves as the basis to detect anomalies in the other metric (if

any). In this process, a set of metric patterns will be automatically

learned. A metric pattern is essentially the mean of a set of similar

metric subsequences representing similar service behaviors. The

identified metric patterns are divided into two types, i.e., normal

and abnormal. The abnormal patterns often characterize some par-

ticular types of performance issues, as discussed in Sec. 2.1. Thus,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

Figure 3: The Algorithm of Performance Anomaly Pattern Discovery

Figure 4: The SPWdistance of differentmetric subsequences

by investing manual efforts to link them to the corresponding is-

sues, a clearer picture of the underlying problems can be easily

obtained if similar patterns are encountered again. In the online

phase, we leverage the metric patterns built in the offline phase

to conduct anomaly detection in online scenarios, where metrics

arrive in streams. Particularly, in production environments, un-

precedented patterns could appear. Thus, we design an adaptive

learning algorithm to capture the new patterns continuously.

Before formally introducing our algorithms, we have summa-

rized the variables involved in Table 1.

3.2 Offline Anomaly Detection

3.2.1 Metric Pattern Discovery. The idea for discovering the abnor-

mal patterns follows the basic definition of an anomaly: if a metric

subsequence deviates significantly from those collected during a

service’s normal executions, it is likely that the subsequence cap-

tures some misbehaving moments of the service. To measure how

deviated a metric subsequence is, we calculate its distance to other

subsequences and search for the smallest distance score. Intuitively,

metric subsequences which have large scores to others tend to be

anomalous. The function for distance measure is customizable, and

we adopt Euclidean distance in this paper.

Given a metric time series with 𝑙 observations, the number of all
possible subsequences is 𝑙 −𝑚 + 1, where𝑚 is the length of its sub-

sequences. A naïve solution for calculating the smallest pair-wise

distance (which we refer to as SPW distance hereafter) would be

brute force searching. However, this algorithm owns a quadratic

time complexity, which is practically infeasible for large time se-

ries. Fortunately, some novel scalable algorithms [35, 36, 38] have

been proposed in the literature to attack such all-pairs-similarity-

search problems for time series subsequences. Particularly, Yeh et

al. [36] proposed STAMP, which has achieved orders of magnitude

faster compared to state-of-the-art methods. For exceptionally large

datasets, an ultra-fast approximate solution is also provided. An

illustrating example is provided in Fig. 4, where we can see the

misbehaving metric subsequences have larger SPW distances. In

particular, the original STAMP algorithm adopts z-normalization

for data preprocessing. However, we found min-max normalization

yields more meaningful results in our scenario. For a subsequence

𝑡𝑚𝑖 in a metric time series T , we record the index and distance score

of another subsequence having the SPW distance to it. Such index

and score of all subsequences, i.e., 𝑡𝑚𝑖 (𝑖 ∈ [0, 𝑙 −𝑚]), constitute two

vectors I and S. In particular, for 𝑡𝑚𝑖 , its closest subsequence can
either come from the same time series (i.e., self-union) or another

time series (i.e., cross-union). In the first case, a trivial match region

around 𝑡𝑚𝑖 will be excluded to avoid self matches [36].

The proposed algorithm for metric pattern discovery is presented

in Algorithm 1, which is illustrated in Fig. 3. Algorithm 1 takes as

input two metric time series, i.e., T𝑛 and T𝑎 (T𝑛 is anomaly-free

and T𝑎 may contain anomalies to be detected), and two hyper-

parameters, i.e.,𝑚 and 𝑝 (𝑚 is the length of subsequences and 𝑝
is the percentile threshold to find the deviated subsequences). As

production service systems are mostly running in normal status [6],

the anomaly-free input is easily obtainable (we discuss how we

address the violating cases in Sec. 5.3). In line 1 of Algorithm 1,

we apply STAMP to T𝑛 with self-union (i.e., similar subsequences

come from T𝑛), and obtain the index and score vectors I𝑛𝑛 and

S𝑛𝑛 . In line 2, we search similar subsequences for T𝑎 from T𝑛 ,

i.e., cross-union, and get I𝑛𝑎 and S𝑛𝑎 . Intuitively, given the fact

that T𝑛 is anomaly-free, subsequences in T𝑎 having large SPW

distances to their closest peers in T𝑛 are suspected to be anomalous.

Interestingly, we later learn thatMercer et al. [23] proposed a similar

idea concurrently. We introduce a percentile threshold (i.e., 𝑝) on
S𝑛𝑎 to find such deviated subsequences. In particular, 𝑝 is loosely
set to avoid missing anomalies, i.e., false negatives. Such a setting

will inevitably produce false positives. We next discuss how we

alleviate this issue.

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Algorithm 1: Performance Anomaly Pattern Discovery

Input: T𝑛 , T𝑎 ,𝑚, and 𝑝
Output: Two disjoint sets of P𝑛 and P𝑎

1 I𝑛𝑛,S𝑛𝑛 ← STAMP(T𝑛,T𝑛,𝑚)

2 I𝑛𝑎,S𝑛𝑎 ← STAMP(T𝑛,T𝑎,𝑚)

3 𝐺 ← ConnectedSubgraphs(I𝑛𝑛 + I𝑛𝑎,S𝑛𝑎, 𝑝)

4 𝑁𝑖 ← IsolatedNodes(𝐺)

5 𝜇𝐺 ← GraphWiseMean(𝐺)

6 𝐶 ← AffinityPropagation(𝜇G)

7 𝜇𝐶 ← ClusterWiseMean(𝐶)

8 P𝑛 ← EmptyArray,P𝑎 ← EmptyArray

9 for 𝑒𝑎𝑐ℎ 𝑖𝑑𝑥 𝑖𝑛 1 : Size(𝐶) do
// 𝐶 [𝑖𝑑𝑥]: all subsequences in the cluster

10 if 𝐶 [𝑖𝑑𝑥] ⊂ 𝑁𝑖 then

11 P𝑎 ← Append P𝑎 with 𝑖𝑑𝑥

12 else

13 P𝑛 ← Append P𝑛 with 𝑖𝑑𝑥

14 end

15 end

Algorithm 2: Performance Anomaly Detection

Input: 𝑡 , P𝑎 , and 𝜇𝐶
Output: Anomaly detection result for 𝑡

1 D𝑡 ← PairWiseDistance(𝑡, 𝜇𝐶)

2 𝑖𝑑𝑥 ← MinIndex(D𝑡)

3 if 𝑖𝑑𝑥 ∈ P𝑎 then

4 return True

5 else

6 return False

7 end

A metric pattern is defined as the mean of a group of similar sub-

sequences, which represents some typical behaviors of the metric

time series. To mine similar subsequences, we propose to leverage

their similarity connections. Specifically, in line 3, we construct a

graph 𝐺 whose nodes correspond to the subsequences. Two nodes

will be linked if any one of them is deemed as the most similar

subsequence to the other, as indicated by I𝑛𝑛 and I𝑛𝑎 . Note such

a relationship is not mutual, i.e., 𝑡𝑚𝑖 is the most similar to 𝑡𝑚𝑗 does

not necessarily imply the opposite case. We break the edges whose

distance score fails to meet the threshold requirement 𝑝 . The above
operations are depicted in the first part of Fig. 3. Next, we find

the connected subgraphs of 𝐺 , each of which is composed of sub-
sequences resembling each other. Particularly, there will be some

isolated nodes, i.e., subgraphs with a single node, which are col-

lected at line 4. Such deviated subsequences constitute a set of

anomaly candidates, i.e., 𝑁𝑖 . The second part of Fig. 3 illustrates

this process.

Up to this point, we have divided the subsequences of T𝑛 and

T𝑎 into different parts, each of which is represented as a subgraph.

However, each subgraph cannot be directly regarded as a metric

pattern because: 1) the graph construction criteria can be too strict

(i.e., only the most similar pairs are connected), so some subgraphs

might still be similar; 2) the loosely set percentile threshold 𝑝 may
flag some normal subsequences as abnormal (i.e., false positives).

To further combine the similar subsequences, we apply the Affinity

Propagation algorithm [10] to cluster the mean vector of each sub-

group (line 5-6). We choose this algorithm because of its superior

performance and efficiency, and it requires no pre-defined cluster

number. As a result, similar normal subgraphs can be merged to-

gether, and abnormal subgraphs have a chance to embrace their

normal communities. Thus, each cluster will contain all similar

subsequences across the two time-series inputs and different clus-

ters represent distinct patterns. The mean of clusters (i.e., 𝜇𝐶) will
form the set of metric patterns (line 7). For each cluster, we check

whether or not all its members come from the set of anomaly candi-

dates 𝑁𝑖 (line 9-15). If yes, the mean of the cluster will be regarded

as an abnormal metric pattern and otherwise normal, indexed by

P𝑎 and P𝑛 , respectively. The third part of Fig. 3 presents the above

operations. Finally, all subsequences in the anomalous clusters will

be predicted as an anomaly to be the output of this phase.

3.2.2 Metric Pattern Interpretability. In this section, we expound

on how to label the performance issues that each metric pattern

represents. By allowing metric patterns to have semantics, the un-

derstanding and mitigation of service problems can be greatly accel-

erated. Given the fact that the duration of different performance is-

sues may vary, our fixed-length metric patterns may over-represent

(i.e., the metric pattern is much larger than the issue’s duration) or

under-represent (i.e., the metric pattern is only an excerpt of the

issue) the corresponding issues. To alleviate the first problem, we

select a relatively small𝑚, which turns out to be aligned with the
goal of better performance. For the second problem, we adopt the

following strategy to group clusters which are actually describing

a common issue. For each pair of clusters, we check whether they

have some subsequences that share some parts in common. All

clusters sharing such overlaps together can recover the complete

picture of the issue. Thus, we regard them as describing an identical

issue. Finally, for each metric pattern, domain engineers will label

the type of performance issue that triggers it. Particularly, one pat-

tern can have multiple labels simultaneously. The metric patterns

with overlaps will share the same set of performance issue labels.

3.3 Online Anomaly Detection

3.3.1 Anomaly Detection on the Fly. Based on the metric patterns

identified in Algorithm 1, we now describe our algorithm (Algo-

rithm 2) for anomaly detection in online scenarios. The idea is

straightforward: given a new metric subsequence 𝑡 with length𝑚,
we search for its most similar metric pattern (line 1-2) and check

which pattern pool it comes from. If 𝑡 is more similar to an abnormal
pattern, it will be predicted as anomalous; otherwise, normal (line

3-7). In real-world systems where monitoring metrics are generated

in a stream manner, this process is continuously running for all

coming subsequences. When an anomaly is identified, we would

like to provide more interpretation about it, e.g., what kinds of

performance issues have happened. This is done by simply recom-

mending the issues associated with the most similar metric pattern

for all involved metrics. Particularly, in Algorithm 1, each cluster

(i.e., 𝐶 at line 6) contains all subsequences that are deemed as simi-

lar. The design of our online anomaly detection only requires the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

Algorithm 3: Adaptive Pattern Learning

Input: 𝑡 , P𝑛 , P𝑎 , 𝜇𝐶 , S𝐶 , and R𝐶

Output: Updated variables: P𝑛 , P𝑎 , 𝜇𝐶 , S𝐶 , and R𝐶

1 D𝑡 ← PairWiseDistance(𝑡, 𝜇𝐶)

2 𝑖𝑑𝑥 ← MinIndex(D𝑡)

3 𝜇
′
← (𝜇𝐺 [𝑖𝑑𝑥] × S𝐶 [𝑖𝑑𝑥] + 𝑡)/(S𝐶 [𝑖𝑑𝑥] + 1)

4 𝑑𝑤 ← Distance(𝜇𝐶 [𝑖𝑑𝑥], 𝜇
′
) + R𝐶 [𝑖𝑑𝑥]

5 𝑑𝑡 ← Distance(𝑡, 𝜇
′
)

6 𝑑
′
← Max(𝑑𝑡 , 𝑑𝑤)

7 𝑑𝑛, 𝑑𝑎 ← Max(R𝐶 [P𝑛]),Max(R𝐶 [P𝑎])

8 if 𝑖𝑑𝑥 ∈ P𝑎 then 𝑑 ← 𝑑𝑎 else 𝑑 ← 𝑑𝑛 end

9 if D𝑡 [𝑖𝑑𝑥] < 𝑑 then

// add 𝑡 to the most similar cluster

10 𝜇𝐶 [𝑖𝑑𝑥],S𝐶 [𝑖𝑑𝑥],R𝐶 [𝑖𝑑𝑥] ← 𝜇
′
,S𝐶 [𝑖𝑑𝑥] + 1, 𝑑

′

11 if S𝐶 [𝑖𝑑𝑥] > Max(S𝐶 [P𝑎]) and 𝑖𝑑𝑥 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

then

12 P𝑛 ← Append P𝑛 with 𝑖𝑑𝑥

13 P𝑎 ← Remove 𝑖𝑑𝑥 from P𝑎

14 else

15 𝑑 ← Max(𝑑,𝑑
′
) // 𝑑 will be assigned to 𝑑𝑛

or 𝑑𝑎 accordingly

16 end

17 else

// create a new anomalous cluster for 𝑡

18 P𝑎 ← Append P𝑎 with Length(𝜇C) + 1

19 𝜇𝐺 ← Append 𝜇𝐺 with 𝑡

20 R𝐶 ← Append R𝐶 with 0

21 S𝐶 ← Append S𝐶 with 1

22 end

mean vector of each cluster, i.e., 𝜇𝐶 . Thus, instead of keeping all its
members (which is storage-intensive), the clusters can be simply

represented by their mean vectors.

Note that the offline and online anomaly detection can work

collaboratively as a performance anomaly detector without the

interpretability component, which requires human intervention.

So far the metric patterns for anomaly detection are discovered

based on historical data. However, due to the dynamics of online

service systems (e.g., software upgrade, customer behavior change),

the metrics may experience concept drift [11, 12], which produces

brand-new patterns. Thus, an adaptive learning mechanism is desir-

able to help adapt to such unprecedented patterns and update the

metric patterns accordingly. In the next section, we will introduce

the algorithm to this end called adaptive pattern learning.

3.3.2 Adaptive Pattern Learning. The algorithm of adaptive pat-

tern learning is presented in Algorithm 3, which automatically

updates metric patterns during streaming anomaly detection. To

start with, for each cluster, we calculate its size and the maximum

distance between its mean vector and all members (which we refer

to as radius), denoted as S𝐶 and R𝐶 , respectively. In particular, the

size and radius of clusters with only a single member are one and

zero. For adaptive pattern learning, all clusters can be sufficiently

Figure 5: The update of the radius of a cluster

represented with the following properties: 𝜇𝐶 , S𝐶 , and R𝐶 . All

subsequences can be discarded.

The main idea is that given a new subsequence 𝑡 , we determine
whether it possesses a known metric pattern carried by an exist-

ing cluster. If yes, the cluster will absorb 𝑡 as a new member and

update its properties; otherwise, a brand-new anomalous cluster

with only 𝑡 itself will be created, representing an unseen metric
pattern. Specifically, we first search for the closest pattern of 𝑡
(line 1-2). Then, we determine whether 𝑡 should become a new
member to the corresponding cluster by checking if the distance

D𝑡 [𝑖𝑑𝑥] is smaller than the largest radius recorded in all clusters,
i.e., D𝑡 [𝑖𝑑𝑥] ≤ Max(R𝐶). If it is the case, 𝑡 should be considered
as an old pattern; otherwise, it should be expressing a new pattern.

When a cluster accepts a new member (line 9-16), we need to up-

date its mean vector 𝜇𝐶 [𝑖𝑑𝑥] (i.e., the metric pattern), size S𝐶 [𝑖𝑑𝑥],
and radius R𝐶 [𝑖𝑑𝑥]. For 𝜇𝐶 [𝑖𝑑𝑥], it can be precisely updated by

the equation at line 3 (i.e., 𝜇
′
). S𝐶 [𝑖𝑑𝑥] can be trivially updated by

increasing itself by one. The update of the radius R𝐶 [𝑖𝑑𝑥] is a bit
problematic. We cannot directly calculate the new radius as the

original subsequences are not available. To address this problem,

we employ the worst-case distance for approximation. As shown

in Fig. 5, the new radius reaches its maximum value when 𝑡 lies in
the (inward-pointing) normal of the tangent space at the member

yielding the radius (denoted as 𝑡𝑟) [3], which can be calculated by
the equation at line 4. We omit the proof, which is standard. Two

cases are possible. The first (the left subfigure) is that 𝑡𝑟 contin-

ues to be the farthest member from the new mean 𝜇
′
. The second

(the right subfigure) is that 𝑡 takes the place of 𝑡𝑟 and becomes the
farthest one. Therefore, besides 𝑑𝑤 , we also compute the distance

between 𝑡 and 𝜇
′
, i.e., 𝑑𝑡 , and compare them (line 4-6). The bigger

one will be the new radius (line 10). Recall we need to check if

D𝑡 [𝑖𝑑𝑥] ≤ Max(R𝐶) to decide whether or not 𝑡 should be taken
as a new member. Considering the high imbalance between normal

and abnormal clusters, we maintain two maximum radii for them,

denoted as 𝑑𝑛 and 𝑑𝑎 , respectively (line 7). Once a cluster alters
its radius, we reset the maximum radius of its kind (𝑑𝑛 or 𝑑𝑎 as
determined by line 8) if it is exceeded by 𝑑

′
(line 15). On the other

hand, if the cluster rejects 𝑡 , we form a new anomalous cluster

containing only 𝑡 by properly setting its properties (line 18-21).
An issue with this strategy is that false positives will accumulate

in P𝑎 as the unseen patterns can also be normal. We alleviate it

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

by setting a threshold to the size of the newly-formed anomalous

clusters (line 11). The role of the cluster will be switched from

abnormal to normal if its size exceeds the threshold (line 12-13).

The rationale is that performance anomalies are generally rare

events. A large anomalous cluster would mean the particular type

of issue it represents occurs too often. However, a pattern with a

large frequency tends to be the metric’s normal behavior. In this

paper, we simply set the default threshold as the largest size of the

anomalous clusters identified in the offline stage, i.e., Max(S𝐶 [P𝑎]).

Nevertheless, more sophisticated strategies can be applied by, for

example, considering the distribution of clusters’ sizes.

3.4 Time and Space Complexity

3.4.1 Time Complexity. For Algorithm 1, the theoretical time com-

plexity of operation STAMP is O(𝑛2). Thus, line 1-2 require O(𝑙2𝑛)
and O(𝑙2𝑎), respectively, where 𝑙𝑛 and 𝑙𝑎 are the length of T𝑛 and
T𝑎 . Another operation with an interesting time complexity is the

affinity propagation algorithm (line 7), whose complexity is qua-

dratic in the number of clusters (which is often small), i.e., O(|𝐶 |2).
Other operations are of trivial linear time complexity, which is

also the case for Algorithm 2 and Algorithm 3. Overall, ADSketch

owns a time complexity of O(𝑛2) (O(𝑙2𝑛 + 𝑙2𝑎 + |𝐶 |2)). Fortunately,
unlike other models such as deep neural networks, STAMP can

be embarrassingly parallelized by distributing its unit operation

(SPW distance calculation) to multi-core processors [36]. Moreover,

STAMP has an ultra-fast approximation to generate results in an

anytime fashion.

3.4.2 Space Complexity. As described in Sec. 3.3.2, pattern clusters

have a lightweight representation, i.e., 𝜇𝐶 ,S𝐶 , andR𝐶 .We also need

P𝑛 and P𝑎 to distinguish anomalous patterns from the normal ones.

Besides 𝜇𝐶 whose space complexity is O(𝑚 × |𝐶 |), other vectors
are of O(|𝐶 |). Therefore, the dominant term of space complexity

is O(𝑚 × |𝐶 |). Since both𝑚 and |𝐶 | are usually small, the space
overhead of ADSketch can be considered trivial.

4 EXPERIMENTS

In this section, we evaluate ADSketch using both public data and

real-world metric data collected from the industry. Particularly, we

aim at answering the following research questions.

RQ1: How effective is ADSketch’s offline anomaly detection?

RQ2: How effective is ADSketch’s online anomaly detection?

RQ3: How effective is ADSketch’s adaptive pattern learning?

The evaluation process of much existing work, e.g., [29, 32],

essentially corresponds to the process adopted in RQ1 (i.e., the

offline anomaly detection phase), because the threshold they select

for anomaly alerting is determined by iterating the full range of

its possible values. The best results achieved during the iteration

process are reported. To fully examine the performance of different

methods in online scenarios, we fix models’ data and parameters

(including the threshold learned in offline mode) as if they are

deployed in production systems, i.e., RQ2. The online adaptability

of ADSketch will be evaluated in RQ3.

4.1 Experiment Setting

4.1.1 Dataset. To evaluate the effectiveness of ADSketch in perfor-

mance anomaly detection, we conduct experiments on two publicly

Table 2: Dataset Statistics

Dataset #Curves #Points Anomaly Ratio

Yahoo 67 94,866 1.8%

AIOps18 58 5,922,913 2.26%

Industry 436 4,394,880 1.07%

available datasets. Moreover, to confirm its practical significance,

we collect a production dataset from a large-scale online service of

Huawei Cloud. Table 2 summarizes the statistics of the datasets.

Public dataset. The public datasets for experiments are Ya-

hoo [30] and AIOps18 [2, 29]. Particularly, we do not conduct online

anomaly detection on Yahoo due to its limited number of anomalies.

• Yahoo. Yahoo released by Yahoo! Research [30] is a bench-

mark dataset for time series anomaly detection. Part of the

dataset is synthetic (which is simulated by algorithmically

injecting anomalies), and part of the dataset is collected from

the real traffic of Yahoo services. The anomalies in the real

dataset are manually labeled. All time series are sampled ev-

ery hour. In particular, as our goal is detecting performance

anomalies for online services, we only use the real dataset,

which reflects the real-world service performance issues. For

each time series, we select the first 300 data points as the

anomaly-free input (any anomalies are ignored), while the

remaining part as the input for offline anomaly detection.

• AIOps18. AIOps18 dataset was released by an international

AIOps competition held in 2018 [1]. The dataset is composed

of multiple metric time series collected from the web services

of large-scale IT companies. Particularly, the dataset contains

two types of metrics, i.e., service metrics and machine met-

rics. The service metrics record the scale and performance

of the web services, including response time, traffic, con-

nection errors; while the machine metrics reflect the health

states of physical machines, including CPU usage, network

throughput. Some metric time series has a sampling interval

of one minute, while that of others is five minutes. Each

metric has a training and a testing time series. Thanks to its

large quantity, we follow the following procedure to separate

the data for ADSketch offline and online anomaly detection.

First, we extract a small part of the training time series that is

anomaly-free, which often contains thousands of data points.

Then, we use the remainder of the training time series for

offline anomaly detection. Finally, the whole testing time

series will be employed for online anomaly detection. We

also compare the performance of online anomaly detection

with and without the adaptive learning component.

Industrial dataset. To evaluate ADSketch in production sce-

narios, we collect various metrics (e.g., Application CPU Usage,

Interface Throughput, Request Timeout Number, Round-trip De-

lay) from a large-scale online service (we conceal the name for

privacy concern) of Huawei Cloud. The system under study pro-

duces millions of metric time series, which contain an abundance

of different metric patterns. The number of metric curves collected

is 436, which come from multiple instances of virtual machines,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

containers, and applications of the selected service system. For each

metric, we collect one week of data with a sampling interval of one

minute, resulting in more than four million data points in total. The

anomalies representing the performance issues of the service are

labeled by experienced domain engineers. From Table 2, we can

see that the anomaly ratio is very low. Particularly, we use the first

day as the anomaly-free input, whose anomalies (if any) are simply

ignored. The next three days are used for offline anomaly detection.

Finally, we conduct online anomaly detection on the remaining

three days, where we also evaluate the adaptability of different

approaches to unseen anomaly patterns.

4.1.2 Evaluation Metrics. As anomaly detection is essentially a

binary classification problem, i.e., normal and abnormal, we employ

precision, recall, and F1 score for evaluation. They can gauge the per-

formance of an anomaly detection algorithm at a fine-grained level.

A satisfactory algorithm should be able to quickly and precisely

detect both the occurrence and duration of performance anomalies.

Specifically, precision measures the percentage of anomalous met-

ric points that are successfully identified as anomalies over all the

metric points that are predicted as anomalous: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

Recall calculates the portion of anomalous metric points that are

successfully identified by ADSketch over all the actual anomalous

points: 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 . Finally, the F1 score is the harmonic mean

of precision and recall: 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 . 𝑇𝑃 is the

number of anomalous metric points that are correctly discovered

by ADSketch; 𝐹𝑃 is the number of normal metric points that are
wrongly predicted as an anomaly by ADSketch; 𝐹𝑁 is the number

of anomalous metric points that ADSketch fails to notice. Since

there are multiple metrics in each dataset, we report their average

weighted by the size of each metric time series.

4.1.3 Comparative Methods. The following methods are selected

for comparative evaluation of ADSketch. As all baselines have

open-sourced their code, we directly borrow the implementations

and follow the procedure of model training and parameter tuning

introduced in each method.

• LSTM [15, 37]. This method employs Long Short-Term Mem-

ory (LSTM) network to capture the normal behaviors of met-

rics in a forecasting-based manner. Specifically, it predicts

the next values of ametric based on its past observations. The

predicted values are then compared with the actual values.

Anomaly warnings will be raised if the differences exceed

the pre-defined thresholds.

• Donut [34]. Donut adopts the Variational Autoencoder (VAE)

framework to properly reconstruct the normal metric subse-

quences. The trained model will have a large reconstruction

loss when it meets anomalous instances, which serves as the

signal to alert anomalies.

• LSTM-VAE [25]. Similar to Donut, this work detects anom-

alies based on metric subsequence reconstruction. It com-

bines LSTM and VAE in the model design.

• LODA [26]. LODA is an online anomaly detector based on

the ensemble of a series of one-dimensional histograms. Each

histogram approximates the probability density of input data

projected onto a single projection vector. LODA calculates

the likelihood of an anomaly based on the joint probability

of the projections.

• iForest [19]. Isolation Forest (iForest) is composed of a col-

lection of isolation trees, which isolates anomalies based

on random subsets of the input features. The height of an

input sample, averaged over the trees, is a measure of its

normality. Samples with noticeably shorter heights are likely

to be anomalies. We use metric subsequences as the input

samples.

• DAGMM [39]. DAGMM utilizes a deep autoencoder to gen-

erate a low-dimensional representation for each input data

point, which is further fed into a Gaussian Mixture Model

to estimate the anomaly score.

• SR-CNN [29]. SR-CNN first applies Spectral Residual to high-

light the most important regions for seasonal metric data

where anomalies often reside. It then trains a Convolutional

Neural Network (CNN) through synthetic anomalies to de-

tect the real anomalies.

4.2 Experimental Results

4.2.1 RQ1 The Effectiveness of ADSketch’s Offline Anomaly Detec-

tion. To answer this research question, we compare ADSketch with

the baselines in the offline setting. The results are shown in Table 3,

where we can see the average F1 score of ADSketch outperforms

all baseline methods in all datasets. In AIOps18 and Industry, the

improvement achieved by ADSketch is more significant. In partic-

ular, the patterns of anomalies in Yahoo are relatively simple. By

iterating over all possible values of the anomaly threshold, the base-

lines can find the best setting for the dataset under study. Among

them, LSTM [15, 37] and Donut [34] achieve comparable perfor-

mance compared to that of ADSketch (i.e., 0.541), whose average

F1 scores are 0.53 and 0.524, respectively. Moreover, LSTM [15, 37]

has the best recall (i.e., 0.706), while the best precision (i.e., 0.754)

goes to LODA [26]. DAGMM and SR-CNN turn out to be the worst

methods in this dataset. In terms of AIOps18 and Industry datasets,

we can see ADSketch surpasses the baselines by a larger margin.

Specifically, the average F1 score of ADSketch in AIOps18 is 0.677,

while that of the second-best method (i.e., LSTM-VAE) is 0.537.

ADSketch also attains the best precision and recall. In AIOps18, the

anomaly patterns are much more complicated. Baselines tend to

predict more data points as anomalous, leading to a lower precision.

Different from them, ADSketch is able to precisely capture them

and outperforms other methods. The situation is similar in Indus-

try. Particularly, this dataset is collected from online services, and

many of its metric curves possess more perceivable and regular pat-

terns. Thus, all methods perform better in this dataset than in the

other two. The average F1 scores of ADSketch and the second-best

method (i.e., LSTM) are 0.740 and 0.632, respectively.

In Table 3, we can see among all comparative methods, LSTM and

LSTM-VAE have better overall performance, which are forecasting-

based and reconstruction-based methods, respectively. They both

try to model the normal patterns of a metric time series and alert

anomalies once the metric significantly deviates from the learned

patterns. The difference is that a forecasting-based method aims to

predict the next metric values and a reconstruction-based method

tries to encode and regenerate metric subsequences. We can see

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Experimental Results of Offline Anomaly Detection

Yahoo AIOps18 Industry

Method precision recall F1 score precision recall F1 score precision recall F1 score

LSTM 0.598 0.706 0.530 0.499 0.531 0.518 0.704 0.656 0.632

LSTM-VAE 0.622 0.634 0.484 0.510 0.625 0.537 0.717 0.639 0.622

Donut 0.530 0.658 0.524 0.405 0.527 0.382 0.693 0.628 0.604

LODA 0.754 0.583 0.428 0.553 0.429 0.401 0.583 0.498 0.529

iForest 0.713 0.597 0.437 0.555 0.439 0.413 0.616 0.567 0.538

DAGMM 0.643 0.517 0.401 0.590 0.477 0.461 0.597 0.542 0.530

SR-CNN 0.433 0.618 0.307 0.424 0.387 0.363 0.519 0.471 0.434

ADSketch 0.511 0.673 0.541 0.744 0.670 0.677 0.811 0.813 0.740

Table 4: Experimental Results of Online Anomaly Detection

AIOps18 Industry

Method prec. rec. F1 prec. rec. F1

LSTM 0.425 0.462 0.408 0.612 0.606 0.592

LSTM-VAE 0.336 0.521 0.389 0.624 0.598 0.601

Donut 0.431 0.326 0.376 0.662 0.581 0.590

LODA 0.407 0.397 0.355 0.653 0.526 0.503

iForest 0.397 0.334 0.322 0.576 0.507 0.487

DAGMM 0.392 0.367 0.378 0.557 0.538 0.502

SR-CNN 0.329 0.288 0.307 0.438 0.422 0.410

ADSketch 0.543 0.575 0.507 0.705 0.603 0.606

Table 5: Experimental Results of Adaptive Pattern Learning

AIOps18 Industry

Method prec. rec. F1 prec. rec. F1

LODA 0.424 0.405 0.387 0.623 0.512 0.548

ADSketch 0.594 0.557 0.548 0.882 0.856 0.832

except for LSTM-VAE in Yahoo, these two methods attain the best

results compared to other baseline counterparts in the other two

datasets. However, LSTM lacks the ability to explicitly detect anom-

alies in the level of subsequence. Many anomalies are composed

of a collection of anomalous points corresponding to the period

of performance issues. LSTM-VAE does not take into account the

relationship among subsequences. Many suspicious subsequences

are not necessarily anomalies if they often occur in the history

of the service systems. Compared to them, ADSketch is able to

simultaneously learn the subsequence-level features and consider

the context of metric time series.

4.2.2 RQ2 The Effectiveness of ADSketch’s Online Anomaly De-

tection. We also compare ADSketch against the selected methods

for online anomaly detection. Table 4 presents the experimental

results. Except for Donut in AIOps18, all models and algorithms

encounter an obvious performance degradation in both datasets.

Nevertheless, ADSketch manages to maintain the best ranking

(0.507 in AIOps18 and 0.606 in Industry), which is followed by

LSTM (0.408 in AIOps18) and LSTM-VAE (0.601 in Industry). Partic-

ularly, in AIOps18, the average F1 score of different methods drops

by 11%-27%. This observation demonstrates the existence of un-

precedented metric patterns in online scenarios. By relying on the

"outdated" data and parameters (e.g., ADSketch’s metric patterns

and baselines’ anomaly thresholds) learned from the offline stage,

the methods cannot accommodate them. In addition, by plotting

the metric time series, we observe the emergence of concept drift

on metrics. This can be caused by software upgrades or the integra-

tion of new service components (e.g., virtual machines, containers).

In the industrial dataset, the evaluation results of the baselines

are more promising (i.e., the average F1 score drops by less than

10%). This is because the anomalies are triggered by real-world

performance issues. The issues have a more natural distribution,

and the collected metrics exhibit relatively stable patterns. ADS-

ketch presents a significant performance degradation. We found it

is because in some cases, the two metric time series fed to the of-

fline stage are often both anomaly-free. Consequently, no abnormal

patterns will be learned, disabling ADSketch to detect anomalies in

the online stage. Therefore, when designing an anomaly detection

algorithm, adaptability is indispensable.

4.2.3 RQ3 The Effectiveness of ADSketch’s Adaptive Pattern Learn-

ing. This research question looks into the issue of online adaptabil-

ity. Particularly, we only compare ADSketch with LODA, which is

the only baseline method with the design of online learning. Similar

to RQ2, we only conduct experiments with AIOps18 and Industry

datasets. Table 5 shows the experimental results, where we can see

ADSketch’s adaptive pattern learning indeed brings performance

gains. With more anomalous patterns identified, ADSketch is able

to detect anomalies more accurately, i.e., a better precision (0.594 in

AIOps18 and 0.882 in Industry). The average F1 score also enjoys

some improvements, i.e., 0.548 in AIOps18 and 0.832 in Industry.

Particularly, in the industrial case, adaptive ADSketch achieves

a performance of over 0.8 in all evaluation metrics (even in some

cases without any abnormal patterns learned from the offline stage).

Such an achievement indicates its potential to meet the industrial

requirements of performance anomaly detection. On the other hand,

the online version of LODA does not show much performance im-

provement (i.e., an average F1 score of 0.387 in AIOps18 and 0.548

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

Figure 6: Parameter Sensitivity

in Industry), which even falls behind some methods without the

capability of online learning.

4.2.4 Parameter Sensitivity. In ADSketch, there are only two pa-

rameters to tune (both in Algorithm 1), i.e., the pattern length

𝑚 and the percentile threshold 𝑝 for identifying deviated metric
subsequences. We evaluate the sensitivity of ADSketch to these

two parameters by conducting experiments with different settings.

Due to space limitations, we only show the results of the Indus-

try dataset. The default value of𝑚 and 𝑝 for the dataset is 15 and
99.5th, respectively. We fix one parameter and employ a different

setting for the other one. Specifically,𝑚 ranges from 9 to 21, and 𝑝
varies from 97th to 99.8th. Fig. 6 presents the results. Performance

degradation is observed in both offline and online stages when

the two parameters deviate from their default setting. The offline

stage exhibits a greater sensitivity, and thus, less anomalous met-

ric patterns are captured. Nevertheless, both the online anomaly

detection and adaptive pattern learning algorithms achieve stable

performance with a smaller set of abnormal patterns. This further

confirms ADSketch’s capability of new pattern discovery.

5 INDUSTRIAL PRACTICE

5.1 Online Deployment

Since October 2020, ADSketch has been successfully incorporated

into the performance anomaly detection system of a large-scale

online service system in Huawei Cloud. The deployment process

can be easily done by leveraging the existing data analytics pipeline,

for example, data consumption by Apache Kafka [16], and online

parallel execution by Apache Flink [9]. After months of usage, ADS-

ketch has demonstrated its effectiveness on metric-based system

troubleshooting. A lot of positive feedback has been received from

on-site engineers. Particularly, engineers confirmed its superior-

ity in anomaly detection over the current algorithms (e.g., fixed

thresholding, moving average) in operation. One typical case is

multiple benign spikes arriving suddenly and consecutively. ADS-

ketch is able to quickly figure out that such recurrent spikes have

happened before, which reduces the number of false alerts. In terms

of issue understanding, engineers benefited from ADSketch by hav-

ing readily-available descriptions about the anomaly symptoms.

Therefore, we have initialized a project of metric pattern database

construction. ADSketch is continuously accumulating anomalous

patterns in the database. Moreover, engineers also expressed the

need for metric pattern auto-correlation across different metrics.

This is because multiple anomalies collectively could constitute a

Figure 7: Case Study of ADSketch

stronger performance issue indicator. We leave the identification

of such correlations to our future work.

5.2 Case Study

We provide some case studies of ADSketch collected from produc-

tion systems in Fig. 7, where anomalies are indicated by the red

lines. Due to space limitations, we only showcase three metric time

series. Clearly, all anomalous metric patterns have been success-

fully located regardless of shape, scale, and length. Each metric

time series possesses at least two types of anomalous patterns, e.g.,

level shifts and spikes. Interestingly, we found the depression in the

second metric can help catch a similar pattern in the third metric,

demonstrating the feasibility of cross-metric pattern sharing. More-

over, engineers confirmed that these patterns are typical, based on

which they can make a good guess about the ongoing issues. For

example, the spikes often come from user request surge or network

attack; the depressions in the second and third metrics often in-

dicate service restart or link flap. To quantify the interpretability

of ADSketch, we label the recurrent performance issues and em-

ploy the learned metric patterns to identify them. As performance

issues may contain uncertainty [33], we allow one pattern to be

associated with multiple labels simultaneously (Sec. 3.2.2). During

the evaluation, an anomaly interpretation is considered correct if

the predicted performance issue appears in the label set. In our

experiments, ADSketch attains a promising F1 score of 0.825. This

demonstrates the potentials of ADSketch in providing interpretable

results to engineers, which can greatly accelerate the investigation

of service performance issues.

5.3 Threats to Validity

We have identified the following major threats to validity.

Internal threats. The implementation and parameter selection

are two critical internal threats to the validity. To reduce the im-

plementation threat, we directly borrow the codes released by the

baseline approaches. For the proposed approach, we employ peer

code review, i.e., the authors are invited to carefully check the imple-

mentation for mistakes. In terms of parameter selection, we conduct

multiple comparative experiments with different parameters for all

methods. We choose the parameter settings empirically based on

the best results.

External threats. The selection of the service system and the

baselines are two main external threats to validity. We choose a

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

large-scale online service of Huawei Cloud, which producesmillions

of metrics with diverse patterns. Moreover, we detect anomalies by

following the basic definition of an anomaly, i.e., the data point that

deviates from the majority in a dataset. Thus, ADSketch is general-

izable to other systems. For baselines, we select the representative

ones in the literature, covering a wide spectrum of techniques.

Construct threats. The main construct threat to validity is that

the anomaly-free input (i.e., T𝑛) to Algorithm 1 actually contains

anomalies. Although anomaly-free data are easily obtainable in

reality, false negatives could happen if the data are contaminated.

We alleviate this issue by applying percentile thresholding to T𝑛 .

Specifically, after obtaining the closest subsequence pairs in T𝑛 , we

break the connection between those having a distance above the

percentile threshold. Thus, the set of anomaly candidates, i.e., 𝑁𝑖 ,

becomes larger. If T𝑛 is indeed clean, this operation is harmless

as the (isolated) normal metric subsequences can be grouped with

other similar ones again; if not, theywill stay isolated and eventually

be recognized as anomalies. We have also conducted experiments

on some cases where T𝑛 contains anomalies, and the results show

its effectiveness.

6 RELATEDWORK

Performance anomaly detection on time series has been a hot topic.

Monitoring metrics used to profile the runtime status of a system

are usually denoted as multiple univariate time series. In the litera-

ture, anomaly detection methods on time series can be categorized

into statistical, traditional machine learning, and deep learning

approaches. In industry, Autoregressive Moving Average Model

(ARMA) [5] remains the most popular statistical method to detect

obvious anomalous data points from univariate time series. To cap-

ture complex anomalous patterns, Ma et al. [22] summarized several

type-oriented patterns from the metrics of cloud databases to diag-

nose the performance degradation in associated online services.

More complex pattern recognitionmethods utilizemachine learn-

ing based models. For example, unsupervised clustering methods

can be used to detect anomalous points in time-series data. Similar

to our work, Pang et al. [24] proposed a clustering-based statistical

model called LeSiNN to detect anomaly patterns from history. How-

ever, it is not robust in real industry practices due to complicated

parameter tuning. With the assumption that anomalous data should

be in smaller numbers and isolated from a large number of normal

observations, Isolation Forest (iForest) [19] employs multiple binary

trees to distinguish anomalies in non-linear space. Extreme Value

Theory (EVT) [31] learns the hidden state of a random variable

around the tails of its distribution to adaptively enhance the perfor-

mance of many statistical and machine learning methods. However,

EVT heavily relies on hyperparameter tuning.

In recent years, there has been an explosion of interest in apply-

ing neural networks to conduct anomaly detection on time-series

data. For example, Zong et al. [39] proposed a deep autoencoding

Gaussian mixture model (DAGMM) to detect anomalous data points

from each observed data without considering the temporal depen-

dencies in time series. To detect complex anomalies in spacecraft

monitoring systems, LSTM-NDT [15] leverages Long Short-Term

Memory (LSTM) networks with nonparametric dynamic thresh-

olding to pursue interpretability throughout the systems. Zhao et

al. [37] and Lin et al. [17] also employed LSTM to predict perfor-

mance anomalies in software systems. Inspired by the Spectral

Residual algorithm in other domains, Ren et al. [29] proposed SR-

CNN to detect anomalies from seasonal metric data for large-scale

cloud services, which contain the periodic recurrence of fluctua-

tions. DONUT [34] designs an unsupervised anomaly detection

method based on the Variational Auto-Encoder (VAE) framework

to detect anomalies from low-qualified seasonal metric time series

with various patterns. DONUT provides a theoretical explanation

compared to other deep learning methods. LSTM-VAE [25] com-

bines LSTM networks and the VAE framework to reconstruct the

probability distribution of observed data in time series. However,

LSTM-VAE ignores the temporal dependencies in time series. Omni-

Anomaly [32] learns the normal patterns using a large collection of

historical data. The anomalous patterns are located from the large

margin of reconstruction loss to the normal patterns. However,

the aforementioned deep learning-based methods usually follow

an end-to-end style and play as a black box inside. Due to poor

interpretability, the detection results cannot provide engineers with

actionable suggestions for fault diagnosis. Furthermore, all these

methods have difficulties handling unseen metric patterns brought

by the frequent updates of online services.

7 CONCLUSION

In this paper, we propose ADSketch, a performance anomaly detec-

tion approach based on pattern sketching. By extracting normal and

abnormal patterns frommetric time series, anomalies can be quickly

detected through a comparison with the identified patterns. By asso-

ciating metric patterns with typical performance issues, ADSketch

can provide interpretable results when any known patterns appear

again. Moreover, we design an adaptive learning algorithm to help

ADSketch embrace unprecedented metric patterns during online

anomaly detection. We have conducted experiments on two public

datasets and one production dataset collected from a representative

online service system of Huawei Cloud. For offline anomaly detec-

tion where models’ parameters are still being tuned, ADSketch has

achieved the highest F1 score, outperforming the existing meth-

ods by a significant margin. For online anomaly detection where

models are fixed, ADSketch safeguards its best rankings. Finally,

the adaptive pattern learning brings noticeable performance gains,

especially in the industrial dataset. From our industrial practice, we

have witnessed it shedding light on accurate and interpretable per-

formance anomaly detection, which confirms its practical benefits

conveyed to Huawei Cloud. We believe ADSketch is able to assist

engineers in service failure understanding and diagnosis.

For future work, we will extend our algorithms to multivariate

metric time series. We will also try to provide more detailed in-

formation about failures by exploring the correlations among the

metric patterns.

ACKNOWLEDGMENTS

The work was supported by the Guangdong Key Research Program

(No. 2020B010165002), the Research Grants Council of the Hong

Kong Special Administrative Region, China (CUHK 14210920), and

Australian Research Council (ARC)Discovery Projects (DP200102940

and DP220103044).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

REFERENCES
[1] 2018. KPI Anomaly Detection Competition. Retrieved April, 2021 from http:

//iops.ai/competition_detail/?competition_id=5&flag=1
[2] 2018. KPI Anomaly Detection Dataset. Retrieved April, 2021 from http://iops.ai/

dataset_detail/?id=10
[3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-

mization. Cambridge university press.
[4] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, María S Pérez,

and Victor Muntés-Mulero. 2020. Graph-based root cause analysis for service-
oriented and microservice architectures. Journal of Systems and Software 159
(2020), 110432.

[5] Marcus J Chambers and Michael A Thornton. 2012. Discrete time representation
of continuous time ARMA processes. Econometric Theory (2012), 219–238.

[6] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Towards intelligent incident
management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1487–1497.

[7] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: real-world chal-
lenges and research innovations. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 4–5.

[8] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. 2015.
Experience report: Anomaly detection of cloud application operations using log
and cloud metric correlation analysis. In 2015 IEEE 26th international symposium
on software reliability engineering (ISSRE). IEEE, 24–34.

[9] Apache Flink. 2011. [Online]. https://flink.apache.org/.
[10] Brendan J Frey and Delbert Dueck. 2007. Clustering by passing messages between

data points. science 315, 5814 (2007), 972–976.
[11] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 1–37.

[12] Shujie Han, Patrick PC Lee, Zhirong Shen, Cheng He, Yi Liu, and Tao Huang.
2020. Toward adaptive disk failure prediction via stream mining. In Proceedings
of IEEE ICDCS.

[13] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
60–70.

[14] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. 2017. Gray failure: The achilles’ heel
of cloud-scale systems. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems. 150–155.

[15] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. 2018. Detecting spacecraft anomalies using lstms and nonpara-
metric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 387–395.

[16] Apache Kafka. 2011. [Online]. https://kafka.apache.org/.
[17] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong

Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, et al. 2018.
Predicting node failure in cloud service systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 480–490.

[18] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 102–111.

[19] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[20] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, detecting and
localizing partial failures in large system software. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). 559–574.

[21] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao
Xie. 2013. Software analytics for incident management of online services: An
experience report. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 475–485.

[22] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-
hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, et al. 2020. Diagnosing
root causes of intermittent slow queries in cloud databases. Proceedings of the
VLDB Endowment 13, 10 (2020), 1176–1189.

[23] Ryan Mercer, Sara Alaee, Alireza Abdoli, Shailendra Singh, Amy Murillo, and
Eamonn Keogh. 2021. Matrix Profile XXIII: Contrast Profile: A Novel Time
Series Primitive that Allows Real World Classification. In The IEEE International
Conference on Data Mining.

[24] Guansong Pang, Kai Ming Ting, and David W. Albrecht. 2015. LeSiNN: Detecting
Anomalies by Identifying Least Similar Nearest Neighbours. In IEEE Interna-
tional Conference on Data Mining Workshop, ICDMW 2015, Atlantic City, NJ, USA,
November 14-17, 2015. IEEE Computer Society, 623–630.

[25] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. 2018. A multimodal anomaly
detector for robot-assisted feeding using an lstm-based variational autoencoder.
IEEE Robotics and Automation Letters 3, 3 (2018), 1544–1551.

[26] Tomáš Pevnỳ. 2016. Loda: Lightweight on-line detector of anomalies. Machine
Learning 102, 2 (2016), 275–304.

[27] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang
Sun, and Bin Wang. 2003. Automated support for classifying software failure
reports. In 25th International Conference on Software Engineering, 2003. Proceedings.
IEEE, 465–475.

[28] Thanawin Rakthanmanon and Eamonn Keogh. 2013. Fast shapelets: A scalable
algorithm for discovering time series shapelets. In proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 668–676.

[29] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou,
Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-series anomaly detec-
tion service at microsoft. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3009–3017.

[30] Yahoo! Research. 2015. A Benchmark Dataset for Time Series Anomaly De-
tection. Retrieved August, 2021 from https://yahooresearch.tumblr.com/post/
114590420346/a-benchmark-dataset-for-time-series-anomaly

[31] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët.
2017. Anomaly Detection in Streams with Extreme Value Theory. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, 1067–1075.

[32] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
anomaly detection for multivariate time series through stochastic recurrent
neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2828–2837.

[33] Catia Trubiani, Pooyan Jamshidi, Jurgen Cito, Weiyi Shang, Zhen Ming Jiang,
and Markus Borg. 2018. Performance issues? Hey DevOps, mind the uncertainty.
IEEE Software 36, 2 (2018), 110–117.

[34] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. 2018. Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis in web applications. In
Proceedings of the 2018 World Wide Web Conference. 187–196.

[35] Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. 2008. Disk aware dis-
cord discovery: Finding unusual time series in terabyte sized datasets. Knowledge
and Information Systems 17, 2 (2008), 241–262.

[36] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,
Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. 2016.
Matrix profile I: all pairs similarity joins for time series: a unifying view that
includes motifs, discords and shapelets. In 2016 IEEE 16th international conference
on data mining (ICDM). IEEE, 1317–1322.

[37] Guoliang Zhao, Safwat Hassan, Ying Zou, Derek Truong, and Toby Corbin. 2021.
Predicting Performance Anomalies in Software Systems at Run-time. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021),
1–33.

[38] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and
Eamonn Keogh. 2018. Matrix profile XI: SCRIMP++: time series motif discovery
at interactive speeds. In 2018 IEEE International Conference on DataMining (ICDM).
IEEE, 837–846.

[39] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In International Conference on Learning
Representations.

