
 
 

 

 1

lyu9904 MultiModel Digital Video Library April 2000  

 
 
 
 
 
 
 
 
 

� ����� � � �	��
 � 
�� ����� ��� �
����� �����! #"%$&��'&� ()� �+*,�.-,� "%$# 0/1� 2%3 *,3 4

5 � � 
 � � 6 � � � � 7 8 � 6 � 9 � � � : ; 
 � � ; � 
 � < = � > 
 � � � � 
 � > ?
@�A �B8�A�
 � � CD����
 E ��� C 
 � FG� 7�HI��� >BJ���� >

: 9 � � � E 
 C � � K
LM� � 7 N OD
 ; A 
 ��� � F�9
: � 9 < � � � K
8�A�9 � >BJ�
 ��:M
��
:�� P P � Q R�� S
T C ; A�9 � >�U	; C �



 
 

 

 2

lyu9904 MultiModel Digital Video Library April 2000  

VXWZY\[^]�_a`b[

Our project, titled "Multi Model Digital Video Library", is targeted to learn issues 
about digital video libraries and implement a small-scale model.  Digital video 
library becomes more and more important as the Internet technology evolves, and 
will soon affecting the mode which people consumes media data, and thus the media 
industry.  The recent development of digital video libraries is to employ various 
new technologies for building the database, indexing the contents, searching and 
retrieving the video resources in effective and efficient way.  The breakthrough is 
to extract and index the "semantic" of a video data, which create a new "Interactive 
Video" view against the traditional "Interrupted Video" view.  In this project, we 
have built a small-scale Chinese-based digital video library with some basic features: 
Internet-based, data indexing, video searching and retrieval, real-time video 
playback and synchronized video transcript. 



 
 

 

 3

lyu9904 MultiModel Digital Video Library April 2000  

c&_dWae�fhg#ikjkgdlZ[1fdlZ[

m n�o�p	q1r�sut	o�m q1n�v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v w

xByztz{�|1p	q1sun}r�v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v ~

BUILDING VIDEO DATABASES .............................................................................................. 7 

INDEXING THE VIDEO CONTENTS.......................................................................................... 7 

BREAKING THE VIDEO INTO SEGMENTS ................................................................................ 8 
Video Paragraphing.................................................................................................................................8 
Alternate Representations for Video Clips................................................................................................9 

RETRIEVING VIDEO ............................................................................................................. 9 
Returning Small Pieces..........................................................................................................................10 
Information Visualization......................................................................................................................10 

t�q1nz��m r��.p.y.o�m q1n�y}n}r�y}�.�.p	q�yztz�uv v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �G�

FOCUS AND TARGET ......................................................................................................... 11 

PROGRAMMING ENVIRONMENT .......................................................................................... 12 
Platform................................................................................................................................................12 
Programming Language........................................................................................................................12 
Programming Tools...............................................................................................................................13 
Presentation ..........................................................................................................................................15 

SYSTEM CONSIDERATION .................................................................................................. 19 
User Aspect...........................................................................................................................................19 
Server Aspect ........................................................................................................................................20 
Network Issues......................................................................................................................................20 
Video Collections..................................................................................................................................20 

EQUIPMENT USED............................................................................................................. 21 

r��D��m |1n�y}n}r�m ���.�G�.���.n�oGy.o�m q1n�v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �G�

SYSTEM DESIGN ............................................................................................................... 22 
Overview of Different System Models...................................................................................................22 

MODULES OF SYSTEM IN LAST VERSION ............................................................................ 26 
List of Modules.....................................................................................................................................26 
Communication among the Modules......................................................................................................27 

SYSTEM IMPLEMENTATION................................................................................................. 31 
Video Playback - JMF API ....................................................................................................................31 
Multi-client Technique..........................................................................................................................32 
Structuring and Managing Data.............................................................................................................33 
Library Preparation ...............................................................................................................................37 

 
 
 
 



 
 

 

 4

lyu9904 MultiModel Digital Video Library April 2000  

 
 
q1s}p�rD�}���B���Bo��.��v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �G�

FUNCTIONALITY OF OUR DVL ............................................................................................ 38 

LIBRARY CONTENT ........................................................................................................... 41 

r�m �	tzsz�.��m q1n\v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �B�

PROBLEM ENCOUNTERED ................................................................................................. 42 

THINGS LEARNED ............................................................................................................. 43 

POSSIBLE EXTENSIONS..................................................................................................... 43 

t�q1nutz��sz��m q1n�v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �Bw

yztz{}nuq����G�.r�|1�.���.n�o1v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �B~

p��.�G�.p��.nutz��v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �B~

y}�.�.�.n}r�m ��v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v �B�



 
 

 

 5

lyu9904 MultiModel Digital Video Library April 2000  

�BlZ[^]�ga���#`b[^��gdl

The raise of Internet in the 20th Century changes the life style of people.  
Estimation shows that there are 50 million people using the Internet on a regular 
basis.  Entertainment, education, commercial activities, etc. is being merged with 
the irresistible trend of Internet.  Multimedia information is making a revolution in 
this trend.  New technologies realized the concept of digital video library.  And 
this initiates our project. 
In this report, we will first introduce the background of digital video library.  After 
reviewing the general ideas of DVL, we will introduce our work, sectioned into: 
considerations and approach we taken, details on the design and implementation, 
introduction on the functionality followed by the library content, discussions on our 
work, and end with a conclusion. Lastly, there are program codes attached at the end 
of this report. 
 
 



 
 

 

 6

lyu9904 MultiModel Digital Video Library April 2000  

� _a`d¡£¢d]�g��%l£�

Video is not like pure texts or images, it is large in size and contains audio and 
sequence of images.  Moreover, while page description languages may be more 
efficient, if the page contains many images, a raster image may be the only choice 
for representation. Video is not only imagery, but consists about 30 images per 
second.  It is really true that “a picture is worth a thousand words” .  Detail 
descriptions of video images can be many thousands of words and even a short 
video clip description can be massive.  Therefore, it is much more complex to 
handle video in computer world. 
 
There are many questions arise before establish a digital video library.  How do 
you build a vast video database?  How do you index the video contents?  How can 
you search and retrieve the video resources efficiently?  How can you let users to 
view the resources conveniently and effectively?  The issues on creating a digital 
video library (gathering video, representing its contents, and segmenting it 
appropriately) and utilizing and exploring the library (retrieving and browsing 
effectively) are also challenging parts in this topic.  The following paragraphs will 
introduce these few aspects briefly. 
 
Here is the overview of digital video library system: 

 

 



 
 

 

 7

lyu9904 MultiModel Digital Video Library April 2000  

Building Video Databases 

Digital video takes a tremendous amount of space.  Therefore, in order to build a 
video database, we need to consider the video format for the databases.  It is 
important to choose a video format which can save space but still maintain the 
quality of video.  A single high quality, uncompressed video channel would require 
a bandwidth of 200 million bits per second.  Such bandwidth requirements are not 
practical today or perhaps ever, so the quality of the video may be reduced and 
compression schemes used to make possible the inclusion of video into digital 
libraries. 
 
Even before the video can be digitized and placed into the library, a number of 
intellectual property rights issues need to be resolve.  New legal rules will likely be 
established and evolve as consumers and publishers move fully into the electronic 
age. 
 
Another consideration in the creation of a digital library is enabling access to the 
resources in the databases.  Even with MPEG1 compression, a thousand hours of 
video will take approximately a terabyte (1024 gigabytes) of storage.  It is so 
unlikely that user workstations will have the complete library stored locally at their 
machines.  Rather, a key element of on-line digital video libraries will be the 
communication fabric through which media servers and satellite (user) nodes are 
interconnected.  Traditional modem-based access over voice-grade phone lines is 
not adequate for this multimedia application, as evidenced by the difficulty in trying 
to move VHS-quality video between arbitrary sites on the Internet.  The ideal 
fabric has the following characteristics:  
¤ communication should be transparent to the user.  Special-purpose 
hardware and software support should be minimized in both server and slave 
nodes. 
¤ communication services must be cost effective, implying that link capability 
bandwidth) be scalable to match the needs of a given node.  Server nodes, for 
example, will require the highest bandwidth because they are shared among a 
number of satellite nodes. 
¤ the deployment of a custom communication network should be avoided.  
The most cost effective, and timely, solution will build on communication 
services already available or in field-test. 

Indexing the Video Contents 

Information is found best on the Internet when the providers augment the 
information with rich keywords and descriptors, provide links to related information, 
and allow the contents of their pages to be searched and indexed.  There is a long 
history of sophisticated parsing and indexing for text processing in various 
structured forms, from ASCII to PostScript to SGML and HTML.  However, it is 
not as simple to index video content. 



 
 

 

 8

lyu9904 MultiModel Digital Video Library April 2000  

 
 
An hour-long motion video segment clearly contains some information suitable for 
indexing, so that user can find an item of interest within it.  The problem is not the 
lack of information in video, but rather the inaccessibility of that information to our 
primarily text-based information retrieval mechanisms today.  In fact, the video 
likely contains an overabundance of information, conveyed in both the video signal 
(camera motion, scene changes, colors) and the audio signal (noises, silence, 
dialogue).  A common practice today is to log or tag the video with keywords and 
other forms of structured text to identify its contents.  Such text descriptors actually 
have many limitations, such as: 
 
¤ Manual processes are tedious and time consuming; 
¤ Manual processes are seriously incomplete; 
¤ Cinematic information is complex and difficult to describe, especially for 
non-experts.  For example, in an establishing shot that zooms from a wide angle 
to a close-up, determining the point when the scene changed is open to 
interpretation. 

Breaking the Video into Segments 

Anyone who has retrieved video from the Internet may realize that it takes a long 
time to move a video clip from one location to another because of its size.  If a 
library consists of only 30 minutes clips, when users check one out, it may take them 
30 minutes to determine whether the clip met their needs.  Returning a full one-half 
hour video with only one minute is relevant is much worse than returning a complete 
book with one chapter is needed.  With a book, tables of contents allow users to 
quickly find the material they need.  However, since the time to scan a video 
cannot be dramatically shorter than the real time of the video clips, a digital video 
library should be efficient at giving users the relevant material.  To make a faster 
retrieval and viewing, the digital video library will need to support: 
¤ partitioning video into small-sized clips 
¤ alternate representations of the video 

¥�¦ §+¨�©�ªD«I¬�«�­�¬�«I®G¯D¦ °G­
Just as textbooks can be decomposed into paragraphs with different chapters and 
subtitles, video library can be partitioned into video paragraphs.  There are 
difficulties arise in how to carry out video paragraphing.  Analogous structure is 
contained in video through scenes, shots and camera motions. 
 
The boundaries of paragraph could be done by parsing and indexing on the video 
segment.  Some videos, such as news broadcasts, have a well-defined structure 
which could be parsed into short video paragraphs for different news stories, sports 
and weather.  Techniques monitoring the video signal can break the video into 



 
 

 

 9

lyu9904 MultiModel Digital Video Library April 2000  

sequences sharing the same spatial location.  These scenes could be used as 
paragraphs. 
 
However, physically decomposing a video library into fixed number of small video 
files will not meet the future needs of the library user.  A more flexible alternative 
is to logically segment the library by adding sets of video paragraph markers and 
indices, but still keeping the video data intact in its original context.  This 
improvement allows later enrichment of the description of the video content.  The 
original material can be retrieved easily and dynamically without redundancy for the 
user if desired. 

±�² ³ ¨�¬ °B«I³ ¨^´�¨�®G¬ ¨�µM¨�°D³�«I³ ¦ ©�°Dµ1¶ ©�¬�¥�¦ §+¨�©�·B² ¦ ®Gµ
In addition to trying to size the video clips appropriately, the digital video library 
can provide the users alternate representations or layers of information for the video.  
Users could then review a given layer of information before deciding whether to 
incur the cost of richer layers of information or the complete video clip.  For 
example, a given half hour video may have a text title, a text abstract, a full text 
transcript, a representative single image, and a representative one minute “skim”  
video, all in addition to the full video itself.  The user could quickly review the title 
and perhaps the representative image, decide on whether to view the abstract and 
maybe the full transcript, and finally the user may decide whether to retrieve and 
view the full video. 

Retrieving Video 

It is important that the retrieved videos are those user wants to have.  However, it is 
not an easy task.  For general purposed use, there may not be enough domain 
knowledge to apply to the user’s query and to the library index to return only a very 
small subset of the library to the user matching just the given query.  For example, 
in a soccer-only library, a query about goal can be interpreted to mean a score, and 
just those appropriate materials can be retrieved accordingly.  In a more open 
context, goal could mean a score in hockey or a general aim or objective.  A larger 
set of results will need to be returned to the user, given a less domain knowledge 
from which to leverage. 
 
In attempting to create a general purposed digital video library, the result set may 
then become quite large, so the user may need to filter the set and decide what is 
important.  Three principle issues with respect to searching for information are: 
¤ how to let the user quickly skim the video objects to locate sections of 
interest; 
¤ how to let the user adjust the size of the video objects returned; 
¤ how to aid users in the identification of desired video when multiple objects 
are returned. 



 
 

 

 10

lyu9904 MultiModel Digital Video Library April 2000  

¤  

´�¨�³ ¸G¬ °D¦ °G­�¹Gº»«�² ²BªG¦ ¨�¼�¨�µ
There are about 150 spoken words per minute of “talking head”  video.  One-hour 
video will contain 9000 words, which is about 15 pages of text.  If a user issues a 
query and receives ten half-hour video clips, it could take him/she hours to review 
the results to determine the relevance.  If the results set were instead ten 
two-minute clips, then the review time is reduced considerably.  In order to return 
small and relevant clips, the video contents need to be indexed well and sized 
appropriately. 

½ °D¶ ©�¬ º»«I³ ¦ ©�°�¥�¦ µM¸D«�² ¦ ¾�«I³ ¦ ©�°
When a user searches for a specific piece of information in hours of audio or video, 
the results from his/her query may be too large to be effectively handled with 
conventional presentations such as a scrollable list. To enable better filtering and 
browsing, the features deemed important by the user should be emphasized and 
made visible.  That returns us back to the problem of identifying the content within 
the video data and representing it in forms that facilitate browsing, visualization, and 
retrieval. 



 
 

 

 11

lyu9904 MultiModel Digital Video Library April 2000  

jkgdlZYb���afd]�_b[^��gdl¿_dl£�ÀVXÁaÁa]�ga_a`dÂ

Focus and Target 

To build a product-quality Digital Video Library that fulfills all the criteria that 
mentions in the previous section will need years of work and a large working team.  
There are many related techniques needed to develop for a well-established DVL, 
such as speech recognition, image analysis, natural language processing, etc.  In 
order to define targets which is suitable for a Final Year Project, we have to divide 
the project into modules that can be implemented in stages.  And we also have to 
focus on building some components that will be reusable in the future development. 
We define some essential parts for a Digital Video Library that we can focus on: 
 
¤ Build a component for video playback 
¤ Build a component for user query 
¤ Build a component to serve the query 
¤ Build a small scale library content 
¤  

For video playback, there are various video file formats that we can choose from.  
In the current stage, we are using the MPEG1 file format.  MPEG1 format is not 
the only choice, Apple QuickTime format and Real Video format are possible 
alternatives.  Reasons for we to choose MPEG1 format are its reasonable 
compassion rate and video quality, and also the free license for encoding. 
For the user side, we target to build a simple interface for user to input query.  We 
also implement the synchronization of video and the corresponding text scripts.  
We decide to enhance our DVL to be accessed through browser after the 
fundamental functions are developed. 
 
And for the server side, we implement a full-text search for the transcripts of the 
videos.  Although there are various searching methods, but full-text searching is the 
fundamental kind and useful in many applications, and is relatively easy to 
implement.  Other kinds of queries will be added after the basic things have been 
developed. 
 
For the video library content, we need to build a video collection for our library 
system.  All video are in Chinese and encoded with MPEG1 algorithm with the 
corresponding Chinese full-text script and some descriptions. 



 
 

 

 12

lyu9904 MultiModel Digital Video Library April 2000  

Programming Environment 

ª�² «I³ ¶ ©�¬ º
We are now developing our project using Microsoft Windows 98/NT platform.  It 
is because up to now the Windows platform is still the most popular end-user OS 
systems.  And, besides of that, Windows has better support for entertainment 
applications, so we got more convenience in developing the multimedia application. 
But, instead of sticking to the Microsoft Windows, cross-platform operability also 
affecting our decision.  There are a lot of advantages for the capability to move the 
application to another platform, especially when we consider the stability of Unix 
system and the raise of Linux system. 

ªG¬�©�­�¬�«IºÃºÃ¦ °G­�ÄG«I°G­�¸D«�­�¨
We'd take Java™ as the programming language tools for this project.  There are 
certain aspects of Java that makes it favorite for the project. 
 
Platform independence: 
Platform independence means that the software written in Java can be run on any 
machines which has a Java Virtual Machine, no matter that's a PC, Unix, Linux or a 
Macintosh.  This is obviously an advantage that the possible user group becomes 
larger. 
 
Network ready 
As in the very beginning, Java is considered as a language to work over the network, 
therefore its support in networking is good.  Various kind of network model can be 
implemented with the network classes provided in Java, and is relatively easier to 
develop the same thing for other programming languages.  Using Java may benefit 
when we implement the client/server model of the DVL.  In case, we can even 
implement the Client as a Java Applet, which can be accessed by the web browsers 
on the WWW. 
 
Classes for GUI and video playback 
There are classes in Java which support GUI building and, most important, the video 
playback function.  The simple but useful API free the programmers from low level 
programming details and can play more effort on the higher level system 
architecture etc. 
 
Support XML technology 
We have used the XML technology in our project.  Java provides platform APIs for 
developing program with XML which is a format that can represent structured and 
unstructured data, along with rich descriptive delimiters, in a single atomic unit. 
 
Nothing is ever perfect, there are drawbacks of using Java as programming language 
also. 



 
 

 

 13

lyu9904 MultiModel Digital Video Library April 2000  

 
Interpreted language 
Java is an interpreted language, programs written in Java won't be as fast as those 
compiled languages such as C/C++ 
 
Immature 
Java is a young language, it's API is likely to be changed in the successive versions, 
which may lead to difficulties in maintain the program. 
 
Using of extended API 
The classes provide video playback function, Java Media Framework API, is not 
included in the standard Java Runtime Environment, nor a standard install of Java 
Development Kit (JDK).  The extra package has to be downloaded and installed 
before running the client program. 

ªG¬�©�­�¬�«IºÃºÃ¦ °G­^Å	©+©�² µ

Æ ÇMÈ ÇBÉBÊ�Ë Ì Í Î	Ï Ð�Í ÇBÑ�Ò Ç Î	Ï�Ó�Ô�Ò ÕDÖ Æ�ÉDÑ ×�Ø�ÙMÚ
The Java Media Framework (JMF) is an Application Programming Interface (API) 
for incorporating media data types into Java applications and applets.  It is 
specifically designed to take advantage of Java platform features. 
The version of JMF API we are using is JMF 2.0 API.  It provides a 
platform-neutral multimedia solution that runs on Java platforms that support JDK 
1.1.5 or later. Here are some of its features: ¤ Present time-based media in Java programs 
¤ Support for capturing and storing media data 
¤ Control the type of processing that is performed during playback ¤ Perform custom processing on media data streams 

Û�Í ÜMÝMÞ ß�Ï�È Ï Ë Ø+Ò à ÝMÍ Ì Ï à�Ì Ê Ò Ï
JMF uses the traditional model for recording, processing, and presenting time-base 
media. It is quite the same as playing a movie using a VCR:  
You provide the media stream to the VCR by inserting a video tape.  The VCR 
reads and interprets the data on the tape and sends appropriate signals to your 
television and speakers.  

 



 
 

 

 14

lyu9904 MultiModel Digital Video Library April 2000  

 
In JMF, a data source encapsulates the media stream much like a video tape and a 
player provides processing and control mechanisms similar to a VCR.  Data 
sources and players are integral parts of JMF’s high-level API for managing the 
capture, presentation, and processing of time-based media. 

á�Ç�Ì ÇBâ�ÔMÊ Ò à Ï ã
JMF media players usually use DataSources to manage the transfer of media-content.  
A DataSource encapsulates both the location of media and the protocol and software 
used to deliver the media.  As media data can be obtained from a variety of sources, 
such as local or network files and live broadcasts.  JMF data sources can be 
categorized according to how data transfer is initiated: 
 
¤ Pull Data-Source - the client initiates the data transfer and controls the flow 
of data from pull data-sources.  Established protocols for this type of data 
include Hypertext Transfer Protocol (HTTP) and FILE. 
¤ Push Data-Source - the server initiates the data transfer and controls the flow 
of data from a push data-source.  Push data-sources include broadcast media, 
multicast media, and video-on-demand (VOD).  For broadcast data, one 
protocol is the Real-time Transport Protocol (RTP), under development by the 
Internet Engineering Task Force (IETF).  The MediaBase protocol developed 
by SGI is one protocol used for VOD. 

 
The degree of control that a client program can extend to the user depends on the 
type of data source being presented.  For example, an MPEG file can be 
repositioned and a client program could allow the user to replay the video clip or 
seek to a new position in the video.  In contrast, broadcast media is under server 
control and cannot be repositioned.  Some VOD protocols might support limited 
user control, for example, a client program might be able to allow the user to seek to 
a new position, but not fast for ward or rewind. 

á�Ç�Ì ÇBÑ�Ô�Ò Î.Ç�Ì ã
The exact media format of an object is represented by a Format object.  The format 
itself carries no encoding-specific parameters or global timing information, it 
describes the format’s encoding name and the type of data the format requires. 
An AudioFormat describes the attributes specific to an audio format, such as sample 
rate, bits per sample, and number of channels.  A VideoFormat encapsulates 
information relevant to video data.  Several formats derived from VideoFormat to 
describe the attributes of common video formats are: ¤ IndexedColorFormat 
¤ RGBFormat 
¤ YUVFormat 
¤ JPEGFormat ¤ H261Format 
¤ H263Format 



 
 

 

 15

lyu9904 MultiModel Digital Video Library April 2000  

ÙMÒ Ï ã�Ï ä�Ì Ç�Ì Í Ô�ä

 
 
In JMF, the presentation process is modeled by the Controller interface.  Controller 
defines the basic state and control mechanism for controls, presents, or captures 
time-based media.  It defines the phases that a media controller goes through and 
provides a mechanism for controlling the transitions between those phases.  A 
number of the operations that must be performed before media data can be presented 
can be time consuming, so JMF allows programmatic control over when they occur. 
To present time-based media such as audio or video with JMF, we can use a Player 
which implements the Controller.  Playback can be controlled programmatically, or 
by display a control-panel component that enables the user to control playback 
interactively.  
 
A Player generally has two types of user interface components, a visual component 
and a control-panel component.  A visual component is where a Player presents the 
visual representation of its media, if it has one.  Even an audio Player might have a 
visual component, such as a waveform display or animated character; A control 
panel component allows the user to control the media presentation.  For example, a 
Player might be associated with a set of buttons to start, stop, and pause the media 
stream, and with a slider control to adjust the volume.  Some Player 
implementations can display additional components, such as volume controls and 
download-progress bars. 
 
When several media streams are to be play, a separate Player for each one will be 
used, to play them in sync, we can use one of the Player objects to control the 
operation of the others. 

å�æMÌ Ï ä�ã�Í çMË ÏDÉGÇ�Õ Ï�Ê è�ß�Ç ä�ÜIÊ Ç Ü�ÏDÖ é�ÉDß ×
XML is the meta language defined by the World Wide Web Consortium (W3C) that 
can be used to describe a broad range of hierarchical mark up languages. It is a set of  



 
 

 

 16

lyu9904 MultiModel Digital Video Library April 2000  

rules, guidelines, and conventions for describing structured data in a plain text, 
editable file. Using a text format instead of a binary format allows the programmer 
or even an end user to look at or utilize the data without relying on the program that 
produced it. However the primary producer and consumer of XML data is the 
computer program and not the end-user. 
 
XML is syntax for developing specialized markup languages, which adds identifiers, or 
tags, to certain characters, words, or phrases within a document so that they may be 
recognized and acted upon during future processing. "Marking up" a document or data 
results in the formation of a hierarchical container that is platform-, language-, and 
vendor-independent and separates the content from any environment that may process 
it.  

 

There are some advantages using XML: 
 
Cross-platform Capabilities 
Implement XML technology using the Java programming language can even got 
something more powerful: XML with cross-platform capabilities built in at the 
binary level, so that we have a platform independent solution from backend to 
frontend. When code and data are combined in the right ways, the pair becomes 
"portable objects" – which is really an effective way to design large scale distributed 
systems. In a sence, XML technology makes the information exchange possible, and 
Java technology makes the automation feasible.  

 ê�ë�ì�í î ï î�ð î ñGò ó+ô õ�ö�ï ï ÷ ó í�ò ó ï ø�ó ó ñGùDî ñ úGí û ü ü ó ý ó ñ�ï ï ú þ�ó ô�ÿ ü ô ó ý � ó ý ô+î ñ�íGð ÷ û ó ñ�ï ô

� � î ù þ ÷ ó ÿ ü ê ë ì



 
 

 

 17

lyu9904 MultiModel Digital Video Library April 2000  

Platform independent 
Information in an XML document is stored in plain-text. This might seem like a 
restriction if were thinking of embedding binary information in an XML document. 
But this is the main reason for it to maintain the interoperability. By accepting and 
sending information in plain text format, programs running on disparate platforms 
can communicate with each other. This also makes it easy to integrate new programs 
on top of older ones (without rewriting the old programs), by simply making the 
interface between the new and old program use XML. 
 
An example is web enabling legacy systems. It is very feasible to create a Java web 
ennoblement application server that simply uses the services provided by the 
underlying legacy system. Instead of rewriting the legacy system, if the system can 
be made to communicate results and parameters through XML, the new and old 
system can work together without throwing away a company's investment in the 
legacy system. 
 
And since XML is not a binary format, you can create and edit files with anything 
from a standard text editor to a visual development environment. That makes it easy 
to debug your programs, and makes it useful for storing small amounts of data. At 
the other end of the spectrum, an XML front end to a database makes it possible to 
efficiently store large amounts of XML data as well. So XML provides scalability 
for anything from small configuration files to a company-wide data repository. 
 
Structured 
XML documents benefit from their structure. 
As XML allow users to define their own tags and create the proper structural 
relationships in the information (with a DTD - Document Type Definition), the 
validity and integrity of the data can be checked with any XML parser easily. This 
makes the application code more reliable and quick to develop by providing validity 
checking on the XML documents with help of a DTD.  
 
Moreover, the hierarchical structure also benefits the usage of XML from speed and 
simplicity for creation and modification of XML documents. 
And since the structure of the XML document can be specified in DTDs they 
provide a simple way to make it easier to exchange XML documents that conform to 
a DTD. For example, if two software systems need to exchange information, then if 
both of the systems conform to one DTD, the two systems can process information 
from each other. 
 
Information Management 
In XML, documents can be seen independently of files. One document can comprise 
many files, or one file can contain many documents. This is the distinction between 
the physical and logical structure of information. XML data is primarily described 
by its logical structure. In a logical structure, principal interest is placed on what the 
pieces of information are and how they relate to each other, and secondary interest is 
placed on the physical items that constitute the information. 
 



 
 

 

 18

lyu9904 MultiModel Digital Video Library April 2000  

 
 
Rather than relying on file headers and other system-specific characteristics of a file 
as the primary means for understanding and managing information, XML relies on 
the markup in the data itself. A chapter in a document is not a chapter because it 
resides in a file called chapter1.doc but because the chapter's content is contained in 
the <chapter> and </chapter> element tags. When the elements carry self-describing 
metadata with them, systems that understand XML syntax can operate on those 
elements in useful ways. And as XML markup provides metadata for all components 
of a document, not merely the object that contains the document itself. This makes 
the pieces of information that constitute a document just as manageable as the fields 
of a record in a database. 

Æ ÇMÈ Ç+Ø�ÙMÚ � Ô�Ò�é�ÉDßBÙMÇ Ò ã�Í ä�Ü�Ö Æ Ø�é�Ù ×
Java API for XML Parsing (JAXP) is a package of two vendor-neutral classes 
SAXPar ser Fact or y  and Document Bui l der Fact or y  which can instantiate a 
SAX Parser and a Document Bui l der  respectively. The Document Bui l der , in 
trun, creates DOM-compliant Document  objects. The factory APIs enable XML 
implementation of another vendor to plug in without changing your source code. It 
is default to use the Sun’s reference implementation of SAX Parser and 
DocumentBuilder. 
 
SAX 
SAX stands for ‘Simple API for XML’. This API was actually a product of 
collaboration on the XML-DEV mailing list, rather than a product of the W3C. 
Thoguh it has the ‘ final’ characteristics as a W3C recommendation. 
You can also think of this standard as the "serial access" protocol for XML that does 
element-by-element processing. This is the fast-to-execute mechanism you would 
use to read and write XML data in a server, for example. This is also called an 
event-driven protocol, because the technique is to register your handler with a SAX 
parser, after which the parser invokes your callback methods whenever it sees a new 
XML tag (or encounters an error, or wants to tell you anything else). 
 
DOM 
Document Object Model (DOM) represents an XML document into a tree structure 
of objects in the program. You can then manipulate the object model in any way that 
makes sense. This mechanism is also known as the "random access" protocol, 
because you can visit any part of the data at any time. You can then modify the data, 
remove it, or insert new data. 
The DOM API is ideal for interactive applications because the entire object model is 
present in memory, where it can be accessed and manipulated by the user. On the 
other hand, constructing the DOM requires reading the entire XML structure and 
holding the object tree in memory, so it is much more CPU and memory intensive. 



 
 

 

 19

lyu9904 MultiModel Digital Video Library April 2000  

 
 
Above shows the function of a DocumentBuilder. First, the 
javax.xml.parsers.DocumentBuilderFactory class is used to get a DocumentBuilder 
instance (upper left), and use that to produce a Document (a DOM) that conforms to 
the DOM specification (lower right).  
 
The builder's newDocument() method can be used to create an empty Document. 
Alternatively, you can use one of the builder's parse methods to create a Document 
from existing XML data. The result is a DOM tree like that shown in the lower right 
corner of the diagram. 
 
After we have a Document object, we may apply different operations to it, including 
creating, removing, changing, and tranversing nodes; or setting and creating 
attributes etc. This tree model can be even visualize using the JTree interface in 
javax.swing. 

System Consideration 

Our Digital Video Library consists of two major components, the client and the 
server.  From a user perspective, the client program is all that he/she will have 
interaction with, while the server should be transparent to the user.  Therefore, the 
client program will accept queries/commands from user, and play the video clips 
wanted; what the server have to handle is to process the queries and return the 
corresponding video clip to the clients. 

�	µM¨�¬	±�µM®G¨�¼�³
All of the user's action is done on the client program, and other parts of the system 
are transparent to the user, so that the user would not need to take care of other 
system's details.  Since the usage is video oriented, high performance machine is 
suggested to use. 



 
 

 

 20

lyu9904 MultiModel Digital Video Library April 2000  

 
 
Some basic abilities for the client program: 
¤ provides user interface 
¤ gets query input from user 
¤ shows results related to the query 
¤ playbacks video 

There are some qualities to provide a better software design for our DVL system: 
¤ browser-enabled 

It only is meaningful for user to access digital library remotely not locally.  
Therefore, it is convenient that user can view the video through Internet. 

¤ provides clear and easy-to-use interface for user 
Obviously, a complex interface only makes the user confused. 

¤ Support Chinese 
Our library is a Chinese digital video library.  Therefore, it is important 
to show Chinese even under an English Operating System. 

¹G¨�¬ ��¨�¬	±�µM®G¨�¼�³
The server work mainly is to find out the result(s) that matches the query from the 
client side. There are possible more than one client wants to serve. So, server has to: 
¤ have searching ability 
¤ be equipped with indexed video data for searching 
¤ return all results to client 
¤ support multi-client 
¤ stable performance 

Server machine need not to have the video storage of the library because the video 
files can put in other server(s).  However, the server should be a high performance 
one which can reduce the searching time. 

�	¨�³ �1©�¬ �Ã½ µMµM¸G¨�µ
Transmitting MPEG1 video signals requires a large bandwidth (approximate 350k 
bit/s).  Therefore we test the program mainly in the LAN environment.  For 
playback of media files at remote sites, the video will be buffered before enough 
data have been received for continuous playback.  When streaming is used, user 
need not to wait the whole video to be loaded to his/her own machine and still view 
the video. 

¥�¦ §+¨�©�·	©�² ² ¨�¼�³ ¦ ©�°Dµ
There must be a large memory to store the video files.  We decide to encode the 
video recorded in tapes into MPEG1 video format.  We choose MPEG1 because of 
its reasonable compassion rate and video quality, and also the free license for 
encoding. 
 



 
 

 

 21

lyu9904 MultiModel Digital Video Library April 2000  

Apart from the choice of digital format of video, the copyright of video source has to 
be considered when the video collection has to scale up. 
With the concept of building large-scaled digital video library, we also will follow  
 
 
the steps to build our small-scaled library: 
¤ prepare Chinese video sources 
¤ digitize the video into MPEG1 
¤ segment video into small pieces 
¤ prepare the video-related descriptions, full-text scripts, etc. 
¤ index all video resources 

 
Without techniques assisting, we only can do these steps manually at this stage. 

Equipment Used 

Our Digital Video Library Server (DVLS) required relatively a large amount of 
space for video storage.  We use a PC with static IP to build our DVLS, which 
makes the network programming easier.  The PC is equipped with about 16Gb of 
harddisk, and more than 10Gb of the space is used to install a sample digital video 
library ‘ Informedia’ from Carnegie Mellon University.  When the amount of video 
in our library grow, the need for more space may be necessary.  Currently, all the 
video files are stored in the machine pc89184 in CSE Department. The link is 
“pc89184.cse.cuhk.edu.hk/jmdata” . 
To prepare the video files, we use the facilities in Multimedia Lab of CSE 
Department to convert VHS tape video to MPEG1 files.  With the help of hardware 
encoding card, the encoding can be done in real time, which is quite satisfactory. 



 
 

 

 22

lyu9904 MultiModel Digital Video Library April 2000  

	�

�
��������������������
���
��! "�
 #��$��

System Design 

% ��¨�¬ ��¦ ¨&�#©�¶('�¦ ¶ ¶ ¨�¬ ¨�°D³z¹*)�µM³ ¨�º,+�©+§+¨I² µ
In this whole year, we have built totally three versions for the digital video library 
project.  They are the Initial Version (JMPlayer), the Applet Version (JMApplet), 
and the Final Version (JDVL).  In the following, there will be detail description on 
each of the version. 
 

Ú äMÍ Ì Í Ç�Ë.- Ï Ò ã�Í Ô�ä	Þ Þ�Æ�ÉDÙ�Ë Ç /�Ï Ò
JMPlayer is our test model letting us practise Java programming and familiar to the 
video playback.  Before building JMPlayer, we started to learn Java language and 
also the Java Multimedia Framework JMF API which is a Java extended package 
used for developing the media playback task. 
 
 
Here is the JMPlayer Overview: 
 
 

 
 
In the JMPlayer, there is no client/server concept.  Instead, it is an application 
which gets user’s URL input and then retrieves the video from the URL with the 
corresponding text script (the URL can be local file directory or remote file site). 
Lastly it playbacks the retrieved video and shows synchronized script beside the 
video screen. 
 

User 

Client 
Program 

Video 
Location 

1. input URL 

2.retrieve the 
required video and 
the corresponding 
text script 

3. show video 

Text Script 



 
 

 

 23

lyu9904 MultiModel Digital Video Library April 2000  

Here is JMPlayer interface: 
 

 
 
Some simple features are available: 
¤ Synchronized script 
¤ “File”  Menu (get file location) 
¤ Play control (video play or pause) 
¤ Sound control (play sound or mute) 

Ø�è�è�Ë Ï�Ì0- Ï Ò ã�Í Ô�ä	Þ Þ�Æ�É�Ø�è�è�Ë Ï�Ì
JMApplet is our second system version.  It inherits some features from the 
JMPlayer, including Synchronized script, play control and sound control.  As its 
name, we have enhanced the first version with browser-accessible ability.  In this 
version, we also have applied client/server concept on it. 
 
Again, let see the system model of JMApplet: 

User Server 
Program 

Applet 

Video Library 
Database 

1. launch browser 
  and activate the  
 applet program 

2. input video 
  name 

3. send query 

4. return video  
  record(s) 

7. retrieve the  
  video chosen 

5. video icons 
  shown 

6. click one icon 
 
8. video playback 



 
 

 

 24

lyu9904 MultiModel Digital Video Library April 2000  

 
In this version, user can through Internet to retrieve video with JMApplet.  The 
client program - applet mainly provides a space for user interaction and gets the 
query input by user.  Then client side sends the query to the server side.  Since we 
hope to have a testing mode on server side, the server program in this version 
performs a simple task.  It purely matches the input query word with the video file 
names.  If it finds they are fully matched, then return the representative icons to 
client. 
 
The following is the JMApplet interface using Windows Internet Explorer: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Query Panel - input query 
Library Panel - show all matched results 
Player Panel - video playback 
 
New Features in this version apart from Initial version: 
¤ browser-accessible 
¤ thumbnails in Library Panel 
¤ client/server concept applied 

 

Ñ�Í ä�Ç�Ë.- Ï Ò ã�Í Ô�ä	Þ Þ�Æ�á1- ß
The name JDVL is get from “Java Digital Video Library” .  The system can be 
called as Digital Video Library at this stage but not in previous stages.  In JDVL, 
for the client part, we change the interface of JMApplet for multi-video ability and a 
more convenient usage.  We also enhance the video screen with resize ability.  On 
the server side, we develop the searching feature with XML technology.  It inherits 
the browser-accessibility, script synchronizability, video-playback feature, 
thumbnails and client/server concept from JMApplet. 
 
 
 
 

2 ö ó ý ú 3 î ñ ó ÷
ì û ò ý î ý ú 3 î ñ ó ÷

3 ÷ î ú ó ý 3 î ñ ó ÷



 
 

 

 25

lyu9904 MultiModel Digital Video Library April 2000  

 
Let see the system model: 
 

 
 
When the server is started up, JAXP (the Java API for XML Parsing) first reads the 
XML (the Extensible Makeup Language) file prepared before accepts any request 
from client.  This step is only run once when the server is started.  The details of 
JAXP and XML will be talked in the section “System Implementation” .  The other 
steps are shown in the above figure indicated with number.  Also, in the later 
Chapter “Our DVL System”, we will introduce the functionality and library content. 
 
Here is the user interface: 
 

 
 

User Server 
Program 

Applet 

Video Library 
Database 

1. launch browser 
  and activate the  
 applet program 

2. input query 

3. send query 

4. return video  
  record(s) 

7. retrieve the  
  video chosen 

5. video icons 
  shown 

 6. click any icon(s) 
8. video playback 

  XML 
.... 
<title>...</title> 
<line>....</line> 
.... 
.... 

0. JAXP read  
 the XML file, 
 ready for  
 request from  
 the client side 

4 5 6 ì 7 ô ó ý 8 ñ ï ó ý ü î ð ó

QueryPane 

LibraryPane 

PlayerPane 

ScriptPane 



 
 

 

 26

lyu9904 MultiModel Digital Video Library April 2000  

 
 
 
New features in JDVL: 
¤ resize of video screen 
¤ multi-video screens 
¤ support multi-client 
¤ use with XML technology in Server side 
¤ allow full-text, keyword and title search 

Modules of System in Last Version 

After talking about the system models, I would like to look into the modules of the 
final version JDVL. 

Ä�¦ µM³u©�¶(+�©+§+¸�² ¨�µ
Here is the list of modules in JDVL.  There are module names, module 
functionality and constructor of each module. 
 
 
M odule 
Name 

Constructor M ain Function 

JDVLMsg JDVLMsg(int type, int id, 
String msg) 

as a data structure 

JDVLVideo JDVLVideo(Node video) as a data structure 
QueryPane 
(client side) 

QueryPane(JDVLApplet 
parent) 

1)implement the query 
window  

2)let user to input query  
3)let user to choose the 

searching type 
LibraryPane 
(client side) 

LibraryPane(JDVLApplet 
parent) 

1)implement the library 
window 

2)display the video icons 
3)responsible for user’s 

mouse actions 
PlayerPane PlayerPane(JDVLApplet 

parent) 
1)implement the video 

playback issues 
2)responsible for the 

resize of video window 
ScriptPane 
(client side) 

ScriptPane(JDVLApplet 
parent) 

1)show the corresponding 
script 

2)responsible for script 
synchronization 



 
 

 

 27

lyu9904 MultiModel Digital Video Library April 2000  

 
JDVLApplet 
(client side) 

JDVLApplet() 1)initialize the classes 
used in interface 

2)Determine which fonts 
support Chinese 

JDVLServer 
(server side) 

JDVLServer(String 
xmlLocation) 

1)read data file from the 
xmlLocation 

2)respond for any new 
client 

3)searching for the 
received request 

 

·	©�ºÃºÃ¸G°D¦ ¼�«I³ ¦ ©�°�«Iº»©�°G­�³ ¯D¨#+�©+§+¸�² ¨�µ
We have designed two classes act as package-like object for the ease of 
communication between the other modules.  They are JDVLMsg class and 
JDVLVideo class. 

Æ�á1- ß�ÉGã Ü
Parameters in the interface: 
¤ int type: type of the package 
¤ int id: id of the message, reserved for further use 
¤ String msg: the words input by user 

 
It is used by the classes QueryPane and JDVLServer.  You can just think that all the 
query information, e.g. input word and the searching type, are packed into a data 
structure - the class JDVLMsg. 
Then the package is passed to the Server side - the class JDVLServer.  Server will 
retrieve the information stored in this package and performs further task. 

 9;:
 title search by 

2 ö ó ý ú 3 î ñ ó ÿ ñ < ÷ û ó ñ ï = û í ó

Word ‘
9;:

’  
Type ‘ title’  
... 
(can include other 
query information) 

Open the Package: 
Type: title 
SearchString: >#?  

..... 
Start Searching: 
✔<title> @#A#>#? </title> 
✘<title> BDC"E#FHGJI#K </title> 
✔<title>......... >#? </title> 
  ...... 

4 5 6 ì = ó ý � ó ý

þ î ô ô ï ÿ
þ î ð L î M ó
ÿ ü4 5N6 ì ë+ô M



 
 

 

 28

lyu9904 MultiModel Digital Video Library April 2000  

Æ�á1- ßO- Í Ð�Ï Ô
Parameter in the interface: 
¤ Node video: Since the class of Node is an object used in javax.xml.parsers, 
other modules apart from JDVLServer do not know this class after through the  

network.  Therefore, we need to have a new class JDVLVideo to replace the 
type of Node which is storing all data of a video record got from a xml file. 

 
Content in JDVLVideo: 
¤ String title 
¤ String keyword 
¤ String script (script marked with time) 
¤ String fullscript 
¤ iconsrc (the location of image file for the video icon) 
¤ videosrc (the location of the video) 

 
There are the corresponding methods for other modules to retrieve the contents in 
JDVLVideo class.  You can reference to the codes attach in the end of this report. 
JDVLVideo can be thought as a record of one video.  In the Server Side, it is put 
into the package of JDVLMsg which will be returned to the Client Side.  All the 
‘Pane’s can then call the methods to get the field they need to reference. 

 

Video 
Record 

 P;Q
 title search by 

2 ö ó ý ú 3 î ñ ó ÿ ñ < ÷ û ó ñ ï = û í ó

þ î ô ô ï ÿ

Word ‘
P;Q

’  
SearchType ‘ title’  
... 
(can include other 
query information) 

þ î ð L î M ó
ÿ ü4 5N6 ì ë+ô M

Open the Package: 
SearchType: title 
SearchString: >#?  

..... 
Start Searching: 
✔<title> @#A#>#? </title> 
✘<title> BDC"E#FHGJI#K </title> 
✔<title>......... >#? </title> 
  ...... 

4 5 6 ì = ó ý � ó ý

4 5 6 ì 6 û í ó ÿ 4 5 6 ì 6 û í ó ÿ
Video 
Record ..... 

þ î ð L î M ó
ÿ ü4 5N6 ì ë+ô M

type: reply 
.... 
List of video records: 

.....

ý ó ï ö ý ñ ï ÿ



 
 

 

 29

lyu9904 MultiModel Digital Video Library April 2000  

R Ò Ç èMÝMÍ à Ç�Ë á�Ï ã�à Ò Í èIÌ Í Ô�ä	ÔO��ÉDÔ�ÐMÊ�Ë Ï(SIÔ�Î.Î�Ê äMÍ à Ç�Ì Í Ô�ä	Í ä�Ì ÝMÏUTDÝMÔ�Ë ÏDâO/�ã�Ì Ï Î
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to cooperate with modules in the system, there must be interface between 
module and module provided.  In the following, I will show you the methods of each 
Modules. 

Æ�á1- ß�ÉGã Ü
M ethods 
Return type Interface functions 

int type() return the type of searching 
String msg() return a string of message 
void add(Node) get a Node object and store it as a 

suitable format in itself (JDVLMsg) 

Æ�á1- ßO- Í Ð�Ï Ô
M ethods 
Return type Interface functions 

String title() retrieve the title 
String script(int) get the time (the input integer 

value) and retrieve the 
corresponding line of script 

String[] script() return full script 
URL iconsrc() return the url video icon 
URL videosrc() return url of video 

 

 

JDVLVideo 

JDVLApplet 

QueryPane

Scr iptPane 

PlayerPane

LibraryPane 

JDVLServer  

 

JDVLMsg 

 

JDVLMsg 



 
 

 

 30

lyu9904 MultiModel Digital Video Library April 2000  

 

Æ�á1- ß Ø�è�è�Ë Ï�Ì
M ethods 

Return type Interface functions 
void loadLibrary(JDVLMsg) Initialize the Library Pane 

Show out Library Pane 
void loadMovie(JDVLVideo) initialize and show the 

Player Pane and Script 
Pane in interface 

 
Objects 

Object type Name 
Font cFont 

 

V Ê�Ï Ò /�ÙMÇ äMÏ
There is no method used by other modules. 
Instead, class RequestHandler is a sub-module in QueryPane. 

ß�Í ç�Ò Ç Ò /�ÙMÇ äMÏ
M ethods 

Return type Interface functions 
void loadLibrary(JDVLMsg) Get all icons from the 

JDVLMsg object 

Ù�Ë Ç /�Ï Ò ÙMÇ äMÏ
M ethods 

Return type Interface functions 
void doResize() resize the Player Pane 
void loadMovie(JDVLVideo) start media player and 

timer 

â�à Ò Í èIÌ ÙMÇ äMÏ
M ethods 

Return type Interface functions 
void loadScript(JDVLVideo) retrieve script from the 

JDVLVideo object 

Æ�á1- ß�â�Ï Ò È Ï Ò
Other modules will not access the methods or attributes in Server side, again, there 
is no common methods shown here. 



 
 

 

 31

lyu9904 MultiModel Digital Video Library April 2000  

System Implementation 

Client Program 
On the client side, we have developed the program with the help of extension Java 
packages.  They are javax.swing and Java Multimedia Framework JMF API.  
javax.swing is used in the building of interface, such as the ‘Pane’s (QueryPane, 
LibraryPane...).  JMF is responsible for the video playback in the system.  In the 
following section, I would like to introduce JMF API. 

¥�¦ §+¨�©�ª�² «&)NWG«I¼��;XZY1+J[�±�ªG½
For the client program of a Digital Video Library, one of the core part is to 
implement the playback the media data.   
In this stage of our work, we have taken the advantage of its feature of presenting 
time-based media.  The package javax.media and javax.media.beam.playerbean is 
most useful for playback of video files.  These packages are included in the 
Module PlayerPane for the video playback. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ÉDÏ Ð�Í Ç�Ù�Ë Ç /�Ï Ò�Æ ÇMÈ Ç�\�Ï Ç ä
Using the MediaPlayer Java Bean is the simplest way to present media streams. 
MediaPlayer encapsulates a full-featured JMF Player in a Java Bean. You can either 
use the MediaPlayer bean’s default controls or customize its control Components. 
One key advantage to using the MediaPlayer bean is that it automatically constructs 
a new Player when a different media stream is selected for playback. This makes it 
easy to play a series of media clips or enable the user to select the media clip that 
they want to play. 
 
 

] û M õ ÷ ó � ó ÷ 4 ë ^

PlayerPane 
 

contain object _ õ ó 3 ÷ î ú ó ý 3 î ñ ó ë ÿ í ö ÷ ó
û ñDÿ ö ý.= ú�ï ó ù



 
 

 

 32

lyu9904 MultiModel Digital Video Library April 2000  

 
 
 
 
 
To play a media clip with the MediaPlayer bean:  
` Construct an instance of MediaPlayer –  
MediaPlayer mp1 = new javax.media.bean.playerbean.MediaPlayer(); 
` Set the location of the clip you want to play: 
mp1.setMediaLocation("http://jvideo/Sample1.mov"); 
` Start the MediaPlayer:  
mp1.start(); 
` You can stop playback by calling stop on the MediaPlayer: 
mp1.stop(); 

 
The classes in javax.media.rtp, javax.media.rtp.event, and javax.media.rtp.rtcp 
provide support for RTP (Real-Time Transport Protocol).  RTP enables the 
transmission and reception of real-time media streams across the network. RTP can 
be used for media-on-demand applications which may be quite useful in the future 
versions of the project. 
 
 
 
Server Program 
On the server side, it supports multiple clients by using the Java class Thread.  We 
also have developed the program with the help of XML and JAXP on structuring 
media data.  In the later sections, there will be detail explanation on these 
implementations. 

+�¸�² ³ ¦ X ¼I² ¦ ¨�°D³�Å.¨�¼�¯D°D¦ a�¸G¨
Java Language provides a simple and clear usage on the Java Class - Thread.  
Whenever the Server listens signal that there is a new client wanting service of 
Server through the network, Server will create a new Thread which is unique for 
serving that new client. 
 

 
 

b Ó Ô S Ë Í Ï ä Ì ã Ç Ò Ï à Ô ä ä Ï à Ì Í ä Ü

 
Server 

 
Thread 1 

 
Client 1 

serves 

 
Thread 2 

serves 

 
Client 2 



 
 

 

 33

lyu9904 MultiModel Digital Video Library April 2000  

 
 

 

¹G³ ¬ ¸G¼�³ ¸G¬ ¦ °G­�«I°B§D+�«I°B«�­�¦ °G­J'z«I³�«
All of the code that we write (in the Java classes) might be considered the Java 
application layer. Other layers are the XML Parser layer, the XML source (that 
supplies the XML data that is necessary), and the persistence engine (where the data 
is actually stored and retrieved by the source).  
 
In our server program, it has to make use of the DOM (Document Object Model) or 
SAX (Simple API for XML) API and the XML parser in order to access the 
information in XML documents (that come from the source). The source might be 
responsible for pulling data from different persistence engines (relational or object 
databases) and even the web (dynamically generated websites that supply only XML 
data). 
 

âIÌ Ò Ê�à�Ì Ê Ò Í ä�Ü�Ð�Ç�Ì ÇBÞ é�ÉDß
XML - the Extensible Makeup Language which we have used it as the tool for 
structuring our video data.  You can think it as a plain text but organizing the 
written data in well structure.  The reasons why we use XML have been introduced.  
As said before, there can be persistence engine (e.g. Database engine) to store data 
and retrieved to XML.  But in our project, we manually prepare the XML file as 
our video database. 
 
 
 
 
 

 
Server 

 
Thread 1 

 
Client 1 

serves 

 
Thread 2 

serves 

 
Client 2 

listening to the 
network and 
finds there is a 
new client 

create a new 
thread 

 
Thread 3  

Client 3 serves 

new client 
c ó ø < ÷ û ó ñ ï d ó e ö ó ô ï û ñ M = ó ý � û ð ó



 
 

 

 34

lyu9904 MultiModel Digital Video Library April 2000  

 
 
Here is a part of our XML data file: 
 

 
 
XML lets us to define our own tags to describe data.  In our XML document, we 
define the tags named: 
 
 
` video 

This tag has an attribute ‘ id’ which is unique for each mpg video file.  
Therefore, if we have 100 mpg video files, there will be 100 ‘video’ tags 
set with id from 1 to 100.  Between the starting tag <video> and ending 
tag </video>, there are other tags describing this video, including title, 
keyword, script, line, iconsrc and videosrc. Each video tag set in our XML 
file contains all of these description fields. 
 

` title 
Between the tag of <title></title>, there is the Chinese title name briefly 
describing the video. 

 title 

 video 

keyword 

script 

line 

iconsrc 

videosrc 



 
 

 

 35

lyu9904 MultiModel Digital Video Library April 2000  

 
 
 
 
` keyword 

Between this tag, there is a keyword related to the video.  If there are 
more than one keyword describing the video, each single keyword will 
have a set of keyword tag  
 

` script 
In this tag, there is the full-text script for the video.  Each line of script is 
tagged with <line> tag. 
 

` line 
The line tag has an attribute ‘ time’.  The time number in the ‘ time’ 
attribute is used for the synchronization of video playback and the whole 
video text script. 
 

` iconsrc 
The content in this tag indicates the location of the video icon. 
 

` videosrc 
Similar to iconsrc, it shows the location of the video file. 

 
The above different fields are designed for our system.  XML is extensible, so, if 
we want to add more descriptions for video, e.g. the date of news, we just simply 
define a new tag for ‘date’ .  You can use XML to model data to any level of 
complexity and add any tags as needed. 
 

ÉGÇ ä�Ç Ü�Í ä�ÜBé�ÉDßBá�Ç�Ì ÇBÞ�Æ Ø�é�Ù
JAXP - Java API for XML Parsing, is a package of two vendor-neutral classes 
SAXPar ser Fact or y  and Document Bui l der Fact or y  which can instantiate a 
SAX Parser and a Document Bui l der  respectively.   
In our project, we have used the DOM API and JAXP to access the information in 
our XML document. 
 
Document Object Model (DOM) 
In the DOM, documents have a logical structure which is very much like a tree; to 
be more precise, it is like a "forest" or "grove", which can contain more than one 
tree.  With this tree-like structure of DOM, when we implement the program, we 
consider the XML document content as a tree.  However, the DOM does not 
specify that documents must be implemented as a tree or a grove, nor does it specify 
how the relationships among objects be implemented. The DOM is a logical model 
that may be implemented in any convenient manner. 



 
 

 

 36

lyu9904 MultiModel Digital Video Library April 2000  

 
The DOM represents our previous example of XML document data like this: 
 

 
 
After we understand the logical structure of DOM, we then implement the code in 
our server program JDVLServer for searching. 
Apart from importing some basic java packages, in order to deal with xml and dom, 
we have to include: 1) javax.xml.parsers.*  and  2) org.w3c.dom.* . 
 
DOM benefits that we can easier to retrieve some data in the structure.  For 
example, we need to separate the fields of title, keyword and script in the XML 
document into three lists: titleList, keywordList and scriptList, we can simply use 
the methods provided in the included packages: 
 

doc = docBuilder.parse (xmlLocation); 
scriptList = doc.getElementsByTagName("line"); 
       //preloaded Search by script 
keywordList = doc.getElementsByTagName("keyword");   

//preloaded Search by keyword 
titleList = doc.getElementsByTagName("title");   

//preloaded Search by keyword 
 
Then, we can use the three lists for searching.  Which list we will use depends on 
what query type user requires. 
 
Since we have studied XML for a very short time, we just take very little part of 
advantages with XML and JAXP.  We can develop our system by using this new 
language in a wide range of aspects. 

<DVL> 

<video id=”1”> <video id=”2”> <video id=”100”> ...........

<title> <keyword> <script> ........... <iconsrc> <videosrc> ...........

<line time=”2”> <line time=”6”> 
fUgUhUikjmlUnUoUpUq

 

 

rUs
 

fUgUhUikjmlUnUoUpUq
, 

 tmu�v jmwUxUyUzU{U|#}N~U�U�k�m�k�m� . 

....... 

http://pc89184/jmdata/1.jpg 

 

http://pc89184/jmdata/1.mpg 

 

5 � ë ý ó þ ý ó ô ó ñ ï î ï û ÿ ñ ÿ ü ï õ ó ê ë ì í ÿ ð ö ù ó ñ ï ó � î ù þ ÷ ó



 
 

 

 37

lyu9904 MultiModel Digital Video Library April 2000  

Ä�¦ W�¬�«I¬ )�ªG¬ ¨�®D«I¬�«I³ ¦ ©�°
 

In our digital video library, we need to have a collection of Chinese video.  In order 
to simplify some tasks in preparation of the library, we start with video recorded 
from news report.  To establish the library content, we have to: 
 
` prepare video tapes 

We have a VHS tape recorded with ATV news in Chinese provided by 
ATV HK.  In the second semester, we need to prepare more video, 
therefore we recorded some Chinese news reports of ATV and TVB from 
television.  We use the video for self use, but do not provide to the public.  
However, if the system will be provided to public at later time, there must 
be agreement from these two TV companies before doing so. 

` Digitize Video 
We then need to digitize the VHS tape into digital format.  We have 
chosen MPEG1 for encoding video. 

` Segmentation of Video 
After digitized the news video, we segment them into small pieces 
manually.  In each piece, there is only talking about one topic of news.  
Since our project is newly started in this year, it can make the indexing 
less difficult.  Techniques may be applied on the system in the future 
stages. 
 
 

Now, we can ready for the preparation of different kind of descriptions for video 
segments.  They are: 
 
` Scripts Preparation 

We have full-text searching and synchronization functions in our system, 
so we need to prepare the whole script which is what the news reporter 
speaking in the video. 

` Keywords, Titles Preparation 
According to the content of each video, we give some keywords and a title 
for it. 

` Editing Time Stamps 
For the synchronization of script, we need to assign the time (in second 
unit) on each line of video script. 

` Capture of Icons 
In the LibraryPane of the user interface, there are thumbnails shown for 
user to choose the one he/she needs, the thumbnails are prepared by 
capturing a representative frame from each video and changing it to jpeg 
format. 



 
 

 

 38

lyu9904 MultiModel Digital Video Library April 2000  

�������,�������!���"���

Functionality of our DVL 

In this part, I would like to introduce the functionality of our DVL System. 
 

TDÏ çMÞ ç�Ç ã�Ï Ð�Ø�è�è�Ë Í à Ç�Ì Í Ô�ä
User can use browser to activate the applet program of our system.  User can retrieve 
video from a remote location through Internet. 

âIÊ è�è�Ô�Ò Ì.S�ÝMÍ äMÏ ã�ÏDÔ�ä.çMÔMÌ ÝkS�ÝMÍ äMÏ ã�Ï � åMä�Ü�Ë Í ã Ýk��â
User can read Chinese words even under English Environment 

â�Ï Ç Ò à ÝMÍ ä�Ü	Ç çMÍ Ë Í Ì /�Ó�Í Ì Ým��Ï /�Ó�Ô�Ò Ð�ã �.b Í Ì Ë Ï ��ÑMÊ�Ë Ë â�à Ò Í èIÌ ã
 
 

 
 
 
 

Choice Box for choosing 
Type of Search 

Space for input Words 

Browser 

� ÿ ÿ ù � þ þ ó î ý î ñ ð ó ÿ ü ï õ ó 7 ô ó ý 8 ñ ï ó ý ü î ð ó ø õ ó ñ ï õ ó � þ þ ÷ ó ï û ô ô ï î ý ï ó í ö þ
 



 
 

 

 39

lyu9904 MultiModel Digital Video Library April 2000  

b Ý�Ê Î.ç�ä�Ç�Í Ë ã
After Searching, LibraryPane shows the video results in the form of icons.  When user 
click on one of the icon, the video is played back. 

- Í Ð�Ï Ô.Ù�Ë Ç /�ç�Ç�à Õ
Video playback in the PlayerPane. 

âO/�äMà Ý�Ò Ô�äMÍ � Ï Ð�Ó�Í Ì Ý	â�à Ò Í èIÌ ã
Synchronized Script is shown in the ScriptPane.  Current line is highlighted.  
Which Video is paused, the script also is paused. 
 
 
 

 
 

 

thumbnails 

Video 
Playback 

Synchronized Script 



 
 

 

 40

lyu9904 MultiModel Digital Video Library April 2000  

ÉDÔMÊ ã�ÏO��ä	á�Ï ã�à Ò Í èIÌ Í Ô�ä�ã
If user put his/her mouse on one of the video icon, there will be a description shown up. 

ÉBÊ�Ë Ì Í è�Ë ÏU- Í Ð�Ï Ô.â�à Ò Ï Ï ä�ã
You not only can open one video, but multiple video screens. 

��Ï ã�Í � ÏDÔO��- Í Ð�Ï Ô.â�à Ò Ï Ï ä
The video screen can be resized. 
 

 

�+Ì ÝMÏ Ò0� Ï Ç�Ì Ê Ò Ï ãDÝ�ÇMÈ ÏGäMÔMÌ ã ÝMÔ�Ó�ä	Í ä�Ì ÝMÏDÍ ä�Ì Ï Ò � Ç�à Ï �
¡ Streaming 
¡ Support Number of Video Formats 

 

M ultiple video 
screens 

Resized Screen 

M ouseOn 
Description 



 
 

 

 41

lyu9904 MultiModel Digital Video Library April 2000  

Library Content 

We have made 70’s clips of video.  Each of the video file talks about one topic of 
News in Chinese. There is a link in which you can read our xml file.  In it., you can 
see our list of video collection and their other descriptions.  That is: 
 

http://pc89184.cs.cuhk.edu.hk/jmdata/jmdata.xml 
 

If you want to use our system, client and server should have JMF2.0 and JDK1.2.2.  
For the server, it also needs JAXP1.0. You can visit the following sites: 
 

http://pc89184.cs.cuhk.edu.hk/jdvl/JDVLDemo.html or  
http://www.cse.cuhk.edu.hk/~lyu9904/ 
 



 
 

 

 42

lyu9904 MultiModel Digital Video Library April 2000  

�£¢0�!¤������
¢�¥�¦

Problem Encountered 

Û�Ç Ò Ð	Ì Ô.á�Ï � Í äMÏGÇBâIÊ�Í Ì Ç çMË ÏDâ�à Ô è�ÏDÔO�&�+Ê Ò*TDÔ�Ò Õ
During the summer holiday in 1999, we studied the papers about different aspect of 
digital video library.  As there are many different technologies involved in DVL, 
and many of them needs advance knowledge and deep understanding of the 
specialized field, so it is impossible to implement the full feature DVL by ourselves 
within one year. 
After the first semester began, we finally decided to develop a small scale DVL 
project, which started by implement a program that can play video files.  In the 
second semester, we got a clearer direction and start to enhance the simple system 
done in first semester with better interface, browser-accessibility, client/server 
concept, searching function, and so on.  Lastly, we have the system already shown 
to you in previous sections. 

S�ÝMÔ�Ô�ã�Í ä�Ü�ÙMÒ Ô ÜMÒ Ç Î.Î	Í ä�Ü�ß�Ç ä�ÜIÊ Ç Ü�Ï
In first semester, right after we had defined our working direction, we felt into 
trouble of the techniques needed for implementation.  For playback of media data, 
MPEG1 files in specific, we only knew that we might write our own MPEG-decoder 
or use the DirectX API in the beginning.  But after some investigation, we found 
that writing a MPEG-decoder by ourselves will involve too much work, which will 
be too low level and deviated from the high-level system design and so our project 
target. For DirectX API, it is powerful, but from the experience of other FYP teams, 
it takes a long time to study; also, it is platform dependent, which is not desired for 
the interoperability of the software.  After more investigation, we found the Java 
Media Framework API and realized it’s advantage over DirectX, including 
high-level of abstraction and ready to work over the network, which is very 
favorable for our project.  And therefore we finally choose Java as the 
programming language for our project. 
 

ÙMÒ Ï èMÇ Ò Í ä�Ü§- Í Ð�Ï ÔBÇ äMÐ.âO/�äMà Ý�Ò Ô�äMÍ � Ï ÐUb Ò Ç ä�ã�à Ò Í èIÌ
In this stage, we prepared the videos and synchronous transcripts of our database 
manually, which was a tedious and time-consuming process.  Not only digitizing 
the videotape consume time, but also segmenting the video files into small pieces.  



 
 

 

 43

lyu9904 MultiModel Digital Video Library April 2000  

But spending most of the process time was the preparation of text scripts.  Since it 
is a full-content text script of video, we had to listen all the words spoken in the 
video carefully and typed them into the script files.  Apart from that, timestamps 
will be added into the transcripts for synchronization.  To finish all these 
pre-process on a two-minute video segment will spend more than half an hour. 
 

á�Í ã è�Ë Ç /US�ÝMÍ äMÏ ã�ÏDÍ ä	åMä�Ü�Ë Í ã Ýk��â
Our digital video library is in Chinese.  User should be able to read the Chinese 
words when using our application.  However, we find that our Java program cannot 
display Chinese word in Browser under English Operating System.  We have tried 
to install different software which is used for reading Chinese in English OS (e.g. 
NJStar and ¨ª©¬«®­ ).  Lastly, we solve this problem.  Actually, the java 
program need to find out which type of Chinese font the machine on client side can 
support.  Then program uses that font to display all Chinese words in the user 
interface. 

Things Learned 

We have learned the following things from our project: 
¡ Different Issues of a Digital Video Library 
¡ Building GUI with Java 
¡ Building Applications with JMF API 
¡ Building Applet program 
¡ Some issues on Java network programming 
¡ The concept of XML & JAXP 
¡ The Java program implementation with JAXP 
¡ Digitizing and cutting of Video 

Possible Extensions 

ÉDÔ�Ò Ï1� Ê äMà�Ì Í Ô�ä�ãBÔ�ä�Ì ÝMÏ(¯�ã�Ï Ò�Ú ä�Ì Ï Ò � Ç�à Ï
There can be more functions provided in the user interface, such as a world map in 
which lighting effect or something else will indicate the place (country or city) the 
video of news happened.  Or if user point to a place on the map using a mouse, 
news icons happened in this place will be shown. 
Also, there are still many searching type can be implement in later stages.  Of 
course, the video library must be scaled up, and the indexing technique must be 



 
 

 

 44

lyu9904 MultiModel Digital Video Library April 2000  

improved too. 

â�Õ Í Î.Î	Í ä�Ü�ÔO��- Í Ð�Ï Ô
For the current system we have built, after a user click on one of the video icons 
shown in LibraryPane, there is the video playback.  However, we can improve the 
system with skimming-like technique.  After an video icon is clicked, there can be 
some main frames of the video shown first. 

��Ç äMÕ Í ä�Ü�ÔO��- Í Ð�Ï Ô(��Ï ã�Ê�Ë Ì ã
After Searching, the video icons are shown.  We can apply weighting techniques to 
identify the most relevant keywords and phrases in the transcript.  Then rank the 
video icon corresponding to their weighting score. 

¯�ã�Í ä�Ü�á�Ç�Ì Ç ç�Ç ã�ÏDåMä�Ü�Í äMÏBÌ Ô.âIÌ Ô�Ò Ï+é�ÉDßBÐ�Ô�à�Ê Î	Ï ä�Ì ã
Now, we just use a single XML document to store video data.  When the size of 
library is scaling up, a single document may be not efficient enough.  The 
technique in exchanging of XML data may be needed. 
 
The following are some extensions needed more technology support: 

ØGÊ�Ì Ô�Î.Ç�Ì Í à Ç�Ë Ë /.á�Ï Ò Í È Ï ÐUb Ò Ç ä�ã�à Ò Í èIÌ ã
Manually prepare the transcript of video is a time consuming job, which is not 
suitable for large scale DVL.  Auto-transcribing should be implemented to reduce 
the manual work.  Techniques of continuous speech recognizer, probably aided by 
the existence of auxiliary vocabularies from closed-captioning or available scripts, is 
needed to implement this feature,. 

ß�Ç ä�ÜIÊ Ç Ü�ÏDÙMÒ Ô�à Ï ã ã�Í ä�Ü�ÔO� V Ê�Ï Ò Í Ï ãDÇ äMÐUb Ò Ç ä�ã�à Ò Í èIÌ ã
To further improve the accuracy of query results, linguistic indexing can be used to 
the derived transcript, generate lexicons, equivalence classes, and search indices. 
Techniques of natural language processing will be needed. 

SIÔ�ä�Ì Ï ä�Ì Þ ç�Ç ã�Ï ÐBÚ Î.Ç Ü�ÏDÉGÇ äMÍ èIÊ�Ë Ç�Ì Í Ô�ä
Image understanding plays a critical role for organizing, searching, and reusing 
digital video.  Yet, the traditional database search by keywords, where images are 
only referenced, not directly searched for, is not appropriate or useful enough. 
Instead, digital video images themselves must be segmented, searched for, 
manipulated, and presented for similarity matching, parallel presentation, context 
sizing, and skimming, while preserving image content. For this extension, 
techniques including comprehensive image statistics, camera motion , object 
presence, object and scene understanding in 3D may be employed. 



 
 

 

 45

lyu9904 MultiModel Digital Video Library April 2000  

°£¥�¦�¤�±²���
¢�¥�¦

We have studied on issues of Digital Video Library for our project.  After a year 
work, now, we have built a small-scaled Chinese digital video library.  Our system 
has features of Browser-accessibility, a styled user interface, simple searching 
function, video playback and those functions mentioned before.  We also produced 
70’s video segments of Chinese news for the video library.  After working with this 
project for one year, we have learned the concepts of some technologies in this topic.  
We also have practised on the programming with Java and the programming tools 
needed.  Although we have spent one-year time on this project, there are still lot of 
new techniques in DVL we do know.  Hope that this project can be continuously 
developed in the future.  We believe that there is really a great space for us to 
extend. 



 
 

 

 46

lyu9904 MultiModel Digital Video Library April 2000  

³ ¤�´�¦�¥¶µ�±���·�¸�������¦!�

We would like to thank our supervisor, Prof. Michael Lyu, to give us valuable advice 
in our work.  Our marker, Prof. Irwin King, gave us idea on our work. 
We would also like to thank the following people who did give us a hand:  Mr. Tim, 
Technical Staff, CSE Department, CUHK; Mr. Tony, Technical Staff, CSE 
Department, CUHK; Vincent Cheung, M.Phil Student, CSE Department, CUHK; 
Anson Lee, M.Phil Student, CSE Department, CUHK; Mole, Fellow Classmate, 
CSE Department, CUHK.  
 
 
 

¹ �¶ºk���k��¦�¤��

[Informedia CMU] http://www.informedia.cs.cmu.edu/ 
Informedia Digital Video Project, Carnegie Mellon University 
[Java Online Document] http://java.sun.com/ 
 
 [XML & JAXP]  http://java.sun.com/xml/ 
 
[Quicktime for Java] 
http://developer.apple.com/quicktime/qtjava/index.html 
 



 
 

 

 47

lyu9904 MultiModel Digital Video Library April 2000  

³¼»�» ��¦�·�¢&½

Æ�á1- ß�ÉGã Ü.¾ ¿ ÇMÈ Ç
i mpor t  j ava. i o. * ;  
i mpor t  j ava. net . * ;  
i mpor t  j ava. ut i l . * ;  
i mpor t  or g. w3c. dom. * ;  
 
/ * *  
 *  The c l ass i s  encapsul at e t he message t o be t r ansmi t  acr oss t he net wor k 
 *  @aut hor  Jacky & Joan 
 *  @ver s i on 2. 0 
 * /  
publ i c  c l ass JDVLMsg i mpl ement s Ser i al i zabl e{  
 
 s t at i c  f i nal  i nt  UNDEFI NED=0;  
 s t at i c  f i nal  i nt  KEYWORD=1;  
 s t at i c  f i nal  i nt  SCRI PT=2;  
 s t at i c  f i nal  i nt  TI TLE=3;   
 s t at i c  f i nal  i nt  REPLY=4;  
 s t at i c  f i nal  i nt  ERROR=5;  
 s t at i c  f i nal  i nt  ADMI N=6;  
 
 i nt  i d=0;  
 HashSet  ar chi ve=new HashSet ( ) ;  
 St r i ng msg=new St r i ng( ) ;  
 i nt  t ype;  
 
 / * *  
  *  Const r uct or  
  *  @t ype t ype of  t he message 
  *  @i d i d of  t hi s  message,  r eser ve f or  f ut ur e use.  
  * /  
 publ i c  JDVLMsg( i nt  t ype,  i nt  i d) {  
  t hi s . i d=i d;  
  t hi s . t ype=t ype;  
 }  
 
 / * *  
  *  Const r uct or  
  *  @t ype t ype of  t he message 
  *  @i d i d of  t hi s  message,  r eser ve f or  f ut ur e use.  
  *  @msg message t o be pr ocess,  maybe er r or  message or  quer y st r i ng 
  * /  
 publ i c  JDVLMsg( i nt  t ype,  i nt  i d,  St r i ng msg) {  
  t hi s . i d=i d;  
  t hi s . t ype=t ype;  
  t hi s . msg=new St r i ng( msg) ;  
 }  
 
 publ i c  i nt  i d( ) {  
  r et ur n i d;  
 }  
 
 publ i c  i nt  t ype( ) {  
  r et ur n t ype;  
 }  
 
 publ i c  St r i ng msg( ) {  
  r et ur n msg;  
 }  
 
 publ i c  HashSet  ar chi ve( ) {  
  r et ur n ar chi ve;  
 }  



 
 

 

 48

lyu9904 MultiModel Digital Video Library April 2000  

 
 publ i c  St r i ng t oSt r i ng( ) {  
  r et ur n new St r i ng( " [ i d: "  + i d + "  t ype: "  + t ype + "  si ze: "  + ar chi ve. s i ze( )  + " ] " ) ;  
 }  
 
 publ i c  voi d add( Node v i deo) {  
  i f ( t ype==REPLY)  ar chi ve. add( new JDVLVi deo( v i deo) ) ;  
  / / el se t hr ew an er r or !  
 }  
}  



 
 

 

 49

lyu9904 MultiModel Digital Video Library April 2000  

Æ�á1- ßO- Í Ð�Ï Ô ¾ ¿ ÇMÈ Ç
i mpor t  j ava. net . * ;  
i mpor t  j ava. i o. * ;  
i mpor t  or g. w3c. dom. * ;  
i mpor t  j ava. ut i l . * ;  
/ * *  
 *  The c l ass i s  encapsul at e t he message t o be t r ansmi t  acr oss t he net wor k 
 *  @aut hor  Jacky & Joan 
 *  @ver s i on 2. 0 
 * /  
publ i c  c l ass JDVLVi deo i mpl ement s Ser i al i zabl e{  
 
 St r i ng t i t l e;  
 St r i ng keywor d;  
 St r i ng[ ]  scr i pt ;  
 St r i ng[ ]  f ul l scr i pt ;  
 St r i ng i consr c;  
 St r i ng v i deosr c;  
  
 
 publ i c  JDVLVi deo( Node v i deo) {  
  / / v i deosr c=vi deo. t oSt r i ng( ) ;  
   
  i f ( v i deo. get Chi l dNodes( )  ! = nul l )  {  
   Syst em. out . pr i nt l n( " [ Vi deo] " ) ;  
   f or ( i nt  i =0;  i <v i deo. get Chi l dNodes( ) . get Lengt h( ) ;  ++i )  {  
    St r i ng Nodename=vi deo. get Chi l dNodes( ) . i t em( i ) . get NodeName( ) ;  
    i f (  Nodename. equal ( " t i t l e" ) )  {  
     t i t l e = v i deo. get Chi l dNodes( ) . i t em( i ) . get Fi r s t Chi l d( ) . get NodeVal ue( ) ;  
     Syst em. out . pr i nt l n( " t i t l e :  "  + t i t l e) ;  
    } el se i f ( Nodename. equal ( " keywor d" )  {  
     keywor d = v i deo. get Chi l dNodes( ) . i t em( i ) . get Fi r s t Chi l d( ) . get NodeVal ue( ) ;  
/ /      Syst em. out . pr i nt l n( " keywor d :  "  + keywor d) ;  
    } el se i f ( Nodename. equal ( " v i deosr c" )  {  
     v i deosr c = v i deo. get Chi l dNodes( ) . i t em( i ) . get Fi r st Chi l d( ) . get NodeVal ue( ) ;  
     Syst em. out . pr i nt l n( " v i deosr c :  "  + v i deosr c) ;  
    } el se i f ( Nodename. equal ( " i consr c" )  {  
     i consr c = v i deo. get Chi l dNodes( ) . i t em( i ) . get Fi r s t Chi l d( ) . get NodeVal ue( ) ;  
     Syst em. out . pr i nt l n( " i consr c :  "  + i consr c) ;  
    } el se i f ( Nodename. equal ( " scr i pt " )  {  
 
     Vect or  t i meVect or  = new Vect or ( ) ;  
     Vect or  sent enceVect or  = new Vect or ( ) ;  
     i nt  chi l dNum = vi deo. get Chi l dNodes( ) . i t em( i ) . get Chi l dNodes( ) . get Lengt h( ) ;  
/ /      Syst em. out . pr i nt l n( " chi l dNum == " + chi l dNum) ;  
     i nt  l i neCount =0;  
     f or ( i nt  j =0;  j <chi l dNum;  ++j )  {  
      i f ( v i deo. get Chi l dNodes( ) . i t em( i ) . get Chi l dNodes( ) . i t em( j ) . get NodeName( )  
== " l i ne" )  {  
      
 t i meVect or . add( v i deo. get Chi l dNodes( ) . i t em( i ) . get Chi l dNodes( ) . i t em( j ) . get At t r i but e
s( ) . get NamedI t em( " t i me" ) . get NodeVal ue( ) ) ;  
      
 sent enceVect or . add( v i deo. get Chi l dNodes( ) . i t em( i ) . get Chi l dNodes( ) . i t em( j ) . get Fi r s t
Chi l d( ) . get NodeVal ue( ) ) ;  
/ /        Syst em. out . pr i nt l n( " el ement  at  "  + j  + "  i s  "  + 
t i meVect or . el ement At ( l i neCount )  + "   "  + sent enceVect or . el ement At ( l i neCount ) ) ;  
       ++l i neCount ;  
      }  
     }  
 
     / / copy t he cont ent  i n Vect or s t o t he scr i pt  ar r ay  
/ /      Syst em. out . pr i nt l n( " t i me l engt h of  scr i pt  :  "  + 
( St r i ng) t i meVect or . l ast El ement ( ) ) ;  
     i nt  number Of Second = ( new 
I nt eger ( ( St r i ng) t i meVect or . l ast El ement ( ) ) ) . i nt Val ue( ) ;  
 
     scr i pt  = new St r i ng[ number Of Second] ;  
     i nt  count =0;  
     i nt  t i me = ( new I nt eger ( ( St r i ng) t i meVect or . el ement At ( count ) ) ) . i nt Val ue( ) ;  
     St r i ng sent ence=new St r i ng( " " ) ;  



 
 

 

 50

lyu9904 MultiModel Digital Video Library April 2000  

     sent ence = ( St r i ng) sent enceVect or . el ement At ( count ) ;  
     f or ( i nt  k=0;  k<number Of Second;  ++k)  {  
      i f ( k  == t i me)  {  
       ++count ;  
       sent ence = ( St r i ng) sent enceVect or . el ement At ( count ) ;  
       t i me = ( new I nt eger ( ( St r i ng) t i meVect or . el ement At ( count ) ) ) . i nt Val ue( ) ;  
      }  
      scr i pt [ k ]  = sent ence;  
     }  
     f ul l scr i pt =new St r i ng[ sent enceVect or . s i ze( ) ] ;  
     f ul l scr i pt =( St r i ng[ ] ) ( sent enceVect or . t oAr r ay( f ul l scr i pt ) ) ;  
    }  
   }  
  }  
  el se {  
   Syst em. out . pr i nt l n( " [ Empt y] " ) ;  
  }  
 }  
 
 publ i c  URL v i deosr c( ) {  
  t r y{  
   URL v i deoLoc = new URL( vi deosr c) ;  
   r et ur n v i deoLoc;  
  } cat ch( Except i on x) {  
   Syst em. out . pr i nt l n( x) ;  
  }  
  r et ur n nul l ;  
 }  
 
 publ i c  URL i consr c( ) {  
  t r y{  
   URL i con = new URL( i consr c) ;  
   r et ur n i con;  
  } cat ch( Except i on x) {  
   Syst em. out . pr i nt l n( x) ;  
  }  
  r et ur n nul l ;  
 }  
 
 publ i c  St r i ng t i t l e( ) {  
  r et ur n t i t l e;  
 }  
  
 publ i c  St r i ng scr i pt ( i nt  t i me)  {  
  r et ur n scr i pt [ t i me] ;  
 }  
 
 publ i c  St r i ng[ ]  scr i pt ( ) {  
  r et ur n f ul l scr i pt ;  
 }  
}  



 
 

 

 51

lyu9904 MultiModel Digital Video Library April 2000  

V Ê�Ï Ò /�ÙMÇ äMÏ ¾ ¿ ÇMÈ Ç
import java.io.* ; 
i mpor t  j ava. net . * ;  
i mpor t  j ava. ut i l . * ;  
i mpor t  j avax. swi ng. * ;  
i mpor t  j ava. awt . event . * ;  
i mpor t  j avax. swi ng. event . * ;  
 
 
publ i c  c l ass Quer yPane ext ends JI nt er nal Fr ame i mpl ement s Act i onLi st ener {  
 
 JDVLAppl et  j dv l appl et ;  
 JText Fi el d t ext Fi el d;  
 JComboBox combobox;  
 
 publ i c  Quer yPane ( JDVLAppl et  par ent ) {  
  super ( " Quer y" ,  f al se,  f al se,  f al se,  t r ue)  ;  
  set Locat i on( 0, 0) ;  
  set Vi s i bl e( t r ue) ;   
 
  j dv l appl et =par ent ;  
 
  JPanel  cont ent Pane = new JPanel ( ) ;  
 
 cont ent Pane. set Bor der ( Bor der Fact or y. cr eat eTi t l edBor der ( Bor der Fact or y. cr eat eEt ched
Bor der ( ) ,  " I nput  Quer y: " ) ) ;  
 
  t ext Fi el d=new JText Fi el d( " " ,  40) ;  
  cont ent Pane. add( t ext Fi el d) ;  
 
  St r i ng[ ]  qr yTypeSt r  = {  " By Ti t l e" ,  " By Keywor d" ,  " By Scr i pt " } ;  
  combobox=new JComboBox( qr yTypeSt r ) ;  
  combobox. set Sel ect edI ndex( 1) ;  
  cont ent Pane. add( combobox) ;  
 
  JBut t on submi t But t on=new JBut t on( " Go! " ) ;  
  submi t But t on. addAct i onLi st ener ( t hi s) ;  
  cont ent Pane. add( submi t But t on) ;  
 
  set Cont ent Pane( cont ent Pane) ;   
  pack( ) ;  
 }  
  
 publ i c  voi d act i onPer f or med( Act i onEvent  e) {  
  St r i ng cmd=e. get Act i onCommand( ) ;  
  j dv l appl et . consol e. pr i nt l n( cmd) ;  
   
  St r i ng qr yTypeSt r =( St r i ng) combobox. get Sel ect edI t em( ) ;  
  i nt  qr yType=JDVLMsg. UNDEFI NED;  
 
  i f ( qr yTypeSt r . equal s( " By Keywor d" ) ) {  
   qr yType=JDVLMsg. KEYWORD;  
  } el se i f ( qr yTypeSt r . equal s( " By Scr i pt " ) ) {  
   qr yType=JDVLMsg. SCRI PT;  
  } el se i f ( qr yTypeSt r . equal s( " By Ti t l e" ) ) {  
   qr yType=JDVLMsg. TI TLE;  
  }  
 
  JDVLMsg qr yMsg=new JDVLMsg( qr yType,  0,  t ext Fi el d. get Text ( ) ) ;  
 
  t r y{  
   I net Addr ess i Adr =I net Addr ess. get ByName( j dv l appl et . ser ver addr ) ;  
   Socket  s=new Socket ( i Adr ,  j dv l appl et . ser ver por t ) ;  
 
   Out put St r eam os=s. get Out put St r eam( ) ;  
   Obj ect Out put St r eam oos = new Obj ect Out put St r eam( os) ;  
   oos. wr i t eObj ect ( qr yMsg) ;  
   j dv l appl et . consol e. pr i nt l n( " msg sent ! " ) ;  
 
   I nput St r eam i s=s. get I nput St r eam( ) ;  
   Obj ect I nput St r eam oi s  = new Obj ect I nput St r eam( i s) ;  



 
 

 

 52

lyu9904 MultiModel Digital Video Library April 2000  

   JDVLMsg r esul t Msg=( JDVLMsg) oi s. r eadObj ect ( ) ;  
   s . c l ose( ) ;  
 
   j dv l appl et . consol e. pr i nt l n( " got  r epl y! " ) ;  
   j dv l appl et . consol e. pr i nt l n( " i nf o:  "  + r esul t Msg. t oSt r i ng( ) ) ;  
 
   j dv l appl et . l oadLi br ar y( r esul t Msg. ar chi ve( ) ) ;  
 
  } cat ch( Except i on x) {  
   j dv l appl et . consol e. pr i nt l n( x. t oSt r i ng( ) ) ;  
  }  
 }  
}  

 



 
 

 

 53

lyu9904 MultiModel Digital Video Library April 2000  

ß�Í ç�Ò Ç Ò /�ÙMÇ äMÏ ¾ ¿ ÇMÈ Ç
i mpor t  j ava. awt . * ;  
i mpor t  j ava. awt . event . *  ;  
i mpor t  j ava. appl et . * ;  
i mpor t  j avax. swi ng. * ;  
i mpor t  j ava. net . * ;  
i mpor t  j ava. ut i l . * ;  
 
/ * *  
 *  Thi s  c l ass shows i cons f or  user  t o choose a v i deo 
 * /  
publ i c  c l ass Li br ar yPane ext ends JI nt er nal Fr ame i mpl ement s Act i onLi st ener {  
  
 JDVLAppl et  j dv l appl et ;  
 MyI conLi br ar y i conpanel ;  
 JScr ol l Pane cont ent Pane;  
 Vect or  sear chResul t =nul l ;  
 MyI con i con[ ] ;    
 
 / * *  
  *  Const r uct or  
  *  @par am owner  The owner  of  t he di al og 
  * /  
 publ i c  Li br ar yPane( JDVLAppl et  par ent ) {  
 
  super ( " Li br ar y" ,  t r ue,  t r ue,  t r ue,  t r ue)  ;  
  set Vi s i bl e( t r ue) ;   
  set Si ze( 300, 200) ;  
  j dv l appl et =par ent ;  
  j dv l appl et . consol e. pr i nt l n( " Li br ar y" ) ;  
  cont ent Pane = new JScr ol l Pane( ) ;  
/ /  
 cont ent Pane. set Bor der ( Bor der Fact or y. cr eat eTi t l edBor der ( Bor der Fact or y. cr eat eEt ched
Bor der ( ) ,  " Quer y Resul t s : " ) ) ;  
 
  i conpanel =new MyI conLi br ar y( ) ;  
   
 
/ /  
 cont ent Pane. set Hor i zont al Scr ol l Bar Pol i cy( JScr ol l Pane. HORI ZONTAL_SCROLLBAR_NEVER) ;  
  cont ent Pane. set Vi ewpor t Vi ew( i conpanel ) ;  
  set Cont ent Pane( cont ent Pane) ;   
 
  addComponent Li st ener (  new Component Adapt er ( )  {  
   publ i c  voi d component Resi zed( Component Event  ce)  {  
    doResi ze( ) ;  
   }  
  } ) ;  
 }  
  
 publ i c  voi d doResi ze( ) {  
  i f ( sear chResul t ! =nul l ) {  
   i conpanel . set Pr ef er r edSi ze( get Si ze( ) ) ;  
/ /    i conpanel . set Pr ef er r edSi ze( new Di mensi on( get Si ze( ) . wi dt h,  
( sear chResul t . s i ze( ) / ( get Si ze( ) . wi dt h/ 140) ) * 200) ) ;  
   i conpanel . r eval i dat e( ) ;  
  }  
 }  
 
 publ i c  voi d l oadLi br ar y( HashSet  sear chResul t ) {  
  t hi s . sear chResul t =new Vect or ( sear chResul t ) ;  
  JDVLVi deo t empObj ect ;  
  i con=new MyI con[ t hi s . sear chResul t . s i ze( ) ] ;  
 
  i conpanel . r emoveAl l ( ) ;  
  f or ( i nt  i =0;  i <t hi s . sear chResul t . s i ze( ) ;  i ++) {  
   t empObj ect =( JDVLVi deo) ( t hi s . sear chResul t . el ement At ( i ) ) ;  
   i con[ i ] =new MyI con( t empObj ect ) ;  
   i con[ i ] . addAct i onLi st ener ( t hi s) ;  
   i conpanel . add( i con[ i ] ) ;  
  }  



 
 

 

 54

lyu9904 MultiModel Digital Video Library April 2000  

 
  doResi ze( ) ;  
 }  
 
 publ i c  voi d act i onPer f or med( Act i onEvent  e) {  
  i f ( e. get Sour ce( )  i nst anceof  MyI con) {  
   MyI con t empi con = ( MyI con) e. get Sour ce( ) ;  
   j dv l appl et . l oadMovi e( t empi con. sour ce( ) ) ;  
  }  
 }   
}  
 
 
c l ass MyI conLi br ar y ext ends JPanel  i mpl ement s Scr ol l abl e{  
 
 publ i c  Di mensi on get Pr ef er r edScr ol l abl eVi ewpor t Si ze( ) {  
  r et ur n get Pr ef er r edSi ze( ) ;  
 }  
 
 publ i c  i nt  get Scr ol l abl eUni t I ncr ement ( Rect angl e v i si bl eRect ,  i nt  or i ent at i on,  i nt  
di r ect i on) {  
  r et ur n 80;  
 }  
 
 publ i c i nt  get Scr ol l abl eBl ockI ncr ement ( Rect angl e v i s i bl eRect ,  i nt  or i ent at i on,  i nt  
di r ect i on) {  
  r et ur n v i s i bl eRect . hei ght ;  
 }  
 
 publ i c  bool ean get Scr ol l abl eTr acksVi ewpor t Wi dt h( ) {  
  r et ur n t r ue;  
 }  
 
 publ i c  bool ean get Scr ol l abl eTr acksVi ewpor t Hei ght ( ) {  
  r et ur n f al se;  
 }  
}  
 
c l ass MyI con ext ends JBut t on{  
 JDVLVi deo obj ;  
 publ i c  MyI con( JDVLVi deo obj ) {  
  super ( new I mageI con( obj . i consr c( ) ) )  ;  
  St r i ng t i t l e=obj . t i t l e( ) ;  
  set Tool Ti pText ( t i t l e) ;  
  t r y{  
   t i t l e=obj . t i t l e( ) . subst r i ng( 0, 6)  + " . . . " ;  
  } cat ch( Except i on x) {  
  }  
  set Text ( t i t l e) ;  
  t hi s . obj =obj ;  
  set Ver t i cal Text Posi t i on( BOTTOM) ;  
  set Hor i zont al Text Posi t i on( CENTER) ;  
  set Mar gi n( new I nset s( 0,  0,  3,  0) ) ;  
/ /   set Tool Ti pText ( obj . t i t l e( ) ) ;  
  set Si ze( 120,  90) ;  
 }  
  
 publ i c  JDVLVi deo sour ce( ) {  
  r et ur n obj ;  
 }   

}



 
 

 

 55

lyu9904 MultiModel Digital Video Library April 2000  

Ù�Ë Ç /�Ï Ò ÙMÇ äMÏ ¾ ¿ ÇMÈ Ç
i mpor t  j ava. awt . * ;  
i mpor t  j ava. awt . event . * ;  
i mpor t  j avax. swi ng. * ;  
i mpor t  j avax. swi ng. event . * ;  
i mpor t  j ava. net . * ;  
i mpor t  j ava. i o. * ;  
i mpor t  j avax. medi a. * ;  
i mpor t  j avax. medi a. Medi aLocat or ;  
i mpor t  j avax. medi a. bean. pl ayer bean. Medi aPl ayer ;  
 
/ * *  
 *  Thi s  c l ass shows i cons f or  user  t o choose a v i deo 
 * /  
publ i c  c l ass Pl ayer Pane ext ends JI nt er nal Fr ame{  
  
 JDVLAppl et  j dv l appl et ;  
 JPanel  cont ent Pane;  
 Medi aPl ayer  mpl ayer ;  
 URL v i deosr c=nul l ;  
 Ti mer  myTi mer ;  
   
 / * *  
  *  Const r uct or  
  *  @par am owner  The owner  of  t he di al og 
  * /  
 publ i c  Pl ayer Pane( JDVLAppl et  par ent ) {  
 
  super ( " Vi deo" ,  t r ue,  t r ue,  t r ue,  t r ue)  ;   
  set Vi s i bl e( t r ue) ;   
  set Si ze( 360,  280) ;  
 
  j dv l appl et =par ent ;  
 
  mpl ayer  = new j avax. medi a. bean. pl ayer bean. Medi aPl ayer ( ) ;  
  mpl ayer . set Cont r ol Panel Vi s i bl e( t r ue) ;  
  mpl ayer . set PopupAct i ve( f al se) ;  
  mpl ayer . set Pl aybackLoop( f al se) ;  
  mpl ayer . set Fi xedAspect Rat i o( f al se) ;  
 
  set Cont ent Pane( mpl ayer ) ;  
   
  addI nt er nal Fr ameLi st ener ( new f r ameHandl er ( ) ) ;  
  addComponent Li st ener (  new Component Adapt er ( )  {  
   publ i c  voi d component Resi zed( Component Event  ce)  {  
    doResi ze( ) ;  
   }  
  } ) ;  
 }  
 
 
 publ i c  voi d doResi ze( ) {  
  Di mensi on d = get Si ze( ) ;  
  i f  ( mpl ayer  ! = nul l )  {  
   mpl ayer . set Bounds( 0,  0,  d. wi dt h,  d. hei ght ) ;  
   val i dat e( ) ;  
  }  
    }  
 
 publ i c  voi d l oadMovi e( JDVLVi deo obj ) {  
  v i deosr c=obj . v i deosr c( ) ;  
  mpl ayer . set Medi aLocat or ( new Medi aLocat or ( v i deosr c) ) ;  
  i f  ( mpl ayer . get Pl ayer ( )  == nul l )  
   j dv l appl et . consol e. pr i nt l n( " Coul d not  cr eat e pl ayer  f or  "  + vi deosr c. t oSt r i ng( ) ) ;  
  el se 
   mpl ayer . st ar t ( ) ;  
  doResi ze( ) ;  
/ /   mpl ayer . set Bounds( 0,  0,  cont ent Pane. get Wi dt h( ) ,  cont ent Pane. get Hei ght ( ) ) ;  
 }  
 
 publ i c  voi d st ar t Movi e( ) {  
  i f ( v i deosr c! =nul l )  {  
   mpl ayer . st ar t ( ) ;  



 
 

 

 56

lyu9904 MultiModel Digital Video Library April 2000  

  }  
 }  
 
 publ i c  voi d st opMovi e( ) {  
  i f ( v i deosr c! =nul l ) {  
   mpl ayer . st op( ) ;  
  }  
 }   
  
 publ i c  voi d dest r oy( )  {  
  mpl ayer . c l ose( ) ;  
 }  
 
 c l ass f r ameHandl er  ext ends I nt er nal Fr ameAdapt er {  
  
  publ i c  voi d i nt er nal Fr ameCl osi ng( I nt er nal Fr ameEvent  e) {  
   dest r oy( ) ;  
  }  
 
  publ i c  voi d i nt er nal Fr ameDei coni f i ed( I nt er nal Fr ameEvent  e) {  
   s t ar t Movi e( ) ;  
  }  
 
  publ i c  voi d i nt er nal Fr ameI coni f i ed( I nt er nal Fr ameEvent  e) {  
   s t opMovi e( ) ;  
  }  
 }  
}  

 



 
 

 

 57

lyu9904 MultiModel Digital Video Library April 2000  

â�à Ò Í èIÌ ÙMÇ äMÏ ¾ ¿ ÇMÈ Ç
i mpor t  j avax. swi ng. * ;  
i mpor t  j ava. awt . event . * ;  
i mpor t  j avax. swi ng. event . * ;  
 
 
publ i c  c l ass Scr i pt Pane ext ends JI nt er nal Fr ame{  
 
 JDVLAppl et  j dv l appl et ;  
 JEdi t or Pane scr i pt Ar ea;  
 St r i ng scr i pt [ ] ;  
 
 publ i c  Scr i pt Pane ( JDVLAppl et  par ent ) {  
  super ( " Scr i pt " ,  t r ue,  t r ue,  f al se,  t r ue)  ;  
  set Locat i on( 0, 100) ;  
  set Vi s i bl e( t r ue) ;   
  set Si ze( 250, 280) ;  
 
  j dv l appl et =par ent ;  
 
  scr i pt Ar ea = new JEdi t or Pane( " t ext / ht ml ;  char set =BI G5" ,  " " ) ;  
  scr i pt Ar ea. set Edi t abl e( f al se) ;  
  scr i pt Ar ea. set Font ( j dv l appl et . cFont ) ;  
  scr i pt Ar ea. set Edi t or Ki t ( new j avax. swi ng. t ext . ht ml . HTMLEdi t or Ki t ( ) ) ;  
 
  JScr ol l Pane ar eaScr ol l Pane = new JScr ol l Pane( scr i pt Ar ea) ;  
 
 ar eaScr ol l Pane. set Ver t i cal Scr ol l Bar Pol i cy( JScr ol l Pane. VERTI CAL_SCROLLBAR_ALWAYS) ;  
 
  set Cont ent Pane( ar eaScr ol l Pane) ;  
 }  
 
 publ i c  voi d l oadScr i pt ( JDVLVi deo v i deo) {  
  scr i pt =vi deo. scr i pt ( ) ;  
  St r i ng l ongSt r i ng=new St r i ng( " <ht ml ><head><t i t l e></ t i t l e></ head><body>\ n" ) ;  
 
 
  f or ( i nt  i =0;  i <scr i pt . l engt h;  i ++)  
   l ongSt r i ng+=( scr i pt [ i ] +" <br >\ n" ) ;  
 
  l ongSt r i ng+=" </ body></ ht ml >" ;  
 
  scr i pt Ar ea. set Text ( l ongSt r i ng) ;  
 }  
 
 publ i c  voi d SynScr i pt ( i nt  i dx) {  
  St r i ng l ongSt r i ng=new St r i ng( " <ht ml ><head><t i t l e></ t i t l e></ head><body>\ n" ) ;  
 
  f or ( i nt  i =0;  i <scr i pt . l engt h;  i ++) {  
   i f ( i ==i dx)  
    l ongSt r i ng+=( " <a name=\ " cur r ent \ " ><b>" +scr i pt [ i ] +" </ b><br >\ n" ) ;  
   el se 
    l ongSt r i ng+=( scr i pt [ i ] +" <br >\ n" ) ;  
  }  
 
  l ongSt r i ng+=" </ body></ ht ml >" ;  
 
  scr i pt Ar ea. set Text ( l ongSt r i ng) ;  
  scr i pt Ar ea. scr ol l ToRef er ence( " cur r ent " ) ;  
 }  
}  

Æ�á1- ß Ø�è�è�Ë Ï�Ì ¾ ¿ ÇMÈ Ç
i mpor t  j ava. awt . * ;  
i mpor t  j ava. appl et . * ;  
i mpor t  j ava. net . * ;  
i mpor t  j avax. swi ng. * ;  
i mpor t  j avax. swi ng. event . * ;  
i mpor t  j ava. ut i l . * ;  
i mpor t  or g. w3c. dom. * ;  



 
 

 

 58

lyu9904 MultiModel Digital Video Library April 2000  

 
publ i c  c l ass JDVLAppl et  ext ends JAppl et {  
 
 publ i c  i nt  ser ver por t =4000;  
 publ i c  St r i ng ser ver addr =" pc89184. cs. cuhk. edu. hk" ;  
 JDeskt opPane deskt opPane;  
 publ i c  Quer yPane quer yPane;  
 publ i c  Consol ePane consol e;  
 publ i c  Li br ar yPane l i br ar yPane=nul l ;  
 publ i c  Pl ayer Pane pl ayer Pane=nul l ;  
 publ i c  Scr i pt Pane scr i pt Pane=nul l ;  
 publ i c  cFont =nul l ;  
 
 publ i c  voi d i ni t ( ) {  
  ser ver addr =get CodeBase( ) . get Host ( ) ;  
  set upI nt er f ace( ) ;      
 }  
  
 publ i c  voi d st ar t ( ) {  
  t r y{  
   consol e. set I con( t r ue) ;  
  } cat ch( Except i on x) {  
  }  
 }  
  
 publ i c  voi d st op( )  {  
  i f ( pl ayer Pane! =nul l )  
   pl ayer Pane. st opMovi e( ) ;  
 }  
 
 publ i c  voi d dest r oy( )  {  
  i f ( pl ayer Pane! =nul l )  
   pl ayer Pane. dest r oy( ) ;  
 }  
 
 publ i c  voi d set upI nt er f ace( ) {  
 
  deskt opPane=new JDeskt opPane( ) ;  
  / * J I nt er nal Fr ame( St r i ng t i t l e,   
      bool ean r esi zabl e,   
      bool ean c l osabl e,   
      bool ean maxi mi zabl e,   
      bool ean i coni f i abl e)   
  * /  
   
 
  quer yPane=new Quer yPane( t hi s) ;  
  consol e=new Consol ePane( t hi s) ;  
 
  deskt opPane. add( quer yPane) ;  
  deskt opPane. add( consol e) ;  
  deskt opPane. set Doubl eBuf f er ed( t r ue) ;  
 
  set Cont ent Pane( deskt opPane) ;  
 }  
 
 voi d Get Chi neseFont ( ) {  
  / /  Det er mi ne whi ch f ont s  suppor t  Chi nese her e . . .  
  Font [ ]  al l f ont s  = 
Gr aphi csEnvi r onment . get Local Gr aphi csEnvi r onment ( ) . get Al l Font s( ) ;  
  i nt  f ont count  = 0;  
  St r i ng chi nesesampl e = " \ u4e00" ;  
 
  i nt  j  = 0;   
   
  whi l e( ( j  < al l f ont s. l engt h)  && ( cFont ==nul l ) ) {  
   i f  ( al l f ont s[ j ] . canDi spl ayUpTo( chi nesesampl e)  == chi nesesampl e. l engt h( ) )  
    cFont =new Font ( al l f ont s[ j ] . get Font Name( ) ,  Font . PLAI N,  12) ;  
   j ++;  
  }  
 }  
 
 publ i c  voi d l oadLi br ar y( HashSet  sear chResul t ) {  
  l i br ar yPane=new Li br ar yPane( t hi s) ;  
  deskt opPane. add( l i br ar yPane) ;  



 
 

 

 59

lyu9904 MultiModel Digital Video Library April 2000  

  l i br ar yPane. show( ) ;  
  l i br ar yPane. l oadLi br ar y( sear chResul t ) ;  
 }  
 
 publ i c  voi d l oadMovi e( JDVLVi deo v i deo) {  
  scr i pt Pane=new Scr i pt Pane( t hi s) ;  
  deskt opPane. add( scr i pt Pane) ;  
  scr i pt Pane. set Locat i on( 100, 200) ;  
  scr i pt Pane. show( ) ;  
  scr i pt Pane. l oadScr i pt ( v i deo) ;  
   
  
  pl ayer Pane=new Pl ayer Pane( t hi s) ;  
  deskt opPane. add( pl ayer Pane) ;  
  pl ayer Pane. set Locat i on( 350, 200) ;  
  pl ayer Pane. show( ) ;  
  pl ayer Pane. l oadMovi e( v i deo) ;  
 }  
  
 
}  

 



 
 

 

 60

lyu9904 MultiModel Digital Video Library April 2000  

Æ�á1- ß�â�Ï Ò È Ï Ò ¾ ¿ ÇMÈ Ç
i mpor t  j ava. i o. * ;  
i mpor t  j ava. net . * ;  
i mpor t  j ava. ut i l . * ;  
i mpor t  j avax. xml . par ser s. * ;  
i mpor t  or g. w3c. dom. * ;  
 
publ i c  c l ass JDVLSer ver  ext ends Obj ect {  
 i nt  por t =4000;  
 bool ean r un=t r ue;  
 Document  doc;   
 NodeLi st  scr i pt Li s t ,  keywor dLi st ,  t i t l eLi st ;  
  
 publ i c  s t at i c  voi d mai n( St r i ng[ ]  ar gs)  {  
  JDVLSer ver  ser ver ;  
  i f ( ar gs. l engt h==0) {  
   Syst em. out . pr i nt l n( " Use def aul t :  
[ ht t p: / / pc89184. cs. cuhk. edu. hk/ JMDat a/ j mdat a. xml ] " ) ;  
     ser ver =new JDVLSer ver ( " ht t p: / / pc89184. cs. cuhk. edu. hk/ JMDat a/ j mdat a. xml " ) ;  
  } el se{  
   ser ver =new JDVLSer ver ( ar gs[ 0] ) ;  
  }  
 
   }   
  
 publ i c  JDVLSer ver ( St r i ng xml Locat i on) {  
     
  t r y  {  
   Document Bui l der  docBui l der  = 
Document Bui l der Fact or y. newI nst ance( ) . newDocument Bui l der ( ) ;  
 
   / / Load r ecor ds f r om xml  f i l e 
   Syst em. out . pr i nt ( " Loadi ng dat a. . . " ) ;  
   doc = docBui l der . par se ( xml Locat i on) ;  
/ /    doc. nor mal i ze( ) ;  
   scr i pt Li s t  = doc. get El ement sByTagName( " l i ne" ) ;  / / pr el oaded Sear ch by scr i pt  
   keywor dLi st  = doc. get El ement sByTagName( " keywor d" ) ;  / / pr el oaded Sear ch by 
keywor d 
   t i t l eLi st  = doc. get El ement sByTagName( " t i t l e" ) ;  / / pr el oaded Sear ch by keywor d 
   Syst em. out . pr i nt l n( " ok" ) ;  
 
   Syst em. out . pr i nt l n( " Ser ver  s t ar t ed. " ) ;  
   / / Li s t en t o r equest s  
   Li s t eni ng( ) ;  
   Syst em. out . pr i nt l n( " Ser ver  s t oped. " ) ;  
 
  } cat ch( Except i on e) {  
   Syst em. out . pr i nt l n( e) ;  
  }  
 
   
 
 }  
  
 publ i c  voi d Li s t eni ng( ) {  
  t r y{  
   Ser ver Socket  accept socket =new Ser ver Socket ( por t ) ;  
   Syst em. out . pr i nt l n( " Ser ver  l i s t eni ng on por t :  "  + por t ) ;  
 
   do{  
    Socket  s  = accept socket . accept ( ) ;  
    new Request Handl er ( s) ;  
   } whi l e( r un) ;  
  } cat ch( Except i on x) {  
   Syst em. out . pr i nt l n( x) ;  
  }  
 }  
 
 / / Request Handl er  t o handl e t he r equest s  
 c l ass Request Handl er  i mpl ement s Runnabl e{  
  Thr ead t ;  



 
 

 

 61

lyu9904 MultiModel Digital Video Library April 2000  

  Socket  s ;  
 
  publ i c  Request Handl er ( Socket  s) {  
   i f ( s ! =nul l ) {  
    t hi s . s  = s;  
    t  = new Thr ead( t hi s ,  " Request Handl er " ) ;  
    t . s t ar t ( ) ;  
   }  
  }  
   
  publ i c  voi d r un( ) {   
   t r y{  
    I nput St r eam i s=s. get I nput St r eam( ) ;  
    Obj ect I nput St r eam oi s  = new Obj ect I nput St r eam( i s) ;  
    JDVLMsg r ecei veMsg=( JDVLMsg) oi s. r eadObj ect ( ) ;   / / r ead i nput  
 
    Syst em. out . pr i nt l n( " [ Recei ve "  + r ecei veMsg + "  ] " ) ;  
    JDVLMsg r epl yMsg=pr ocess( r ecei veMsg) ;    / / pr ocess quer y 
 
    Out put St r eam os=s. get Out put St r eam( ) ;  
    Obj ect Out put St r eam oos = new Obj ect Out put St r eam( os) ;  
    oos. wr i t eObj ect ( r epl yMsg) ;        / / r epl y  
 
    Syst em. out . pr i nt l n( " [ Repl y  "  + r epl yMsg + "  ] " ) ;  
    s . c l ose( ) ;            / / c l ose connect i on 
   } cat ch( Except i on x) {  
    Syst em. out . pr i nt l n( x) ;  
   }  
  }  
 
  publ i c  JDVLMsg pr ocess( JDVLMsg msg) {  
   JDVLMsg r epl y=new JDVLMsg( JDVLMsg. REPLY,  msg. i d( ) ) ;  
   St r i ng cur r ent l i ne;  
   Node v i deo;  
   NodeLi st  sear chLi st =nul l ;  
   HashSet  r epl yal l =new HashSet ( ) ;  
 
   i nt  t ype=msg. t ype( ) ;  
    
   swi t ch( t ype) {  
    case JDVLMsg. KEYWORD: sear chLi st =keywor dLi st ; br eak;  
    case JDVLMsg. SCRI PT: sear chLi st =scr i pt Li s t ; br eak;  
    case JDVLMsg. TI TLE: sear chLi st =t i t l eLi st ; br eak;  
    def aul t : br eak;  
   }  
 
   St r i ng qr ySt r =msg. msg( ) ;  
   i f  ( sear chLi st ! =nul l ) {  
    Syst em. out . pr i nt l n( " [ pr ocess quer y. . . ] " ) ;  
    f or ( i nt  i =0;  i <sear chLi st . get Lengt h( ) ;  i ++) {  
     cur r ent l i ne=sear chLi st . i t em( i ) . get Fi r s t Chi l d( ) . get NodeVal ue( ) ;  
     i f  ( cur r ent l i ne. i ndexOf ( qr ySt r ) ! =- 1) {  
      i f ( t ype==JDVLMsg. SCRI PT)  
       v i deo=sear chLi st . i t em( i ) . get Par ent Node( ) . get Par ent Node( ) ;
 / / l i ne- >scr i pt - >vi deo 
      el se 
       v i deo=sear chLi st . i t em( i ) . get Par ent Node( ) ;  / / t i t l e- >vi deo,  
keywor d- >vi deo 
      r epl yal l . add( v i deo) ;  
     }  
    }  
    Vect or  t emp=new Vect or ( r epl yal l ) ;  
    f or ( i nt  i =0;  i <t emp. s i ze( ) ;  i ++)  
     r epl y. add( ( Node) t emp. el ement At ( i ) ) ;  
   }  
 
   r et ur n r epl y;  
  }  
  
 }  
 
}  


