
Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 1 of 72

Department of Computer Science and Engineering

The Chinese University of Hong Kong

2007-2008

Final Year Project Report (1st Term)

LYU0703

Parallel Distributed Programming on PS3

Huang Hiu Fung

05700512
hfhuang5@cse.cuhk.edu.hk

Wong Chung Hoi

05596742
chwong5@cse.cuhk.edu.hk

Supervised by

 Prof. Michael R. Lyu

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 2 of 72

Abstract

This report covers our study and progress in parallel programming in

this semester. It begins with some background information about

multi-core processors, the motivation and objectives of our final year

project.

Then it is followed by an overview of our developing environment. We

give a brief description about the architecture of the Cell Broadband

Engine, which is the multi-core processor used in PlayStation®3.

The next topic is an introduction of the principal of parallel

programming we have studied. We will discuss some patterns for

parallel programming, together with different types of algorithms we

tried.

After this, we will present our experience in optimizing and porting a

video comparison program to the PlayStation®3. We will compare the

sequential and parallel approach, and demonstrate how we applied

the features of parallel programming to have significant performance

increase.

The last portion is a discussion about the project difficulties, project

progress and our future works in the next semester.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 3 of 72

Table of Contents

Abstract……………………………………………………………………………...2

Chapter 1 Introduction…………………………………………………………….6

1.1 Background Information……………………………………………….7

1.2 Limitation of Single-Core Processor…………………………………9

1.2.1 Memory Access Latency…………………………………….....9

1.2.2 Wire Delays……………………………………………………….9

1.2.3 Power Consumption…………………………………………..10

1.3 Development of Multi-Core Processor……………………………..12

1.3.1 Reducing Power Consumption……………………………...13

1.3.2 Efficient Processing of Multiple Tasks……………………..13

1.4 Project Motivation……………………………………………………...14

1.5 Project Objectives……………………………………………………..16

Chapter 2 Development Environment…………………………………………17

 2.1 Personal Computer…………………………………………………….18

 2.2 PlayStation®3…………………………………………………………..19

 2.3 Cell Broadband Engine……………………………………..………...21

2.3.1 Power Processor Element……………………………………23

2.3.2 Synergistic Processor Element……………………………..24

2.3.3 Element Interconnect Bus……………………………………25

2.3.4 Memory Management………………………………………….25

 2.4 Linux……………………………………………………………………..26

 2.5 IBM Cell Software Development Kit…………………………………27

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 4 of 72

Chapter 3 Principals of Parallel Programming………………………………28

3.3 Parallel Algorithm vs. Serial Algorithm…………………………….28

3.4 Concept of load balance………………………………………………29

3.5 Parallel Architecture………………………………………………......30

3.6 Shared-Memory System and Distributed-Memory System……..32

3.7 Data Parallelism and Task Parallelism……………………………..35

3.8 Synchronization………………………………………………………..36

Chapter 4 Optimization of the ADSIVER Program…………………………..37

4.1 Introduction of PC Version ADVISER Program…………………...39

4.2 Porting PC Version to PlayStation®3 Platform……………………42

4.2.1 Inconsistent Representation in Different Platform……….42

4.2.2 Working out the Algorithm…………………………………...43

4.2.3 Communication Between PPE and SPE………………….44

4.2.4 The Flow of the Parallel Program……………………………45

4.3 Time Attack and Optimization………………………………………..48

4.3.1 Making Use of SIMD Intrinsic………………………………..49

4.3.2 Changing the Data Type………………………………………51

4.3.3 Implementing Double Buffering……………………………..53

4.3.4 Parallel Reading for All Files…………………………………55

4.3.5 Distributing Job to Idling PPE……………………………….56

4.3.6 Applying SIMD for Loop Counter………………….………..57

4.3.7 Optimizing by Loop Unrolling………………………………..61

4.4 Conclusion of Optimization………………………………………….63

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 5 of 72

Chapter 5 Project Difficulties…………………………………………………...64

5.1 Incompatibilities of PlayStationi®3 with Linux……………………64

5.2 Limited Resources on the Internet………………………………….65

5.3 Rapid update of OS and Cell SDK…………………………………..66

5.4 Burning down of PlayStation®3……………………………………..67

Chapter 6 Project Progress……………………………………………………..68

Chapter 7 Future Works…………………………………………………………69

Chapter 8 Acknowledgement…………………………………………………...70

Chapter 9 Reference……………………………………………………………..71

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 6 of 72

Chapter 1 Introduction

This chapter would briefly describe parallel programming. And discuss

the reason why we have to use parallel programming instead of

sequential one. The project motivation and objective are stated in this

chapter also.

 Background Information

 Limitation of Single-Core Processor

 Memory Access Latency

 Wire Delays

 Power Consumption

 Development of Multi-Core Processor

 Reducing Power Consumption

 Efficient Processing of Multiple Tasks

 Project Motivation

 Project Objectives

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 7 of 72

1.1 Background Information

In the computer industry, we are always looking for faster ways to

solve a problem, both faster algorithms and faster computers. There

have been tremendous advances in microprocessor technology in the

past decades.

According to the Moore’s Law, the computing power of processors

doubles in every 18 months.

Fig 1.1 Moore’s Law showing the growth of transistor.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 8 of 72

In 1995, Intel’s Pentium chip ran at 100 MHz, while in 2002, the clock

rates of processors have increased to 3 GHz in an Intel Pentium 4

model.

These great advances are mainly achieved by frequency scaling,

which means to increase the number of cycles per second (processor

frequency) in a processor.

However, in May 2004, Intel announced the cancellation of its Tejas

and Jayhawk processors, which are supposed to be the next 4 GHz

Pentium chips. They decided to put more development effort on

multi-core processors instead of single-core processors, which are the

dual-core and quad-core chips we can see today.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 9 of 72

1.2 Limitation of Single-Core Processor

The cancellation indicating that increasing the processor frequency of

a single-core chip is no longer an efficient way to improve the

performance of a processor. The wall of performance limit is hit

because of 3 main reasons:

1.2.1 Memory Access Latency

Firstly, the speed of memory is not increasing as fast as the CPU. The

overall speed of computation is not only determined by the processor

frequency, but also how fast it can access data in the memory. The

access time to DRAM has been improving at 9~10% per year, while

the performance of processor has been improving at 60% per year.

Fig. 1.2 Graph of Processor-Memory Performance Gap

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 10 of 72

The widening processor-memory performance gap can nullify the

benefits in processor frequency increase, and hence is an important

performance bottleneck.

1.2.2 Wire Delays

Second, the transistors on a single-core chip are becoming denser.

This implies that longer wires are required to interconnect them. The

path delay can cancel the speed increase of the transistors.

1.2.3 Power Consumption

The third one is the most important reason for the cancellation. The

single-core processor has reached its performance limit for the

amount of power it consumed.

For a processor, , where P is power, C is the

capacitance being switched per clock cycle, V is voltage, and F is the

processor frequency (cycles per second). The power consumption

grows with the processor frequency. This increase in power density

will produce more heat consequently.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 11 of 72

If the processor frequency in a single-core chip continues to grow, it

may soon generate heat as much as a nuclear reactor. Therefore, the

power consumption and hence the heat problem are the major

obstacles that limit the frequency’s increase.

Fig. 1.3 Graph of Power Density over Minimum IC Feature Size

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 12 of 72

1.3 Development of Multi-Core Processor

We have mentioned the limitation of single-core processors. In order

to continue to improve the processor performance, new chip

architectures – the multi-core processors, are developed.

From the above graph, we can see that the trend of processor has

changed from single-core to multi-core processor in recent years.

Dual-core and quad-core chips for desktop machines are becoming

popular today.

Fig. 1.4 Growth of No. of Cores in Processors

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 13 of 72

The development of has shifted to multi-core processor because there

are several advantages over the single-core processor:

1.3.1 Reduce Power Consumption

Using multiple cores with low frequency instead of one with high

frequency can reduce the power consumption, while still delivering

better performance at the same time.

1.3.2 Efficient Processing of Multiple Tasks

Traditionally, we can only solve a problem through serial computation.

While with parallel platform, we can divide the computation work into

discrete parts and execute among the cores concurrently.

 Fig. 1.5a Sequential Computation

Fig. 1.5b Parallel Computation

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 14 of 72

1.4 Project Motivation

There are many applications that require

large amount of data manipulation and

computation, such as advanced graphics,

virtual reality, simulation and multimedia

processing.

The multi-core technology has already brought us a hardware impact

in improving the performance of processors. It will be the future

hardware trend too. Although application that run on a single-core

machine can still run on a multi-core one, it is useless to do such

porting. In order to take advantages of multi-core architecture,

software engineers have to optimize and parallelize the program.

Fig. 1.6 Applications that require intensive computation

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 15 of 72

Despite over 30 years of compilers and tools development in

sequential programming, parallel programming is relatively new,

compilers and tools are often not mature. Our group is greatly

interested in parallel programming and finds this challenging.

We also realize that multi-core processors will be the dominant

processors available that with high performance. And we believe that

parallel programming will pay a more important role in future

software engineering. Therefore we start this project, hoping to have

some achievement in parallel programming.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 16 of 72

1.5 Project Objectives

In this project, we will first study the features of parallel programming

and have some hands-on experience on it. We will also compare and

analyze the performance difference between sequential and parallel

programs. To start with, we choose to program on a multi-core

machine, i.e. PlayStation®3, rather than program over distributed

machines.

After that, we will select an application which require large amount of

data manipulation and computation. Modification from sequential

approach to parallel approach will be made. We will use what we

learnt to optimize the program to the largest extent, showing that

great improvement can be made with parallel programming and a

multi-core machine.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 17 of 72

Chapter 2 Development Environment

In this chapter we will introduce the development environment of our

project, including both hardware and software.

For hardware, we have two PCs and a PlayStation®3 running

Windows XP and Linux respectively.

For software, we use the IBM Cell Software development Kit, which

provide the compiler and libraries for parallel programming on the Cell

processor.

We will introduce one by one in this list:

 Personal Computer

 PlayStation®3

 Cell Broadband Engine

 Power Processor Element

 Synergistic Processor Element

 Element Interconnect Bus

 Memory Management

 Linux

 IBM Cell Software Development Kit

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 18 of 72

2.1 Personal Computer

We are provided with two PCs for our project use. Although we do our

parallel programming on the PlayStation®3, the configuration of PCs

is still worth mention. We also run programs on PCs as a reference, to

compare the performance of a sequential program and its parallel

version on PlayStation®3.

Table 2.1 Major Specification of the PC

CPU Intel Pentium 4 3.0 GHz

Main Memory 1 GB RAM

Operating System Windows XP Professional Edition

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 19 of 72

Fig. 2.1 PlayStation®3 produced by Sony

2.2 PlayStation®3

PlayStation®3 is the multi-core

machine we used in this project.

It is the third generation home

video game console produced

by the Sony Computer

Entertainment, first released

on November 2006. It uses the

Cell Broadband Engine (Cell

BE), which has great

computation power, as the

processor, giving high quality of

game and graphics performance. The following is the basic hardware

configuration of the PlayStation®3 we used.

Table 2.2 Major Specification of the PlayStation®3

CPU 3.2 GHz Cell Broadband Engine

Main Memory 256 MB XDR DRAM

Hard Disk 60 GB 2.5" SATA hard drive

PlayStation® System Software

(i.e. the game OS)

Version 1.94

Operating System Fedora 7 (Linux Kernel 2.6.21)

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 20 of 72

Although the major reason for designing PlayStation®3 is to be the

next generation of video game console, its strong computation power

and relatively low cost for a multi-core machine (about HK $3,000)

making it possible to have different applications and development.

Sony also opened the platform to allow other OS (typically Linux) to

be installed on PlayStation®3.

For example, the Cell BE of PlayStation®3

is utilized to achieve great performance in

the Folding@Home project launched by the Stanford University.

Folding@Home is a distributed computing project designed to perform

simulation of protein folding and other molecular dynamics which

require highly intensive computation. Nowadays, with about 50,000

active PlayStation®3, the console accounts for over 60% of all the

computation, making it the most powerful distributed computing

network in the Guinness World Record.

Fig. 2.2 The PlayStation®3
Folding@Home client

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 21 of 72

Fig. 2.3 STI alliance that developed Cell

2.3 Cell Broadband Engine

As mentioned above, the Cell

processor is the soul of the

PlayStation®3. Cell, with full

name Cell Broadband Engine

Architecture, is jointly

designed by Sony, Toshiba

and IBM, started in 2001.

An overview of the Cell architecture is shown as follow:

Fig. 2.4a Real architecture of Cell

PPE

8 SPEs

EIB

Memory
Control

512 KB Cache
Memory of PPE

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 22 of 72

Figure 2.4a and 2.4b has already shown the architecture and some of

the major components of Cell BE. We are going to give more details

for each of them.

Fig. 2.4b Overview of Cell Architecture

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 23 of 72

2.3.1 Power Processor Element (PPE)

This is a general purpose,

64-bit PowerPC architecture

based and two-way

multi-threaded processor. It

has 32 KB L1 cache and

512KB L2 cache. The PPE acts

like a 64-bit PowerPC

processor, allowing the

execution of both operating

system and applications.

The PPE is designed as a control-intensive processor in Cell which

mainly process control, including:

1. The I/O of accessing the main memory and other external devices

requested by the operating system

2. The control over all 8 SPEs

Fig. 2.5 Design of PPE

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 24 of 72

2.3.2 Synergistic Processor Element (SPE)

The SPE is less

complicated than the PPE,

since it is target to

provide computation

performance, not

control-intensive one.

Every SPE consists of

three main parts:

1. A Synergistic Processor Unit (SPU), to perform its allocated task.

2. A 256KB Local Store (LS), which is the only memory accessible by

the SPU.

3. A Memory Flow Controller (MFC), to control data transfer between

the SPE’s LS and the main memory or other SPEs.

There totally 8 SPEs in the Cell BE. While for the Cell BE inside

PlayStation®3, 1 SPE is disabled and 1 is reserved for the system

software (i.e. the game OS), meaning that only 6 SPEs are accessible

for programming under Linux.

Fig. 2.6 Design of a SPE

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 25 of 72

2.3.3 Element Interconnect Bus (EIB)

The EIB is an internal communication bus built on Cell so as to connect

different elements on the chip, such as PPE, SPE and memory

controller. It is implemented as a circular ring of four channels,

supporting multiple simultaneous transfers. Hence faster data or

message exchange between elements is achieved.

2.3.4 Memory Management

The figure on the right shows

how an SPE get data from the

main memory. It is a typical

example of accessing main

memory, during programming

the Cell BE. The process is

described as follow:

1. PPE ask the SPE to run its

program.

2. SPE need to access data in the

main memory

3. MFC in SPE handle the situation and get data from the main

memory with Direct Memory Access (DMA)

4. The result data is store in the LS of the SPE.

5. All the communication is done through the EIB.

Fig. 2.7 Data Flow and Program

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 26 of 72

2.4 Linux

Although PlayStation®3 has its own system

software, Sony has also opened the platform

for third-party OS. The most common one is

Linux. People have tried to install different

distributions of Linux on it, such as Yellow Dog,

Fedora, Ubuntu. All these are tested

and can operate on the console.

Among them, we finally chose Fedora 7, with kernel updated to 2.6.23,

as our developing environment. This is mostly because IBM officially

declared that Fedora 7 is compatible with the Cell SDK, which is an

important tool for our parallel programming.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 27 of 72

2.5 IBM Cell Software Development Kit

The IBM Cell Broadband Engine SDK provides a complete Cell BE

development environment. The SDK contains important tools for our

parallel programming development, including:

 Libraries (SPE Run-time Management Library, SIMD math library)

 Samples source code

 IBM XL C/C++ Alpha Edition for Cell BE Processor

 IBM Full-System Simulator for the Cell BE Processor

 An Eclipse-based Integrated Development Environment

 GNU GCC compilers for PPU and SPU etc.

We use the version 2.1 to do our project. While in late October 2007,

version 3.0 is released. We may shift to newer version in future.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 28 of 72

Chapter 3 Principals of Parallel Programming

 Parallel Algorithm vs. Serial Algorithm

Parallel algorithm is different from traditional serial algorithm.

Traditional serial algorithm makes use of 1 CPU, executing command

one by one and computes the final result. Parallel algorithm tries to

make use of more than 1 processing unit for computing at a time. The

result from each processing unit has to be put back together for the

final result.

Parallel algorithm Serial algorithm
multiple processing units single processing unit
communication overhead no communication overhead
higher complexity in code straight forward code

ensure load balance between PU everything is done by CPU

The above table shows some different between parallel algorithm and

serial algorithm. It is useful when we have to decide whether a

problem should be solved by parallel algorithm or serial algorithm.

Simply speaking, for problem which required heavy computation,

parallel algorithm would be ideal as the communication overhead

becomes negligible. For problem which has simple algorithm, it is not

necessary to parallelize it as it increases the complexity of the code.

Besides, the overhead in communication also becomes dominant.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 29 of 72

 Concept of Load Balance

Load balance is an important concept. How the mappings of task to

processing units are done can have a significant impact on the overall

performance of a parallel algorithm. It is crucial to avoid the situation

in which a subset of the processing units is doing most of the work

while others processing units are idle most of the time.

If load balance is not ensured, the total runtime of the program will be

the runtime of the busiest processing unit. Furthermore, the

computation time of idling processing units is wasted. Thus jobs

should be distributed as evenly as possible.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 30 of 72

 Parallel Architecture

Flynn's taxonomy

 Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Flynn’s taxonomy is the most common way to classify parallel architecture. Flynn
categorizes all computers according to number of data streams and number of
instruction streams they have. As shown in the above table, there are 4 types of them:
SISD, MISD, SIMD and MIMD.

SISD – Single instruction single data
This the most common von Neumann model
with a single processer, an instruction stream
and a data stream. The instructions are carried
out one by one.

SIMD – Single instruction multiple data
In this case, the instruction stream is
concurrently broadcast to multiple processers.
Different stream of data are processed by
different processers with the same instruction.
For example, the SPE intrinsic functions
provided by CellSDK are SIMD. They can
apply same operation on every element of the
input vector at the same time.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 31 of 72

MISD – Multiple instruction single data
There are no well-known systems fits in this
category. It is mentioned for completeness.

MIMD – Multiple instruction multiple data
This system has its own stream of instruction
operating on its own stream of data. This is the
most common type of parallel system. However,
MIMD is a rather general description of a system.
Therefore it can be further break down into the
following.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 32 of 72

 Shared-Memory System and

Distributed-Memory System

Systems we use to implement parallel program are classified into 2

types according to their distribution of physical memory, namely

shared-memory system and distributed-memory system.

Share-memory system refers to a system with large block of random

access memory that can be access by several different central

processing units in a multiple-processor computer system.

This type of system is relatively easy to program as every process

access to same piece of data. They need a fast method to access

central memory. Also, the memory coherence has to be maintained

carefully.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 33 of 72

In PlayStation®3, each SPE can access the main memory via Memory

Flow Controller (MFC) by issuing Direct Memory Access (DMA)

command. Therefore PlayStation®3 can be regard as a

shared-memory system.

On the other hands, distributed-memory system refers to a

multiple-processor computer system in which each processing has its

own private memory. Task has to be distributed to different

processors for processing. After that, data has to be reassembled to

generate a meaningful output.

In PlayStation®3, each SPE has a local store (LS) of size 256 KB. LS

are the working space for SPE. With LS, SPE can be assigned with task

or data by the PPE, achieving parallel programming.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 34 of 72

Actually, PlayStation®3 has both shared-memory and

distributed-memory features. Thus, it can be classified as hybrid

distributed-shared memory architecture.

This gives programmer a high degree of freedom when trying to

parallelize a serial program or designing a parallel program in

PlayStation®3 platform. It makes PlayStation®3 an ideal

environment for parallel program development.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 35 of 72

 Data Parallelism and Task Parallelism

Data parallelism and task parallelism are different way to write

parallel program.

Data parallelism is achieved by splitting data into smaller parts. Then

distribute the smaller parts to different processing unit for

computation. Usually, it happens within SIMD system where single set

of instruction is used to operate on multiple set of data.

Task parallelism is achieved by splitting program into different task.

These tasks are assigned to different processing units. They can

operate on same or different data. They can also communicate with

each other and passing data around. Task parallelism usually occurred

in MIMD system.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 36 of 72

 Synchronization

Synchronization controls order of task execution. There are 2 types of

synchronization: process synchronization and data synchronization.

Process synchronization means multiple tasks are depending on each

other in order to complete the own task. They have to wait for input,

respond from the other task. When designing this type of program, we

must be carefully looking out for deadlock.

Data synchronization means there are multiple tasks accessing the

same data, we must ensure that the value read by the tasks is the

most up-to-date one. Whenever there are updates on the data, we

need to make sure every other task are using the new value.

Synchronization problem is fairly common in parallel program. Tools

like semaphores, monitors, mailboxes are useful to write such kind of

program.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 37 of 72

Chapter 4 Optimization of the ADVISE Program

So far we have studied several principals of parallel programming. We

also have some hands-on experience on writing programs on the

PlayStation®3 with the Cell SDK. Thus we select a program which

requires intensive data manipulation and computation. And we try to

optimize it to see how much performance we can improve, making it

a more efficient application. The details of the program and the

process are described in the following parts.

 Introduction of PC Version ADVISER Program

 Porting PC Version to PlayStation®3 Platform

 Inconsistent Representation in Different Platform

 Working out the Algorithm

 Communication Between PPE and SPE

 The Flow of the Parallel Program

 Time Attack and Optimization

 Making Use of SIMD Intrinsic

 Changing the Data Type

 Implementing Double Buffering

 Parallel Reading for All Files

 Distributing Job to Idling PPE

 Applying SIMD for Loop Counter

 Optimizing by Loop Unrolling

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 38 of 72

The program we selected is called ADVISER. ADVISER is a program

which compares 2 video clips and looks for similarity. It is useful for

applications like locating the advertisement that appears every night.

However, since video clip contains a large amount of data, the

comparison procedure is not as easy as comparing texts or pictures.

Therefore, the program is divided into 3 parts:

1. Generating meaningful data (in form of numbers) of frames from

the video

2. Comparing and looking for the most similar frames

3. Locating the similar segment which consist of a series of very

similar frames

We are given the PC version of the 2nd part of the program. Our

objective is to speed up the program by porting it to the

PlayStation®3 system and making use of its parallel computation

power.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 39 of 72

4.1 Introduction of PC Version ADVISER

Program

Here is a brief introduction of the PC version program. Given 2 folders

named “Repository” and “Target”. Each contains many “*.hl3” files

which are video frame’s data extracted from the video clips by another

program. These “*.hl3” files are actually consists of 1024 double

precision value.

For each “*.hl3” file in “Target” folder, we need to map it to another

“*.hl3” file in “Repository” directory such that square of their

Euclidean distance is smallest. Mathematically, given a “Target” file P

, we try to look for another file Q in

“Repository” such that the value is minimum. By doing

this, each frame in the “Target” folder is mapped to the most

mathematically resemble frame in the “Repository” folder.

The PC program is written in a traditional sequential way. First, it

reads in every file in the “Target” directory and assigns an array for

each file for later computation.

Second, it reads in files in “Repository” directory one by one. For each

read in file in the “Repository” directory, the square of Euclidean

distance with every file in “Target” directory is computed. If the

square of Euclidean distance computed is smaller than the minimum

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 40 of 72

value found so far, it is updated.

Finally, the target file name, the corresponding repository file name,

and the minimum score are outputted. Assume there are m files in the

“Target” directory and n files in the “Repository” directory, the above

algorithm is .

There will be 2 output files of this ADVISER program.

First one is a text file containing a list of most matched files.

That is:

target hl3 1 most match repository A difference value = ??

target hl3 2 most match repository B difference value = ??

target hl3 3 most match repository C difference value = ??

etc.

Also in the second half of the text file, it will show the segment that is

probably the same video segment (e.g. advertisement)

With these, the second output file, which is a xml file, is made.

It will get the most similar segment from the video and allow you to

play it.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 41 of 72

Result of the sequential PC version

The input for this program is:

Input No. of hl3 files

Target directory 5473

Repository directory 7547

Each hl3 file is a binary file of 1024 integers

In order to have a reasonable comparison, all the result shown here,

including those for PlayStation®3 version, use this set of data as

input.

Time to read both directory, without computation = 25 sec

Total elapsed time of the program = 658 sec

Thus, for the sequential ADVISER program on PC:

The net elapsed time = 658 – 25 = 633 sec

This result will be used in the rest part to compare the performance

with PlayStation®3.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 42 of 72

4.2 Porting PC Version to PlayStation®3

Platform

After studying the PC version program and understanding how it

works, we start to design how the program should be ported to the

PlayStation®3 platform.

4.2.1 Inconsistent Representation in Different

Platform

First difficulty we encountered was the endianness problem. The

“*.hl3” file in PC are 1024 double precision values in binary format.

Due to the different of representation (big-endian and small-endian

representation) under different computer architecture (Intel X86 V.S.

PowerPC 64), the “*.hl3” files from PC cannot be read directly at

PlayStation®3.

Therefore, we have written 2 programs. One program converts binary

representation of double precision values to ASCII representation in

the PC. Another program converts ASCII representation of double

precision values to binary representation in PlayStation®3. This

solves the inconsistency between binary representations in two

different systems.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 43 of 72

4.2.2 Working out the Algorithm

In our parallel distributed computation program, we decide to read in

the files in reverse order, that is first read in files in “Repository”

directory and then “Target” directory. In this way, we can let each SPE

handle a “Target” file and send back only a minimum score and its

match to the PPE. Rather than letting each SPE handle a “Repository”

file and send back an array of square of Euclidean distance value to

PPE.

Now once we have read all files in “Repository”, for each “Target” file

we read, we can immediately send them to SPE for processing rather

than waiting every files to be read first like the PC version. This could

save the read input time, i.e. time is required to read “Repository”

only, reading time for each “Target” file will overlap with the

computation time.

If we are using all the 6 SPEs, then each SPE just take 1/6 of the total

“Target” files for computation. In this way, we can apply data

parallelism.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 44 of 72

4.2.3 Communication Between PPE and SPE

PPE and SPE communicate in 2 ways. One is via Direct Memory Access

(DMA). Another way is via mailboxes. For large pieces of information,

DMA is used. Mailboxes are used to transfer a few byte of information,

like an integer or a flag.

CONTROL_BLOCK is transfer by

DMA. It contains information a

SPE need to know. Such as the

address of data of “Repository”

files, address of data of “Target”

files, number of “Repository” files, address for sending back result to

PPU, etc. With all these addresses and an index, it can access any files

in the main memory by DMA.

Similar to CONTROL_BLOCK,

OUTPUT_BLOCK is transfer by DMA.

It contains only 2 integers. One is

the index of mapped “Repository” file. Another is the score of it.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 45 of 72

4.2.4 The Flow of the Parallel Program

Here is the brief introduction on the flow of the parallel program.

Program flow of PPE:

1. All files in “Repository” are read and stored in a structured array.

2. Control blocks for each SPE are generated.

3. 6 SPE threads are created and they read in their own control block

by DMA.

4. A “Target” file is read and stored in array.

5. If any SPE is not busy, send the index of read file to SPE, else stall

the PPE.

6. Loop back to 4 until all “Target” files are read.

7. Issue a “Finish” signal to all SPE.

8. Wait all SPE thread to terminate.

9. Write out the result to a file.

Program flow of SPE:

1. A SPE thread is created with address of Control Block as parameter.

2. Fetch the control block by DMA.

3. Check mailbox for index of “Target” file.

4. Process the “Target” file.

A. Fetch a “Repository” file’s data via DMA.

B. Compute the square of Euclidean distance.

C. Update the value if it is smaller.

D. Loop back to A until all “Repository” file is processed.

E. Fill in an Output Block.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 46 of 72

F. Send back result to PPU via DMA.

5. Loop back to 4 until “Finish” signal is received.

6. Notify PPE via mailbox that it is terminating.

7. Thread terminated.

Result of the parallel PS3 version

No. of SPU used 1 2 3 4 5 6

Read input time (sec) 3 4 4 5 3 4

Total Elapsed time (sec) 1931 968 661 491 394 334

Net Elapsed time (sec) 1928 964 657 487 391 330

0

500

1000

1500

2000

Sec

1 2 3 4 5 6

No. of SPU used

Running Time of Parallel PS3 Version

Elapsed time

As we can see from the graph, the elapsed time decreases with

increasing number of SPU used. The relationship can be expressed as:

 Elapsed Time of 1 SPU
 Elapsed Time of N SPU

＝ N

Control

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 47 of 72

Since there is no parallelism at all when the program is execute with 1

SPU, thus the result of 1 SPU (1928 sec) is used as a control. It

represents the performance of the sequential version on the same

platform.

Hence with all 6 SPU used for computation, we have performance 6

times faster than the control

The best result we got so far is 330 sec.

As a reference, we have also taken the elapsed time for the program

to execute on PPU only, i.e. a sequential program

The result is:

Elapsed Time of PPU = 3119 sec

When compared to the elapsed time for 1 SPU, which means no

parallelism in fact, the one of PPU is much larger (3119 sec to 1928

sec). We can conclude that SPU, which is designed for intensive

computation, has greater computation power than the

control-intensive PPU.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 48 of 72

4.3 Time Attack and Optimization

Through out the semester, we try to apply different method to speed

up out program. At first, we expect our program to have a speed up of

about 6X due to parallel distribution of works to 6 SPE.

However the result is not that satisfying. The program can only

achieve a speed up of 2X (330 sec to 633 sec). This is due to the

relative high processing power of CPU in PC than the PPU in

PlayStation®3.

Also PC has access to more memory than PlayStation®3. Yet, after

more and more trial and different technique applied, we can finally

obtain a speed up of about 12X.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 49 of 72

4.3.1 Making Use of SIMD Intrinsic (Major

Improvement)

SIMD is short forming of single instruction

multiple data. It means applying single

operation on multiple operands at the same time.

CellSDK provide SIMD intrinsic instruction for

SPE and PPE. These SIMD instructions take 128

bits register as input. Then apply operation on

every element of the vector at the same time. For double precision

number we used as our data type, they are 64 bits. Therefore each

vector can contain at most 2 double precision values. Simply replacing

the operator in formula calculating the square of Euclidean distance

yielded a speed up of 2X easily.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 50 of 72

Result of the parallel, with SIMD PS3 version

No. of SPU used 1 2 3 4 5 6

Read input time (sec) 5 4 4 4 5 6

Total Elapsed time (sec) 414 208 140 106 87 77

Net Elapsed time (sec) 409 204 136 104 82 71

Running Time of Parallel PS3, with SIMD Version

0

500

1000

1500

2000

2500

1 2 3 4 5 6

No. of SPU used

S
ec

Parallel version

Parallel + SIMD

version

After SIMD is applied, the elapsed is further decreased. The SIMD

version runs at approximately 4 times faster than the one without

using SIMD. Total 4X6 = 24 times faster than the control.

The best result we got so far is 71 sec.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 51 of 72

4.3.2 Changing the Data Type (Major Improvement)

We had great success in speeding up the program by using SIMD

instructions. We want to push the SIMD instructions to limit. After

enquiring our coordinator, we all agreed that double precision is not

needed in this problem is not that important. Firstly, the number used

is relatively small. Secondly, the number is acceptable even with

errors as long as it does not overflow. Therefore our coordinator

suggests us to change the data type from double (64 bits) to integer

(32 bits). By doing so, we can now pack 4 integer values in the 128

bits register.

However, the original design of SPE is to handle floating point number.

Hence, there are nearly no SIMD instructions for integer data type.

We finally decided to use float, which is also 32 bits, as our data type.

Now by applying SIMD instructions again, we can save one step in

converting the integer to float, obtaining another 30% speed up than

using double as data type.

Therefore the choice of data type is very important when writing

parallel program in PlayStation®3.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 52 of 72

Result of the parallel, with SIMD, float input PS3

version

No. of SPU used 1 2 3 4 5 6

Read input time (sec) 4 4 3 3 4 5

Total Elapsed time (sec) 294 149 100 77 62 54

Net Elapsed time (sec) 290 145 97 74 58 49

Running Time of Parallel, with SIMD, float input PS3

version

0

100

200

300

400

500

1 2 3 4 5 6

No. of SPU used

Se
c

Parallel + SIMD + int

Parallel + SIMD +
float

As we can see, after using floating point number input, we save the

step to convert every integer to float before applied SIMD. This float

type version runs 30% faster than the integer version.

This makes the best performance becomes 49 sec.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 53 of 72

4.3.3 Implementing Double Buffering (Minor

Improvement)

Originally, there is only one buffer for storing “Repository” file.

Therefore the flow of program is like:

A. Fetch a “Repository” file’s data via DMA.

B. Compute the square of Euclidean distance.

C. Update the value if it is smaller.

Loop back to A until all “Repository” file is processed.

Since there is a Memory Flow Controller (MFC) in each SPE for DMA,

therefore DMA commands can be execute simultaneously while SPE is

doing computation. Double buffering is a technique that makes use of

this property.

By allocating one more buffer for “Repository” file in SPE’s local store,

it allows “Repository” file to be fetched first and get ready in the buffer.

Shorten the runtime used by DMA.

The new flow of the program becomes:

A. Fetch the first “Repository” file’s data to buffer 1 via DMA.

B. Do the following simultaneously

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 54 of 72

1. Compute the square of Euclidean distance using “Repository”

file from buffer 1.

2. Fetch the next “Repository” file in buffer 2 via DMA.

C. Update the value if it is smaller

D. Loop back to B with usage of buffer 1 swapped with buffer 2.

As can be observe from the figure, if communication is smaller than

computation, there won’t be much speed up. This is the case in our

program unfortunately.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 55 of 72

4.3.4 Parallel Reading for all Files (Failed Attempt)

At first, we thought that reading files in both “Target” and

“Repository” directory can be done simultaneously. This is because

files can be read in any order, as long as they are read by the program.

Hence, an attempt is to try to let SPE share the file reading job to

reduce the run time.

After implementing the program, we found that the program is

actually slowed down. The explanation to this phenomenon is that we

made a wrong assumption at start. In algorithm level, the files can be

read in parallel way is true. However, in the hardware level, the hard

disc cannot handle the parallel reading request by 6 SPE. That is why

this is a failed attempt in speeding up the program.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 56 of 72

4.3.5 Distributing job to idling PPE (Minor

Improvement)

Another thought to speed up the program is base on the fact that PPE

stalls for long time waiting SPEs to finish their jobs throughout the

program’s runtime. Therefore we tried to assign a file to the PPE for

processing. When the PPE is stalling and waiting for busy SPEs to

finish their job, instead of stalling, it is assigned a “Target” file for

processing.

However, PPE is not specified for heavy computation. The time PPE

takes to compute a minimum score and a minimum score match is

about 5-6 times to the time SPE takes. The speed up is thus negligible

for the following reasons.

For example, there is total of 1000 “Target” files for processing. Each

SPE will handle 1000/6 = about 167 files. Assume SPE works 6 times

faster than PPE. PPE can only handle 1000/(6*6+1) = about 27 files.

That’s mean for each SPE, PPE helped out with 27/6 = 4.5 files. So the

newest total runtime will be the time for one SPE to process 167 - 4.5

= 162.5 files, which is negligible.

On the other hands, this method increases the complexity of the

program code by a lot. So we finally decided not to apply this method.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 57 of 72

4.3.6 Applying SIMD for Loop Counter (Major

Improvement)

Observing that for each SPE, most of its time is spent on running the

through a for-loop which loop though a file and computing the square

of Euclidean distance.

Here is the flow of the for-loop:

1. initialize i = 0, diff = (0, 0, 0, 0).

2. for i < Number of float numbers in a file / Number of floats packed

in a register

A. temp = SIMD subtraction on vector i in “Target” and

“Repository” file.

B. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

3. i = i + 1.

4. Loop back to 2.

As can be observed above, A and B make use of SIMD command,

while 2 and 3 does not. Since this for-loop is small, line 2 and 3

actually occupied quite a large proportion runtime in the for-loop even

it is just Boolean comparison and integer addition operation. Hence,

speeding up 2 and 3 should yield some speed up to the final runtime.

We try to apply SIMD command to the loop counter i. Loop counter i

now has a data type of short (16 bits).

Therefore we can pack 8 short values in the register in the following

way:

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 58 of 72

1. initialize i = (0,1,2,3,4,5,6,7) , diff = (0, 0, 0, 0).

2. for i[0] < Number of float numbers in a file / Number of floats

packed in a register

A. temp = SIMD subtraction on vector i[0] in “Target” and “Repository” file.

B. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

C. temp = SIMD subtraction on vector i[1] in “Target” and “Repository” file.

D. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

E. temp = SIMD subtraction on vector i[2] in “Target” and “Repository” file.

F. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

G. temp = SIMD subtraction on vector i[3] in “Target” and “Repository” file.

H. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

I. temp = SIMD subtraction on vector i[4] in “Target” and “Repository” file.

J. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

K. temp = SIMD subtraction on vector i[5] in “Target” and “Repository” file.

L. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

M. temp = SIMD subtraction on vector i[6] in “Target” and “Repository” file.

N. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

O. temp = SIMD subtraction on vector i[7] in “Target” and “Repository” file.

P. diff = SIMD addition (SIMD multiplication (temp, temp) , diff).

3. i = SIMD addition (i, (8, 8, 8, 8, 8, 8, 8, 8)).

4. Loop back to 2.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 59 of 72

The above algorithm replaces loop counter i by a short vector i.

Thanks to SIMD instructions. The addition and comparison operations

are reduced by 8 times.

Notice that this method does not make use of any parallel

programming technique. Instead, it is just a method for optimization.

Further optimization is described below.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 60 of 72

Result of the parallel, with SIMD, float input, SIMD

for loop counter PS3 version

No. of SPU used 1 2 3 4 5 6

Read input time (sec) 4 5 3 4 4 4

Total Elapsed time (sec) 286 146 97 75 60 51

Net Elapsed time (sec) 282 141 94 71 56 47

Running Time of Parallel, with SIMD, float input, SIMD for

loop counter PS3 version

0

100

200

300

400

1 2 3 4 5 6

No. of SPU used

S
ec

Parallel+SIMD+float

Parallel+SIMD+float+
SIMD for i

With this new approach, we reduce the computation of the loop

counter to gain a little improvement (about 4%). However, it shows

the possibility to have faster performance by further loop unrolling.

The best performance becomes 47 sec.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 61 of 72

4.3.7 Optimizing by Loop Unrolling (Major

Improvement)

As using SIMD operation to compute loop counter can reduce the

runtime by many. We then tried to break down the for-loop completely.

For-loop is unrolled by repeating the statements inside for 256 times.

It is done by writing another program to generate the code.

Then the code generated by the above program are copied and pasted

into the source code. Now we have completely get rid of the loop

counter i. The speed up becomes more obvious.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 62 of 72

Result of the parallel, with SIMD, float input, loop

unrolling PS3 version

No. of SPU used 1 2 3 4 5 6

Read input time (sec) 3 4 3 3 4 3

Total Elapsed time (sec) 159 82 55 42 35 30

Net Elapsed time (sec) 156 78 52 39 31 27

Running Time of Parallel, with SIMD, float input, loop

unrolling PS3 version

0

50

100

150

200

250

300

1 2 3 4 5 6

No. of SPU used

S
ec

Parallel+SIMD+float

+SIMD for i

Parallel+SIMD+float
+loop unrolling

With total loop unrolling by hard coding some codes, we remove the

computation of the loop counter, which contribute a certain portion to

the computation time since our for loop is relatively small.

This give us about 45% faster in the running time of the program

The ultimate best performance becomes 27 sec.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 63 of 72

4.4 Conclusion of Optimization

With the original sequential approach, it takes 633 sec to execute on

the PC, and 1928 sec to execute on 1 SPU only (without counting the

read input time).

Our final result is 27 sec, which is:

23 times faster than the sequential algorithm on PC

71 times faster than the sequential algorithm on PlayStation®3, using

1 SPU

Elapsed time change with difference approach applied, in a

6 SPU condition

0

50

100

150

200

250

300

350

pa
ra
lle

l

SI
M

D

flo
at
 ty

pe

SI
M

D
 fo

r i

lo
op

 u
nr

ol
lin

g

se
c

Elapsed time

We can see the parallelizing, changing type to floating point number

and loop unrolling are the major reasons for performance

improvement.

After applying the above approaches, we believe we have made a

great improvement in the performance of the ADVISER program.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 64 of 72

Chapter 5 Project Difficulties

 Incompatibilities of PlayStation®3 with

Linux

Sony PlayStation®3 is a relatively new platform. Not much OS actually support

PlayStation®3. We found that most people use Yellow Dog Linux and Fedora 7 as

their OS on PlayStation®3.

First, we tried Yellow Dog Linux as suggested by the MIT course webpage.

Unfortunately, Cell SDK 2.0 which is suggested by the course webpage is no longer

available at that time. So, we tried to download the newest Cell SDK 2.1. However, it

required Fedora Core 6 for it to function normally. To make things worse, Fedora

Core 6 is no longer available too. We can only download the most up-to-date Fedora 7

OS.

Luckily, Cell SDK 2.1 works fine with Fedora 7. This is the environment we used in

this project in this semester.

One problem exists though, that is PlayStation®3 frozen every time we try to reboot.

We solve this problem by downloading a custom kernel for PlayStation®3 and

recompiling it.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 65 of 72

 Limited Resources on the Internet

Our researching resources mainly come from 3 ways. Books, MIT course website and

IBM resources centre. Since parallel programming on PlayStation®3 is relatively new.

Tools, OS support are still under development and not yet stable. Therefore not many

resources can be relied on when we try to study parallel programming.

For example, we tried to debug our program by using profiling tools as suggested by

our research staff. However, this is not available until the full release of Cell SDK 3.0

in late October. We dare to try it. This is because removing and reinstalling Cell SDK

can take very long time. Also, we are not sure if anything will crash or not functioning

with the new Cell SDK 3.0. As a result, we chose to stay with Cell SDK 2.1

eventually.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 66 of 72

 Rapid Update of OS and Cell SDK

As mentioned above, both OS support and Cell SDK are still under development.

Update and new packages are released time by time.

Takes the example of Cell SDK, version 3.0 includes many new libraries like the

Accelerated Library Framework, SPU Timer library, Basic Linear Algebra

Subprogram, etc. Fedora 8 is also released recently. They are so new that we cannot

make full use of these libraries yet.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 67 of 72

 Burning down of PlayStation®3!!

During the semester, we try to take a look at the OpenCV library for Cell BE

architecture as suggested by our research staff. Some sample program in OpenCV

library requires the use of webcam.

First we tried to connect Logitech QuickCam®

Pro 3000. However, there is insufficient support

of webcam driver. Even the camera can be

detected by the PlayStation®3 system, no images

can be viewed.

Next we tried to connect Logitech QuickCam®

Sphere ™ MP and see if it works. Out of our

expectation, the web cam actually burnt all the 4

USB ports in the PlayStation®3 system. With

all the USB ports down, we can use keyboard,

mouse. We cannot even format the whole

system. So, finally we have to take the

PlayStation®3 to the Sony Support Centre for

repair. Luckily, the warrant hasn’t expired. We are able to get a brand new console.

Fig. 5.1 Logitech QuickCam®
Pro 3000

Fig. 5.2 Logitech QuickCam®
Sphere ™ MP

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 68 of 72

Chapter 6 Project Progress

The following is the progress of our Final Year Project:

Summer

Holiday

2007

 Try to install Linux on PlayStation®3

 Some background study about architecture of Cell

and parallel programming

September

2007

 Set up the developing environment: install Fedora

7 and Cell SDK

 Study the programming with Cell SDK

 Write simple programs on PlayStation®3 using Cell

SDK, implement parallel features

October

2007

 Try to install OpenCV and connect web cam to

PlayStation®3, which blew the PlayStation®3

 Decide to optimize the ADVISER program

 Start to parallelize ADVISER on PlayStation®3

November

2007

 Make further improvement on ADVISER by trying

more features, some succeed some failed

 Try to use IBM Visual Performance Analyzer, but it is

not compatible with Cell SDK 2.1

 Collective data to analysis the performance of the

program

 Have our PlayStation®3 repaired

 Write report

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 69 of 72

Chapter 7 Future Works

We have some ideas about the next step of our Final Year Project in

the coming semester.

First, we will update the Cell SDK from 2.1 to 3.0, so that we can have

newer tools to help our project, especially those performance analysis

tools which are not compatible with Cell SDK 2.1

Second, for the ADVISER program, we will try to port the whole

application on PlayStation®3 and have optimization throughout the

whole program, not just the comparison part.

Last but not least, we will continue to learn new parallel programming

features, so we can try more different ways to improve performance.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 70 of 72

Chapter 8 Acknowledgement

We would like to thank our project supervisor, Professor Michael R.

Lyu. He gives us useful advices and provides the resources we need

for our project. In addition to this, he also reminds us the importance

of concrete statistics and good scheduling.

Besides, we would like to thank Mr. Edward Yau and Mr. Un Tze Lung,

who are the research staff in VIEW Lab. They give valuable advices,

both conceptual and technical, to our project. The original ADVISER

program they provided has started an important part of our project

too.

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 71 of 72

Chapter 9 Reference

1. MIT Multicore Programming Primer: PS3 Cell Programming

http://cag.csail.mit.edu/ps3/index.shtml

2. Patterns for Parallel Programming. Mattson, Sanders, and

Massingill (2005)

3. IBM Cell Broadband Engine resource center

http://www-128.ibm.com/developerworks/power/cell/

4. Introduction to Parallel Computing, Grama, Gupta, Karypis, Kumar,

Addison-Wesley(2003)

5. Discovering Multi-Core: Extending the Benefits of Moore’s Law,

Technology@Intel Magazine, July 2005

6. PlayStation®3 Technical Specification

http://www.us.playstation.com/ps3/about/specs

7. Intel Halts Development of 2 New Microprocessors, Laurie J.Flynn

http://www.nytimes.com/2004/05/08/business/08chip.html?ex=

1399348800&en=98cc44ca97b1a562&ei=5007

8. Intel decides two cores are better than one, Tom Krazit, IDG News

Service

http://www.infoworld.com/article/04/05/07/HNintelcores_1.html

9. The Processor-Memory bottleneck: Problems and Solutions, Nihar

R. Mahapatra, Balakrishna Venkatrao

http://www.acm.org/crossroads/xrds5-3/pmgap.html

10. Parallel Computing, Wikipedia

http://en.wikipedia.org/wiki/Parallel_computing

Dept. of Computer Science and Engineering, CUHK 07-08 Final Year Project Report (1st Term)

LYU0703 Parallel Distributed Programming on PS3 Page 72 of 72

11. Programming Models for Scalable Multicore Programming,

Michael D. McCool

http://pccluster.nchc.org.tw/xoops/modules/newbb/viewtopic.ph

p?forum=2&topic_id=1016

12. Folding@Home on the PS3

http://www.stanford.edu/group/pandegroup/folding/FAQ-PS3.ht

ml

13. Basics of Cell Architecture

http://ps3.keshi.org/dsk/20061208/doc/CellProgrammingTutorial

/BasicsOfCellArchitecture.html

14. Barcelona Supercomputer Center (BSC)

http://www.bsc.es/projects/deepcomputing/linuxoncell/

15. Cell(microprocessor), Wikipedia

http://en.wikipedia.org/wiki/Cell_%28microprocessor%29

