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Abstract 

 This report describes the motivation, background information, experiments done 
and problem encountered by our group when participating in the final year project.  
The objective of our project is to use camera phone as an innovative input method for 
different applications on Symbian. 
 
 Firstly, we will introduce the idea of our final year project – using motion 
tracking as an innovative input method.  Following is the introduction of Symbian 
OS, the major operating system used in mobile phone nowadays, in the aspects of 
highlighted feature on how image manipulations can be done in Symbian phone.  
Next we will talk about the two testing platforms on PC and Symbian that we have 
developed.  After that, we will discuss the common algorithms used in motion 
tracking and our proposed algorithms.  These motion tracking algorithms would play 
an important role in our project. 
 

Since we aim to develop a real-time motion tracking application on the mobile 
phone, both the speed and precision of algorithms are very important.  The report 
will include the experimental results that we have done to evaluate the performance 
of different algorithms.  Moreover, we performed investigations and experiments to 
find all possible ways so as to improve the accuracy and speed of the motion tracking. 

 
Finally, we will describe the application that we have made and discuss what 

other possible applications can be developed using our motion tracking algorithm. 
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Chapter 1: Introduction 

1.1 Motivation 
 

Nowadays, it seems as though everyone has a mobile phone.  As models 
with integrated CCD cameras are getting more and more popular, camera-phones 
have become popular networked personal image capture devices.  It not only 
acts as a digital camera, but also provides constant wireless connectivity that 
allows them to exchange photo or video they captured with their friends.  3G 
phones even use their capabilities to make video calls as their selling point.  
However, other than taking pictures and capturing video, is it possible to add 
more values to the camera and make full use of it?  This is the motivation of our 
FYP project.   

 

 

As camera resolution improves and computation power increases, 
camera-phones can do more interesting things than just taking pictures and 
sending them out over mobile phone network.  Programmable camera-phones 
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can actually perform image processing tasks on the device itself.  With the 
real-time video captured by the onboard camera, we can use this information to 
track the motion of the phone.  The result of motion tracking can then be used 
as an additional and innovative mean of user input, and this is our main objective 
of the FYP project. 

 

1.2 Programming Capability of Symbian-based Mobile 
Phone 
 

In the past, normal users were difficult to develop programs on their mobile 
phones.  Even though users could write J2ME programs on mobile phones, 
J2ME does not provide phone-specific API to access the camera.  Nowadays, 
Symbian OS makes programming on camera-phone possible.  Symbian-based 
mobile phones allow user programs to access most of the functions provided by 
the phones, including the camera functions and image manipulation functions.  
Some 3G phones are also Symbian-based.  They also allow users to develop 
programs on them.  As Symbian OS will be the major operating system for 
mobile devices in the foreseeing future and its programming capability, our FYP 
project will use Symbian as our target platform. 

Our applications will be useful for any 2G, 2.5G or 3G Symbian-based 
mobile phones. 

 

1.3 Project Objective 
 

The goal of our FYP project is to implement a real-time motion-tracking 
algorithm in Symbian-based mobile phones and use the tracking result as an 
innovative mean of user input like mouse and keyboard input.  The aim of 
motion-tracking is not to track objects behind the camera but to track the 
movement of the camera, or the equivalence - the phone.  This new mean of 
user input can give user a convenient way to operate the phone and any 
wireless-connected devices.  For example, the phone can be used as a virtual 
computer mouse that allow user to control the cursor in desktop computer as if 
he/she is using a wireless optical mouse.  Other than using the buttons or the 
joystick on the mobile phone as input method, users have one more choice - 
“motion input”, provided that the phone is programmable and camera-integrated.  
Users can also pre-define some gestures so that moving the phone in certain 
ways will trigger some events, such as making a phone call to the others.  It 
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saves time pressing buttons to dial the phone.  A more interesting application is 
to use it as the input method for games.  For example, in a racing motorcycle 
game, tilting the phone can be used to control the motorcycle to tilt left or tilt 
right while moving the phone vertically can control the speed of the motorcycle.  
Using motion input is so fun and exciting that users can interact with the game.   
 

1.4 Project Equipment 
 

Our project involves a Symbian mobile phone, Nokia 6600, which is 
equipped with Symbian OS 7.0 Series 60.  Since the development cycle in 
Symbian mobile phone is quite long, we have decided to implement the real-time 
motion-tracking algorithm on PCs using web camera.  Therefore, our project 
also involves web camera, Logitech QuickCam Pro 4000, as the video capturing 
device for the PCs. 

 
Apart from Symbian based camera-phone, any other mobile devices that are 

programmable and camera-integrated are also the target platforms of our project.   
Some of the Pocket PCs, for example, are camera-integrated and are all 
programmable.  It is also possible to develop interesting applications or games 
on these platforms. 

 

 
LYU0404: Mobile Motion Tracking using Onboard Camera                           Page 9 



Department of Computer Science and Engineering, CUHK      2004-2005 Final Year Project Report 

Chapter 2: Symbian Operating System 

 
 Symbian OS is the global industry standard operating system for smartphones. 
It is structured like many desktop operating systems, with pre-emptive multitasking, 
multithreading and memory protection.   
 

Because of its robust multi-tasking kernel, communications protocols (e.g.  
WAP and Bluetooth), data management, advanced graphics support (support of 
direct-access and common hardware accelerator), Symbian OS has become the major 
operating system for current generation of mobile phones.   

 
In short, the functionalities of Symbian phone are summarized in the following 

diagram: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Symbian 7.0 architecture 
 

The main focus of this chapter is to illustrate how Symbian OS provides support 
on image process in the phones and how we can write our program for Symbian OS 
effectively.   
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2.1 Development Environment 
 

C++ is the native programming language of the Symbian.  Symbian use its 
own implementation of the C++ language, optimized for small devices with 
memory constraints.  The public C++ APIs allow access to variety of 
application engines, such as graphics, and camera. 

 
Generally, the development environment is under Microsoft Visual C++ 

with application wizard in the SDK provided by Nokia.  The development cycle 
can be summarized as follow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2 Development cycle of Symbian program 

         
Besides source code, MMP file, which is a metadata to describe the source 

code and resources used (e.g. bitmaps and icons), is also supplied.  Through 
C++ compiler, app binary (for general application) or dll binary (for building 
library) is then generated.  Using emulator, application can be tested.  After a 
complete testing, the source code and MMP file are compiled through cross 
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compiler, possibly ARM instruction compiler, to generate the binary code.  All 
the necessary files, including bitmaps, images, icons and data file, would be 
grouped together through software packaging.  The resulting sis file should be 
transferred to actual handset using any communication technologies, like 
Bluetooth and infra-red. 

 

2.2 Testing environment 
  

Although the SDK provides us the emulator for testing, we cannot rely on it.  
It is because we need to make use of the camera and test by moving the camera, 
so we mainly use MFC and OpenCV ( will be discuss later ) for testing and use 
the Symbian emulator for fine tuning the alogrithm only. 

  

2.3 Limitations in Symbian phone 
 

Since we are programming on handheld devices which has limited resources 
(limited amount of memory and limited amount of CPU speed, as shown in 
figure 2.3), these make programming on the Symbian phone a very difficult task. 

 
Nokia 6600 Technical Specs  

Operating System: Symbian OS 7.0s 

Memory 
Heap size: 3 MB 

Shared Memory for Storage: 6 MB + MMC 

CPU  100 MHz 

 
Figure 2.3 Specification of Nokia 6600 

 
Speed is an important factor in making our real-time motion tracking.  If 

we take too long time for the calculation of motion tracking, the frame rate will 
fall off, undermining the illusion of smooth movement.  To get the fastest 
possible code we should only use, in order of preference: 

 
1.  Integer shift operations (<< and >>) 
2.  Integer add, subtract, and Boolean operations (&, | and ^) 
3.  Integer multiplication (*) 
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In other words, in speed-critical code we must represent all quantities 
(coordinates, angles, and so on) by integer types such as TInt, favor shift 
operations over multiplies, and avoid division entirely.  We should not use 
floating point operation because Symbian phones do not have floating point unit.  
The speed constraint limits the use of optical flow algorithm (will be discuss 
later) for motion tracking. 

 

2.4 Overview of Symbian Graphics Architecture 
 

The multimedia architecture of Symbian has been designed and optimized 
for mobile devices.  The architecture provides an environment that is akin to a 
desktop computing environment.  With relative ease, the different components 
can be used for numerous tasks, ranging from drawing simple shape primitives to 
playing ring tones. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 A 3D Game Engine Example (From Forum Nokia) 
 

2.4.1 Video Capturing 

Symbian OS provides camera API for developer to access the camera 
hardware.  The camera hardware is controlled by the CCamera object 
which provides a simple method to control the camera. 

 
Before we can capture the video with the camera, we need to create an 

instance of CCamera – this is achieved by calling the NewL( ) function: 
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   iCamera = CCamera::NewL(aObserver, 0); 
  

Once we have created an instance of the camera, the camera device 
must be reserved and power on. 

 
iCamera  Reserve( ); 
iCamera PowerOn( ); 

 
Afterward, we need to specify the required image format and set the 

parameters for frame sizes, buffer sizes. 
 

Finally, we can use the view finder to transfer frames from the camera 
directly to the display memory.  We can then access the pixel values in the 
memory.  The procedure for transferring video to images using view finder 
is shown below. 

 
// Starts transfer of view finder data to the memory 
iCamera->StartViewFinderBitmapsL(imageSize); 

 
After the transfer of view finder data to the memory is completed, the 

function ViewFinderFrameReady( ) will be called.  A reference 
(CFsBitmap &) to the view finder frame will pass as an argument to the 
function.  We can implement our motion tracking algorithm inside 
ViewFinderFrameReady( ) function. 

 

2.4.2 Image Manipulation 

CfsBitmap is the class provided by the graphic architecture.  By using 
this class, we can access the pixels of the image easily and perform some 
operations such as rotation, scaling, etc.  However, using this class to 
manipulate the bitmap is not efficient way.  It is because calling the 
functions provided by this class involved context switching.  Thus the total 
overhead is large when you access the pixel values of the whole bitmap by 
the function call GetPixel().  In our application, our major concern is the 
speed, so we must think of other way to manipulate the bitmap instead of 
using the library provided by the architecture. 

 

 
LYU0404: Mobile Motion Tracking using Onboard Camera                           Page 14 



Department of Computer Science and Engineering, CUHK      2004-2005 Final Year Project Report 

In order to access the pixel value effectively, we can access the bitmap 
array directly instead of using function calls.  We can use a pointer to point 
to the bitmap array, and access the pixel value by de-referencing the pointer.  
Firstly, we need to find out the starting address of the actual bitmap: 

 
TInt data_start = (TInt)iBitmap->DataAddress(); 

 
After getting the starting address, we declare an unsigned integer 

pointer to point to that location: 
  
   TUint16 *ptr = (TUint16 *) data_start; 
 

If we want to access the pixel value at location (x,y), we increment the 
pointer so that we can access the value at (x,y): 

 
   ptr += width of bitmap*y+x; 
 

Since the display mode of the view finder is 64k-colour displays, that 
means for the RGB values, 5 bits are allocated to red, 6 bits to green and 5 
bits to blue.  Therefore, we need to do bit masking to retain the R,G, B 
values: 

    
   //retain the RGB value 

Red = (*ptr >>11) & 0x001f; 
   Green = (*ptr >> 5) & 0x003f; 

Blue = *ptr & 0x001f; 
 

By using this method for accessing the pixel values, we prevent the 
large overhead caused by context switching and thus our application can run 
faster. 

 

2.5 Why Programming in Symbian 
  

Apart from Symbian, there is another solution, J2ME, which is a 
cross-platform language.  By using J2ME, we can develop applications for any 
kind of mobile devices, provided that they have the Java Virtual Machine 
installed. 
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It seems attractive to develop a cross-platform application by using J2ME.  
However, J2ME doesn’t provide API for accessing onboard camera, and speed 
of java program is slow.  In our project, we need to use the onboard camera to 
capture video and our major concern is the speed of the application.  Therefore, 
at this stage, J2ME would not be our consideration. 

 

2.6 Conclusion  

 
This chapter briefly introduced the features of Symbian OS.  The measures 

to tackle speed problem are also emphasized here.  That is to use integer 
operations rather than floating point operations and access the bitmap array 
directly, instead of calling functions.   
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Chapter3: OpenCV Testing Platform on Window 

3.1 OpenCV Library 
 

OpenCV means Open Source Computer Vision Library.  It is a collection 
of C functions and few C++ classes that implement many algorithms of Image 
Processing and Computer Vision.  The library has also implemented algorithms 
for motion tracking; however, those algorithms use optical flow technique which 
is not useful to our project.  OpenCV library is a high level API that consists of 
many useful data types and functions to manage the image window and video 
window.  There are a few fundamental types OpenCV operates on, and several 
helper data types that are introduced to make OpenCV API more simple and 
uniform.  The fundamental data types include array-like types: IplImage (IPL 
image), CvMat (matrix), mixed types: CvHistogram (multi-dimensional 
histogram).  Helper data types include: CvPoint (2d point), CvSize (width and 
height), IplConvKernel (convolution kernel), etc. 

 
Our project made use of some of these useful data types and functions to 

facilitate us to build a testing platform on window.    
 

3.2 OpenCV Testing Platform 
 

 
Figure 3.1 Snapshot of our OpenCV Testing Platform 
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Since the development cycle in Symbian is long, we decided to implement 

the algorithm in window environment first.  In order to test the performance of 
our algorithms, we have written a GUI program using Window MFC and 
OpenCV library.  The program serves mainly two functions: 1) It determines 
the motion vector of a pair of static frame with one of it is the shifted version of 
another; 2) It captures frames using web camera and real-time tracks the motion 
of a moving object.   

 
Figure 3.1 show a snapshot of our program’s interface.  There are two 

“image path” input fields so that a pair of static image can be specified easily.  
The middle part consists of many input text fields that allow users to tune the 
block matching parameters of the algorithm in order to find the parameters that 
yield better result.  The meaning of each label is listed in the following table: 

 
Labels’ Meaning 

 
W X-coordinate of the left top corner of the matching block 
H Y-coordinate of the left top corner of the matching block 
BW 1/2 Width of matching block 
BH 1/2 Height of matching block 
Dx 1/2 Width of search window  
Dy 1/2 Height of search window  
Step Sampling rate during matching block.  Step = 1 means all pixels in 

a matching block is involved in calculating SAD.  Step = 3 means 
one out of three pixels in a matching block is involved in calculating 
SAD and so on. 

Mea. Specifying which algorithm to be used.   
Mea.  = 0 – ESA SAD Algorithm 
Mea.  = 1 – ESA+PDE SAD Algorithm 
Mea.  = 2 – Spiral ESA SAD Algorithm 
Mea.  = 3 – Spiral ESA+PDE SAD Algorithm 
Mea.  = 4 – SEA+PPNM SAD Algorithm 
Mea.  = 5 – SEA+PPNM+PDE SAD Algorithm 
Mea.  = 6 – Spiral SEA+PPNM+PDE SAD Algorithm 
Mea.  = 7 – Adaptive Spiral SEA+PPNM+PDE SAD Algorithm 

Delay Number of time to run the algorithm before timer is stopped.  
Delay = 5 means the chosen algorithm is run 5 times so that the 
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“time used” recorded is the time required to run the algorithm 5 
times.  Running the algorithm more than 1 time reduces the effect 
of inaccuracy of timer. 

Learn Learning rate of adaptive search window.  ]0.1,5.0[∈Learn  

FTx X-coordinate of the left top corner of the feature selection window 
FTy Y-coordinate of the left top corner of the feature selection window 

 
Buttons’ Function 

 
… Open up a file explorer.  Allow users to choose the image used for 

static frames motion tracking 
Open 
Image 

New a window and display the corresponding image on the window 

Guide Read the block matching parameters.  Display a red square on 
image 1 denoting the previous block’s location and a green square 
on image 2 denoting the search window’s location 

Select 
Feature 

Run the feature selection algorithm and select the highest rated 
feature block 

Process Do static frames motion tracking by running the specified block 
matching algorithm on image 1 and image 2 

Feature New a window and display the video instantly captured by the web 
camera.  Frames of the video are passed to the feature selection 
algorithm.  Highest rated block is displayed on the window and 
are denoted by orange square 

Run New a window and display the video instantly captured by the web 
camera.  A feature block is first found by the feature selection 
algorithm.  Then do real-time motion tracking.  The feature block 
is tracked using the specified block matching algorithm. 

Clear During the Run and Process of our algorithm, block matching result 
will be printed out in text format inside the Output Text Area.  
Press the Clear button can clear up the text area. 

OK / 
Cancel 

Close the application 

 
 Screenshot of Process window will be shown in the section “Static Frames 
Motion Tracking”, screenshot of Run window will be shown in the section “Real-time 
Motion Tracking” while screenshot of Feature window will be shown in the last 
section of this chapter. 
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3.3 Static Frames Motion Tracking 

 

3.3.1 Design and Implementation 

With OpenCV library, loading images and accessing pixel of images 
becomes easier.  Here is the flow chart of the OpenCV program for static 
frames motion tracking. 

 

 

 

Images cvLoadImage(image1) 
Block Matching 

cvLoadImage(image2) 

 

3.3.2 Testing our algorithms 

The first main function of our program is to allow us to determine the 
accuracy of our implemented algorithms and time required to run them.  
Since the shifted images fed into the program is manually shifted using 
software, we know how much has the image shifted and thus the true 
motion vector is known.  The algorithms that produce a motion vector 
close to this true motion vector is believed to have high accuracy, otherwise, 
they have low accuracy.  Determining the accuracy of the algorithm also 
facilitates us to debug the program since some of the algorithms are 
supposed to have the same accuracy as others.  For example, the SEA, 
PPNM and PDE algorithms should all have the same accuracy as the 

cvRectangle() 
cvvShowImage() 

Motion Vector 

Draw square 
on image 
indicating 
matching block

Display the image 
frame on window 

cvvNamedWindow()Create a new 
window 

Function to Load Image 
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Exhaustive Search algorithm (ESA).  If ESA have determined the 
optimum motion vector asV

v
, the SEA, PPNM and PDE algorithm should 

all produce the same result, with optimum motion vectorV
v

; otherwise, there 
must be some bugs in the program.  The time used to run each of the 
algorithms to determine the motion vector of a fixed previous block is also 
shown to compare the speed of each algorithm.  Since the speed of 
algorithm such as the SEA algorithm, depends on the image complexity of 
the matching block inside the search window, different locations of the 
previous block and different input images with different levels of noise are 
needed to obtain a representative computation time requirement for an 
algorithm.   

 
The following is an example of a pair of input image. 

 

 

Figure 3.2 Input Image 1 and previous block marked as red square 
  

Figure 3.2 shows the input image1, while Figure 3.3 shows the input 
image2.  Image2 is the shifted version of Image1.  In our algorithm, 
previous block is located at Image1 while current matching block is located 
at Image2 inside the search window.  The previous block is marked by a 
red square in Image1 and the search window is marked by a green square in 
Image2.  The figure below shows the result of block matching.   
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Figure 3.3 Input Image 2 and search window marked as green square 

  

Figure 3.4 Block Matching Result, the best matched marked as blue square 
 

In Figure 3.4, the blue square is the optimum block found by our 
algorithm in Image2.  This block of image is the closest block to the 
previous block in Image1.  Since the motion vector is hard to be 
guessed from Figure 3.4, another window showing solely the motion 
vector is displayed.  The wider end of the arrow represents the 
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location of the optimum block while the narrower end represents the 
location of the previous block. 

 
Figure 3.5 Motion Vector, pointing toward top right direction 

3.4 Real-Time Motion Tracking 

 

3.4.1 Design and Implementation 

With OpenCV library, capturing video from web camera or video file 
and accessing frames of the video becomes easier.  Here is the flow chart 
of the OpenCV program for real-time motion tracking part. 

 

 

 

Video streamcvCaptureFromCAM(0) / 
cvCaptureFromFile (Path) 

cvQueryFrame() 

Feature Selection & 
Block Matching 

Image frame 

cvRectangle() 
cvvShowImage() 

Create a new 
window 

cvvNamedWindow()

Image frame Draw square 
on image 
indicating 
matching block

Motion Vector 

Display the image 
frame on window 
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3.4.2 Difficulties on Real-time tracking 

Since our goal is to real-time track the phone’s motion, it is better to 
test real-time motion tracking first in PC using the implemented algorithm.  
Real-time motion tracking has many things different from static frames 
motion tracking.   

 
Firstly, the noise in a real-time frame is larger than that in a captured 

frame.  This noise is called photon noise.  It is due to the statistical 
variance of photons hitting a pixel.  For a large number of photon hits per 
second N the standard deviation is N .  For a smaller number of photon 
hits per second, the standard deviation is larger.  Since in real-time 
tracking exposure time of the CCD camera is short, smaller number of 
photon hits per second results.  Thus the signal to noise ratio of real-time 
frame is lower.  Noise in frames is not desirable because it produces 
unexpected impact on the SAD of each matching block.  Block with 
minimum SAD may not be the true optimum block due to the noise.   

    
Secondly, the same object in two consecutive frames may not have the 

same geometric shape.  It may be geometrically distorted when the camera 
moves laterally or rotates.  Geometric distortion problem is difficult to be 
solved, especially in real-time tracking.  The impact of this problem can be 
reduced if time between frames is short so that geometric shape of the same 
object in the consecutive frame does not have big difference.  Therefore, 
our algorithms should run as fast as possible. 

  
Figure below is a sequence of images, showing how object is tracked 

and displayed in the “Capturing” window. 
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3.4.3 Evaluate the Performance of Real-Time Motion Tracking 

 In order to compare the results of different algorithms fairly, input 
video must be the same.  Therefore, we need to use a web camera to 
capture a video first and use this video as a generic input to all algorithms. 
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The performance of the real-time motion tracking can be evaluated by 
observing how tight the matching block is stuck to the object.  As the 
object moves, the matching block should keep sticking onto the object.  
Fail to do so mean either the accuracy of the algorithm is low or the speed 
of the algorithm is slow, or both.   

 
The speed of the algorithm can be evaluated by observing the lagging 

level of the capturing video.  Since new frame is captured only after the 
block matching algorithm is finished, speed of the algorithm affect the 
frame rate of the video.  As faster algorithm finishes earlier, higher frame 
rate and lower lagging level result.  Observation may sometimes be a 
subjective measure.  A more accurate method is to count how many times 
an algorithm has been called within a specified time limit.  If an algorithm 
is called very frequently, it means its speed is high.   

 

3.4.4 Relationship with Real-Time Camera Motion Tracking 

The goal of our project is to implement an algorithm for tracking the 
motion of the camera (or say the phone).  We have implemented many and 
have tested them on our testing platform.  The way we evaluate the 
performance of the motion tracking algorithm is through tracking the 
motion of an object appears in the video.  The reasons why we evaluate by 
tracking through moving the object instead of moving the camera are: 

    
Firstly, results of evaluation of both methods are the same.  It is 

because moving an object to the right in front of a web camera is just the 
same as moving the camera to the left with the object fixed.  Their 
movements are relative to each other.  Thus, moving camera can easily be 
emulated by moving the tracking object.  There are no differences to use 
which method. 

 
Secondly, since in testing phase we use web camera to test our 

algorithm, it is not convenient to move the wire-connected camera 
deliberately.  After the algorithms are deployed into the Symbian phone, it 
would be more convenient to test the algorithm by moving the camera. 
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3.5 Feature Selection 
 

 
Figure 3.6 Feature Window 

  
The function of Feature window is solely to verify if the feature selection 

algorithm is run correctly and the feature block selected by the algorithm is 
desirable.   
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Chapter 4: Testing Platform on Symbian 

4.1 Introduction 
 

After the final algorithm was implemented and tested in window OpenCV 
testing platform, we finally built a platform (“MotionTrack” application) on 
Symbian and implemented our algorithms on it so that we can further test the 
performance of our algorithms on Symbian phone.  Other applications can also 
be built on top of this program and access the motion tracking result directly. 

  

4.2 User Interface 
 

The application makes use of the standard Symbian OS application 
framework comprising the Application, Document, UI and View classes. 

 
At the start up of the application, the following screen is displayed: 

 
Initial application display 
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The Options menu displays two choices: 
 

The Options menu 

 
 

 Select Algorithm to choose which algorithm to use for tracking the 
object’s movement. 

 Select Reset to run the feature selection algorithm immediately and 
choose the highest rated feature block inside the feature selection 
window. 

 
When Algorithm item is selected from the Options menu the 

application will show block matching algorithm choices of MotionTrack 
program as follows: 

The Algorithm menu 

 
 

 Full Spiral: Exhaustive Search Algorithm with Spiral Scanning 
method. 

 Partial Spiral: Partial Distortion Elimination Algorithm with Spiral 
Scanning method. 

 Adaptive Sea: Our final algorithm.  The Adaptive Spiral SEA PPNM 
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PDE algorithm. 
 Sea: SEA PPNM PDE algorithm with Spiral Scan method. 

 

4.3 Design and Implementation 
 
  The program consists of these files: 
 

File Description 
MotionTrack.cpp The DLL entry point 
MotionTrackApplication.cpp 
MotionTrackApplication.h 

An Application that creates a new blank 
document and defines the application UID. 

MotionTrackDocument.cpp 
MotionTrackDocument.h 

A Document object that represents the data 
model and is used to construct the App Ui. 

MotionTrackAppUi.cpp 
MotionTrackAppUi.h 

An App Ui (Application User interface) object 
that handles the commands generated from 
menu options. 

MotionTrackAppView.cpp 
MotionTrackAppView.h 

An App View (Application View) object that 
displays data on the screen. 

MotionTrack.rss A resource file.  This describes the menus and 
string resources of the application. 

MotionTrackVideoEng.cpp 
MotionTrackVideoEng.h 

An implementation of MCameraObserver 
Class, which must be implemented if the 
application needs to use the Camera function. 

 

4.3.1 Class Structure 

The camera API interface diagram for our MotionTrack application is 
shown below: 

 

 
The required asynchronous virtual methods of the CCamera class are 

implemented in the MotionTrack classes. 

ECam 
(Implementation 

Class) 

CCamera 
(Interface Class)

CMotionTrack 
(application) 
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  A class diagram for the MotionTrack application is shown below: 

CBase 

CCoeAppUiBase

CApaApplication CApaDocument CoeAppUi CCoeControl

AppDllUid() CreateAppUiL() HandleCommandL() Draw() 

CEikApplication CapaDocument:CEikDocument CEikAppUi 

CreateDocumentL() CreateAppUiL() HandleCommandL() 

 

     

CAknApplication CAknDocument CAknAppUi 

CMotionTrackApplication CMotionTrackDocument

CreateAppUiL() AppDllUid() 

CreateDocumentL() 

MCameraObserver 
CMotionTrackAppUi CMotionTrackAppView

ReserveComplete() 
HandleCommandL() 

PowerOnComplete() 

ViewFinderFrameReady() 

ImageReady() 
CVideoEngine 

FrameBufferReady() 

HandleCommandL() 

Feature() 

Draw() 

BlockMatching() 

ChangeAlgorithm() 

ResetSettings() 
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This diagram shows the classes implemented by MotionTrack 
appli es are 

 

 

4.3.2 Reserving Camera 

n use the camera, it must reserve the 
appli t must 

  
The UML sequence diagram below shows how the camera reservation 

is ma

cation, and which files implement those classes.  All the class
derived from CBase.  CBase has a number of useful features: it initialises
all member data to zero, it has a virtual destructor, and it implements 
support for the Symbian OS cleanup stack. 

Before the application ca
cation.  The camera reservation includes two phases.  First i

reserve, after the reservation is succeeded, the camera power must be 
switched on. 

de. 

 

 
 

framework CMotionTrackAppUI CMotionTrackAppView CVideoEng CCamera

1. ConstructL() 

2. Reserve() 

3. ReserveCompleted()

4. PowerOn() 

5. PowerOnCompleted(aError) 

6. StartViewFinder- 

) 

7. ViewFinderFrameReady(CFbsBitmap) 

BitmapsL(ImageSize

8. DrawImage(CFbsBitmap) 

9. Draw() Loop until application is closed 
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Function Description 

1 
AppUi calls the ConstructL method of the class CMotionTrack

CVideoEngine. 
 

2 

he CVideoEngine sends the asynchronous reserve request to the T
camera.  If the camera is not yet reserved, the camera reserve 
session identification is stored. 
 

3 

he client will give the reservation answer to the overloaded Camera T
API method ReserveComplete.  In the case of success reservation, 
the error code is KerrNone.  In the other cases the error code is 
KerrNoMemory or KerrInUse. 
 

4 
ext the CVideoEngine sends the asynchronous power on request to N

the camera. 
 

5 

 the power on request was successful, the answer KErrNone arrives 

successfully performed, the 

If
to the PowerOnComplete method.  In the other cases the error code 
is KErrNoMemory or KerrInUse.   
If both reservation and power on are 
camera is reserved for the application. 
 

6 
he CVideoEngine sends the asynchronous start viewfinder request T

StartViewFinderBitmapsL to the camera. 
 

7 

 the start command was successful, the camera API sends an 
very 

If
asynchronous answer to the ViewFinderFrameReady function e
time bitmap frame captured by the camera is ready.  If the start 
command was fail, the camera API sends the error code 
KErrNotSupported, KErrNotReady or KErrNoMemory. 
 

8 
he camera client draws the captured image onto the display with the T

AppView method DrawImage. 
 

9 
he framework updates the final display when the draw functions of T

the AppUi are complete.   

7 - 9 
This loop will continue until the user/application sends the 
viewfinder the stop command. 
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4.3.3

pplication must release the camera.  The 
camera release has two phases: First the cam ff, 

 
w shows the function how the camera 

release is done. 
 

 Releasing Camera 

After finished using it, a
era power must be switched o

and then the camera can be released. 

The UML sequence diagram belo
  

CVideoEng CCamera

2.  Release() 

1.  PowerOff() 

 

Function Description 

1 
The AppUi sends the 
camera. 

synchronous power off request to the 

2 
The AppUi sends the synchronous release request to the 
camera. 

 

4.3.4 Reset Contrast, Brightness and Exposure Mode of camera 

are all “Auto”. 

tely, 

 

 

The camera default settings for contrast, brightness and exposure mode 
 That means the contrast, brightness and exposure level of 

the image frame may change from time to time.  If either the contrast, 
brightness or exposure level of the previous video frame and the video 
current frame are different, the motion tracking algorithm will have 
significant error.  Therefore, we need to fix all these levels and fortuna
most Symbian phones do support this function, e.g. Nokia 6600. 
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 Function Description 

1 method.  This creates the App UI object and returns a 
The framework calls the Document object's CreateAppUiL 

pointer to it. 

2 
The AppUi uses the ResetSettings method of the class 
CVideoEngine to restore the default settings of the camera. 

3 
The ResetSettings method uses the SetBrightnessL method of 
the class CCamera to fix the brightness of the image to 
certain value.   

4 
The ResetSettings method uses the SetContrastL method of 
the class CCamera to fix the contrast of the image to cer
value. 

tain 

5 
The ResetSettings method uses the SetExposureL method of
the class CCamera to fix the exposure mode to certain value. 

 

 

CMotionTrackAppUI CVideoEng CCamera 

1.  CreateAppUiL() 

2. ResetSettings() 

Framework 

3.  SetBrightnessL(Tint) 

4.  SetContrastL(Tint) 

5.  SetExposureL(Tint) 

May have KErrNotSupport 

error for some Symbian 

phones 
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4.3.5 Running the Block Matching Algorithm 

framework CMotionTrackAppUI CMotionTrackAppView CVideoEng 

3.  ViewFinderFrameReady(CFbsBitmap)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.  Draw() 

Loop until application is closed 

1. HandleCommandL(TInt) 

2. ChangeAlgorithm(TInt) 

4.  Feature(CFbsBitmap, TPoint) 

5.  BlockMatching() 

6.  DrawImage(CFbsBitmap) 

Called when first start / 

tracking object out of range

LYU0404: Mobile Motion Tracking using Onboard Camera                           Page 36 



Department of Computer Science and Engineering, CUHK      2004-2005 Final Year Project Report 

Function Description 

1 
The user selects the Algorithm Name item from the Algorithm 
menu.  The aCommand command arrives through 
HandleCommandL to CMotionTrackAppUi module.   

2 
lls the ChangeAlgorithm method of class The App Ui ca

CVideoEngine to specify which block matching algorithm to 
use for motion tracking. 

3 e 
The camera API sends an asynchronous answer to the 
ViewFinderFrameReady function every time bitmap fram
captured by the camera is ready. 

4 

If motion tracking is the first time to start or the currently 
ngine 

d.  
lls out of the range that can 

tracking object can’t be tracked anymore, the CVideoE
run the feature selection algorithm by calling Feature metho
Object can’t be tracked when it fa
be captured by the camera 

5 
The CVideoEngine run the Block Matching algorithm to track
the motion of feature block found by the feature selection 
algorithm. 

 

6 
 captured image onto the display with the The camera client draws the

AppView method DrawImage. 

7 
The framework updates the final display when the draw fu
the AppUi a

nctions of 
re complete. 
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Chapter 5: Motion Tracking  

Motion tracking is the process of determining the values of motion vector.  
Given a set of images in time which are similar but not identical, motion tracking 
identify the motion that has occurred (in 2D) between different images.  Motion 
tracking techniques are classified into four main groups [17]: 

1. gradient techniques 
2. pel-recursive techniques 
3. block matching techniques 
4. frequency-domain techniques 

 
Gradient techniques are typically used for analysis of image sequences.  
Pel-recursive techniques are applied in image sequence coding.  Frequency-domain 
techniques are based on the relationship between transformed coefficient of shifted 
image, and they are not widely used for image sequence coding.  Finally, block 
matching techniques, based on the minimizations of a specified cost functions, are the 
most widely used in coding application.   
 For motion tracking, gradient techniques (which will be discussed later) and 
block-matching techniques are commonly used.  In our project, we use the 
block-matching techniques for motion tracking. 
 

5.1 Characterization of the motion 
  

Before discussing in more details motion tracking techniques, the notion of 
motion should be clarified in the framework of image sequence processing. 

 
Formulation in terms of either instantaneous velocity or displacement is 

possible.  The instantaneous velocity v of a pixel and its displacement d are 
related by a constant ∆t which correspond to the temporal sampling interval.  
Consequently, in this case these two quantities are interchangeable.  We adapt 
the formulation in term of displacement and thus when we talk about motion 
vector, we refer to displacement. 
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5.2 Block-Matching Motion tracking 

 
These algorithms estimate the amount of motion on a block by block basis, 

i.e. for each block in the previous frame, a block from the current frame is found, 
that is said to match this block based on a certain criterion.   
 

Current Frame

Motion Vector

 

5.2.1 

T
block 
second
second
of the 
directi

 
LYU0404: Mobile M
Previous Frame 

 
Figure 5.1 Block matching 

Principle of Block-Matching Motion Tracking 

he image is divided into small rectangular blocks.  For a selected 
in the image, it tries to find a similar block with same size in the 
 image.  It searches some neighborhood of some given points in the 
 image.  The assumption is that motion in the frame will cause most 
pixels within a block to move a consistent distance in a consistent 
on. 
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Current Frame Previous Frame 

  
 
 
 
 
 
 
 
 
 

 
 
 

(dx,dy) 

The motion vector which 

corresponds to the best match 

Comparison of  

blocks 

 
Figure 5.2 Motion tracking: a block is compared against the blocks in the search 

area in the current frame. 
The motion vector corresponding to the best match is returned. 

 
The basic technique used for block-matching is a search.  It is subject 

to a tradeoff between accuracy and efficiency.  The search space is defined 
by the search range parameter, generally referred to as W, as illustrated in 
Figure 5.3 

 
 
 
 

 

 
 
 
 
 

 
 
 

One pixel 

Figure 5.3 The search area in block-matching motion tracking techniques 
The red grid is the center pixel of the block 
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The value W represents the distance between center block, and the 
edge of the search space.  W defines the numbers of evaluations of the cost 
functions that would occur in only one direction.  In the rest of the report, 
we will refer to the number of calculations of the cost function as the 
number of weights.   

 
Thus, the search space can be defined in terms of W as (2W+1) x 

(2W+1).  For example, the search ranges parameter of W = 6 would 
produce (12+1)2 = 169 weights.  Each of these weights would be the result 
of the application of a cost function, and the best one is chosen.  The 
location of the weight chosen as the best match is the motion vector. 
 

The complexity of the motion tracking techniques can then be defined 
by the three main characteristics: (1) search algorithm, (2) cost function, 
and (3) search range parameter W.   

 
For search algorithm, many fast algorithms have been developed that 

they gain their efficiency by looking at only a fraction of the weights (will 
be discussed later). 

 
For the cost function, there are a number of cost functions to evaluate 

the "goodness" of a match and some of them are: 
 

1. Mean Absolute Difference 
2. Mean Squared Difference 
3. Pel Difference Classification (PDC)  

 
Some of these criteria are simple to evaluate, while others are more 

involved.  Different kinds of block-matching algorithms use different 
criteria for comparison of blocks.  The block-matching algorithms obtain 
the motion vector by minimizing the cost functions.   

 

5.2.2 Cost Functions 

The cost function is a mapping from pixel block differences to the real 
numbers.  In other words, cost functions are used to estimate the 
differences or similarities between any two given blocks.  The smaller the 
values returned by the cost functions, the more similar the two pixel blocks 
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are to each other.  Theses cost functions have the second largest effect on 
the complexity of motion tracking.  The more intensive the function, the 
longer the search will take.  Different cost functions have different 
accuracy and time complexity. 

The Mean Absolute Difference (MAD) 

|),(),(|1),(
2/

2/

2/

2/
dyjdxiGjiF

MN
dydxMAD

n

ni

m

mj
++−= ∑ ∑

−= −=
 

Where: 

F(i,j) is the (MxN) block in the previous frame 

G(I,j) is the reference (MxN) block in current frame and 

(dx, dy) is the search location motion vector 

The MAD is commonly used because of its simplicity. 

The Mean Squared Difference (MSD) 

2
2/

2/

2/

2/
)],(),([1),( dyjdxiGjiF
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dydxMSD

n

ni

m
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The multiplications of MSD are much more computationally intense 
than MAD.  However, the square on the difference term causes the 
function to be more complex and accurate than MAD. 

 
The Pixel Difference Classification (PDC) 

 
In order to reduce the computational complexity of MSD, MAD, and 

CCF functions, Gharavi and Mills have proposed a simple block matching 
criterion, called Pixel Difference Classification [18].  The PDC functions 
is defines as: 

 

∑∑=
i j

jidydxTdydxPDC ),,,(),( 
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for (dx,dy) = {-W,W}. 
 

Then, T(dx, dy, i, j) is the binary = 1 if  tdyjdxiGjiF ≤++− ),(),(
            = 0 otherwise 
 

where t is the predefined threshold value. 
 

In this way, each pixel in a block is classified as either a matching 
pixel (T=1), or a mismatching pixel (T=0).  The block that maximizes the 
PDC function is selected as the best matched block. 

 

5.2.3 The Exhaustive Search Algorithm (SEA) 

The most obvious searching algorithm for finding the best possible 
weights in the search area is the exhaustive search, or full search.  All 
possible displacements in the search area are evaluated using the 
block-matching cost function.  Therefore, no specialized algorithm is 
required.  It is just a two-dimensional search. 

 

W

 
Figure 5.4 The exhaustive search evaluates the cost function in all locations 

in the search area 
 

The advantage of the exhaustive search is that if we evaluate all the 
possible position in the search area, we can be guaranteed that we will find 
the absolute minimum. 

  
The number of search locations to be evaluated by the exhaustive 

search is directly proportional to the square of the search range W.  The 
total number of search locations in the search area = (2W+1)2.  Therefore 
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the exhaustive search algorithm has complexity of O(W2).  As we can see, 
the size of W is very important to the speed of the exhaustive search 
algorithm. 

 
Although, this algorithm in terms of accuracy and the simplicity of the 

algorithm, it is very computationally intensive.  Fast exhaustive search 
algorithms were developed that they achieve the same quality but with less 
computationally intensive.  They are The Successive Elimination 
Algorithm (SEA) proposed by W.Li and E.Salari [11] and Progressive 
Partial Norm Matching (PPNM).  Fast exhaustive search algorithm will be 
discussed in detail in Section 5.2.5 

 

5.2.4 Fast Motion tracking Algorithms 

The complexity of motion tracking is affected by the search algorithm 
and the complexity of the selected cost function.  Apart from the 
exhaustive search algorithm which evaluates all the possible locations in a 
search area, there exists fast motion tracking algorithms.  In the case of 
fast motion tracking, only a subset of all the possible locations is evaluated. 

 
All fast searching algorithms are based on an assumption that the 

matching error monotonically increases as the search position moves away 
from the optimal motion vector.  That means the further we move away 
from the best position, the worst the match, and thus the higher the weight 
returned by the cost function.  Hence, we would expect that a bowl would 
form around the minimum, as shown in figure 5.5 [19] 

 

Figure 5.5 Weights generated by the cost function increase monotonically 
from the global minimum 

 
If we assume that the inside of the bowl is a very smooth surface, we 

will reach the minimum weight by following the direction of decreasing 
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weights.  From everyday experience, we know that if we place a marble at 
the edge of a bowl, it will roll to the center.  In the same way, if we look 
for a minimum weight adjacent to our starting position and then the 
minimum weight adjacent to that, we will in effect be directing our marble 
to the center of the bowl.  In other words if we follow the direction of 
decreasing weights, we will eventually find the minimum weight.  It is that 
assumption, that of a smooth bowl, which is the defining characteristic of 
the fast search algorithms.  Regardless of their implementation, all of the 
fast search algorithms try to find the minimum position of the bowl by 
following the gradient downward.   

 
Fast Search algorithms: 

 
1. Three-Step Search algorithm 
2. Diamond Search algorithm 
3. Conjugate Direction Search 

 
 

5.2.4.1 Three-Step Search Algorithm  

The three-step search has been proposed by Koga et al [20] and 
implemented by Lee et al.  [21].  An example of the three-step search 
algorithm is shown in figure 5.6. 

 
Step 1 

 
The Three-Step Search begins by calculating the weight at the center of 

the search area.  This is then set to the best match so far.  A starting step 
size is defined as the search range divided by two: W/2.  Using this step 
size, the 8 positions surrounding the center are searched: (0, W/2), (0,-W/2), 
(W/2, 0), (-W/2, 0), (W/2, W/2), (W/2,-W/2), (-W/2, W/2), and (-W/2,-W/2).  
The cost function of these eight locations is computed, and the resulting 
weights are compared to each other.  The location with the lowest weight 
is chosen as best match and this location will become the center position of 
the next step.  In the example of Figure 3.1, the current best location is 
(-4,-4). 
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Figure 5.6 An example of the three-step search algorithm. 

 
Step 2 
 

The step size is further divided by 2.  The cost function is applied to 
the new eight surrounding locations around the current best match in the 
horizontal, vertical, and diagonal directions.  Again, among these 9 points 
(the new eight and the current best match), the location which give the 
lowest value of cost function is chosen.  In the example of Figure 3.1, the 
new best location from step 2 becomes (-6,4). 

 
Step 3 
 

The process of calculating the eight positions around the current best 
location continues until the step size = 1.  In the example of Figure 3.1, the 
last step gives the best location (-7,5), which is the obtained motion vector. 

 

5.2.4.2 Time Complexity 

As the three-step search algorithm continuously divides the step size 
by two, and in each iteration, 8 points are calculated, the total complexity 
for the search is O(8logW).  That is O(logW). 
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5.2.4.3 Problem of fast searching algorithms 

Since all fast-search algorithms based on the assumption “The weight 
function in both the x and y directions increases monotonically as we move 
away from the minimum weight in the search area.”.  However, this 
assumption is difficult to be valid.  Consider the bowl example in figure 
5.5, if the “bowl” is not smooth and it contains local minimum.  Then the 
fast-search algorithm will not found a global minimal, instead it can only 
obtain a local minimal.   
 

Apart from this, the choice of origin of the searching window will also 
affect the accuracy.  If the origin is contained within the walls of the 
“bowl”, then by taking one step at a time, we should reach the center of the 
bowl, even if it is somewhat uneven.  However, if the origin is located at 
the rim of the bowl, then the global minimum will not be found as 
illustrated in figure 5.6. 

 

 Correct Weight never 
found.  Local Minimum 
found instead. 

 
 

 
Figure 5.6 Bowl with extended rim illustrating the problem of selecting a 

wrong origin 
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5.2.4.4 Conclusion 

In our project, we want to motion tracking to be as accurate as possible, 
so we decided not to use the fast-search algorithms.   

 

5.2.5 Fast Exhaustive Search Algorithm 

  
Since we want the motion tracking to be very accurate, we decided to 

use the exhaustive search.  However, apart from accuracy, the speed is also 
our major concern, so there is a need to improve the speed of Exhaustive 
Search.  W.Li and E.Salari have proposed a fast exhaustive search 
algorithm.  That is the SEA algorithm. 

 

5.2.5.1 The Successive Elimination Algorithm (SEA) 

 
Before we talk about the principle of SEA, we need to define some 

terms first.  The sum of absolute difference (SAD) is the most widely used 
matching criteria; the SAD of two NxN blocks X and Y is defined as  
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The SEA proposed in [11] adopted the well-known Minkowski 

inequality:  
 
                (2) |)(||)(||)()(| 22112121 yxyxyyxx −+−≤+−+

 
To derive the following inequality: 
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Where: 

X: reference block in previous frame 
Y: candidate block in current frame 
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That means if the difference between the block sum (summing all 
pixels value inside a block) of candidate Z and the block sum of reference 
block X is greater than the minimum SAD(X,Y), block Z must not be the 
best match, since its SAD must be greater than the minimum SAD(X,Y) 
based on the inequality (3). 

 
As the calculation of block sum requires only N2-1 additions and 1 

subtraction for a NxN block while calculation of SAD requires N2-1 
additions and N2 subtraction.  Thus, calculating the block sum difference is 
much faster than calculating the SAD. 

 
Then, by calculating the block sum difference first, we can eliminate 

many candidates block before the calculation of SAD.  Therefore, the 
speed of the block matching algorithm is increased. 

 

5.2.5.2 PPNM (Progressive Partial Norm Matching) 

After the SEA has been proposed, another algorithm is proposed to 
improve the speed of exhaustive search algorithm.  That is the PPNM 
which is commonly used in video coding standard H.264. 

 
The concept of PPNM is very similar to SEA.  PPNM also makes use 

of the Minkowski inequality to derive a matching criterion.  The criterion 
further eliminates invalid candidate blocks before calculating the SAD of 
the blocks. 

 
  Based on the Minkowski inequality,  
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    Figure 5.7 Different size of sub-blocks 
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From the above inequality, we can derive the following inequality, 
 

),(
min

4141 YXSADYXYX xx =−>− ∑∑ 
 
 
In the example of Figure 5.7 , PPNM calculates the sum of difference of the 1xN 
norms between two block X and Z.  If the sum is larger than the minimum 
SAD(X,Y), the SAD(X,Z) must be greater than the SAD(X,Y). 
 
 PPNM further eliminates the invalid candidate blocks with the expense of higher 
computation load than SEA. 
 
 In conclusion, by using the following inequality, many invalid candidate blocks 
are eliminated.  Besides, there exists fast method for calculation of block sum (which 
will be discussed later).Thus further increases the speed of the exhaustive search.   
 
 
 

44344214444 34444 2144 344 21
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5.3 Fast Calculation of Block Sum 

 

5.3.1 Objective 

In SEA algorithm, we need to calculate the block sum in the current 
frame in order to compute this matching criterion. 
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),(  term is the sum of pixel values in the previous block.  

Since there is just one previous block, this block sum can be reused every 
time the matching criterion is computed. 
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),(  term is the sum of pixel values in a block in the current 

frame.  The simplest way to calculate this term is that for each block, we 
calculate the sum of pixel values inside that block.  This method is 
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simplest yet inefficient.  Since blocks inside the search window are 
overlapping to each other, sum of the overlapped pixels is redundant and 
wasting time.  There is a better way to calculate the sum without adding 
the pixels redundantly.   

5.3.2 Methodology 

 

 
Figure 5.8 

Consider Figure 5.8.  There are two blocks, the first block has pixel 
1-9, and the second block is the neighbor of the first block, it has pixel 4-12.  
The two blocks are overlapping with pixel 4-9 common to each other.  
First block sum is calculated by adding pixel 1-9.  Second block sum can 
be calculated by adding pixel 4-12, but it is actually redundant to add pixel 
4-9 as the sum of these pixels have already be calculated in the first block 
sum.  This sum process involves 8 addition operations.  A more efficient 
method is to make use of the first block sum.  First block sum is the sum 
of pixel 1-9.  If we subtract pixel 1-3 from the first block sum and add 
pixel 10-12 to it, we yield the second block involving only 6 addition and 
subtraction operations.  Again, subtracting pixel 1-3 one by one is not 
efficient enough since sum of pixel 1-3 has also been calculated in first 
block sum.  To further reduce the operation required, we can store the 
pixels in column with the expense of using larger memory storage.  The 
increase in speed is best observed when the block size is large, so we use a 
larger block size as an example. 

 

Figure 5.9 

 
LYU0404: Mobile Motion Tracking using Onboard Camera                           Page 51 



Department of Computer Science and Engineering, CUHK      2004-2005 Final Year Project Report 

Consider Figure 5.9.  The summation of the column i of pixels are 
stored in the first column and the sum is denoted by Norm[i] where i = [0,8].  
To calculate norm[0] to norm[5], 29 addition and subtraction operations are 
required.  First block sum can be calculated by adding norm[0] to norm[4], 
involving 4 more additions.  Second block sum can be calculated by 
adding norm[5] and subtracting norm[0] from the first block sum, involving 
2 more addition and subtraction operations only.  In total, calculation of 
the first 2 block sum involves 35 addition and subtraction operations.  If 
simplest method is used, 58 (= 29 x 2) addition and subtraction operations 
are needed.  Thus the fast method requires 23 operations less.  
Calculation of the remaining block sums in the same row follows the same 
step as that in calculating the second block sum.  To calculate the block 
sum of the second row, the sum we have calculated in the first row can also 
be used. 

 
Figure 5.10 

Consider Figure 5.10.  To calculate the second row block sum, each 
norm is added one pixel below and one pixel above that column.  Then the 
process used to calculate first row block sum is repeated in the second row, 
then third row, until all block sums are calculated. 

 

5.3.3 Advantage to SEA and PPNM 

As discussed above, fast calculation method involves less computation 
operations than the simplest method.  Thus the computation time required 
to calculate block sum is reduced and it greatly improve the speed of SEA 
algorithm.   

 
Apart from improving the speed of SEA algorithm, it can also greatly 

improve the speed of PPNM algorithm.  In PPNM algorithm, the following 
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matching criterion is needed to be computed. 
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),(  term, again, need to be calculated once and then reuse every 

time the matching criterion is computed. 
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),(  term is the sum of pixel values in one of the column in a 

block.  This sum is exactly the norm of the block we calculated during the 
fast calculation of block sum.  Therefore, if we keep the norm value in 

form of a 2D array, we can use that value as the  term and thus 

less computation is required to compute the sum of pixel values in that 
column again. 
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5.3.4 Disadvantage 

The only disadvantage of fast calculation of block sum method is that 
it increases the memory storage requirement.  To facilitate the SEA 
algorithm, a (DY+DY+1) x (DX+DX+1) large block sum array is required.  
To facilitate the PPNM algorithm, another (DY+DY+1) x 
(DX+DX+BW+BW+1) large norm array is required.  However, this 
increase in memory storage requirement is not significant when the search 
window size and the block size are both small. 
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5.4 Summary 
  

The SEA and PPNM form a decision tree that eliminates about 50%-70% of 
invalid candidate blocks.  The speed of the exhaustive full search is increased 
by nearly 3 times! 

 

updateupdate

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

….

SAD SAD SAD

….

SAD….

Search range=2W+1

SEA

Tree pruning decision

PNSA

The smallest SAD

Total No of candidate Block: (2w+1)2

SEA < PNSA < SAD

SEA < PNSA < SAD

Probability of eliminating invalid candidate 
block:

Computation Load:

5.5 The Motion tracking Hypothesis 
 

The previous chapter is dedicated to the current algorithms designed for 
motion tracking, while this chapter analyzes the underlying theory of motion 
tracking.  We recall that motion tracking is the process used to discover the 
closest matching block, in the search area of the reference frame. 

 

5.5.1 The Motion tracking Assumptions 

If we attempt to describe the pitch of the motion tracking, we seem to 
generate three distinct concepts.  Following definition of each of these 
ideas, we will expand on them to extract their implications. 
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5.5.2 Proximity Translation 

The first of the concepts is a consideration of the physical properties of 
motion video sequences.  Motion is communicated by translation of a 
group of pixels which resides in close physical proximity to one another.  
We refer to this definition as the Proximity Translation Hypothesis, and it 
forms the basis for block matching algorithms. 

 
  
 
 
 
 
 
 
 

Figure 5.11 illustrating the proximity translation hypothesis. Motion is 
communicated by the translation of a group of pixels. 

 
Very often, large solid objects exist in their entirety and their 

components move in a predictable fashion.  Namely, all parts of the bottle 
will be moving as the same rate since they are all attached, as illustrated in 
Figure 5.11. 

 

5.5.3 Intensity Stability 

In order for block matching to work, we assume the intensity of objects 
remain unchanged during translational motion.  Of course, the same 
argument can be made for inanimate objects appearing in the video 
sequence.  It is common that the intensity of objects changes only slightly 
for a small translational movement. 
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Figure 5.12 illustrating the intensity stability hypothesis. 

Each region of pixels translates with little change in intensity or relative position. 
 

5.5.4 Linear Motion Hypothesis 

In most of the cases, we can assume that motion can be considered as 
relatively linear over short period of time.  This means that an object will 
have a smooth continuous motion as it moves.  It is quite believable that a 
driver would choose to drive continuously rather than applying the gas and 
brake in quick succession.  This means that the car has a smooth 
continuous motion as it moves.  The implication this produces is that if 
motion occurred at the rate of two pixels per frame between frames one and 
two, it is not unreasonable to assume that a motion of two pixels per frame 
may continue through frames two and three, three and four, etc.  Though 
this may not last for extremely long in terms of seconds, linear motion may 
last over a period of several frames. 

 
Base on the linear Motion hypothesis, we invent a new method 

“Adaptive Search Window” which increases the speed of the block 
matching algorithm. 
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5.6 Optical Flow 
 

Apart from block matching, there is another method for motion tracking -- 
Optical Flow. 

In this chapter, we will discuss briefly how optical flow work and explain 
why we choose block-matching algorithm instead of optical flow for motion.   

 

5.6.1 Overview of Optical Flow 

Optical Flow is defined as the apparent motion of brightness pattern in 
an image.  That is the velocity field of every pixel.  This is illustrated by 
the Figure 5.13 below.  The sphere is rotating from left to right, generating the 
optical flow field shown in the center. 

 

Figure 5.13 Illustration of Optical Flow 
 

Optical flow is very similar to motion field, but it is not equal to 
motion field.  Ideally, it will be the same as the motion field, but this is not 
always the case. 

 

5.6.2 Motion Fields 

A velocity vector is associated to each image point, and a collection of 
such velocity vectors is a 2D motion field.  It tells us how the position of 
the image of the corresponding scene point changes over time.  It is the 
projection of 3-D velocity field onto image plane.  In figure 5.11, a point 
po on a object moves with a velocity vo, then the image point pi can 
assigned a vector vi to indicate its movement on the image plane 
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Figure 5.14 Object motion creates a motion field on the 2D image plane 

 

5.6.3 Difference between Optical Flow and Motion Field 

The difference between Optical Flow and Motion Field can be 
illustrated as follow.  Consider a perfectly uniform sphere.  There will be 
some shadow on the surface.  When the sphere rotates, such shading 
pattern won’t move at all.  In this case, the apparent motion of the 
brightness pattern is zero, thus the optical flow is zero, but motion field is 
not zero. 

 

 

   
 
 
 
 
 
 

Figure 5.15        Figure 5.16   
 
 

In figure 5.15, the image intensity of the object changes due to the 
moving light source, so there is optical flow.  However, the scene objects 
do not move, so there is no motion field.  For figure 5.16, the scene object 
moves, so there is motion field.  However, the image intensity does not 
change, so there is no optical flow. 
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5.6.4 Optical flow computation 

There are three approaches to calculate the optical flow: the 
gradient-based approach, the correlation-based approach, or the 
spatiotemporal energy-approach.  In this session, we will briefly explain 
the principle by using gradient-based approach. 

One of the most important feature of optical flow is that it can be 
calculated simply, using local information.  Let I (x, y, t) be the brightness of 
image, which changes in time to provide an image sequence.  Firstly, there 
are some assumptions before deriving the formula of optical flow.  The 
assumptions are  
1. The change of brightness of a point to the motion of the brightness 

pattern is constant (brightness constancy assumption) 
2. Nearby points in the image plane move in a similar manner (velocity 

smoothness constraint). 
 

From the first assumption, we can obtain: 
 

I(x,y,t) = I(x+u,y+v,t+dt)  …….(1) 
 

Where 
I(x,y,t) is the brightness of the image at location (x,y) and time t. 
(u,v) is the motion field at location (x,y) and time t+dt 

  
From equation (1), it means the change of intensity w.r.t is zero, so we 

can express it in another way: 
 

0),,(
=

dt
tyxdI  

 
By chain rule, it can be shown that 
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From equation (2), it indicates that the velocity (u,v) of a point must lie 

on a line perpendicular to the vector (fx,fy) as illustrated as figure 5.17. 
 
 

v  

(fx,fy)  
fxu+fyv+ft=0  

 
 u
 
 

Figure 5.17 geometric explanation of equation (2) 
 

Thus, the local constraints provide one linear equation in the variables 
u and v.  As a result, the velocity (u,v) cannot be determined locally 
without applying additional constraints as illustrated by figure 5.18 

 
LYU0404: Mobile Motion Tracking using Onboard Camera                           Page 60 



Department of Computer Science and Engineering, CUHK      2004-2005 Final Year Project Report 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.18 aperture problem 
   
 
 

As we can see from the above figure, we know that the green point 
should move to a point on the line, but we don’t know which one.  This is 
known as aperture problem. 

 
If we want to find a unique solution for equation (2), we need to have 

another constraint, which is the second assumption -- The neighboring 
pixels in the image should have similar optical flow.  Therefore, u and v 
need to have low variation with its neighboring pixels, so we set (u-uav) = 0 
and (v-vav) = 0 where uav and vav are the average of neighboring pixels’ 
velocity. 

 
In order to find a (u,v) that is as close as possible to the linear equation 

(2) and also is locally smooth, we can use the Lagrange multipliers to 
minimize the flow error  

 
E2(x,y) = (fxu + fyv + ft)2 + λ 2[(u- uav)2 + (v- vav)2] 

 
Differentiating this equation w.r.t u and v provides equations for the 
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change in error, which must be zero for minimum. 
 

Thus, by differentiating the flow error w.r.t u and v, this gives: 
 

txavyxx ffuvffuf −=++ 222 )( λλ  

 

tyavyyx ffvvfuff −=++ 222 )( λλ  

 
Solving the two equations gives 

 

D
Pfxuu av −=  ……(5.34) 

  

D
Pfyvv av −=  …….(5.35) 

 
where 

 
   ftfyvfxuP avav ++=  

    222 fyfxD ++= λ

 
We can solve equation 5.34 and 5.35 iteratively by using Gauss-Seidel 

method. 
Algorithm 3.4: Optical Flow [Horn and Schunck 1980] 
k=0; 
Initialize all uk and vk to zero. 
Until decrease in flow error is negligible, do  

 

D
Pfxuu k

av
k −= −1  …………… (5.36) 

D
Pfyvv k

av
k −= −1      …………… (5.37) 

 
The derivates of brightness fx,fy and ft can be obtained from a 

sequence of frames 
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5.6.5 Comparison between optical flow and block-matching 

 
In term of speed, optical flow is usually faster than block-matching, 

because the motion vector is calculated by the formulas 4.44 and 4.45.  It 
can be solved iteratively and usually, the number of iteration is smaller than 
the number of candidates block that need to be evaluated for 
block-matching.   

 
In term of stability, block-matching is better than optical flow.  

Stability here means that for block-matching, it is more resistant to lighting 
effect (including shadows, reflections, and highlights) while the optical flow 
is more susceptible to lighting effect.  This is because optical flow is 
derived based on the assumption that the intensity of a pixel in the pattern is 
constant.  Although block-matching is also based on the intensity stability 
assumption, the effects of lighting have less influence on block-matching 
algorithm.  It is because block-matching algorithm considers a block of 
pixels, thus it is less susceptible to the lighting effects.  Therefore, optical 
flow requires a stable environment to work fine. 

 
In term of type of movement, optical flow can only measure small 

movement while block-matching can also measure large movement, 
depending on the search range.  It is because for the brightness constancy 
assumption I(x,y,t) = I(x+u,y+v,t+dt) to be true, dt usually is small.  
Therefore, for a large movement, usually this assumption will not hold.  
Comparing to optical flow, block-matching is less susceptible to lighting 
effect, so it can measure large movement. 
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Finally, we summarize the differences between the optical flow and 
block-matching by table 5.16 

 
 

 Optical Flow Block-Matching 
Speed Faster Slower 
Stability Less stable (affected by 

lighting effect) 
More stable (less 
affected by lighting 
effect) 

Movement 
measure 

Small movement Small and Large 
movement 

Floating point 
operations 

Yes No 

Table 5.16 Differences between optical flow and block-matching 
 

5.6.6 Conclusion 

We decide to use block matching instead of Optical Flow, because in 
the calculation of Optical Flow, it involves a lot of floating point operations.  
Recall from chapter 2 that Symbian phones don’t not have dedicated 
floating point unit.   

 
Moreover, Optical Flow is affected more by the effects of lighting 

while the block-matching is more resistant to these effects.  As we want 
the motion tracking to be worked in different environment, we choose 
block-matching for our project instead of optical flow. 

 
Adaptive Spiral SEA PPNM PDE SSD Algorithm  

5.7 Partial Distortion Elimination 
 

Unlike fast search algorithm, which only examine a few candidate blocks in 
order to determine whether it is the optimum block, full search algorithm ensure 
all candidate blocks in the current frame will be examined and the block with 
highest SAD inside the search window will be selected.  However, there exist 
some fast full search algorithms which can search for the highest SAD block 
faster yet still ensure all blocks are examined.  One of these algorithms is the 
partial distortion elimination (PDE) algorithm, which is excellent in removing 
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unnecessary computations efficiently.  The PDE technique has been widely 
used to reduce the computational load in full search algorithm. 

 

5.7.1 Methodology 

PDE algorithm improves the speed of searching in shortening the 
calculation of Square of Absolute Difference (SAD) between each currently 
matching block with the previous block.  Its main objective is to use the 
partial sum of matching distortion to eliminate impossible candidates before 
complete calculation of SAD in a matching block.  That is, if an 
intermediate sum of the matching distortion is larger than the minimum 
value of the SAD at that time, the remaining computation for the SAD is 
abandoned.  The SAD of the matching block is calculated by: 
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The kth partial sum of matching distortion is calculated by: 

∑∑
= =

≤=++−=
k

i

N

j

WyxandNkwhereyjxiYjiXyxPSAD
1 1

|,|,...,3,2,1|),(),(|),(  

 
W represents the size of search window and N the matching block size.  

Usually, the SAD of a block is obtained by adding the pixels inside the 
block in row by row basic.  We can check if the partial sum of matching 
distortion exceeds the current minimum SAD after each row is added to the 
PSAD.  Remaining calculation will be quit if PSAD(x, y) > SAD(x, y) and 
this impossible candidate block is eliminated from consideration. 

   
Checking PSAD(x, y) > SAD(x, y) can be done every time after a pixel 

is added to the PSAD(x, y) or after a row of pixels is added.  The latter 
scheme is preferred because the code overhead of checking PSAD(x, y) > 
SAD(x, y) is too large.  If the block width and block height is N, the 
former scheme costs at most N2 – N comparison operations more than the 
latter scheme while the former scheme can at most stop the remaining 
calculation 3N addition operations earlier than the latter scheme.  For large 
N, N2 – N is much larger than 3N.  Since the cost outweighs the advantage, 
the latter scheme is used instead. 
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5.7.2 Result 

From the experimental result we have done on OpenCV program, PDE 
algorithm is faster than exhaustive search algorithm (ESA) by 3 times on 
average.  PDE algorithm does not increase the memory storage 
requirement, does not involve complex operation and does not increase 
code overhead much, yet it can effectively remove the impossible candidate 
blocks during calculation of SAD.  Any algorithm that requires the 
calculation of SAD can incorporate with PDE to improve its speed in 
matching optimum block.  And because this algorithm just affects the 
calculation of SAD, it is compatible with other type of algorithms, such as 
SEA and PPNM. 

 

5.7.3 Possible Improvement 

The speed of PDE algorithm depends on how fast computation of SAD 
is stopped according to the partial sum of SAD.  Kim, Byun and Ahn [1] 
proposed some methods which can further reduce computations with the 
same accuracy as that of conventional full search method.  They 
mathematically derived the relationship between spatial complexity of the 
previous block and the matching distortion.  In the derivation, they showed 
that the matching distortion between the current blocks and previous block 
is proportional to the image complexity of the previous block.  That is, 
larger SAD can be obtained by first calculating the matching distortions of 
the image area with large gradient magnitudes, that is, more complex area.  
Through this, unnecessary computations can further be removed.  They 
proposed to use adaptive sequential matching start with the left, right, top or 
bottom and row vector based matching in which matching order is 
determined by the image complexity.  The PDE algorithm with adaptive 
sequential matching and row vector based scan can be expressed as follows: 

 

Figure from reference paper [1] 
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Experimental result from reference paper [1] 

 
The above table is the experimental result done by Kim, Byun and Ahn.  

The sequential, dither and complexity algorithms are the modified PDE 
algorithms.  Original PDE algorithm has about 30% computation reduction 
over the original FS algorithm.  The sequential and dither PDE algorithms 
have a bit better reduction than the original PDE algorithm while the 
complexity PDE algorithm shows greater improvement in reduction.  
However, the code overhead of using complexity is high and the 
implementation is complex, the actual improvement of speed may be not so 
high.  We haven’t incorporated this kind of adaptive matching scan 
method into our algorithm because of its complexity in implementing, but 
later we may try improving PDE algorithm using this method. 

 

5.8 Adaptive Search Window 
 

In the implementation of video compensation and coding, each block in 
previous frame has fixed position and the object tracked by each one varies from 
frame to frame.  At frame 1, a block is tracking object A; however, at frame 2, 
that block may be tracking object B which motion is totally different from object 
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A.  Since each block does not track the same object, it is useless for it to carry 
history for the motions of its tracking objects. 

  
In our application, on the contrary, it is very useful to carry history of the 

motions.  In contrast with tracking objects in a frame, our goal is to track the 
motion of the camera.  If we reasonably assumed the things captured by the 
camera do not move, when the camera moves, all these things move together 
with about the same displacement.  Therefore, the whole frame can be regarded 
as one object.  With this assumption, block at any position in the previous frame 
actually tracks the motion of the same object.  Thus, history of motions is 
always useful to any candidate block. 

 
Conventionally, search window is defined as a rectangle with the same 

center as block in previous frame, extended by W pixels in both directions.  
This definition is reasonable but it can be improved based on the history of 
motions.  With the history, search window can be newly defined as a rectangle 
with its center being predicted from the previous motion vector and the previous 
block position.   
 

5.8.1 Methodology 

 
DLPLP
vvv

+−= ')1(  … (5.38) 
 

P: Predicted Displacement of object 

P’: Previous Predicted Displacement of object 

L: Learning Factor, range is [0.5, 1.0] 

D: Previous Displacement of object 

 

The next displacement of object is predicted using exponential 
averaging over previous displacement and previous predicted displacement 
of the object.  The previous predicted displacement is involved to predict a 
new displacement in order to reduce the effect of detection error which may 
exist in the previous displacement returned from the algorithm.  That is, if 
the object is detected to be moving to the left for a while, a sudden detection 
telling that it is moving up will not cause the search window to shift upward 
too much because it is usually due to detection error.  But if there is a 
second detection telling that it is still moving up, the search window will 
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shift upward much more.  It is because the past previous displacement and 
previous displacement affect the predicted displacement seriously.  
Therefore, if the frames captured by a camera are noisy, the learning factor 
should be set to a low value, say 0.5, so that a detection error will not affect 
the search window much.  If the frames are not so noisy, the learning 
factor can be set higher, say even 1.0, so that predicted displacement solely 
depends on the previous displacement. 

 

5.8.2 Comparison with conventional method 

 
Figure 5.19 

To evaluate the performance of the adaptive search window method, 
we used web camera to track the motion of an object and plot a graph 
(Figure 5.19) showing its x-axis velocity against time.  The data points are 
collected when we run the Adaptive Spiral SEA PPNM PDE SAD 
Algorithm.  The velocity means how many pixels the object has moved, 
positive value means it is moving to the right direction, negative value 
means to the left.  The algorithm is run every second, thus the velocity just 
equals the magnitude of the x-component of the motion vector.  The object 
is moving to the left and right periodically, thus the curve move up and 
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down.   
 The search window size is 41 x 41 and the magnitude of the motion is 
40 pixels/s, so all the true optimum points fall within the conventional 
search window.  In this case, although the conventional search window 
method is possible to find the true optimum point on every run, the speed of 
the algorithm will not be high, it is because the average magnitude of the 
object’s velocity is high, which means the distance between the optimum 
point and the initial search center is long and therefore minimum SAD is 
found only after many computations. 

 
Considering the Figure 5.19, if the search window size is set to 20 x 20, 

conventional search window method will definitely can’t find some true 
optimum points on some runs of algorithm since the true optimum point 
falls out of the search window at some points, say at time=80s.  For the 
same search window size, the adaptive search window method does not 
have this error. 

 
Figure 5.20 

The displacement of the object is predicted using the equation (5.38) 
with L=0.5 during the motion tracking, the graph of predicted velocity 
(=displacement) over time is plotted on the Figure 5.19 to give Figure 5.20.  
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The two curves look similar and difficult to analyze, thus another graph 
showing the difference between the two curves is plotted. 

 
Figure 5.21 

 Figure 5.21 is a graph showing the relative velocity between predicted 
velocity and actual velocity over time.  The maximum magnitude of the 
curve is below 20 pixels per second.  The true optimum point always falls 
into the search window and thus no serious detection error would result 
even if the search window size is 20 x 20.  Moreover, the average 
magnitude of the object’s velocity is relatively lower, which means the 
distance between the optimum point and the initial search center is shorter 
and thus less computation is required. 
 
 Figure 5.22 is a graph showing the relative velocity over time using 
different learning factor.  Since noise in the image captured by web camera 
is not too high, large learning factor generally gives better prediction of 
motion.  From the graph, point curve with learning factor = 1.0 is always 
the closest one when compared with other curve with learning factor = 0.5 
and 0.8.  Thus, on PC, learning factor = 1.0 can be used, while on mobile, 
since the noise in the image captured by the camera on mobile phone is 
relatively higher, a bit lower learning factor can be used. 
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Figure 5.22 

 

5.8.3 Constraint of each method 

Accuracies of both methods are motion dependent.  Based on the size 
of the search window, we can represent a constraint on the velocity of object 
by an equation.  Unsatisfying this constraint leads to detection error.  For 
the conventional search window method, the constraint for the object’s 
velocity can be represented by: 

 
 | Velocity | < W pixels/s … (5.39)  

Where W is half of the search window width/height provided that the algorithm run 

every second. 

 

   For the adaptive search window method, the constraint becomes: 
 

|Relative Velocity | < W pixels/s or | Acceleration | < W pixels/s2 … (5.40) 
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5.8.4 Analysis 

1. When velocity of object is low, both the conventional and adaptive 
methods will not have detection error. 

2. When velocity is high, conventional method can’t ensure the result is 
the true optimum point while adaptive method can ensure provided that 
the object is not accelerating fast at the same time.   

3. When acceleration is high, conventional method will not have 
detection error if the velocity can be kept lower than W pixels/s while 
adaptive method will have detection error.  But conventional method 
will also have detection error if acceleration is higher than 2W 
pixels/s2 since final velocity would definitely be higher than W pixels/s.  
Thus, conventional method can’t ensure the result is the true optimum 
point when acceleration is high, either. 

 
The most important issue is how these constraints affect users’ 

movements.  Considering a user is holding a camera-equipped mobile 
phone and moving it.  If conventional method is used, we concern 
constraint (5.39), which means user must move slow enough in order to 
ensure accurate motion detection.  This is not desirable to user and very 
inconvenient to use.  If adaptive method is used, user can move as fast as 
he wants but the acceleration must not be high, which is relatively easier to 
achieve and more desirable.  If user does not shake the phone rapidly, 
natural motion of hand normally does not have too high acceleration.  In 
order word, adaptive method allows user to move in a more natural way. 

  

5.8.5 Conclusion 

If user moves naturally with small acceleration, adaptive search 
method has two advantages over the conventional one.  Firstly, it increases 
the chance of finding the true optimum point.  Secondly, it reduces the 
computation steps, especially if spiral scan method is used together.  Since 
in spiral scan method, previous block will first match the center region of 
the adaptive search window, which is highly probably to contain the true 
optimum point.  As distance between the starting search point and the true 
optimum point becomes shorter, the previous block can match the block at 
optimum point earlier and thus the computation steps is reduced.  The 
detail of spiral scan method is discussed in the next section. 
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5.9 Spiral Scan Method 

 

5.9.1 Raster Scan method 

 Commonly used block scanning method in the field of video 
compensation and coding is the “Raster Scan” method.  That is, when we 
use the previous block to find a best match in the current frame, we 
calculate the Sum of Absolute Difference (SAD) of the previous block with 
the current block C00 at the left top position first, and then calculate that 
with the current block C01 with center one pixel next to C00 in the same row.  
This process repeats until all SAD of the current block in the first row is 
calculated.  Then the process repeat in the next row until all SAD of 
current block in the search window is calculated.  In short, it scans from 
top to bottom, from left to right.  The advantage of this method is that it is 
very simple to implement and code overhead is very small. 

 

5.9.2 Analysis 

The order of scanning can affect the time to reach the optimum 
candidate block.  When SEA, PPNM and PDE method are used, this 
property can affect the amount of computation.  The reduction of 
calculation in obtaining the motion vector with these algorithms depends on 
how fast the global minimum of SAD is detected.  If we find the global 
minimum in the calculation of the matching error faster, complete 
computation of the matching error in a block is avoided more.  In PDE 
method, calculation of the SAD stop if the sub-blocks SAD between the two 
block is already larger than minimum SAD.  If optimum candidate block is 
reached earlier, global minimum SAD will be found earlier.  For each 
current block, a smaller sub-block SAD is already larger than the minimum 
SAD, thus calculation of SAD stop earlier and amount of computation is 
reduced.  In SEA method, impossible candidate block is eliminated before 
its PPNM and SAD are computed based on the following criterion: 
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Thus global minimum SAD found earlier leads to less computation on 
PPNM and SAD.  In PPNM method, impossible candidate block is 
eliminated before its SAD are computed based on the following criterion: 
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In order reach the optimum candidate block earlier, candidate blocks 
with higher probability to be an optimum block should be reached first.  If 
all candidate blocks have equal probability to be an optimum block, order of 
scanning doesn’t matter.  But if candidate block at the center region of the 
search window has a higher probability to be an optimum block, scanning 
the center region first highly improves the speed of our algorithm.  This is 
our motivation to use spiral scan method as the block scanning method. 

 

5.9.3 Spiral Scan Method 

Instead of starting at the left top position, we can start finding the SAD 
at the center of the search window first, then finding the SAD at position 
that are 1 pixels away from the center, then 2 pixels away from the 
center, …etc.  When adaptive search window method is used, most of the 
motion vectors are center biased.  That is, the optimum point would have 
higher probability to locate at the center of the search window.  Since 
spiral scan method scans the center position of the search window first, it 
has higher chance to reach the optimum block earlier.  As discussed above, 
reaching the optimum block earlier improves speed of our algorithm. 

 

5.9.4 Result 

Spiral scan method requires larger memory storage than Raster Scan 
method if fast calculation of block sum is used together.  In Raster Scan 
method, only a row of block sum is needed to be stored.  Since SAD of 
current blocks is calculated row by row, the row of block sum can be 
updated to store the block sum of the second row after the first row is 
finished.  However, in spiral method, since SAD of current blocks is 
calculated in spiral order, not row by row, the whole block sum 2D array is 
needed to be stored.  Although larger memory storage is required, speed of 
algorithm not only do not degraded, but improved a lot due to earlier 
reaching of optimum block. 
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5.10 Motion Tracking Algorithm Development  

Motion Tracking 

Optical Flow Blocking 
Matching 

1. Lower Computation Complexity 

2. Suitable to implement in mobile 

devices where floating point, division 

and multiplication operation is slow 

Exhaustive Search 
Algorithm (ESA) 

Fast Algorithm 
(FA) 

 

1. Give suboptimal Result  

poor accuracy 

Three Step Search 

(TSS) 

2D Logarithmic 

Search 

Diamond Search 

1. Good accuracy, Find 

best match 

2. Slow, but can be 

improved 

Successive 
Elimination Algorithm 

(SEA) 

Partial Distortion 
Elimination (PDE)

1. Faster 

2. No performance 

loss, i.e.  same 

performance as ESA
SEA + Progressive 
Norm Successive 
Algorithm (PPNS) 

1. Further improvement 

over SEA 
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1. Further improvement over SEA + 

PPNM algorithm by better scanning 

method 

2. Assumption: motion is center-biased,  

i.e.  most of the movement around 

center 

SEA + PPNM + PDE 
+ Spiral Scan Search 

Spiral Scan + SEA + 
PPNM + PDE + 
Adaptive Search 

Window 

SEA + PPNS + Partial 
Distortion Elimination 

(PDE) 

1. A paper (Year 1999) suggested that 

PDE can be integrated with SEA 

algorithm 

2. We have tested that the PDE really 

improve the speed of SEA+PPNM 

algorithm 

Our Final Algorithm 

1. We proposed adaptive search window 

method that makes use of the previous 

motion tracking history to make good 

guess on the next optimum position 

and increase algorithm speed by 

searching that area first 

2. This make the assumption made by 

Spiral Scan method no longer an 

assumption, but a highly probably 

event 

Hierarchical Adaptive 
Spiral Scan + SEA + 

PPNM + PDE 
1.  Possible improvement over our final 

Algorithm 
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Chapter 6: Feature Selection 

 We use the block matching algorithm for the motion tracking, so which block in 
the previous frame should be chosen for block matching? We must make a 
compromise between two contradictory desires.  On one hand we would like features 
to be as descriptive as possible: The block chosen should facilitate the block matching 
algorithm and increase the accuracy of the algorithm.  On the other hand, we also 
want feature extraction to be robust across thousands of video frames. 
 
 In our application, our purpose is to provide real-time tracking on the mobile 
device.  Thus we implement our own feature selection algorithm instead of using 
well-known feature selection algorithms which usually have a high computation load. 
Our algorithm, although is simple, it bears certain level of robustness. 
 

6.1 Implementation 
  

Intuitively, if we want to select a good feature block for block matching, it 
should not select a block in the flag region.  As in figure 6.1, although the 
window has moved to the right, we will not able to detect the movement.  It is 
because all neighbors of the feature block have the same color, so they will have 
same SAD with the feature block.  We can conclude that because motion is 
indeterminate when spatial gradient is near zero.  Therefore, we cannot find a 
best match as all of the candidate blocks have the same SAD (Remember that we 
will choose the candidate block with the minimum SAD as the best match).  
Thus, the accuracy is decreased greatly. 

 

Feature Block

Original position New position
 
 
 
 
 
 
 
 
 

Figure 6.1 A reference block in flag region 
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In order to prevent the selection of a flat-region block, the block selected 
should be complex.  We can evaluate the complexity of a block by calculating 
the local variance within the block Sxy.  If the block is totally flat, the local 
variance will be 0 while the local variance will be large if the block is complex.  
The selection of a highly complex block will increase the chance of Partial 
Distortion Error (PDE) since the difference between candidate blocks and the 
reference block will be large even for a small movement.  Thus increase the 
speed of the algorithm. 

 
Apart from the complexity of a block, the feature block should have large 

intensity difference between neighbor blocks.  Consider the figure 3.x, although 
either one of the block is complex, the complex block repeat itself all over the 
window.  Hence, it affects the accuracy of block matching. 

 
 
 
 
 
 
 
 
 

Figure 6.2 repeated pattern background 
 

In order to solve the above problem, we can use Laplacian mask to calculate 
the intensity difference between the current block with its neighbors.  Originally, 
Laplacian operator is used as edge detector that it find out how brighter the 
current pixel is than the neighborhood. 
 

 - Gray level discontinuity  large output 
 - Flat background  zero output 
 

Firstly, we divide current frame into small rectangular blocks.  For each 
block, sum all the pixels value, denoted as Ixy, and store it in 2D array (Intensity 
of the block).  After that, we calculate the variance of each block which 
represents the complexity of the block.  Apply Laplacian Mask for the 2D array 
(Masking).  Since the Laplacian operator indicates how difference the reference 
block is than the neighbors, we select the block which has the largest Ixy and 

 
LYU0404: Mobile Motion Tracking using Onboard Camera                           Page 79 



Department of Computer Science and Engineering, CUHK      2004-2005 Final Year Project Report 

large variance as feature block 
 

6.2 Laplacian Operator  

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given 
by:  
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Negative Definition 
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Positive Definition 
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Diagonal derivatives can also be included. 
 

In our application, we use the positive definition with diagonal derivates.  
Then the Laplacian operator can be represented by the Laplacian mask (Figure 
6.3) 

 
 
 
 
 
 
 
      

Figure 6.3 Laplacian Mask

 
Then we apply the Laplacian mask to the image.  For example, in figure 
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6.4, the mask values are multiplied by corresponding pixels values, and then 
summed up.  The final value is returned to the output image at the position 
corresponding to the centre element of the window.  The mask is then moved by 
one pixel (not the window size) to its next position and the operation is repeated. 

 
 
 
 
 
 

 

 
 
 
 
 

Output Image 

Input Image 

Laplacian Mask
 

Figure 6.4  
 

Output Value is -86, because: 
(-1x68)+ (-1x62) + (-1x66) + (-1x120) + (8x80) 
+ (-1x37) + (-1x62) + (-1x65) + (-1x61) 
= 99  
  

 

6.3 Experimental Result 
 

We have tested our feature selection algorithm in different cases: 
 

1. A black rectangle in a white background 
2. A black rectangle in a repeated pattern background 

 
In case 1, we want to test the performance of our feature selection algorithm 

on a flat region.  In a white region background, we draw a black rectangle on it.  
Intuitively, the black rectangle should be selected as the reference block for 
block-matching.  Our feature selection algorithm selects the corner of the black 
rectangle as the reference block as shown in figure 6.5.  It is a good tracking 
location because of the brightness difference between the black and white colors.  
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As we can see, the block selected contains black pixel values.  Hence our 
algorithm can prevent the selection of flat-region block as reference block.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 

Figure 6.5 Experiment on feature selection 
 

In case 2, we apply the feature selection to a background of repeated pattern 
with a black rectangle as illustrated in figure 6.6.  If we do use feature selection 
algorithm Again, it selects the black rectangle block as the reference block.  
Thus, we can see that our algorithm will never select a block that will lead to 
indeterminate movement.  If we select a block as in figure 4.x rather than the 
black rectangle, when the object move to the right, the block-matching algorithm 
finds the best-match wrongly as illustrated in figure 6.7 
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Figure 6.6 
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Figure 6.7 
 
 Hence, we can see that if we can select a good feature block as the reference 
block, the performance of block-matching is guaranteed that it will not be acceptable. 
 

6.4 Conclusion 

 
For block matching, if we select either a block in flat region or in a repeated 

pattern region as the reference block, the accuracy will be affected significantly.  
Block mismatch always happens.  After using the feature selection algorithm, it 
will ensure that a block selected will not be in flat region or repeated pattern 
region.  Hence the error is reduced.  Since our feature selection algorithm 
requires a small computation load, the speed of the block matching algorithm is 
not affected. 
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Chapter 7: Applications 

In this chapter, we will discuss what kinds of applications can be developed from 
motion tracking and benefits of using it. 
 
 Motion tracking has been widely used in many areas, for example video 
compression, robotics, video surveillance, etc.  It is possible to develop different 
kinds of applications.  Moreover, it can be used as an innovative input method to 
many applications, for example, games, camera mouse and gesture input.  We will 
focus on how motion tracking can be used as an input method for different 
applications. 
 

7.1 Development procedure 
 

Before we talk about what applications can be made, we talk about how a 
motion-tracking application can be developed.  The flow chart of developing 
motion-tracking application is shown below: 
 

Video Source 
captured by 
camera 

Already selected 
feature block? 

P Source Frames 

 

 
Figure 7.1 Flow Chart of developing motion tracking application 

Feature 
Selection 

delay 
Block-matching 
Algorithm using two 
image frames 

No 

T 

Server A 

Frame t
Yes 

MV of reference block 

Frame t-1 

A feature block is 
selected as reference 
block 
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Input Stage 
In order to use the motion tracking technique, we need to extract frames from 

video.  This process is procedure “P” shown in the Figure 5.1.  There are several 
ways to do that.  In PC, we use libraries from OpenCV and in Symbian, we use the 
view finder to extract the frames from video. 
 
OpenCV provides a lot of library for us to manipulate the video.  Firstly, we need 
to reserve the camera to use.  After that, by calling cvQueryFrame( ), a frame will 
be extracted and stored in a 2D array.  Then we can get the frame data by using a 
pointer. 
 
Processing Stage 
 After we have extracted frames from video, we use two consecutive frames 
Ft-1 and Ft for block-matching.  If we have not selected a reference block for 
tracking, feature selection algorithm will be applied to find a good feature block 
as reference block.  After that, we can use the block-matching algorithm to find 
the motion vector of the reference block.   
 
Output Stage 
 Once a motion vector is found, it will be output to a server by using 
transmission medium “T”.  We can use different kinds of transmission medium, 
eg Serial Cable, USB, Bluetooth, etc.  The server is responsible for receiving 
the motion vector and interpreting it.  Finally, the server will give 
corresponding commands to the application “A”.   
 
Conclusion 
 Different kinds of application can be developed by following the flow chart 
above.  Moreover, the motion tracking technique can be used in different 
platforms, eg PC, PDA, Symbian phone, provided that they support video 
capture and libraries for image manipulation. 

 

7.2 Example Applications 
 

In order to illustrate the idea of innovative input method using the motion 
tracking, we have implemented two applications one in the PC and one in the 
Symbian phone based on the block-matching algorithm that we have discussed 
before. 
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7.2.1 Pong Game 

Here show the screenshot of the pong game.  The left one is 
developed on the PC written by C# while the right one is developed on the 
Symbian and tested by the emulator. 

 

   
 

Figure 7.2 Screenshot of the pong game 
 

Traditionally, users play the game by using the keyboard to control the 
movement of the paddle.  It would be much more interesting if users’ 
movements are involved in playing the game.  We implemented the 
block-matching algorithm in the game so that the paddle could be controlled 
by the users’ movement.  When the user moves the camera or camera 
phone, the padding will move according to the direction of movement.  
Because of the motion tracking technique, the traditional pong game has 
become much more interesting. 

 
The pong game is just one of the applications to illustrate the benefits 

of using motion tracking technique.  There are a lot of applications in 
which this technique can be used 
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7.2.2 Virtual Mouse 

We are implementing a virtual mouse system that users can use their 
Symbian phone as a mouse for the desktop computers.  We further 
developed our “MotionTrack” application.  By following the flow chart in 
figure 5.x, we developed a server as shown in figure 6.x and the server will 
receive the motion vector via Bluetooth.  It will instruct the cursor to move 
according to the motion vector. 

 
 
 

 
 
 
 
 
   

Figure 7.3 A server program for receiving motion vector 
   

7.3 Other Possible Application 
 

7.3.1 Camera Mouse 

In the society, there are people with serve disabilities that they can only 
move their heads.  Because of their disabilities, they cannot use the 
computers for any purpose.  Therefore, there is a need to develop a tool for 
the physically handicaps so that it can provide a chance for them to access 
the computers.  Due to their limitation of movements, a motion tracking 
system, Camera Mouse, can helps them to access the computer.  Therefore, 
they can acquire knowledge more actively, use the Internet, and access 
computer-controlled techniques such as automated wheel-chairs. 

 
The idea of camera mouse system is that the system tracks the 

computer user’s movements with a video camera and translates into the 
movements of the mouse pointer on the screen.  It is particularly useful for 
physically handicaps.  For example, people with serve disabilities can 
control the movements of the mouse pointer by moving their heads.  
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Chapter 8: Experimental Result 

8.1 Computation load of SSD and SAD 
 

There are two matching criteria commonly used in block matching 
algorithm, they are SAD and SSD.  We have tested how much SAD is faster 
than SSD by a simple code.  Recall that the equations of SAD and SSD are as 
follow: 

   ∑∑
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The code to test the performance of SSD is as follow: 
 

 for(int i=0; i<100; i++) 
  for(int j=1; j<=1000000; j++){ 
   d = dataA[i] - dataB[i]; 
   sum += d*d; 
  } 

Code snippet 1 
This code snippet carries out 100 million operation of SSD.  The sum of 

squared difference is stored in “sum”.  This code snippet costs 922ms to run in 
a 2.0GHz personal computer. 

 
Similarly, the code to test the performance of SAD is as follow: 

 
 for(int i=0; i<100; i++) 
  for(int j=1; j<=1000000; j++){ 
   sum+=abs(dataA[i] - dataB[i]); 
  } 

Code snippet 2 
This code snippet carries out 100 million operation of SAD.  The sum of 

absolute difference is stored in “sum”.  This code snippet costs 1297ms to run.  
Surprisingly, absolute operation is much slower than multiplication operation.  
This is because in this code snippet, abs() function is called instead of doing 
simple arithmetic operation.  Calling function involves procedure prolog which 
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produce a significantly large overhead when the function is called very 
frequently.  In order to improve the speed of absolute operation, we handle the 
absolute operation by ourselves rather than use the Math class function, the code 
snippet become: 

 
for(int i=0; i<100; i++) 
 for(int j=1; j<=1000000; j++){ 
  sum+=dataA[k]>dataB[k]?dataA[k]-dataB[k]:dataB[k]-dataA[k]; 
  } 

Code snippet 3 
This code snippet costs 781ms to run which is about 15% faster than 

snippet 1.  This code snippet is more efficient because it doesn’t involve 
function calling.  In total, snippet 4 requires 1 comparison and jump operation 
( dataA[k]>dataB[k]? ), 1 difference operation ( dataA[k] – dataB[k] OR 
dataB[k] – dataA[k] ), 1 summation operation and 2 for loop.  This code snippet 
is not yet optimal, it is because dataA[] and dataB[] are image pixels arrays, 
accessing elements in these arrays cost a long time.  To minimize the access of 
the image array and computation operations, we change the snippet to: 

 
 for(int i=0; i<100; i++) 
  for(int j=1; j<=1000000; j++){ 
   d = dataA[k] - dataB[k]; 
   if(d>=0) e+=d; 
   else e-=d; 
  } 

Code snippet 4 
This code snippet costs only 672ms to run which is about 30% faster than 

snippet 1.  This code snippet is more efficient than snippet 3 because it requires 
the same amount of computation operations while reduced the number of access 
of image arrays to two.   

We concluded that computation load of SAD is smaller than that of SSD.  
With code snippet 4, SAD is about 30% faster.  Therefore, we would use code 
snippet 4 in the calculation of SAD matching criterion. 
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8.2 Improvement of ESA by SEA/PPNM 
 

Testing Environment: 
 

CPU – 2.0GHz Pentium 4 
 

Block Matching Parameter: 
  

Block Width 31 pixels 
Block Height 31 pixels 
Search Window Width 81 pixels 
Search Window Height 81 pixels 

 
Measuring Method: 

 
In SEA and PPNM, SAD of the eliminated impossible candidate blocks 

needs not to be calculated.  Thus we measure the performance of SEA and 
PPNM by counting the number of blocks involved in calculating the SAD. 

 
Algorithm # of blocks 

calculated in SAD 
Speedup Computation Time 

(x 5) 
Speedup

ESA 6561 1.00 2140 ms 1.00 
SEA+PPNM 2304 2.85 516 ms 4.15 

 
SEA+PPNM algorithm show significant improvement in speed over ESA.  

It is about 4 times faster than ESA. 
 

8.3 Enhancement of SEA/PPNM by PDE 
 

Experiment of this part is carried out in the same testing environment using 
block matching parameter as before. 

 
Measuring Method: 

 
Since in PDE, condition “PSAD(x, y) > SAD(x, y)” is checked every time a 
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row of pixels’ difference is added to partial sum PSAD, PDE reduces 
computation load in term of row (with size of 1 x 31) of pixel.  Thus we 
measure the performance of PDE by counting the number of rows involved in 
calculating SAD.   

 
Result: 

 
Algorithm # of rows of pixels’ 

difference calculated 
Speedup Computation 

Time (x 5) 
Speedup 

ESA 203391 1.00 2140 ms 1.00 
ESA+PDE 69024 2.95 500 ms 4.28 

 
Since the code overhead of PDE is very small, time for checking “PSAD(x, 

y) > SAD(x, y)” condition is not significant and can be neglected.  Speedup 
measured by numbers of rows of pixels involved in calculation is proportional to 
speedup measured by computation time.   

 
Although PDE and SEA/PPNM improves speed of ESA in different aspect, 

they do affect each other.  In our final algorithm, we have also used SEA and 
PPNM method.  These two methods remove impossible candidates in a fast 
way and remain candidates that are quite close to the previous block.  The 
remaining candidates enter SAD calculation stage and PDE method is used to 
improve the speed.  Since the SAD of these candidates is close to that of the 
optimum block, removal rate of PDE is reduced.  Below is a table showing 
speedup of PDE over SEA+PPNM algorithm: 

 
Algorithm # of rows of pixels’ 

difference calculated 
Speedup Computation 

Time (x 5) 
Speedup 

SEA+PPNM 71734 1.00 516 ms 1.00 
SEA+PPNM 

+PDE 
64643 1.11 312 ms 1.65 

 
From the above result, we can see that PDE still have significant speed up 

in computation time over the SEA+PPNM algorithm although its rate of 
removing impossible candidates is lower.  Therefore, in our final algorithm, we 
included PDE method to improve the speed in calculating SAD. 

 
Now With SEA+PPNM+PDE algorithm, the computation time for one 
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block is 62 ms (= 312 / 5 ms) on average.  It has been fast enough to real-time 
track object but lagging level is still quite significant. 

 

8.4 Enhancement by Spiral Scan Method 
 

Comparison of Code overhead of Spiral Scan method with Raster Scan 
method: 

 
  Raster Scan method is very simple to implement.  Here is the pseudo code: 

 for(j=TOPLEFTY; j<=TOPRIGHTY; j++){ 
  // For each row 
  for(i=TOPLEFTX; i<=TOPRIGHTX; i++){ 
   // For each column 
   SAD (); 
  } 
 } 
Spiral Scan method is a bit more complicated.  The pseudo code has 

been optimized so that less computation is required: 
 SAD (); 
 for(d=1; d<=DX; d++){ 
  di = -d; 
  dj = -d; 
  for(k=0; k<(d<<3); k++){  
   i = LeftTop_x_coord.  + di; 
   j = LeftTop_y_coord.  + dj; 
   SAD (); 
   if(k<(d<<1))  
    di ++; 
   else if(k<(d<<2)) 
    dj ++; 
   else if(k<((d<<2) + (d<<1))) 
    di --; 
   else  
    dj --; 
  } 
 } 
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Although spiral scan method has a bit higher code overhead, the overhead 
which is of the Big O of (DX2) is less significant, when compared with the 
complexity of SAD which is of the Big O of (DX2 BW2). 

We carried out an experiment to compare the performance of ESA and 
spiral ESA.   

Algorithm Computation Time (x 5) Computation Time 
ESA 2141 ms 428 ms 

Spiral ESA 2156 ms 431 ms 
 

The performance of spiral ESA is similar to ESA.  However, it greatly 
improve the speed of algorithm when PDE/SEA/PPNM is used together assumed 
that most of the motion is center-biased.  This assumption of center-biased 
motion is no longer an assumption when adaptive method is also used. 

 

8.5 Enhancement by Adaptive Spiral Method 
 

Performance of adaptive spiral method is evaluated by comparing the 
predicted motion vectors with the real motion vectors.  Below is an extract of a 
list of blocking matching results of real-time motion tracking with an input video 
captured from web camera.   

 
(Learning Rate = 1.0) i.e.  Previous “Real” = Current “Expect” 

Expect:  0  0 Real:  0  0 Real dist.: 0.0 Adapt dist.: 0.0 

Expect:  0  0 Real:  5  2 Real dist.: 5.4 Adapt dist.: 5.4 

Expect:  5  2 Real:  7  0 Real dist.: 7.0 Adapt dist.: 2.8 

Expect:  7  0 Real:  8  1 Real dist.: 8.1 Adapt dist.: 1.4 

Expect:  8  1 Real:  9  0 Real dist.: 9.0 Adapt dist.: 1.4 

Expect:  9  0 Real:  9  0 Real dist.: 9.0 Adapt dist.: 0.0 

Expect:  9  0 Real:  12 -2 Real dist.: 12.2 Adapt dist.: 3.6 

Expect: 12 -2 Real:  8 -2 Real dist.: 8.2 Adapt dist.: 4.0 

Expect:  8 -2 Real:  2 -2 Real dist.: 2.8 Adapt dist.: 6.0 

Expect:  2 -2 Real: -1  0 Real dist.: 1.0 Adapt dist.: 3.6 

Expect: -1  0 Real: -4  0 Real dist.: 4.0 Adapt dist.: 3.0 

Expect: -4  0 Real: -6  0 Real dist.: 6.0 Adapt dist.: 2.0 

Expect: -6  0 Real: -16  3 Real dist.: 16.3 Adapt dist.: 10.4 

Expect: -16  3 Real: -19  4 Real dist.: 19.4 Adapt dist.: 3.2 

Expect: -19  4 Real: -13  2 Real dist.: 13.2 Adapt dist.: 6.3 
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Expect: -13  2 Real: -12  0 Real dist.: 12.0 Adapt dist.: 2.2 

Expect: -12  0 Real: -17 -2 Real dist.: 17.1 Adapt dist.: 5.4 

Expect: -17 -2 Real: -14 -1 Real dist.: 14.0 Adapt dist.: 3.2 

… 

Expect:  5  0 Real:  8 -1 Real dist.: 8.1 Adapt dist.: 3.2 

Expect:  8 -1 Real:  6  0 Real dist.: 6.0 Adapt dist.: 2.2 

Expect:  6  0 Real:  6  0 Real dist.: 6.0 Adapt dist.: 0.0 

Expect:  6  0 Real:  5  0 Real dist.: 5.0 Adapt dist.: 1.0 

Expect:  5  0 Real:  4  0 Real dist.: 4.0 Adapt dist.: 1.0 

Expect:  4  0 Real:  4  0 Real dist.: 4.0 Adapt dist.: 0.0 

Expect:  4  0 Real:  2  0 Real dist.: 2.0 Adapt dist.: 2.0 

Expect:  2  0 Real:  1  0 Real dist.: 1.0 Adapt dist.: 1.0 

Expect:  1  0 Real:  1  0 Real dist.: 1.0 Adapt dist.: 0.0 

… 

Average Real dist.: 7.5752 Average Adapt dist.: 2.7201 

 
Each row of this list is printed every time the adaptive spiral algorithm is 

run.  In this list, “Expect” is the predicted motion vector, and “Real” is the real 
optimum motion vector found by the algorithm.  Both are represented by 
<x-axis movement, y-axis movement of tracking object in term of pixels >.  
The physical meaning of “Real dist” is the distance between non-adaptive search 
window’s center (or say previous block position) and optimum position while 
“Adapt dist.” is the distance between adaptive search window’s center and 
optimum position.  They are calculated by: 

 

Real dist.  = 22 )()( movementaxisyoptimalmovementaxisxoptimal −+−  

Adapt dist.  = 

22 )()( movementaxisypredictedmovementaxisxpredicted −+−  

 
These distances are equivalent to the length of the corresponding motion 

vectors.  The smaller these distances, the faster the algorithm runs.  If “Real 
dist.” is smaller than “Adapt dist.” on average, non-adaptive spiral algorithm 
would run faster.  If “Real dist.” is larger than “Adapt dist.” on average, 
adaptive spiral algorithm would run faster.  For natural motion, we observed 
that the “Adapt dist.” is much smaller than “Real dist.”, which means adaptive 
spiral algorithm is preferred.  The input video used in this experiment contains 
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an object moving naturally, it is observed that the “Adapt dist.” is always smaller 
than the “Real dist.”.  On average, Adapt dist. is 2.7201 while real dist. is 
7.5752.  We can see that the average adapt dist. is smaller, thus adaptive spiral 
algorithm run faster. 
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Chapter 9: Project Progress 

The table below lists the project progress in this semester: 
 

Month Task Completed 
Plan the aim and approach of our FYP project June 2004 

Learn the basic of Symbian OS Architecture 

Get familiar with the programming environment of 
Symbian and learn the Symbian programming Language 

July 2004 

Learn Bluetooth programming 
Get familiar with the programming environment of 
Microsoft Visual C++ and learn MFC programming 

Study motion tracking and block matching algorithm 

August 2004 

Learn OpenCV programming 

Implement Exhaustive Search Algorithm (ESA) on PC 
using MFC and OpenCV 
Implement Three Step Search (TSS) block matching 
algorithm 
Compare performance of SAD and SSD matching criteria 

September 2004 

Implement Successive Elimination Algorithm (SEA) and 
PPNM algorithm 
Implement Partial Distortion Elimination (PDE) 
Implement Spiral Scan method and Adaptive Search 
Window Method 
Finalize the algorithm used for real-time motion tracking: 
Adaptive Spiral SEA PPNM PDE algorithm 
Make a pong game using C# on PC using web camera as 
video capture device and our motion-tracking algorithm 
output as input method 

October 2004 

Construct a “MotionTrack” Symbian program that can 
capture video using the onboard camera 

November 2004 Implement the final algorithm in the “MotionTrack” 
program 
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Fine tuning the algorithm in “MotionTrack” to yield best 
result, e.g.  the block matching parameters 
Develop a pong game on Symbian on the top of the 
“MotionTrack” program 
Developing virtual mouse application on Symbian 
Prepare First Term presentation and demonstration 

 

Write First Term FYP report 

 

 
LYU0404: Mobile Motion Tracking using Onboard Camera                           Page 98 



Department of Computer Science and Engineering, CUHK      2004-2005 Final Year Project Report 

Chapter 10: Contribution of Work 

10.1 Introduction 
 

Now, I am going to state my contribution of work and the knowledge gained 
through this project. 

 
Our FYP project can mainly be divided into three parts; they are the testing 

platform part, the algorithm part and the application part.  All of these parts are 
essential yet difficult to implement.  During the summer time before this 
semester, my partner and I have already learnt many things that are to be used in 
our FYP project.  This makes us well prepared to do the FYP and have enough 
time to do it in this semester. 

 

10.2 Preparation of Work 
 

During the summer time, I have learnt the Symbian OS Architecture and 
have learnt how to program applications on Symbian phone.  Programming on 
Symbian is not as easy as that on window and is a bit tedious.  It requires quite 
a number of steps: compile, build, make install file, transfer the install file to 
Symbian phone, receive and install the program before I can really run and test 
my application on Symbian phone.  The Symbian emulator on window saves 
me much time on developing applications, but when it comes to some 
applications that require Bluetooth connection and need to access camera 
function, I can’t rely on the Symbian emulator and must be tested on real 
Symbian phone.  However, I enjoy programming on Symbian.  Part of the 
reason is that it is highly object-oriented.  Concept of class and hierarchy are 
highly required during programming on Symbian because the basic structure of 
every Symbian application involves many classes including hierarchical classes.  
I have learnt a lot of object-oriented programming techniques during making the 
Symbian applications.  When trying to make some Symbian applications during 
the summer time, I mainly focus on studying the image manipulation function 
and Bluetooth communication method on Symbian.  I have made a simple 
application testing how to capture video and access pixels in the image frame of 
the video, and also an application testing how to connect two Bluetooth devices 
and send message between them.  This experience facilitates me to build the 
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testing platform on Symbian and make the application using Bluetooth to 
communicate. 

  
Apart from learning Symbian, I have also learnt to use Window MFC with 

OpenCV library.  Programming MFC is not easy, but it is at least easier than 
programming on Symbian.   

 
The most important thing and the most useful thing that I have learnt during 

the summer time is the method of tracking object’s motion.  I have studied 
many kinds of methods ranged from optical flow method to block matching 
method.  We at last agreed and chose to use block matching method as the 
motion tracking algorithm for our application.   

 

10.2 The Algorithm Part 
 

After we have chosen to use block matching method, I have studied many 
papers about motion tracking using block matching algorithm.  Some papers 
suggested some algorithms that claimed to have improvement over older 
methods.  I have tested the performance of those algorithms and finally agreed 
with my partner to use some of them as part of the final algorithm we used.  
Apart from using the existing algorithm, I have designed a method that improve 
over the existing algorithm to suite the need of our applications, and that is 
adaptive spiral method.   
 

10.3 The Testing Platform Part 
 

With the knowledge of programming window MFC and OpenCV, we 
worked together for a few days to build up a testing platform on window so that 
we can test and implement algorithms on it at the start of this semester.  In order 
to facilitate the performance testing, we have continued to improve the program 
to facilitate us to debug and fine tune the algorithms.   

 
After we have come up with the final algorithm, we built a testing platform 

on Symbian which is also capable to convert to a real application using the 
motion tracking result as motion input.  After the overall framework of the 
testing platform was completed, I implemented some of block matching 
algorithms including our final algorithm on Symbian.  Because the data types 
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and methods in Symbian and window are not the same, those that are 
implemented on window can’t be used directly on Symbian and must be 
re-implemented again.   

 

10.4 The Application Part 
 

After the final algorithm of the MotionTrack application has successfully 
been implemented, I am currently working on the virtual mouse application that 
uses the tracking result to control the cursor movement on desktop PC.  Since 
this application involves Bluetooth programming on window and requires 
accessing window cursor, I am still studying the way to program it and 
implementation of this application is in progress. 

 

10.5 Conclusion 
 

In conclusion, I have learnt MFC programming, OpenCV programming, 
Symbian programming and many motion tracking algorithms in this semester.  I 
have got familiar with Visual C++ and the ways to debug window program and 
Symbian program on it.  My partner and I have worked together to implement 
many block matching algorithms and the two testing platform on window and on 
Symbian.  And finally, we succeed to make a real application that makes use of 
the onboard camera as the motion input. 
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Chapter 11: Conclusion 

 In this project, the major difficulties are the speed and accuracy of the motion 
tracking, because our objective is to develop a real-time motion tracking algorithm 
which can be used in camera-based mobile devices.  We have studied a lot of motion 
tracking algorithms and done experiments to investigate their performance.  The 
results show that in order to have high accuracy, we cannot use the fast-search 
algorithms.  Hence, we decided to use the most accurate block-matching algorithm – 
The Exhaustive Search Algorithm and tried to improve the speed of the tracking while 
stilling preserving a high accuracy.   
 

We tried many methods to increase the speed of the exhaustive search algorithm.  
Finally, we developed new algorithms (Adaptive Search Window, Spiral Search and 
Feature Selection) and combined the proposed algorithms with the exhaustive search 
algorithm.  As a result, the accuracy and speed are improved significantly.   
 

Besides, we studied OpenCV which is a Open Souce Computer Vision Library 
and MFC in the summer so that we developed a testing platform in the PC to test the 
performance of motion tracking algorithms.  The testing platform provided a good 
environment for us to develop the motion tracking algorithm in a generic way that it 
can be used in any devices with camera integrated and are programmable.  After 
tested thoroughly in the PC, we test the performance of our motion tracking algorithm 
on the Symbian phone and fine tune the algorithm. 

 
Finally, we have developed real-time motion tracking applications in the 

Symbian phone – Nokia 6600.  Now, the applications can track the movement in 
real-time.  We concluded that our algorithm would work well in other kinds of 
mobile device, because its performance was already good in Symbian phone which 
has very limited computation power and resources. 

 
The last but not least, we can make use of the motion vectors found as an 

innovative input method to many applications, such as virtual mouse and 
camera-based games.  The motion tracking applications in the Symbian showed the 
possibilities of developing other interesting applications, such as the motorcycle game 
that we have mentioned in the introduction, by using a camera. 
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Chapter 12: Future Work 

12.1 Further Improve the Block Matching Algorithm by 
Hierarchical method 
  

On top of our final algorithm, there is one more existing algorithm that may 
improve the speed of our algorithm.  However, because the performance of our 
final algorithm is already quite good and the hierarchical motion tracking 
algorithm is complex to implement, we haven’t implemented it in this semester.  
We may implement it in the next semester to see if it really improves the speed. 

 

12.2 Study and implement algorithms to detect rotation 
angle 
 

Currently, our motion-tracking algorithm can only detect the translational 
movement of the phone.  Our next goal is to detect rotation of the phone in 
addition to the translational movement.  With this property, we can develop 
many funny games that make use of the tilting angle of the phone such as 
motorcycle game. 

 

12.3 Develop virtual mouse application 
 

This is one of the big applications we will develop in our FYP project.  We 
are now working on it. Right now, if the client side sends the motion vectors too 
fast to the server, the connection between the server and client will be broken.  
We will enhance the stabilities of the system and modify the codes so that the 
system has a higher precision in response to the movement. 

 

12.4 Develop Multiplayer Game 
  

We have studied the Bluetooth in the Symbian.  By using Bluetooth, we 
can transmit game data between two devices.  And we may develop an 
interesting game that allows the players to play interactively with each others, by 
using the motion tracking technique.  For example, if we can develop the 
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detection of rotational movement of the phone, we can use the phone as a table 
tennis racquet.  By tracking the movement of the “racquet”, the two players can 
play virtual table tennis interactively 

 

12.5 Develop other interesting applications 
 

We will continue to think out any interesting applications that make use of 
the motion-tracking engine we have developed and implement some of them.  
The game we have talked about mainly use the motion input to control the lateral 
movement or rotation of a gaming object, and the applications we have talked 
about mainly use the motion input to control the cursor in some operating 
systems.  There are other types of applications and games that can make good 
use of the motion input.  For example, a Sniper game that requires players to 
hold the phone stably before shooting the target can make use of our motion 
input to measure the shaking level of players’ hand.   

 

12.6 Build SDK 
 

Currently, all of our applications are developed on top of the algorithm 
platform (The MotionTrack program).  This will be troublesome when the scale 
of the application to be built is large.  We may build a motion tracking dynamic 
link library (ddl) with header file so that other applications can use the motion 
tracking function easily. 
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