LYU0303 Video Object Tracking and Replacement for Post TV Production

The Chinese University of Hong Kong

Department of Computer Science and Engineering

Final Year Project Report

1st semester, 2003-2004

[image: image83.png]

[image: image1.png]

Video Object Tracking and Replacement for Post TV Production

[image: image75.png]max Rf;?u; ol B) i max(R, G, B) # 0

0, if max(R, G, B) = 0
—B4G)r/3 s 7
R magy: i B =max(R.G,B)

mmy;’;ﬁ; nvac.B), if G = max(R, G, B)

R gy, i B = max(R, G, B)

undefined, ifR=G=B
max(R, G, B)

By

FYP Group LYU0303

[image: image76.png][RGB =

floor (?ﬁ!)
ool

V(-$)

V(L 51)
V(i-S$1-f)

[Vipl, it1=0
lgVpl, if1=1
PV, i1=2
[pgV], if1=3
[tpV], if1=1
Vg, if1=5
[000], ifS=0

[image: image77.jpg]oy’
1) oo
.... ::—mv

[image: image78.jpg]VUi,

G

4 ,..: I\
L)

’c a’a \ ..- 4

Group Members:

Tong Pak Hin, Tim 01600513

Yuen Pak Kei, Ivan 01578001

Index

Chapter 1
Introduction

1.1
About Post-TV Production and Video Processing

……………………….…………………….1

1.2
Object Tracking and Replacement

…………………………………….……….2

1.3
Objective of Developing the Project

…………………………………….……….3

Chapter 2
Overview of the Project’s Working Principle

2.1
Difference between Humans and Computers in Object Recognition

……………………………………………..5

2.2
Applying the Human Principle of Image Recognitions onto Computers

……………………………………………..7

Chapter 3
Entering the World of Digital Image Processing

3.1
Binary File Reading and a Simple Bitmap Reader

……………………………………………..9

3.2
Color Representation Model

……………………………………………10

3.3
The RGB/HSV Color Converter

……………………………………………11

Chapter 4
Knowing More from the Image Files

4.1
Simple Edge Detector

…………………………………………….13

4.2
Equation Finder

…………………………………………….17

4.3
Equation Processor

…………………………………………….20

Chapter 5
Performance of Edge Detector
5.1
Processing Speed

…………………………………………….21

5.2
Accuracy

…………………………………………….22

5.3
Occultation Detecting

…………………………………………….23

Chapter 6 Simple Video Concept and Manipulation

6.1
Relationship between Consecutive Video Frames

…………………………………………….26

6.2
Translation Detector

…………………………………………….27

Chapter 7
Texture mapping

7.1
Background information

…………………………………………….29

7.2
Definition of terms

…………………………………………….32

7.3
Comparison of forward mapping and inverse mapping with scan-line
conversion

…………………………………………….33

7.4
Types of mapping functions
…………………………………………….36

7.5
Comparison of linear mapping functions

…………………………………………….39

7.6
Shadow mapping

…………………………………………….41

7.7
Multiple face mapping

…………………………………………….42

Chapter 8
Limitations of texture mapping

8.1
Possibility of aliasing

…………………………………………….43

8.2
Camera distortion

…………………………………………….45

Chapter 9
Improvement and Future Work
9.1
Better User Interface

…………………………………………….46

9.2
Faster Processing Time

…………………………………………….47

9.3
Improve the Accuracy and Error Tolerance

…………………………………………….47

9.4
Integrated MPEG Decoder and Encoder

…………………………………………….48

9.5
Work on Universal Objects

…………………………………………….48

9.6
Automatic calibration

…………………………………………….48

9.7
Generalization of texture mapping

…………………………………………….49

Chapter 10 Conclusion
…………………………………………….50

Reference
…………………………………………….51

Work division
…………………………………………….54

Acknowledgement

…………………………………………….55

Appendix
Workable Components Public Function Overview

Bitmap File Reader (BMPIo.h)

…………………………………………….56

RGB/HSV Converter (HSVCvrt.h)

…………………………………………….56
Edge Detector (EdgeFind.h)

…………………………………………….56

Linear Equation Finder (HTrans.h)

…………………………………………….56

Equation Processor (EqnPro.h)

…………………………………………….57

Median Filter Smoother (Smooth.h)

…………………………………………….57

Texture mapper (TexMap.h)

…………………………………………….57
Chapter
1
Introduction

1.1 About Post-TV Production and Video Processing
In the time of 1960’s to 1970’s, color televisions have become lower in price and more available to the general public [1]. At the same time, watching TV programmes became an important part of people’s life as an entertainment. Since more and more people were watching television programmes, television broadcasting companies were willing to produce more and more television programs. This was because with more audience sticking to their television programmes, more people would ask the television broadcasting companies to advertise their own commodities. Income of TV broadcasting companies comes mainly from advertising, anyway. This is because most of the television programmes are broadcast free of charge.
As there are more and more TV programmes available, less people are willing to pay for a movie ticket nowadays. To ensure stable income, movie producers like to include some special effects in their products such that people think watching a movie is worth the money. Back to the television broadcasters, since there are too many television programmes available, television broadcasting companies also want to give their television programmes something surprising in order to attract the audience.
The special effects are, however, often dangerous in nature. For example, if we want to produce a “flying man” effect, we must wind several thin wires around the actors and then drag him up to the sky using a helicopter, a crane or something like that. What will happen if the wire breaks when the actor is just in the mid-air? No one can predict the consequence. Also, the thin wires can still be seen by the audience. This will greatly reduce the reality feeling of the effect.
Sometimes people will try to replace the real scene by a fake effect when producing a video. Take the example above: If we generate a “flying man” effect by replacing everything (except the actor) with a fake background, the flight of our “flying man” may be unnatural. This is because the actual moving speed of the man and the “sky” background may not match. There is actually a dilemma between using real effects and using simulated effects: Safety and reality.
According to this reason, some suggestions have been given to solve the dilemma. One of them is, produce two real video clips and merge the necessary parts together.
Since the special effects can be seen only when the video is being processed but not during the recording phase, this kind effect producing technique is called “Post-TV production” or simply “video processing”.

1.2 Object Tracking and Replacement

As computers have become faster, they are more involved in complex calculations and manipulations as well. So, people tried to think of using a computer to merge two relevant video clips – by just extracting the needed part from both clips and discard all other things.
A typical example of movie that uses plenty of special effects is Titanic, directed by James Cameron. Titanic, the Oscar Award winner of Best Visual Effect in 1997, [2] has adopted various computer generated effects throughout the entire video. This is why the film seems so realistic. Even the ship itself is just a special effect (of course it is not possible to build a new ship just for making a movie).

The use of computer has reduced the danger for actors, but it does not reduce the work for people who process the video afterwards. People still have to work long for drawing very precise effects using computer. This is why movies with a lot of special effects have very high production cost. In the case of Titanic and Terminator 3 the production costs are 137 million and 175 million U.S. dollars respectively. [3]
At this point, people maybe think whether computers can perform the processing such that no human intervention is needed. This can be done if the computer can find out what exactly it is going to modify in the video clips. Usually, the things to be processed can be treated individually as “video objects”. If the computer can find out the video objects in the video, then it can almost perform any process automatically. The step of finding out where the video objects are is called “object tracking”.
If the above “flying man” sample is being produced in this way, it can be as the following: Produce two video clips. One with the actor hung 1 foot above the ground and another with a big doll hung in the mid-air. By replacing the doll with the image of the actor, it will then look like a real actor is in the mid-air.
In a brief summary, video object tracking has the following advantages:

- Safe: Actors do not have to perform dangerous actions.

- Cost saving: Less human intervention. One video clip can produce different effects.

- Producing fancy effects those are not possible in reality (e.g. human flying).

[image: image2.png]

[image: image3.png]

Figure 1.2.1 Screenshots of Titanic and Terminator 3 – Rise of Machines, two films using extensive computer generated effects.

[image: image4]

 SHAPE * MERGEFORMAT
[image: image5]
Figure 1.2.2 Two cans with the same shape but different brand names. Can we take only one photo but will produce two effects in the future?
1.3 Objective of Developing the Project

As video object tracking and replacement system has so many advantages, it is worthy that such system can be developed. Since video processing is still a complex process in comparison to other computer processes, we will try to work on a simplified version of the system. The system will at least:
· Detect and locate simple video objects (e.g. cubes, cylinders and cones).

· Find out the orientation and current state of the objects (e.g. whether there is a shadow or anything those shade part of the object away from the video).

· Replace the surface of the video object by a predefined texture, while keeping any other constraints (e.g. if part of the original video object is shaded away, then after the process that part will still be shaded away).
Chapter
2
Overview of the Project’s Working Principle
2.1 Difference between Humans and Computers in Object Recognition
In the last chapter it has been mentioned that a video tracking and replacement system can:

- Detect and locate simple video objects.

- Find out the orientation and current state of the objects.

- Replace the surface of the video object by a predefined texture, while keeping any other constraints.

The basic part of the system is the first two points. Although the last point is complex, it still replies on the first two points to be done. So in Project Part One we will focus on the first two points.
Locating an object may sound easy to us human beings. But, in fact it is not easy for the computers to perform. This is because human brains and computers work in totally different ways.
Humans read in an image by looking at the whole picture. Although humans cannot memorize the exact characteristics of the things in it, they do get a brief image of the whole picture in a very short time. Computers, on the other hand, read in image files byte-by-byte. Although a computer won’t miss anything (in fact pixels) in an image, it cannot get any information of the whole picture by just getting a 2D-array of the image pixels. Extra work can be done to get some of the information, but it will cost too much time.
Humans are very good at memorizing images. Although not as accurate as a computer does, humans are much faster in memorizing and very little information is needed. Thus, human has enough prior knowledge to point out almost everything during recognition. Computers can recognize object if and only if detail information is given. For example, if we need a computer to recognize a quadrilateral, you may need to give it a lot of equations.
The biggest problem is that a computer can only interpret in a definite way. That means no errors or missing information is allowed. When we shade a corner away from a cube, we know that the surface is a square since we know that cubes do not have pentagon surfaces. However, computer determines a cube by using its surfaces instead. When a corner is shaded, it fails to recognize the quadrilateral surface and hence fails to detect the cube. In one sentence, computer works without fuzzy logic.
Take an example. Suppose both human and computer look at the following figure.

[image: image6.jpg]

Figure 2.1.1 Try to guess what it is!
When a human looks at this figure, his attention will be attracted by the bright orange color. He looks and follows the edge and knows that this is a sphere. By looking at the black line pattern and from his previous knowledge, he knows that the object should be a basketball.
For a computer it’s a totally different story. The computer scans the image file row by row, column by column (no matter what format the image is currently, maybe we need a new image format). Then it points out which the major object should be by counting the number of pixels of a certain color. Next, it roughly observes the trend of edge points to estimate that it is a circle (cannot derive any 3D information by merely looking at the color). Up to this point, the computer can only conclude that there is an “orange circle with black pixels in it”, which is far away from the truth.
2.2 Applying the Human Principle of Image Recognitions onto
Computers
Although a computer does not work in the same way as a human being, we can give it some instructions so that it will try to compute an image in a more “human” way.
It has been mentioned that main characteristics of an object is its brightness, color, size and shape. So, we will concentrate our works in these particular areas.

To detect a pixel of a particular color and brightness, we have to make use of the current image file format. That is, a simple image file reader will be implemented to meet the requirement.

Among these factors, the last one is difficult to be determined. In order to determine the existence of a particular shape, we will derive more information out of the edges in addition to the direction where they are going to extend to.
After performing the above tasks, it should be able to figure out a particular object in an image. As a video consists of a sequence of still images which may look very similar to each other, we can apply some algorithms such that previous information obtained can be reused in the latter processes. The time saved can be significant since even a short video of several seconds may contain over 1,000 video frames already.

Although there are some similar products those can perform similar video processing functions (e.g. ARToolKits), they work only with very simple video objects like square. And, they do not allow occultation (the object must not be covered). Finally, they are still too inefficient in comparison to current video need (320x240 at 15fps, not even reach the quality of a typical VCD) [4].

Summarizing the above points, the entire project can be roughly divided into the following parts:
-Simple bitmap reader/writer

-RGB/HSV converter

-Edge detector

-Edge equation finder

-Equation processor

-Translation detector

-Texture mapper (which will be included in Part 2 of the report)

In the following chapters, the functions of the individual parts will be discussed in detail.

Chapter

3
Entering the World of Digital Image Processing

3.1 Binary File Reading and a Simple Bitmap Reader
Although we are trying to apply human image recognition techniques on a computer system, it is inevitable that we are placed under the restriction of current computer technology. Up to now, at least we can’t ask the computer not to read a file byte-by-byte but looking at the whole image globally! So, we need to find out which format will suit our need the most.
There are different kinds of image file format available around us. In order to compare the characteristics of different file formats, let us look at the following table first:
	File Formats
	Bitmap (*.bmp)
	Graphic Interchange Format (*.gif)
	Joint Photographic Experts Group (*.jpg)

	File Size (byte)
	1,400,054
	161,655
	44,883

	Color Depth (bit)
	24
	8
	24

	Data Lost
	No (Raw)
	No (If input is 256 colors)
	Yes

Figure 3.1.1 Comparison of three different image file formats. The file is 800x600 in dimension. [5]
From the table we have seen that uncompressed bitmap files (*.bmp without RLE, Run Length Encoding) have largest file size since it is uncompressed. However, video processing does need a high speed computation, and using bitmap files can reduce the extra compression/decompression time. For this reason, we will try to work with bitmaps at this stage. In a later time, we will build an improved version of the bitmap files. That is, the file will not store the pixels from left to right, down to up sequence any more. The pixels will be stored in a way such that the computer will obtain most of the color information by just reading the first portion of the bitmap file.
Although the sizes of bitmap files are large, they can still be handled by most modern computer systems:

After the bitmap file has been read into the main memory, it can be further processed to make any changes.
3.2 Color Representation Model

We have seen that there are various kinds of bitmap file formats. In fact, there are different ways of representing a color also. For example, a typical CRT display monitor will interpret 3 signals (Red, Green and Blue, known as the RGB color representation) and adjust the strength of the electron guns. Color printers, on the other hand, use 4 signals (Cyan, Magenta, Yellow and blacK, known as the CMYK color representation) and spray the different ink onto the paper.

Human eyes are more sensitive to the change of brightness than to the change of color. The JPEG file format uses a lossy compression that discards color change information those cannot be detected by human eyes. [6] In order to make the representation of color human-friendly, people has introduced a new color model called HSV (Hue, Saturation and Value. Value is the same as brightness). And, this will be the main color model we will use throughout the project.
[image: image7.png]Cyan Red

Figure 3.2.1 The HSV hexcone model [7]
Hue is the color component. It is a 360 degree system that records the color information. For example, 0 degree represents red, 120 degree represents green and 240 degree represents blue.

Saturation is the “concentration” of a color. Take a very easy example, if we add milk to a cup of black coffee, it will turn dark brown. If the milk is in excess, the whole cup of coffee may become pale brown. When adding milk to the cup of coffee, we are in fact decreasing the saturation value of the cup of coffee since the “color concentration” of it has been decreased.
Brightness value is the part that stimulates our vision most. This is because humans have far more rod cells (which detects brightness) than cone cells (which distinguishes color). When the brightness of a color increases, the ability to draw attention will also increase. If we illuminate an area we are increasing its brightness. Oppositely if we shade an area, we are decreasing its brightness.

HSV scheme works well when we need human-like color recognition. [8]

3.3 The RGB/HSV Color Converter

From the previous page we know that for the convenience of computer hardwares (not humans), bitmap files stores the color information in RGB format instead of HSV format. In order to make the algorithms work on a computer, we must first convert the color information format from RGB to HSV first. After the process, convert HSV information back to RGB and store it back to a magnetic disk or whatever else. So, an RGB/HSV converter has been integrated into the system for this purpose.
The RGB/HSV converter uses the following formulae for the color model conversion.

[image: image8]
[image: image9]
Figure 3.3.1 RGB/HSV conversion formulae [7]
There is one point to be mentioned when using the above formulae. When a color is on a grayscale (i.e. R=G=B), the hue (color) value is undefined. For simplicity, we just store the value of hue as 0 in this case. In image processing stage, a program must take care of the saturation (“amount“of color present) and brightness values first. Otherwise the color may get mixed up with red, which also has hue value 0.

Originally hue is noted in a 360 degree system. In order to fit it into a byte system, it is transformed into a value such that its maximum is at 255. Then, the HSV color model can be stored by 3 bytes just as the RGB color model.
Chapter

4
Knowing More from the Image Files

4.1 Simple Edge Detector
We often distinguish two different objects by telling the differences between them. And, this principle can be applied onto a computer system as well. A computer can detect an object if it is significantly different from the surroundings. Usually, the difference is caused by a change in color. [9]
Assume we are going to find out an object of a particular color (suppose we know that exactly, or that value is being estimated by a computer imaging system), then when the computer encounters a color change to our desired color, we know that the object is being reached. This is true given that nothing else in the picture has the same color. In the case of leaving a particular pixel of desired color into a pixel of different color indicates that the scanning has left the target object.
In the following figure, suppose we are going to detect an object which is pure red in color:
[image: image10.png]

Figure 4.1.1 A red polygon

Since a computer will scan through the image from left to right, it will encounter a change in color when it reaches the polygon. In this case, the color changes from black (0, 0, 0) to red (0, 255, 255).
[image: image11.png]HSV: (0,0,0)

HSV: (0,255,255)

Figure 4.1.2 Color change at the boundary

As we have set red as the color of our target image object, the computer knows that it has reached the boundary. It will mark that point as an “edge point”, being recorded in a 2D-array. Similarly, the computer will mark an edge point in the 2D-array again when it is leaving the target image object.
If we draw the edge points in a separate picture, the processed image may look like:

[image: image12.png]

Figure 4.1.3 “A red polygon” being processed by the simple edge detector

Since the picture is being drawn by hand, the edges are very sharp and are detected fairly easily by the computer. If we use real boxes, we may encounter problems such as noises.
Below is a photograph of a real box. We can see that if it is being processed by our software, we may get some “extra points” which may affect future processing of the image:
[image: image13.png]

[image: image14.png]

Figure 4.1.4 An image before and after edge detection. Note the existence of noise points due to reflection and ambient lighting.

To solve the problem we have two solutions. One is to take photo in a controlled environment such that reflection is minimized and the light source is white in color. This ensures that other colors will not appear too often in the image.

[image: image15.png]

[image: image16.png]

Figure 4.1.5 A box in a black background under a white light source. For simplicity we just detect the green surface.
Another method is to apply smoothing before finding the edge points. Gaussian smoothing will eliminate most of the points which are “odd out” from the surrounding. And this will be helpful when a controlled environment is not available.
There are various kinds of smoothing method such as Gaussian smoothing [10], mean filter smoothing [11] and median filter smoothing [12]. Among these methods, the median method removes pepper salt noise points efficiently and is easy to compute so it is being applied in the project. We can see the effect of median filter smoothing in the following figures.
[image: image17.png]

Figure 4.1.6 Before smoothing, the image is full of white dots which disturb edge detection.

[image: image18.png]

Figure 4.1.7 After smoothing, the image looks almost the same as the original one.
If noise points still exist, we can apply median filter smoothing multiple times, since median filter has little influence on the original image. The drawback is median filter smoothing is a bit time consuming since it involves sorting or color information.
At the same time, we can give some constraints such that the edge detector will only record the first entry point and the last exit point to make sure that no internal edges can be detected successfully. This will be useful to detect shadows or occultation in the future processes.

After edge detection, the edge points are exported as a “point-list”.
4.2 Equation Finder

Merely pointing out the edge points is meaningless. As every pixel in an image is being stored in a 2D-array, we can locate them by a Cartesian coordinate system. At the bottom right corner of an image, the pixel there is represented as (0, 0). This is also where the bitmap files start to record the pixels.
[image: image19.png]

Figure 4.2.1 How the Cartesian coordinate system applies in the image format

Up to this stage, the computer just knows the existence of the target object, not its location. So, we must find out the exact relation between the edge points and the target object. So, we will try to determine whether the edge points can be fitted into several linear equations or not. By using inequalities, the exact location of the image object can be found.
An algorithm called Hough Transform can groups points those belong to the same linear equation and does further processing like line sharpening. [13] In the beginning, Hough Transform will raise an “election” between the edge points by testing which equation will pass through most of them. By successive trying and eliminating extra points, linear equations can be obtained.
Originally the “election” algorithm used by Hough Transform works with a polar coordinate system. To simplify the calculation process, we will let it work with the Cartesian coordinate system. As we are trying the equations of different angle (known slope) over a fixed edge point (known point), the output equations will be in point-slope form.

Suppose there are three edge points and one of them is called (x1, y1). The system will pass a linear equation through that point and mark down how many edge points has been passed through during the process. The test angles will be from 0 degree to 179 degrees. The following figure shows the election process when the trial angles are at 0 degree, 45 degrees, 90 degrees and 135 degrees respectively. Since the linear equation with angle 45 degrees has passed through the largest number of edge points, it is “elected” and the corresponding linear equation is stored in an equation list. Finally, all the points on that linear equation will be marked as scanned.
[image: image20.png]=135 0=45 Angle in degree Frequency
0 1
45 3
a0 1
135 1

Desired linear equation in
puint-slape form

y—yl=tand5 *(x—xl)

Figure 4.2.2 Cartesian equation electing algorithm
In real world, even the edges of a cube cannot be completely straight due to camera distortion or deformation of the cube. These may produce very short edges or bend edges. To get rid of the problem, the election system will not accept an equation which passes through too few edge points in order to eliminate unwanted equations. Also, since we are applying continuous linear equations on discrete pixel array, tolerance is needed to tackle bend edges. However, using a large tolerance value may generate equations those are slightly away from the position of the original edges.
[image: image21.png]

[image: image22.png]w

Tolerance value =n

[image: image23.png]Tolerance value = 5n

Figure 4.2.3 Equation finding using different tolerance values. Equations derived are shown in blue. For small tolerance value multiple equations may be derived. For large tolerance value there is only one equation derived. Note that the only equation does not stick to the original edge well.
The largest tolerance value is that an edge point can be 5 pixels away from the linear equation. The election procedure is repeated until all the edge points are marked or the number of edge points left is below a certain threshold.
We can see the effect of edge equation finder in the following figure.
[image: image24.png]

[image: image25.png]

Figure 4.2.4 Edge equation finder. The green surface is being positioned by using the four linear edge equations.

Detection of curved surface will be included in a later stage.

4.3 Equation Processor
We have found out the exact location of the object, but it doesn’t mean that the computer has all the information about the object. So, we may provide the computer with some prior knowledge such that the computer knows what do to next.
Suppose we are dealing with the surface of a cube. Obviously there should be four and only four equations to be derived from the edge points. It is not possible to have less than four equations or that means the surface cannot be seen. If the number of equations is more than 5, it may mean part of the surface is being covered.
From the equations we have obtained from the previous step, we may be able to deal with these problems. Suppose there are internal edge points those cannot be removed in the edge detection stage, then there will be internal linear equations which will cut the object into two halves.
We know that there should not be an equation which contains a point between any other two equations. Thus, we can use this information to remove possible occultation or shadow that covers part of the target object.
We can also try to solve the equations such that we can get the coordinates of the possible corner points. Corner coordinates are important data to future translation detection and texture mapping.
Chapter

5
Performance of Edge Detector
5.1 Processing Speed
The processing speed will be different if different images and different video objects are involved.
Usually, smaller images files with little noise points will be processed faster. The processing speed will also increase if fewer colors are involved in the image.

Take the previous color box image as an example, suppose we are going to find out the equations those surrounds the green surface.
[image: image26.png]

Figure 6.1.1 A sample image

	Time (s)
	352x288
	640x480
	800x600
	1024x768

	No smoothing
	2.54
	6.30
	10.04
	18.56

	1st level smoothing
	3.27
	8.21
	14.73
	25.82

	2nd level smoothing
	3.61
	10.86
	16.23
	28.52

	3rd level smoothing
	4.09
	11.90
	18.78
	33.40

Figure 6.1.2 Process time required for different size and times of smoothing.
The video part is still in development stage so the process time will not be included.

5.2 Accuracy

Sometimes the image in a video may be blurred. So, we need to know how “blurred” the system can withstand.

Again, we use photograph of the same box.

[image: image27.png]

[image: image28.png]

[image: image29.png]

[image: image30.png]

Figure 6.2.1 4 pictures of different blur level. Gaussian blurring is applied on the photos for radii of 0 (no blurring), 1, 2 and 3 pixels respectively

We will apply median filter smoothing for 1 time (that’s the level which is required to work on the original photo) and see what result will be obtained.
[image: image31.png]

 [image: image32.png]

[image: image33.png]

 [image: image34.png]

Figure 6.2.2 The result of edge equation finding.

We can see that for blurring level 1 and 2 the result is more or less acceptable. In the case of blurring level 3, there is an extra equation derived which may produce an error. In fact, a Gaussian blurring of radius 3 pixels is quite uncommon in real videos. The problem may be solved by adding marks to the surface.
5.3 Occultation Detecting
Sometimes the system has to deal with cases which part of the video object being covered up by another object. To simplify the problem, we assume that the two objects are different in color.

In fact, the algorithm does not detect occultation. Instead, it simply ignores the occultation such that we do not take care of its effects on the target video object. A large area of the target object being covered will of course generate errors, especially when the object is covered so much that even humans can’t tell the object’s original characteristics.
Assume we take a video without noticing that there is a little drop of ink on the lens. This will cover part of the video up.

[image: image35.png]

Figure 6.3.1 Careless photo taker…
Since the area of the red surface being covered is quite small, the occultation will almost have no effect at all.

[image: image36.png]

Figure 6.3.2 The square surface can more or less be figured out.

As mentioned before, large area of coverage will disrupt the information available on the surface for the computer to recognize. Now assume that the half of the lens cover remains at the front of the lens.

[image: image37.png]

Figure 6.3.3 Really large obstacle…
Then, the system can do nothing to remove the occultation. Even if the computer knows it should be a square, it cannot estimate its size and how much the surface has been covered.
[image: image38.png]

Figure 6.3.4 Half of a square equals a triangle!

We can see there are recognition errors due to the information loss of the surface.

Chapter

6
Simple Video Concept and Manipulation

6.1 Relationship between Consecutive Video Frames

It is well known that video files are large due to the number of video frames in them. A typical NTSC (National Television System Committee) standard will play a video at 24, 29.97 or 30 frames per second (fps), while a PAL (Phase Alternating Lines) standard will play at 25 frames per second. For these reason, even if we are dealing with a video clip of 10 seconds in Hong Kong (PAL standard), we must process 250 video frames. [14]

Now let’s calculate how much data we need to process. Assume the video is in VCD format (352x288), amount of data to be processed is:

352 (width) x 288 (height) x 3 (RGB colors) x 25 (frames) x 10 (seconds)

= 76, 032, 000 bytes (or 72.5MB)

, which is a large amount of data. Bear in mind that the video is only 10 seconds long. The amount of data to be processed will even be greater when DVD standard is used (720x576). Intensive data manipulation is a heavy burden to a computer system, even with the processor speed doubling in less than two years.

Before being frightened by the large amount of data we are going to process, let’s look at the following video frames first:

[image: image39.png]

 [image: image40.png]

[image: image41.png]

 [image: image42.png]

Figure 5.1.1 Four consecutive video frames from the film Titanic, note that the four images look almost the same.

The four video frames are almost identical to each other. In fact, the camera is moving from right to left for several frames. That means, by looking at the first two or three video frames, we can almost get the idea of the coming video frames until we meet the key frame (scene change). And, this is the main reason of introducing a simple translation detector to eliminate redundant calculations.

6.2 Translation Detector

The object can move in six directions relatively to the camera: To, from, up, down, right and left. For this reason, we do not need to scan the entire video frame in order to locate where the video object is.

It is inevitable to scan the entire image for the first frame since there is no information available for the computer at all. Once the first frame is being scanned, we can more or less get an estimated position of where to start the edge detection scanning, provided that the moving velocity of the video object in the video is not too high. This is the same as scanning a smaller image file.

Take a true example. If we have the following video frames:

[image: image43.png]

 [image: image44.png]

 [image: image45.png]

 [image: image46.png]

Figure 5.2.1 Bouncing red box

We can easily observe that there is a red square moving up the black background. Although the difference between the four frames is more obvious than the ones in the film, there are no other significant changes other than the position of the red square. So, we can mark down the uppermost and lowermost value of the coordinates where the video object can be found. For the latter video frames, scan only the part which is n pixels higher than the uppermost bound and n pixels below the lowermost bound, where n is a constant related to the velocity of the red square. Since the red square is very small in comparison to the whole picture, the effect of tracking the motion of the square is just like reducing the size of the whole picture by 1/10 or even more. Hence, the processing speed is greatly improved. This algorithm applies also when the object is moving from left to right or even moving towards the camera.

However, if the object move faster than expected, then the preset “bound” may not cover the object completely. Errors may occur if this is the case.

Chapter

7
Texture mapping

7.1
Background information
What is texture mapping?

Texture mapping is a graphics design technique used to wrap a surface of a 3-D object with a texture map. After mapping a texture onto an object, the color of the object at each pixel is modified by a corresponding color from the texture. Usually, the texture map is an image so that after wrapping, the object will have a surface which looks like the texture image. More generally, the texture map can also be a 2-D array of altitudes or brightness values to control the shading of a surface. A good example is bump-mapping which transforms a smooth surface to a rough one with a texture map of various altitudes.

[image: image79.png]

[image: image80.wmf][image: image47.png]

 [image: image48.png]

Bump-mapping: the rough surface of the football in (a) is achieved by mapping the rough texture map in (b) onto the originally smooth surface of (a)
Modern applications of texture mapping

Texture mapping is a powerful technique for adding realism to a computer-generated scene. This can be applied to a wide variety of fields including computer games, medicine, molecular graphics, architecture, art and design, film production as well as fashion. In most of the cases, it saves time and money from the production of various objects which can actually be modeled by the computer. Its capability of creating realistic images and versatility in surface transformation makes it a widely used and developed technique.

[image: image49.png]

Application in fashion: The same piece of cloth can be mapped with various patterns to

 determine the type achieving the best visual impact. [2]
Texture mapping model

[image: image81.wmf][image: image82.wmf][image: image50.png]texture space (u,v)

l parameterization

object space (X,,Y,, Z,)

l projection

screen space (X,Y)

[3]

In general, the process of texture mapping consists of two steps: mapping and projection. The two steps can be done interchangeably. Either we can map the texture pattern onto object surfaces, then to the screen space by projection; or we can do it the other way round i.e. mapping the pixel areas on to object surfaces, then to texture space. [4]

Our work

In this part of the project, we will focus on mapping a 2-D bitmap texture map onto a rectangular surface of a box, which can be in any orientation and shading. Note that we have skipped the middle part of object space mapping since 2-D plain surface mapping may not require 3-D consideration. This is a fundamental part of texture mapping which is essential to further techniques like sphere/cylinder mapping or 3-D texture mapping.

7.2
Definition of terms
Here are some of the terms related to texture mapping:

1. Texture coordinates

These are usually represented by (u, v). They are the location in the texture map
which contains color information for the image. [5]

2. Image coordinates

These are usually represented by (r, c). They are the pixel location of the image,
which is the rectangular surface of a box in our case. [5]

3. Mapping function

It maps texture coordinates to image coordinates or vice versa. What it looks like
depends on the shapes of the surfaces, as well as the actual coordinates of the
texture map and the image. The mapping from texture to surface must be
invertible, that is, every surface point gets only one color assigned, while it is
good to have multiple surface points mapped to the same texture point. [6]
Examples include linear mapping functions, linear scan-line interpolation and
projective mapping.

4. Forward mapping

This describes the process of mapping the texture map to the image surface. A
mapping function which maps texture coordinates to image coordinates is used.
It is also called texture scanning.

5. Inverse mapping

This describes the process of mapping the image surface to the texture map,
which is the opposite of forward mapping. A mapping function mapping image
coordinates to texture coordinates is used. It is also called pixel-order scanning.

6. Scan-line conversion

This area-filling technique processes the image line by line and performs the
necessary calculations on every pixel on the line. It can be applied to either
forward mapping or inverse mapping with a particular mapping function. [5]
This is an essential step since every pixel of the image surface needs to be
processed to determine its corresponding texture coordinates.

7.3
Comparison of forward mapping and inverse mapping with scan-line
conversion
Scan-line conversion
[image: image51.png]{xk+1, yk+1}
Scanline yk+1

Scanline yk
{xk, yk}

 For line yk, all the pixels on the right of {xk,yk} inside the polygon will be scanned.

 After scanning the line yk, yk+1 which is one pixel above yk will be scanned.
This approach is typically used in general graphics packages to fill polygons, circles, ellipses, and other simple curves. Another approach is start from an interior point and paint outward till boundary conditions are met. This is useful for more complex shapes and hence we will use the scan-line approach. [4]

In the project, we need to scan a quadrilateral in any orientation and shape. The polygon needs to be partitioned into 2 or 3 sub-polygons for scanning due to a change in boundary conditions. For each sub-polygon, the boundary points are checked to see if they overlap with the vertices. If this condition is met, the corresponding polygon finishes scanning. To be more efficient, the boundary points of the line r+1 can be computed from line r by the addition of a small increment because the boundaries are straight. See the figure below.

Note that this scan-line algorithm is particularly useful for inverse mapping since the image surface to be scanned is likely a non-rectangular quadrilateral which is the case for the texture map. It also facilitates the use of interpolation technique as the mapping function to be described in the coming sections.

 [image: image52.png]

The quadrilateral is divided into 3 smaller polygons for scan-line filling

It is divided into 2 if the middle two vertices are on the same row
A look into forward and inverse mapping

Forward mapping and inverse mapping are two opposite concepts that one should choose to be used in texture mapping. A comparison of the two is as follows.

	
	Forward mapping
	Inverse mapping

	Principle
	Map from texture to image
	Map from image to texture

	Algorithm
	
[image: image53.png]for u = umin to umax
for v =vmin to vmax
r=R(uv)
c=CcQuy)
copy pixel at source (1.v)
to destination (r.c)

	
[image: image54.png]for (r.¢) = polygon pixel
u=TEXR(r.c)
v=TEXC(r.c)
copy pixel at source (1.v)
to destination (r.c)

	Ease of implementation
	easy as long as the mapping function is known
	more complicated as it involves scan-line conversion

	Calculation of the fractional area of pixel coverage
	Yes
	No

	Possibility of aliasing
	Yes
	Can be avoided by simple filtering or resampling

The mapping function of forward mapping can be obtained by projective mapping, which is a set of pre-computed solutions to the mapping function given the corner coordinates of the texture and the image (to be described). Though this involves overhead computation, the conversion can be quite effective after the coefficients of the mapping function are found. As inverse mapping involves scan-line conversion, scanning can be less efficient.

However, the major drawbacks of forward mapping are the required calculation of fractional area of pixel coverage and the possibility of aliasing. A selected texture patch usually does not match up with the pixel boundaries, requiring calculation of the fraction it contributes to a particular pixel. Thus, an entire image size accumulation buffer is needed to accumulate all the contributions to every target pixel. Inverse mapping, in contrast, avoids pixel subdivision calculations, and allowing anti-aliasing techniques like filtering to be easily applied. [4] [7]

[image: image55.png]

The texture patch has fractional contributions to the color

of the pixels pointed to by the arrows
[image: image56.png]

The color of the image pixel is computed as the

weighted average of source pixels
In view of the above advantages of inverse mapping algorithm, we have chosen this as our mapping direction.
7.4
Types of mapping functions
Linear scan-line interpolation
[image: image57.png](15, 5) Scanline y,

(r2, c2)

This method uses inverse mapping and the concept of interpolation to determine the mapping function. To illustrate the algorithm, we assume that the texture coordinates (u, v) of pixel (r, c) are to be found, and that (r1, c1), (r2, c2) … (r5, c5) have the corresponding texture coordinates (u1, v1), (u2, v2) … (u5, v5). The image corner coordinates as well as the corresponding texture coordinates are given.
The algorithm consists of several steps [5]:

1. Determine s, the cutting proportion of (r4, c4) on the left boundary by

(r4, c4) = s*(r1, c1) + (1-s)*(r3, c3)

2. Determine the texture coordinates (u4, v4) by

(u4, v4) = s*(u1, v1) + (1-s)*(u3, v3)

3. Find (u5, v5) in a similar manner.

4. Determine t, the cutting proportion of (r, c) on the scan-line by

(r, c) = t*(r4, c4) + (1-t)*(r5, c5)

5. Find (u, v) by

(u, v) = t*(u4, v4) + (1-t)*(u5, v5)

It would be too inefficient to apply the 5 steps consecutively for every image pixel. To raise efficiency, we compute (Δu, Δv) which is the difference of texture coordinates of neighboring image pixels on the same scan-line, say (r, c) and (r, c+1). When the next pixel (r, c+2) is computed for the texture coordinates, we just add (Δu, Δv) to the texture coordinates of (r, c+1). This is so since the mapping is linear.

Linear 2-D mapping with simple linear transformations
This is to apply a series of basic linear transformations to the texture map or the image map for texture mapping. Simple linear transformations include translation, scaling, shearing and rotation. Matrix mathematics show that each of them can be computed by pre-multiplying the source coordinates with a 2x2 matrix. Hence, the mapping function is made up of the multiplication of a series of 2x2 matrices, which is also a 2x2 matrix.

Note that this kind of mapping is capable of transforming a rectangular texture map into parallelograms in any orientation. It can also be very fast once the mapping function is found. The big disadvantage is that it cannot map to surfaces like trapeziums which are not parallelograms, resulting in flaws. This type of situation is very common for camera-taken image surfaces because of perspective considerations and camera distortions (to be described).

[image: image58.png]

 [image: image59.png]

 original texture map

after shearing and scaling
Projective mapping
This is the most general 2-D linear mapping that can map any quadrilaterals to any quadrilaterals [5]. It makes use of the general solution of a system of equations as the mapping function. Its principle is illustrated below.

[image: image60.png]u=(ayr+apc +ap)(ayr+a;c+ 1)
V = (ayr + @yt + ay)/(agr +a;pc + 1)

where the 8 coefficients aij are to be determined.

Now suppose the texture map is a square with corner coordinates (0,0), (0,M), (M,N) and (N,0), while those for the image surface consists of (x1,y1) … (x4,y4). Then

[image: image61.png]0

Eqs. for comer %0

11%0 £312V0 +313

Eqs. for coner #1

aypxy =ayy

a3

Eqs. for corer #2

Ay +apy) =3

Eqs. for comer #3

113 +31Y3 +a53

a3xp+azyo <1

321%0 +anVp* a3

asxrany +1

A% +30)Y) 203

ayxy +anyr +1

A%y +ayyy +agy

ayxs +any; <1

X3 +ayVs+ay

+1

a3px+agyy <1

a3y +ayyyy <1

a3y¥3 +agy3 <1

With 8 equations and 8 unknowns, the coefficients can be determined as follows, which is the general solution to the system.

Let

[image: image62.png]X -x)

Axy=x3-x

Axz=xg-x1+X-%3 A¥3=Yo-V1+¥2-V3

then

[image: image63.png]Ayj|

Ax)

Ayt Ay))
a1 =%~ XgFapzN =x3-XgTaxx;
ap =y1-yo+any Yo+a3y3

a3zr=xp

For the case of mapping a surface of a random quadrilateral to a square, some more steps are done after finding the coefficients aij as above. They are represented as follows:

Compute A’ij
[image: image64.png]Afr=ap-aan Ay =apzaz —an Al =apag-ajz

Ay =apazi-an A =a-apas Abz=arzay-apans
Aj=ayayp-apesr Ap=apaz-amRyn Al sapan-anan

Finally compute Aij by

[image: image65.png]

and replace aij with Aij.

Combination of the above two cases results in a mapping from a arbitrary quadrilateral to another arbitrary quadrilateral. However, despite its versatility, the major disadvantage of the algorithm is it involves expensive computation [8]. When there are a large number of surfaces to be mapped with textures in this way, it can be very costly.
7.5
Comparison of linear mapping functions
	
	Linear scan-line interpolation
	Linear mapping with simple linear transformations
	Projective mapping

	Speed
	slow
	fastest
	slowest

	Accuracy
	high
	poor
	high

	Ease of implementation
	quite complicated
	easy
	acceptable

Although linear mapping with simple linear transformations is the fastest one, it has low accuracy and limitations like the possibility of aliasing. When the surface is regularly shaped such as a parallelogram or very small, it can be very useful. Linear scan-line interpolation and projective mapping have similar performance.

[image: image66.png]

A box mapped with a thousand HK dollar note by linear scan-line interpolation
[image: image67.png]

Usually, the image surface is not a parallelogram. Using simple linear transformations has low accuracy.
7.6
Shadow mapping
So far what we have considered is how to map a texture onto a surface of an image so that the texture map fits well with the shape of the surface. To make the surface more realistic, the lighting should also be considered following the shape. In the example above, the note seems to be too bright compared to the other faces of the box.
As mentioned before, texture mapping not only involves the texture map itself, but other factors like specularity, transparency, reflected lights and shadows are also possible. To further enhance the reality of the mapped surface, we apply shadow mapping. In other words, we map the intensity values of the original image surface onto the mapped surface, restoring the original brightness and shading.

This is done by the conversion of RGB color space to HSV color space. After the conversion, the intensity value becomes independent of the hue value, ideal for the manipulation of shading. After shadow mapping, the surface looks more realistic:

[image: image68.png]

The surface becomes more realistic after shadow mapping
7.7
Multiple face mapping

This is to apply the texture mapping function consecutively on different faces so that the whole object will be covered with different textures to further enhance reality. The box can be modeled into a piece of brick, a pile of notes, etc which has all the faces mapped with textures.

Chapter

8
Limitations of texture mapping

8.1
Possibility of aliasing

Illustration
This is the phenomenon that some displayed primitives have a jagged, or stairstep appearance [4]. Sometimes, even when the texture map does not have aliasing, the image surface after mapping can have. This unwanted artifact can happen during the stage of image acquisition, or during image mapping.

[image: image69.png]

 [image: image70.png]

 The upper part of the floor contains the floor pattern is so smooth after

distorted shapes – aliasing anti-aliasing operations!
Causes
Aliasing is mainly due to low-frequency sampling (undersampling). When the frequency of the texture map gets very high, we may not be able to sample it at sufficient points, resulting in unwanted discontinuities. Even drawing a line can have aliasing since continuous images always contain very high frequencies [5].

Anti-aliasing techniques
Theoretically, to avoid aliasing, the sampling frequency should be at least twice the highest frequency occurring in the object, referred to as the Nyquist sampling frequency.

Fs = 2fmax
Some common methods of reducing aliasing include:

(i)
Supersampling

This simply increases the sampling rate by treating the screen as if it were
covered with a finer grid than is actually available. It is also called post-filtering

(ii)
Filtering

Examples include Gaussian filter and a “box” filter. The high-frequency
components are filtered and the highest frequency occurring in the image is
lowered.

(iii)
Mip-mapping

The texture map is pre-computed at different resolutions using filters. The
pyramid of images generated can be efficiently stored. During texture mapping,
the texture of the most similar size with the image surface is selected and
mapped.

[image: image71.png]

A pyramid of pre-computed texture maps in different

resolutions
Note that aliasing is not a minor problem. When the texture map consists of repetitive patterns, aliasing can lead to a distortion of information to such an extent that the output image can probably be far from satisfactory.

8.2
Camera distortion
Not only is this a problem for edge detection but it also brings troubles to texture mapping. Our algorithm maps rectangular texture maps to arbitrary quadrilaterals with straight edges. But unfortunately, since the problem of camera distortion is virtually impossible to get rid of, the slightly bended edges result in mapping flaws.

[image: image72.png]

Camera distortion results in flaws
[image: image73.png]

Chapter

9
Improvement and Future Work
9.1 Better User Interface
Up to now, the system only works under a command line system. That means, users have to type in the following information by keyboard in order to make the system work:

· Name of image file to be processed.

· Number of times for the system to perform smoothing.

· Surface hue value of the target object.
· Surface saturation value of the target object.

We are proposing a graphical user interface for this system, so it will have the following advantages:

· Typo-proof. There is no problem for a user to mistype a value. The value can be corrected at any time before the execution. For command line system, a user has to start over when there is a typing mistake.

· Continuous work. The graphical user interface allows a user to process multiple videos without restarting the application. On a text-based system, the application exits once the first task is done.

· What-You-See-Is-What-You-Get (WYSIWYG). The graphical user interface provides an input window and an output window. A user can try and adjust different values of target hue/saturation and smoothing levels before he/she actually write the result to the disk.

· Increased performance. Usually a 32-bit application will have a better performance than a 16-bit text-based application.

We will make use of Microsoft Visual C++ MFC to develop the graphical user interface.
9.2 Faster Processing Time
Since the parts with the project are finished individually, they do not work at their optimal when they are combined together. Currently, processing a standard VCD frame still needs more than 2 seconds in average.
In order to achieve real time augmented reality (AR), we will try to improve the performance of edge detection and translation detection. We hope that by the end of the second term, the project can achieve at least 20 frames per second at standard VCD quality.

Possible areas of time saving:
· Using better algorithm of edge detection (we are adopting a simple algorithm with no optimization).

· Merge repeated works in different components into one.

· Try to remove the redundant equation processor part by improving the remaining part (the most challenging part). In fact, if the remaining part has a high accuracy in processing, there is no need for us to use an equation processor.
· Try to define a new bitmap format that stores the odd rows at the beginning, follow by the even rows just like the interlaced GIFs. This allows the system to get a quick picture before it finishes reading the entire image file.

9.3 Improve the Accuracy and Error Tolerance
Up to now, the system can only work well when the input image is sharp and the occultation is small. So, we planned to improve this by doing the following things:
· Design some special patterns on the pure color surface such that the computer knows how much or even which part of the object is being covered. In fact, the yellow spots on the cubes in section 6.2 and 6.3 are used to detect the orientation of the box. It is not complex enough to estimate the information about the whole surface.
· Improves the edge detection algorithms to further minimize the effect of occultation.

· Include constraints in equation detectors such that unreasonable equations cannot be derived (currently, only the number of sides is given as a constraint).
9.4 Integrated MPEG Decoder and Encoder
Our project can only process video frame sequences instead of a real video stream. That means, we must use a third-party application (such as VirtualDub) to extract all the video frames for us. After the process, use another application to combine the video frames back to a video stream. Since the project is still in the engineering stage, we will use this method to test our program until it is bug free. For future convenience, an MPEG codec will be included in the project such that the job can be done with only one executable.
9.5 Work on Universal Objects
Currently the system will only work on cubes or cuboids. Actually other objects can be tackled if conic equation can be derived. In the second term, we will add support of cylinders, pyramids and cones.
9.6 Automatic calibration
At present stage, the user needs to specify which face of the cube to be texture- mapped by clicking that particular surface as input. The system then analyses the RGB value of the pixel selected and detects similar pixels to determine the location of the image surface to be mapped.

To enhance convenience, calibration can be done beforehand so that the user doesn’t need to click for surface selection. The idea is to take a photo of a color palette under the same lighting condition as the object of the image is in. The palette photo is then input to the system which then knows how different colors look like under that particular lighting condition. Hence, if a red surface is going to be mapped, the user does not need to select the surface since the system already knows the RGB values of red.
9.7 Generalization of texture mapping
Meanwhile, we are focusing on mapping the color and shading to an image surface. To make texture mapping more realistic, factors like shininess and transparency need to be taken into account. For example, a texture map of wood and one of glass certainly have different degrees of shininess and transparency. Pure consideration of color and shading is certainly not enough.
Chapter

10
Conclusion

In this project, a system for surface detection and texture mapping is proposed. Although it is still at a preliminary stage, we have already grasped the fundamentals of digital image processing and had a glimpse at what post-TV production is about. More specifically, we have learnt the following techniques for digital image processing:

1. Get more knowledge about bitmap file structure. The project requires a deep understanding about how bitmap files store the 2D pixels. Also, the cons and pros of the bitmap file structure are learnt.

2. The HSV color scheme. We have learnt that the HSV color scheme is more natural and easy to be applied on human-friendly algorithms.

3. Geometrical method of describing the relation between a set of points. In this project, we have learnt how to use Hough Transform Voting algorithm to estimate a linear equation that passes through a large number of points.

4. The method of Median smoothing. This provides an accurate smoothing of images.

5. Different types of mapping functions and algorithms, like linear line scan conversion and projective mapping.

6. Texture mapping involving patterns, brightness and related problems like aliasing and camera distortion.

This is only the first step to developing a more comprehensive and effective post-TV production system. In the future, definitely more will be done to strive for further development and enhancement of the system.
Reference

[1] About.com, Kathleen McGinn, November 14, 2001
http://inventors.about.com/gi/dynamic/offsite.htm?site=http://www.princetoninfo.com/200111/11114c01.html
[2] 70th Oscar Academy Awards, 1997.

http://www.oscar.com/legacy/pastwin/visual_eff1.html
[3] KillerMovies.com, Community Forums.

http://www.killermovies.com/forums/archive/index.php/t-15731
[4] DVDRHelp.com, What is VCD?

http://www.dvdrhelp.com/vcd
[5] James D. Murray & William vanRyper, “Encyclopedia of Graphic File Formats”, O’Reilly & Associates, Inc.

[6] Nancy L. Price, “Graphic File Format Comparison”
http://www.uwm.edu/People/price/graphic_file_format_comparison.html
[7] Christopher C. Yang, “Color Coordinate Systems”
http://www.se.cuhk.edu.hk/~yang/research/CIP/color/ch2.ps
[8] TutorGig Encyclopedia, “HSV Color Space”
http://www.tutorgig.com/encyclopedia/getdefn.jsp?keywords=HSV_color_space
[9] Coder.com, “Using Edge Detection”
http://coder.com/creations/banner/examples/edge.html
[10] HyperMedia Image Processing Reference, “Gaussian Smothing”
http://www.cee.hw.ac.uk/hipr/html/gsmooth.html
[11] HyperMedia Image Processing Reference, “Mean Filter”
http://www.cee.hw.ac.uk/hipr/html/mean.html
[12] HyperMedia Image Processing Reference, “Median Filter”
http://www.cee.hw.ac.uk/hipr/html/median.html
[13] Jiqiang Song, Min Cai, Michael R. Lyu and ShiJie Cai, “A New Approach for Line Recognition in Large-size Images Using Hough Transform”
[14] School of Computing Science at SFU, “Basics of Video”
http://www.cs.sfu.ca/CourseCentral/365/li/material/notes/Chap3/Chap3.4/Chap3.4.html
The following references are also helpful in the project development stage:

[15] United Nations Educational, Scientific and Cultural Organization, “Basic Edge Detection”
http://www.netnam.vn/unescocourse/computervision/42.htm
[16] HyperMedia Image Processing Reference, “Canny Edge Detector”
http://www.cee.hw.ac.uk/hipr/html/canny.html
[17] HyperMedia Image Processing Reference, “Roberts Cross Edge Detector”
http://www.cee.hw.ac.uk/hipr/html/roberts.html
[18] HyperMedia Image Processing Reference, “Sobel Edge Detector”
http://www.cee.hw.ac.uk/hipr/html/sobel.html
[19] Texture Mapping as a Fundamental Drawing Primitive - Paul Haeberli and Mark
Segal - June 1993

http://www.sgi.com/grafica/texmap/
[20] WinTexture - A New Design Application from De Montfort University

http://www.staff.dmu.ac.uk/~gfo/wtx.html
[21] Rochester Institute of Technology - Computer Graphics II

http://www.cs.rit.edu/~ncs/Courses/571/syllabus.shtml
[22] Computer Graphics C Version 2nd Edition - Donald Hearn, M. Pauline Baker
[23] University of Toronto - Department of Computer Science

CSC320F: Introduction to Visual Computing

http://www.cs.toronto.edu/~kyros/courses/320/Lectures/lecture-15.pdf
[24] Cornell University - Introduction to Computer Graphics - Spring 2003

http://www.cs.cornell.edu/Courses/cs417/2003sp/Lectures/Lecture25/25texture.pdf
[25] Forward Image Mapping - Baoquan Chen, Frank Dachille and Arie Kaufman

http://www-users.cs.umn.edu/~baoquan/papers/fim.pdf
[26] Model-Based Rendering - Bob Fisher 2003

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/LIVATINO2/MainApprRVVS/node2.html
Work division
Tong Pak Hin: Ch 1-6, 9-10,
Yuen Pak Kei: Ch 7-9, 10,

Acknowledgement

To

Dr. Michael R. Lyu

Mr. Edward H. Yau
Mr. Song Ji Qiang
for providing us with valuable comments and suggestions

in the development of this final year project

Appendix
Workable Components Public Function Overview
· Bitmap File Reader (BMPIo.h)
· unsigned char*** readBMP(char* filename)

This reads the pixel 2D array from file “filename”.

· void writeBMP(unsigned char*** pixs, char* outName)

This writes a pixel array “pixs” to a bitmap file “outName”.

· int getW()

This returns the width of the bitmap file.

· int getH()

This returns the height of the bitmap file.

· RGB/HSV Converter (HSVCvrt.h)
· unsigned char* RGBtoHSV(unsigned char* pixs)
This converts an RGB 3-byte block to an HSV one.

· unsigned char* HSVtoRGB(unsigned char* pixs)

This does the reverse of the above function.

· Edge Detector (EdgeFind.h)
· void process(int temp, int temp1, unsigned char*** pixs)

This picks out edge points using “temp” as the hue, “temp1” as the saturation value from the pixel array “pixs”.

· int** getPts()

This returns the edge point list.

· int getSize()

This returns the number of edge points found.

· Linear Equation Finder (HTrans.h)
· int** getList(int** pts, int size)

This automatically tries an optimal tolerance value.

· int* process(int** pts, int size, int tol)

This derives equations from “size” edge points “pts” with tolerance value “tol”.

· int getSize()

This returns the size of the equation list.
· Equation Processor (EqnPro.h)

· int** process(int** list, int lSize)

This tries to eliminate redundant equations from list “list” with size “lSize”.

· int getSize()

This returns the size of equation list after processing.

· int solveX(int* eqn1, int* eqn2)

This solves for the value of x from two equations “eqn1” and “eqn2”.

· int solveY(int* eqn1, int x)

This solves for the value of y from an equation “eqn1” and a given x.

· Median Filter Smoother (Smooth.h)

· unsigned char*** process(unsigned char*** pixs)
This returns a smoothed version of the pixel array “pixs”.

· Texture mapper (TexMap.h)
· char ***TexMap::process(char ***pixin)
 This processes the texture map pixin and maps it to the image file with the

location specified by four vertices.[image: image74.png]

b

a

scan-line direction

Mapping function

image space

texture patch

texture space

image pixel

PAGE
60

_1131122191.bin

_1131122401.bin

_1131287375

_1131287321

_1131122302.bin

_1131122170.bin

