LYU0201 Open Bluetooth™ Networking Game Development Platform
FYP Report, Fall 2002

Abstract

This report is subject to the final year project LYU0201 entitled “Open Bluetooth™ Networking Game Development Platform”.

This report is divided into 8 parts, which includes: introduction of this final year project, technology for networking game development, wireless network, Bluetooth™, an open game development platform, project progress, contribution of work, and finally conclusion.
Our final year project targets on how to implement a game platform which can be used to develop several types of games. In addition, our game platform can implement games which can wirelessly interact with one another between two or more Pocket PCs through one of the most popular wireless technology, Bluetooth™.

1 Introduction
1.1 Motivation

Mobile devices, such as cellular phones, personal digital assistants (PDAs) are becoming more and more popular. The raw number of those devices is expected to exceed the number of personal computers (PCs) by an order of magnitude within the next couple of years. More and more of those devices have powerful communication interfaces which naturally lead to the construction of ad hoc networks, allowing the implementation of mobile services. Today some Pocket PC series even offer integrated Bluetooth personal area networking which is a low cost technology and allows several Pocket PC devices to communicate with one another wirelessly. Recently, a lot of attention has been paid on the applications of Pocket PC by the Bluetooth technology. However, few studies have been carried out on how to implement a game in these devices and play together wirelessly. Our project will focus on how to implement a game in Pocket PC and develop a wireless multiplayer game using Bluetooth™ technology.
1.2 Project Objective

Our project aims at implementing a game on Compaq iPaq 3870. In order to achieve this, we will use Bluetooth™ technology which is integrated in iPaq 3870 to develop a multiplayer PDA to PDA wireless game. Also an Open Bluetooth™ Networking Game Development platform is introduced to enable faster game development cycle.
2 Technology for Networking Game Development
2.1 Introduction
Developing a game is not as the same as developing a general software. Indeed, a computer networking game is a piece of software, so all the programming techniques and software engineering principles could be applied on game development. However, game development is such a special field in programming such that some special knowledge is required in order to accomplish the task. Almost all games have similar architectures, and attentions should be paid in achieving synchronization when developing networking games. In this chapter we are going to address these issues one by one, preparing us to develop the Open Bluetooth™ Networking Game Development Platform.
2.2 Game Architecture
Games, especially real-time games, proceed with time. As time elapses, the states of various game objects should be updated, video screen should be redrawn to reflect the new state, and some game activities such as AI computation should be performed periodically. Actually nearly all game operations are related to time, and the game architecture should be able to model this relationship. The question is how these operations should be related to time. Various architectures have been proposed to handle this game timing problem.
2.2.1 Naïve Approach

The first obvious answer to this question is to totally ignore the timing issue. The main part of the program is a loop, called ‘game loop’ in game development literature, containing all game activities such as control checking, state updating for various objects, and frame drawing. The game loop never stops until the game ends. This approach has a simple control flow, depicted as follows:

[image: image1.emf]Initialization

Game Over?

Check

Controls

Draw Frame

Update Object

State

Exit Game

No

Yes

Figure 2.1
Flowchart for Naïve Approach
In this approach, all game activities are performed one by one, i.e. first getting input from user, followed by object state updating routine such as object moving in game world and AI calculation, and lastly screen updating routine by drawing frames to video memory.
At a glance, this approach would not present any problems. It can handle user input correctly, performing AI calculation and frame drawing as fast as possible. This ‘as fast as possible’ approach is the root of the drawbacks of naïve approach. In current PocketPC environment, vast amount of products with various computation power exist, and naïve approach does not handle this difference in speed well. A compute-controlled character might move too fast in a blazing fast machine, leaving user impossible to respond correspondingly. Also in a networking game, users with different machines of various speeds should be treated equally; no advantages should be granted to users with faster machines. Due to its inability to handle these problems, naïve approach has not been adopted in general and could only be used when the game machines are identical (e.g. Game Boy).
2.2.2 Simplistic Approach
In this approach, a global frame rate for the game has been introduced. All game activities in the game loop are synchronized with this global frame rate, and the game loop is not allowed to return to entry point until time for one frame (i.e. the mathematical inverse of the frame rate) has elapsed. The idea is illustrated as below:

[image: image2.emf]Initialization

Game Over?

Check

Controls

Draw Frame

Update Object

State

Exit Game

No

Yes

F

i

x

e

d

F

r

e

q

u

e

n

c

y

Figure 2.2
Flowchart for Simplistic Approach
The game loop of simplistic approach has no difference with that of naïve approach except that a global frame rate has been added to control the speed of looping. In one frame every game activity could only be occurred once. By setting an appropriate frame rate (e.g. 30fps), the drawback of naïve approach would be eliminated and all machines, no matter how fast it is, would run at the same speed.
This approach has still been advocated until comparatively recently, because of its simplicity in implementation and the least overhead among various approaches. However, there is a critical disadvantage. Below a certain threshold level of processing power, halving in speed would occur. If the processing time of AI calculation is longer than one frame’s time, every other frame would be skipped. Drawing a frame too long would also result in a similar situation. This would not be desirable for users with slow machines.

2.2.3 Semi-decoupling Approach
The main problem of naïve and simplistic approach lies on the fact that frame drawing and other game activities are mixed together; it leads to an inevitable synchronization and serialization of these events. The solution to this problem is separation of frame drawing procedure from other game activities. Semi-decoupling approach is the first attempt adopting this method. The concept is shown in Figure 2.3:

[image: image3.emf]Initialization

Game Over?

No

Yes

F

i

x

e

d

F

r

e

q

u

e

n

c

y

Update Object

State

Exit Game

If not updating object

state then

Draw Frame

Check

Controls

S

t

a

r

t

T

h

r

e

a

d

E

n

d

T

h

r

e

a

d

Figure 2.3
Flowchart for Semi-decoupling Approach
The operations such as user input retrieval and object state updating run at fixed rate as before, but the frame drawing routine is decoupled from them and a separation loop is allocated for it. That loop draws each frame, and then waits for object state updating routine to be finished before drawing next one.
This approach has the advantage that object state updating operation would continue to work independently even if the frame takes too long to draw, alleviating part of the problem of previous approaches. However, it is still not perfect solution in the sense that frame rate is still being limited by the fixed frequency controlling the non-drawing game loop. Users with powerful machine would not be happy with that. Although this method is satisfactory in many cases, a complete solution would please everyone.
2.2.4 Full-decoupling Approach
Here comes full-decoupling approach, the first complete solution to the game timing problem. The fixed frequency is thrown away, and in order to handle the heterogeneity in speed of different computers, the idea of delta value is introduced. The flowchart of this approach is shown as Figure 2.4:

[image: image4.emf]Initialization

Game Over?

No

Yes

A

s

f

a

s

t

a

s

p

o

s

s

i

b

l

e

Update Object

State

Use 1/frequency as

delta value for

calculation

Exit Game

If not updating object

state then

Draw Frame

Check

Controls

S

t

a

r

t

T

h

r

e

a

d

E

n

d

T

h

r

e

a

d

Figure 2.4
Flowchart for Full-decoupling Approach
The delta value, calculated as 1/frequency, is used to adjust the object state updating routine. Larger delta value means that object state would be updated less frequently, and vice versa. By employing this technique the problem of heterogeneity in speed of different machines could be completely solved. In addition, the relationship of frame drawing routine and other routines is kept to minimal. In real life situation, semi-decoupling approach and full-decoupling approach is the most prevalent game architecture employed in game development.
2.2.5 Truly Full-decoupling Approach
The full-decoupling approach is actually not really ‘fully decoupling’; the rate of frame drawing routine is still somehow limited by object state updating in a loose sense. So the final approach to handle game timing problem is truly separation of these two routines:

[image: image5.emf]Initialization

Game Over?

No

Yes

A

s

f

a

s

t

a

s

p

o

s

s

i

b

l

e

Update Object

State

Use 1/frequency as

delta value for

calculation

Exit Game

If at a suitable place to

pause object state

updating to allow

drawing then

Draw Frame

Check

Controls

S

t

a

r

t

T

h

r

e

a

d

E

n

d

T

h

r

e

a

d

Figure 2.5
Flowchart for Truly Full-decoupling Approach
In this approach, the frame-update loop is given the ability to take a “snapshot” of the object states even during updating them, as long as at least one visible object has been processed. In this arrangement frame drawing routine and object state updating routine are completely independent and would not hinder each other.

It sounds that truly full-decoupling approach would be the best approach, but nothing is perfect, so as this approach. Difficulty in achieving fully decoupling is one of the major problems it encounters. Pausing object state in suitable time is also a hard problem, as the object state updating procedure may be in the halfway of updating an object. As a result invalid object state would be obtained and adverse result may happen.
2.3 Synchronization of Networking Game
When developing networking game, another dimension of problem must be considered: there are a number of heterogeneous machine in the game, and the only way for them to communicate with each other is by message passing. A question arises immediately, “How to synchronize the game state between these different machines?” In this section two model are suggested to handle this problem.
2.3.1 Server Client Model
In server client model, one of the machines is assigned as server, and others are clients. The connections exists in this modal are those connecting a server and a client. Below is the architecture:

[image: image6.emf]Server

Client

ClientClient

Client

Figure 2.6
Architecture of Server Client Model
The game state is maintained at server side, and therefore server side is responsible to keep informing its clients the latest game state, achieving game state synchronization. When a client wants to update the game state, it first needs to inform the server about the change. The server, after receiving the update request, checks its game state to ensure that that particular update would not violate the game rule defined. A possible violation would result in replying a reject message back to client side. If not, the server would first update its internal game state, and then broadcast the changes to all clients including the one sending request. By doing so the latest game state is always maintained at the server side and clients would keep informed the game state, making inconsistence between any two machines impossible.

The major advantage of this model is that the number of connections that have to be established to maintain game state is not huge. Precisely, only (n – 1) connections would be needed for n users. This enables a large number of users to be supported. Actually with a powerful and high-bandwidth server, thousands of clients could be served in a game. An obvious example is Massively Multiplayer Online Role-Playing Games (MMORPGs), in which game company operating game servers to allow massive number of user to login in and play.
However, there is one major disadvantage: reliance on the capability of the server, resulting in a bottleneck. One of the issues concerned is that the server has to do updating and game state broadcasting all the time. It would be quite a hard job if the server does not have enough processing power, slowing down the whole game. Another similar situation would happen when bandwidth of the server is not high enough, so game state updating would be an extremely slow process. In extreme case, the server is down, the whole game would also be torn down too.
2.3.2 Peer to Peer Model

[image: image7.emf]Data Communication

Figure 2.7
Architecture of Peer to Peer Model
Peer to Peer Model is another common architecture in constructing networking games. In this configuration, one data link is established for each pair of network devices. In contrast to server client model, no central server is acted as game state maintainer, and game state update could be carried out without permission of other devices. Only after game state update is complete does the updating client inform all other clients about the change, achieving some sort of synchronization.
Peer to peer model avoids the reliance on a particular device, so problem on server client model would not appear. Powerful server is unnecessary: all devices are treated equally and no burden would be put on a particular device. If a device fails, nothing would be affected as each unit contains the entire game state, preventing from loss of information. Ease of implementation is another advantage that peer to peer model can offer.
On the other hand, strengths of server client model are the weaknesses of peer to peer model. The number of connections required is n(n-1)/2, where n is the number of devices. This is a huge number when number of devices grows, limiting the use of peer to peer model in large scale games. In addition, as game state update requires message broadcasting to all users, many duplicated and unnecessary network traffic would be generated, lowering the performance of the whole system. Therefore, this model would usually be used in small scale games with number of users less than 10.

3. Wireless Network
3.1 Introduction
[image: image8.jpg]

Figure 3.1
Various wireless enabled devices at a glance
Wireless network first appeared during World War II, when the military department of U.S. used radio signal for information exchange. In 1971, a group of researchers at University of Hawaii successfully built the first packet based radio communications network, dubbed ALOHNET. In these few years wireless network technology has advanced to such an extent that it is an acceptable and affordable solution for computer communication, and now many computer-related products are wireless-enabled, some of them being shown in the above figure. Three popular wireless network technologies: Infrared, Bluetooth™ and IEEE 802.11b, are introduced in this chapter, giving us the overview on the latest wireless network development.
3.2 Infrared

Infrared (IR) is one of the first wireless network technology introduced and widely accepted in commercial market. The standard of IR transmission is regulated by Infrared Data Association (IrDA) and thus, often Infrared connection is also called IrDA connection. The technology behind is quite simple: infrared light is used as the transmission media between two IrDA enabled devices.

[image: image9.emf]IrDA Connection

Figure 3.2
An IrDA connection
The wide acceptance of IrDA in 90s’ does not have no reasons at all. It provides a total transmission bandwidth of 4Mbps, which is quite fast. The power consumption is also not huge, enabling it to operate in handheld devices with limited power supply. The main reason for its popularity, of course, is its low cost. An IrDA chip only costs US$2 or less, making it an attractive choice for ordinary customers.
3.3 Bluetooth™

Being a ten-year-old technology, IrDA has shown its age. The fatal drawbacks including short coverage range of 1meter and limited angle of contact suggests that a brand-new technology should replace it. At that time Bluetooth™ comes out and stands as a promising wireless technology.

[image: image10.emf]
Figure 3.3
Bluetooth™ connections
Based on radio frequency, Bluetooth™ successfully solves the problems plagued IrDA. Unlimited angle of contact and much wider range (10meters) of connection coverage would make it superior to IrDA as cordless connection technology. Physical obstacles between devices would not cause any problem; the radio wave would be able to pass it through. Offering connection speed of 1Mbps, Bluetooth™ is one of the most suitable candidates for wireless game development.
3.4 IEEE 802.11b/Wi-Fi

IEEE 802.11b, dubbed Wi-Fi, is another latest wireless technology aiming at a different market from Bluetooth™. Using radio frequency at 2.4GHz ISM frequency, Wi-Fi provides 11Mbps bandwidth with accessing range of 100 meters, much wider than Bluetooth™. However, ad hoc network cannot be established in Wi-Fi; an access point connecting to LAN is needed to construct a complete network.

[image: image11.emf]Access Point

Figure 3.4
IEEE 802.11b connections
Although in terms of functionality Wi-Fi undoubtedly suppresses its opponent Bluetooth™, this advantage comes with price. The power consumption is huge, making it impossible to operate for a long time in handheld devices. Also, Wi-Fi devices are much more expensive than other wireless technologies, inhibiting it from gaining popularity. Access point is also required to construct the network, and often the price of an access point is high, adding additional cost. Most importantly, incapability in building ad hoc networks makes it impossible to start a network game anywhere; these factors make our project turn away from Wi-Fi in favor of Bluetooth™.
4. Bluetooth™ Technology
[image: image12.jpg]

Figure 4.1
Bluetooth™ symbol

4.1 Introduction

The birth of Bluetooth™ dated back to May 20th 1998, when five technological giants including Ericsson, IBM, Intel, Nokia and Toshiba announced that joined effort would be made to put forward a new specification of wireless network technology. The codename of this brand-new specification is called Bluetooth™, and an organization Bluetooth™ Special Interest Group (SIG) had been set up for development and maintenance of Bluetooth™.

This new technology soon received so much attention after its initial release and was viewed as a competitive opponent of IEEE 802.11b, another name called Wi-Fi, as Bluetooth™ has a number of advantages, the most obvious one being its low power consumption, enabling it to be the only suitable candidate for wireless connectivity between mobile and handheld devices. That is also the reason for our project to choose Bluetooth™ to build our Open Network Game Development Platform. In this chapter we are going to introduce the technical aspects of the Bluetooth™, including basic terminology, network topology, and protocol stack.

4.2 Bluetooth™ Network Basics

4.2.1 Radio Frequency

Bluetooth™ utilizes radio frequency (RF) to be the media for signal communication. RF has several advantages over traditional Infrared technology in the sense that the connection angle and connection range is much higher, and obstacles between devices would not cause any transmission problem or instability. The frequency band 2.4GHz, also known as ISM (for industrial, scientific, and medical) is employed, as it is free of royalty and is open to use for all purpose. This helps to lower the price of Bluetooth™ device production and make it more competitive to other wireless communication technology.

Radio modulation is performed by Gaussian Frequency Shift Keying (GFSK) technique. With this technique, a positive frequency deviation is used to represent a binary one, and a negative frequency deviation is used to represent a binary zero.

As stated in the above paragraph, the ISM 2.4GHz RF has been chosen as the communication media of Bluetooth™. As this frequency range is open to use for any purpose, many other operations such as 802.11b Wi-Fi networks, 2.4GHz cordless telephones and even microwave ovens also use this frequency band, resulting in collision. The inference with other services would greatly reduce the bandwidth and receiving range of a Bluetooth™ enabled device. To combat against this drawback, a special technique called spread spectrum frequency hopping is built into Bluetooth™ devices. The total Bluetooth™ bandwidth, ranging from 2.402GHz to 2.480GHz, is divided into 79 sub-bandwidths, each occupying a 1MHz interval. The connection between two Bluetooth™ devices would not stay at one fixed interval; rather, after transmitting or receiving each packet of data, hopping to a new frequency interval would take place. As hopping in Bluetooth™ occurs much quicker than that of other technologies, this technique can safely be regarded as a measure to fight against the interference of other services using 2.4GHz ISM frequency spectrum.
4.2.2 Services Provided

Three different Power Classes have been defined for Bluetooth™, with various power consumption requirements:

	Power Class
	Maximum Output Power
	Nominal Output Power
	Minimum Output Power

	1
	100mW (20dBm)
	N/A
	1mW (0dBm)

	2
	2.5mW (4dBm)
	1mW (0dBm)
	0.25mW (-6dBm)

	3
	1mW (0dBm)
	N/A
	N/A

Table 4.1

Power Classes for Bluetooth™
These different Power Classes are introduced to suit different needs. For example, while a Power Class 1 device can have a transmission range of 100m, a typical Power Class 3 device could only reach 10m.

[image: image13.emf]1

0

m

e

t

e

r

Figure 4.2
Bluetooth™ coverage
The theoretical maximum throughput of Bluetooth™ communication is 1Mbps, but the actual speed depends on the mode of usage and the environmental intervention. For example, full duplex data transmission where signals are traveling both directions simultaneously is accomplished by 433.9Kbps, while outgoing 723.2Kbps and incoming 57.6Kbps speed would be achieved in asymmetric data transmission.

Two kinds of transmission are provided, namely Synchronous Connection-Oriented (SCO) and Asynchronous Connection-less (ACL). In SCO, symmetric full-duplex point-to-point communications are guaranteed. Voice signals are the best candidates to choose this kind of service. On the other hand, ACL is a packet-switched half-duplex connection. Being implemented with the concept of retransmission, ACL suits the task of transmitting data packet, when data integrity is the most important thing of all.
4.2.3 Network Topology

The basic personal area network unit in Bluetooth™ is called piconet, which consists of one master and up to seven slaves. Figure 4.3 shows this network configuration:

[image: image14.emf]Slave

Slave

Slave

Slave

Slave

Slave

Slave

Master

Figure 4.3
Network configuration in a piconet
In such a piconet, the Bluetooth™ device first initializing a connection is regarded as master. All other Bluetooth™ devices are then automatically identified as slaves. All slaves must share the same frequency-hop channel, which is established by synchronizing their internal clocks to the master unit’s clock. By doing this, frequency hopping can be achieved as the sequence of switching from one frequency to another frequency is performed identically by all devices in the piconet. This frequency hopping sequence can also be viewed as an identifier of the piconet. As different masters have unique frequency hopping sequences, multiple piconet can also occupy the same physical location without interfering with each other.

In many situations just connecting eight devices would not satisfy the need of that particular application, and other network topology should be constructed to overcome this. Bluetooth™ provides another network topology called scatternet which is built on top of several piconets. The basic idea is that the masters of piconets are connected to each other, combining the piconets into scatternet. The diagram below illustrates this idea:

[image: image15.emf]Slave

Slave

Slave

Slave

Slave

Slave

Slave

Mast

er

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Master

Slave

Slave

Slave

Slave

Master

Figure 4.4
Network configuration in a scatternet
Communications between slaves in different piconets could only be carried out via their respective masters, which serve routing function between them. The maximum number of piconets included in one scatternet is ten, due to the fact that only 79 frequencies are available to provide services for 80 devices in a scatternet.

4.3 Bluetooth™ Protocol Stack

[image: image16.emf]UDP

Baseband

Bluetooth Radio

LMP

L2CAP

TCS-BIN

Audio

SDPRFCOMM

vCard/vCal

TCP

PPP

OBEX

IP

WAE

WAP

AT-

Commands

Host Controller Interface

Figure 4.5
Bluetooth™ protocol stack
The above diagram shows the protocol stack of Bluetooth™. Basically it can be divided into several parts: core protocols including Baseband protocol, LMP, L2CAP and SDP; additional protocols such as RFCOMM and TCS-BIN; lastly adopted protocols, the most well-known one being TCP/IP. As in our project core protocols would be employed, a brief description of each protocol is provided to facilitate better understanding of our Open Bluetooth™ Networking Game Development Platform.
4.3.1 Baseband Protocol

Baseband protocol is the basic protocol of Bluetooth™ technology, just like Internet Protocol (IP) of Internet technology. It provides physical RF connection between two or more Bluetooth™ units to form a piconet. Spread spectrum frequency hopping is also performed in this protocol, synchronizing the clock and hopping sequence of two units. Other physical layer operations such as Time-Division Duplex (TDD) for full duplex connections, Gaussian Frequency Shift Keying (GFSK) modulation, and different kinds of error correction such as Forward Error Correction (FEC) and Cyclic Redundancy Check (CRC) are also part of the Baseband Protocol.

As stated before, there are two kinds of communication link in Baseband Protocol, namely Synchronous Connection-Oriented (SCO) and Asynchronous Connection-less (ACL). SCO utilizes circuit-switching of synchronous packets, providing a total number of three voice channels per unit with full duplex bandwidth of 64Kbps. On the other hand, packet-switching is adopted in ACL, offering full duplex data connection of 433.9Kbps, or asymmetric data connection of 723.2Kbps in one direction and 57.6Kbps in return. The types of links within a piconet need not to be the same, and even it can be changed arbitrarily during a session. This gives applications flexibility to specifically configure the data link to suit their needs.
Inquiry procedure provided by Baseband Protocol is another important feature provided by Baseband protocol. Without any knowledge about the Bluetooth™ devices nearby, inquiry procedure provides a convenient means to discover these neighbor devices, and retrieve useful information about them. Only after that would other connection setup procedures proceed successfully.

4.3.2 Link Manager Protocol

[image: image17.emf]Baseband

Link Manager

(SOFTWARE)

Link Controller

(HARDWARE)

Baseband

Physical Layer

Link Controller

(HARDWARE)

Link Manager

(SOFTWARE)

Link Manager

Protocol

Figure 4.6
Link Manager’s place on the global state
In Bluetooth™ implementation, a piece of software called Link Manager (LM) is responsible for setting up the link and applying connection control and security measures. In order to facilitate the communication between LMs of different Bluetooth™ units, LM calls the communication services provided by a hardware component namely Link Controller (LC) to send packets through Baseband, and the protocol involved is called Link Manager Protocol (LMP). Operations such as initial encryption key exchange, user authentication, data encryption, control and negotiation of Baseband packet sizes, control of power modes and duty cycles of the Bluetooth™ radio, and maintenance of connection states of Bluetooth™ devices are the major duty of this protocol.
4.3.3 Logical Link Control and Adoption Protocol

[image: image18.emf]Baseband

L2CAP

SDPRFCOMMTCSAudio

ACL

P

a

c

k

e

t

i

z

e

d

a

u

d

i

o

d

a

t

a

Figure 4.7
L2CAP in Bluetooth™ protocol architecture
Logical Link Control and Adoption Protocol (L2CAP) is a data link layer protocol responsible for all data transmissions. All other data transmission protocols including RFCOMM, SDP, TCS and packetized audio data rely on this extremely important protocol. In order to support a large class of upper layer protocols, it provides both connection-oriented and connectionless connection services using ACL link of Baseband Protocol. Protocol multiplexing, segmentation and reassembly (SAR), quality of services (QoS) and group abstraction are other important services of L2CAP. We will explain them one by one.

4.3.3.1 Protocol multiplexing

As explained before, L2CAP forms the basis of many other data transmission protocols. Then it is necessary for L2CAP to distinguish different protocols for delivering packets from upper layers and distributing received packets to upper layers, because of lack of support of protocol multiplexing in Baseband Protocol. In L2CAP, a Protocol/Service Multiplexer (PSM) field acts as an identifier for differentiating upper protocols.

4.3.3.2 Segmentation and Reassembly

As the largest packet size of Baseband Protocol is only 341 bytes, this obviously cannot satisfy the needs of upper protocol, in which much larger packet size is used. Being the bridge between them, L2CAP performs packet segmentation and reassembly. All large L2CAP packet must be segmented into several smaller Baseband packets; Only by this could the L2CAP packet be sent through RF. On the receiving side, the L2CAP layer accepts these small Baseband packets and reassembles them into the original L2CAP packet, followed by an integrity check. Then communication between different layers can carry on smoothly.

4.3.3.3 Quality of Services

During the L2CAP link establishment phase, two Bluetooth™ devices can negotiate quality of services requirement. The Bluetooth™ devices then are responsible to comply to the quality of services agreement between them and L2CAP layer would monitor the resource used by them to ensure that quality of services contract are honored.

4.3.3.4 Group Abstraction

The concept of piconet is employed in Baseband Protocol, and it would be convenient if there is a mapping from one single address to a piconet to facilitate group communication. L2CAP provides this kind of group abstraction, avoiding upper layer protocol to talk to Baseband directly and simplifying the group communication process.
4.3.4 Service Discovery Protocol

[image: image19.emf]SDP ClientSDP Server

Client

Application

Server

Application

SDP Requests

SDP Responses

Figure 4.8
Service Discovery Protocol in action
Service Discovery Protocol (SDP) is a powerful protocol enabling clients to discover services provided by the servers nearby. Client applications contact their SDP Clients, sending SDP requests to SDP Servers nearby to query the services provided. The SDP Servers in turn contact server applications in their local machines and get back the service information. SDP responses would then be generated to reply the SDP Requests. The responses are passed back to client applications informing them the query result. SDP can support three kinds of queries, including search for services by service class, search for services by service attributes, and service browsing.
5 An Open Game Development Platform

5.1 Programming Platform

Before describing the detail of the implementation of the platform, let’s briefly introduce the basic knowledge of the program platform and the software we used. All programs are written in Microsoft eMbedded Visual C++.

5.1.1 Microsoft eMbedded Visual C++ 3.0
Microsoft eMbedded Visual C++ 3.0 is the most powerful way for developers to build applications of Windows CE-based communication, entertainment, and information-access devices.

5.1.1.1 Benefits

· It is convenient for the user to use the Windows CE version of the Microsoft Foundation Classes and the Template Library.

· Take advantage of a familiar development environment by building Windows CE applications using a stand-alone IDE designed to target Windows CE development．

· Access Windows CE-specific documentation targeted for the platform SDKs you have installed on your workstation
5.1.1.2 Features

1. Easy To Access the Data

· The local copies of database tables will be maintained with Windows CE Services, such as SQL Server and Microsoft Access that are automatically synchronized with the remote data source.

· In order to build high-performance data-aware solutions, it uses a powerful data access mechanism which is called ADO data access mechanism.
2. Increased Developer Productivity

· Leverage existing knowledge and training by building Windows CE solutions from within the same development environment as that used for traditional Windows development.

· Minimize software development effort by building reusable ActiveX components, useable for eMbedded Visual C++ applications.
3. Low Cost and Easy Debugging
· As there is an emulator which looks and feels of a physical device provided by the embedded Visual C++, the programmer does not need to buy an instrument to test the programming application. When there is any new emulator, it is not difficult to add them on the embedded Visual C++.

· It is very convenient to execute the application in the devices. After the compilation, the eMbedded Visual C++ allows the programmer to copy the program into the mobile device.

· There is an integrated debugger in the eMbedded Visual C++. As a result, it is convenient for the programmer to fix the bugs.

4. Comprehensive Access to the Windows CE Platform

· It uses the successful and powerful component model, COM to build reusable solutions for Window CE-based devices.

· Build compact and efficient COM servers using the Windows CE version of the Active Template Library.

· Graphically build applications using the CommandBar and MenuBar controls, unique Windows CE graphical elements that combine toolbars and menus onto a single control for Windows CE platforms.

· Gain control over communication mechanisms, such as TCP/IP, running via an infrared port or serial port to build compelling mobile applications.
5. Build for the Latest Windows CE Devices
· The Pocket PC can build powerful data-retrieval and analysis applications.

Build solutions for the Handheld PC Pro, Palm-size PC, and Pocket PC Windows CE devices with maximum mobility and minimum maintenance and administration.

· By being able to plug in the development kits for the latest Windows CE platforms, it can gain maximum flexibility and quickly add to the capabilities of the Windows CE Toolkits.
5.1.2 WIDCOMM Bluetooth™ for Windows CE DK API

WIDCOMM Bluetooth™ for Windows CE Software Development Kit supports developers of custom Bluetooth™ applications with protocol-layer direct access to: L2CAP, RFCOMM, OPP, FTP, SDP, SPP, LAP, OBEX.

[image: image20.emf]MS Windows CE

Explorer

Shell IF

BT

Explorer

COM Interfaces

Bluetooth Profiles

GOEP & OBEX

Customer Application

Using DK

DK Interfaces

SDP, FTP Client, OPP Client

RFCOMM, L2CAP, SPP, OBEX

Bluetooth Kernel Driver & Protocol Stack

SDP, L2CAP, RFCOMM

USB

PCIPC Card

Serial

User Mode

Kernel Mode

Figure 5.1
Block diagram/overview of the Bluetooth™ for Windows CE DK

Figure 5.1 shows the way for the DK Interfaces accessing the Bluetooth™ Kernel Driver and Protocol Stack. In the Bluetooth™ for Windows CE DK of WIDCOMM, the DK Interfaces have two ways to access the Bluetooth™ Kernel Driver and Protocol Stack. One can direct access to the Bluetooth™ Kernel, the other is that the interfaces can access to the COM Interfaces first and then through Bluetooth™ Profiles, GOEP and OBEX, and finally to the Bluetooth™ Kernel Driver and Protocol Stack. By using the former one, the DK Interfaces will be faster to access the Bluetooth™ Kernel Driver and Protocol Stack. On the other hand, in our project we will use the latter one to access the Bluetooth™ Kernel Driver and Protocol Stack.
5.1.2.1 Class Description
	DK Class
	Function

	CBtIf
	Provides interface level management function, e.g. methods for doing inquiry and service discovery.

	CL2CapIf
	Interfaces to L2CAP for Protocol/Service Multiplex or (PSM) allocation & registration, and security settings.

	CL2CapConn
	Controls L2CAP connections.

	CSdpService
	Manages an SDP service record.

	CSdpDiscoveryRec
	Contains an SDP discovery record and methods to query it.

	CRfCommIf
	Interfaces to RFCOMM for Service Channel Number (SCN) allocation and security settings.

	CRfCommConn
	Controls RFCOMM connections.

	CFtpClient
	Provides the client-side interface for FTP.

	COppClient
	Provides the client-side interface for OPP.

	CLapClient
	Provides the client-side interface for LAN access using PPP.

	CSppClient
	Provides the client-side interface for SPP COM port connections

	CSppServer
	Provides the server-side interface for SPP COM port connections

	CObexServer
	Provides the server-side interface for OBEX

	CObexClient
	Provides the client-side interface for OBEX

	CObexHeaders
	Container class for all OBEX header structures

	CObexUserDefined
	Container class for the user defined type of OBEX header

Table 5.1

Classes offered in the DK

We choose WIDCOMM's BTW software because it is the most widely used Bluetooth™ ™software suite, which ensures a superior level of interoperability. When we use the L2CAP protocol, five classes are used, namely CBtIf class, Cl2CapIf class, CL2CapConn class, CSdpService class and CSdpDiscoveryRec class. A brief description of each class is given below:
	Class Name
	Description

	CBtIf
	This class provides a stack interface for device inquiry and service discovery. An object of this class must be instantiated before any other develop kid classes are used.

	CL2CapIf
	This class associates a Protocol Service Multiplexer (PSM) value with a service GUID and registers the PSM value with the L2CAP protocol layer. The object of this class must work with an object of class CL2CapConn to communicate at the L2CAP layer.

	CL2CapConn
	This class controls L2CAP connections. An object of this class must work with an object of class CL2CapIf, which registers a PSM and sets security for L2CAP connections.

	CSdpService
	The server side uses this class to manage and create service records. All the methods in this class return an enumerated type SDP_RETURN_CODE.

	CSdpDiscoveryRec
	The service records are returned in objects of this class when a client application reads the services from a remote server device.

Table 5.2

Description of major classes

5.1.2.2 Bluetooth™ Connection Steps

[image: image21.emf]InquiryAddServiceList

Discovery

AssignPsmValue

Disconnect

Establish

Connection

AssignPsmValue

Establish

Connection

Disconnect

Read/Write

Figure 5.2
Diagram of Bluetooth™ connection
Client side:
Inquiry:
The client should start the Bluetooth™ device inquiry by calling CBtlf::StartInquiry() method. By the same time, it will invoke the Bluetooth™ thread. In the Bluetooth™ thread, it calls the derived pure virtual CBtlf::OnDeviceResponded() each time when a device responds. If there is no any Bluetooth™ device responses, the Bluetooth™ thread calls the deviced pure virtual CBtlf::OnInquiryComplete() method. At the same time, the Bluetooth™ thread will wake up the Main thread to call the CBtlf::StopInquiry() to stop the inquiry section.

[image: image22.emf]StartInquiry()

Save Bluetooth device

Infomation

StopInquiry()

Wake up by

OnDeviceResponded()

Wake up by

OnInquiryComplete()

Main Thread

Figure 5.3
Inquiry flow chart
Discovery:
After all new devices have been found, the client will request a service discovery for a specific derive by calling CBtlf::StartDiscovery(). At the same time, it invokes the Bluetooth™ thread to continue discovery of the device. When the discovery is complete, the derived pure virtual function Btlf:OnDiscoveryComplete() is called by the Bluetooth™ thread. And it invokes the main thread to calls the CBtlf:ReadDiscoveryRecords() method to retrieve the records from the remote device.

[image: image23.emf]StartDiscovery()

ReadDiscoveryRecords()

Main Thread

Wake up the Main Thread by the

Bluetooth Thread when it calls

OnDiscoveryComplete()

Figure 5.4
Discovery flow chart
AssignPsmValue:
After discovery, the client needs to extract the L2CAP PSM parameter by looking through the discovery record for the protocol descriptor list by calling CSdpDiscoveryRec::FindL2CapPsm() method. After extracting the PSM value, the client assigns the PSM value to the interface by calling CL2Caplf::AssignPsmValue() method. The client then should register the PSM with the L2CAP layer. It must calls CL2Caplf::Register() method.

[image: image24.emf]FindL2CapPsm()

AssignPsmValue()

SetSecurityLevel()

Register()

Figure 5.5
Assign Psm Value flow chart
Server side:

AddServiceList:
At the beginning in the server side, the server must call some functions to add to a service list. It should first call CSdpService::AddServiceClassList() in order to add a service class ID list attribute to the service record. Then, it calls CSdpServer::AddServiceName() in order to add a service name attribute to the service record. Lastly, it calls the CSdpServer::AddL2CapProtocolDescriptor() method to add a protocol descriptor list attribute to the service record for an L2CAP-based service.

[image: image25.emf]AddServiceClassldList()

AddServiceName()

AsddL2CapProtocolDescriptor()

Figure 5.6
Add Service List flow chart
AssignPsmValue:
The server assigns the PSM value to the interface. It normally calls CL2Caplf::AssignPsmValue() without PSM. After that, the server should register the PSM with the L2CAP layer. It must calls CL2Caplf::Register() method before calling CL2CapConn:Listen() method. After the registeration, the server application needs to set the security level for all connections by calling CL2Caplf::SetSecurityLevel().

[image: image26.emf]AssignPsmValue()

Register()

SetSecurityLevel()

Figure 5.7
Assign Psm Value, register and setSecurity flow chart
Establish Connection:
In the server side, it calls the CL2CapConn::Listen() method to listen any request for connection. When client application calls CL2CapConn::Connect() to request connection to a server. The client side sends a message to the server Bluetooth™ thread and the client main thread sleeps. Then the server Bluetooth™ thread calls pure virtual CL2CapConn::OnIncomingConnection() to wake up the server main thread. The server main thread accept the request by calling CL2CapConn::Accept().
After the server send the message to the client Bluetooth™ thread by passing the message, it sleeps and then will be waken up by the pure virtual CL2CapConn::OnConnected() method and then write data to the client side. On the other side, when the client Bluetooth™ thread received the message passed by the server Accept() method, the client main thread will be waken up by the pure virtual CL2CapConn::OnConnected() method and then write data to the server side.
If one of the sides wants to disconnect, it can call CL2CapConn::Disconnected() method to allow the other side’s Bluetooth™ thread to invoke the CL2CapConn::OnRemoteDisconnected() method to disconnect the established connection.

[image: image27.emf]Connect()

Client

Listen()

Server

Wake up by

OnIncomingConnection()

by Server Bluetooth thread

Accept()

Wake up by

OnConnected() by Client

Bluetooth thread

Write()

Wake up by

OnConnected() by Server

Bluetooth thread

Write()

Disconnect()

Wake up by

OnDataRecieved() by

Client Bluetooth thread

Wake up by

OnDataRecieved() by

Server Bluetooth thread

End

End

Figure 5.8
Client and Server Connection flow chart
5.2 Architecture

In order to facilitate easy game programming on Pocket PC, abstractions of various common components in games are necessary. In our Open Bluetooth™ Networking Game Development Platform, classes are provided as a convenient means to game programming.

[image: image28.emf]CToken

CSimpleBT

CUserInput

CTime

CWaveOut

CWave

Device

CBitmap

Csprite

CFileIO

Application Game by

any developers

Figure 5.9
Classes for game development framework
(Grayscale boxes are the classes that have not implemented yet)

The Open Bluetooth™ Networking Game Development Platform is planned to consist of nine classes, each representing an abstraction of a particular object. New classes may be added later to provide more advanced functionality for easier game development on Pocket PC.

5.2.1 CBitmap

This class is responsible for abstraction of a bitmap. Currently only 24-bit Device-Independent Bitmap (DIB) is supported, but later version may add support to other common format such as JPG.

[image: image29.emf]CBitmap

Load

ImageWidth

ImageHeight

BitBlt

TransBlt

Figure 5.10
Interface for CBitamp

· Load

This operation performs loading bitmap file to memory.

· ImageWidth

The width of the bitmap would be returned in this method.

· ImageHeight

The height of the bitmap would be returned in this method.

· BitBlt

This operation is used to copy a bitmap to this bitmap

· TransBlt

This operation is the same of BitBlt; the only difference is that a transparent color is specified in the bitmap being copied.
5.2.2 CSprite

This class represents a sprite in the game. This class is subclass of CBitmap as sprite is actually a series of bitmaps.

[image: image30.emf]CSprite

SaveUnder

RestoreUnder

Intersected

SetFrame

NextFrame

PrevFrame

Figure 5.11
Interface for CSprite
· SaveUnder

The underlying background is saved when this operation is invoked.

· RestoreUnder

The previously saved background is restored.

· Intersected

This operation is used to check whether two sprites collide with each other.

· SetFrame

The operation is used to set the current frame.

· NextFrame

The frame next to the current frame would be set as current frame.

· PrevFrame

The frame previous to the current frame would be set as current frame.
5.2.3 CWaveOut

CWaveOut is the class for wrapping sound. At this moment only WAV files would be supported. Support for other popular sound format such as MP3 may be included in future.

[image: image31.emf]CWaveOut

Play

Pause

Stop

ChangeVolume

SetRepeat

Load

Figure 5.12
Interface for CWaveOut
· Play

This operation is used to play the sound.

· Pause

This operation is used to pause the playing sound.

· Stop

This operation is used to stop playing the sound.

· ChangeVolume

This operation is used to change the volume of the sound.

· SetRepeat

This operation is used to enable or disable repeat playing of the sound.

· Load

This operation is used to load the sound from a sound file.
5.2.4 CWaveDevice

CWaveDevice is the wrapper class for sound producing hardware, mainly for sound card. By using this class, heterogeneity between different sound cards can be abstracted.

[image: image32.emf]CWaveDevice

DeviceFound

SupportsPlayback

SupportsStereo

GetDriverName

GetDriverVersion

Figure 5.13
Interface for CWaveDevice
· DeviceFound

This operation is used to verify whether a sounding device is found.

· SupportsPlayback

This operation is used to check whether the sounding device supports playback.

· SupportsStereo

This operation is used to check whether the sounding device supports stereo.

· GetDriverName

This operation is used to get the name of the sounding device driver.

· GetDriverVersion

This operation is used to get the version of the sounding device driver.
5.2.5 CSimpleBT

CSimpleBT provides a convenient means to use the WIDCOMM Bluetooth™ SDK. It supports L2CAP connection with inquiry and discovery services.

[image: image33.emf]CSimpleBT

InquiryAndDiscovery

Listen

Connect

Read

Write

Close

 Figure 5.14
Interface for CSimpleBT
· InquiryAndDiscovery

The operation is used by client side to perform inquiry and discovery operations

· Listen

Server side uses this operation to listen to clients

· Connect

Client side uses this operation to establish connection to server side.

· Read

Data received can be read by performing this operation.

· Write

Data can be sent to other side by performing this operation.

· Close

The connection would be torn down after calling this operation.
5.2.6 CTime

This class is responsible for timing issue. A timer message callback function has to be provided when instantiating the object, allowing the function to be called at each time interval periodically.

[image: image34.emf]CTime

Start

Pause

Stop

GetInterval

SetInterval

Figure 5.15
Interface for CTime
· Start

This operation is used to start the timer.

· Pause

This operation is used to pause the counting of the timer.

· Stop

This operation is used to stop the timer.

· GetInterval

The timing interval of the timer is returned.

· SetInterval

The timing interval of the timer is set as specified.

5.2.7 CUserInput

This class is responsible for retrieving user input. Pocket PC has two major kinds of user input: Button and Pen.

[image: image35.emf]CUserInput

isButtonPressed

ButtonCode

isPenDown

PenPosition

PenDuration

Figure 5.16
Interface for CUserInput
· isButtonPressed

This method checks whether a button is pressed.

· ButtonCode

This method returns the code representing the button.

· isPenDown

This method checks whether the pen is down on the screen.

· PenPosition

This method gets the position where the pen is down.

· PenDuration

This method gets the duration when the pen is down.
5.2.8 CToken

This class is the wrapper class for tokens. Tokens are discrete elements that are directly of indirectly manipulated by the player.

[image: image36.emf]CToken

IsAlive

GetPosition

SetPosition

GetSpeed

SetSpeed

Figure 5.17
Interface for CToken
· IsAlive

The operation is to check whether the token is alive or not.

· GetPosition

The position of the token would be returned.

· SetPosition

Performing this position would update the position of the token

· GetSpeed

The speed of the token would be returned.

· SetSpeed

The speed of the token would be set as specified.
5.2.9 CFileIO

This class is responsible for file I/O operations. Many other classes depend on this class to perform file loading operations.

[image: image37.emf]CFileIO

Open

Close

Read

Write

Seek

GetLength

Figure 5.18
Interface for CFileIO
· Open

A file would open when calling this method.

· Close

The file opened would close after invoking this method.

· Read

A byte array can be read by using this operation.

· Write

A byte array can be written back by using this operation.

· Seek

The operation would move the file pointer to specified position.

· GetLength

The operation would return the size of the file.
5.3 Sample Game

5.3.1 Game Slot

At the beginning, the player runs the program and seea the start interface of the program. He can choose start the game or quit the game.

[image: image38.png]

Figure 5.19
The start interface of the game

In the second interface, the player can choose to play with the computer or play with other players who are also running the game by using the Bluetooth™ to connect them together or the player can quit the game.

[image: image39.png]

Figure 5.20
The single player or multiplayer interface of the game

In the next step, the player can choose which machine they want. In our project, we temporarily provide two types of machines for him to choose, tank or plane. Or the player can quit the game.

[image: image40.png]

Figure 5.21
The choose machine interface of the game

In the level 1, the player can control his machine by pressing the buttons, up, down, right or left of the Pocket PC. In order to release the bullets, the player can press the button in the right side of the Pocket PC.

[image: image41.png]

 Figure 5.22

The level 1 interface of the game
If the player’s machine is shot by the enemy, the game will be over. If the player wants to play again, he can just stylus down on the screen and the level 1 will start again.

[image: image42.png]

Figure 5.23
The Game Over interface of the game

5.3.2 Game Description
A.I.: The sprites, which are controlled by the devices, are implemented by A.I. For the sprites controlled by the devices, they have eight directions of moving: North, North-East, East, South-East, South, South-West, North-West, North. They will first to calculate whether the bullet released by the player’s sprite is in the same line of one of its eight directions. If it is, then the device-controlled sprite will generate a random position and move again.

However, if it finds that the player’s sprite is in the same line of its face direction. The device-controlled sprite will shot the player’s sprite.

Bitmap: In order to save memory resources, we will not store a large background bitmap in the devices. However, for a game, the player’s sprite should have a large space to move around. As a result, when the game starts, the background bitmap will be organized as Figure 5.24. Then the background bitmap will become larger for the player’s sprite to move around.

Figure 5.24
The organization of background bitmap
6 Project Progress
	Month
	Task completed

	June 2002
	Get familiar with the programming environment in eMbedded Visual C++

	July 2002
	Study the techniques on building a game, such as the architecture of the game required, the flow of the game, etc..

	Aug 2002
	Start to design and implement some libraries by using C++ language

	Sep 2002
	Begin to implement our own game

	Oct 2002
	Study about the Bluetooth™ technique which will be used in the multiplayer game

	Nov 2002
	Start to implement the Bluetooth™ in our designed game

Table 6.1

Project progress
7 Contribution of Work

In this section, it is going to state the contribution of work in the final year project and the knowledge gained through this final year project in the first semester.

For our final year project in the first semester, it can be mainly divided into two parts that are implementation of the Open Bluetooth™ Networking Game Development Platform and implementation of the game. Marcus had focused on the implementation of the Open Bluetooth™ Networking Game Development Platform and Carol is responsible for the implementation of the game. And the detail is stated in the following part.
For the implementation of the Open Bluetooth™ Networking Game Development Platform, Marcus has implemented Game Platform which is used to implement the game in an easier way. The Game Platform now contains the methods of bitmap block transfer, animation of the sprites, etc. He will add more resources on the Open Bluetooth™ Networking Game Development Platform in the next semester.

For the implementation of the game, Carol is responsible to design the game’s bitmaps. In addition, she used the game libraries which are implemented by Marcus to implement the whole game. In the game, the device-controlled sprites contain artificial intelligence in it. As a result, she needs to design the A.I. of the sprites in our game.
8 Conclusion

After the first part of the project, we more understand how to implement our own Open Bluetooth™ Networking Game Development Platform. We also learn how to implement a game. In addition, we have learned lots of new technologies and knowledge such as Bluetooth™, Window CE, and other extraction techniques.

9 Acknowledgement
We would like to thank Prof. Michael Lyu, our project supervisor, for giving us valuable advice. He has provided many useful comments and suggestions to us throughout this project. We especially appreciate his patience and kindness in advising us.

Moreover, we would like to thanks Sam Sze, who has given us ideas in our project.

10 Reference

[1] Muller N. J. (2001). Bluetooth demystified. New York, NY: McGraw-Hill Companies, Inc.

[2] Barron T., & LaMothe A. (Eds.). (2001). Multiplayer game programming. Roseville, CA : Prima Publishing.

[3] Miller B. A., & Bisdikian C. (2001). Bluetooth revealed. Upper Saddle River, NJ: Prentice-Hall, Inc.

[4] Miller M. (2001). Discovering bluetooth. Alameda, CA: SYBEC Inc.

[5] Rollings A., & Morris D. (2000). Game architecture and design. Scottsdale, Arizona: The Coriolis Group.

[6] Harbour J. S. (2001). Pocket PC game programming : using the Windows CE game API. Roseville, CA : Prima Publishing.
[7] Bluetooth Special Interest Group. (2000). Specification of the Bluetooth System v.1. http://www.bluetooth.com/pdf/Bluetooth_11_Specifications_Book.pdf
[8] Bluetooth Special Interest Group. (2000). Specification of the Bluetooth System v.2. http://www.bluetooth.com/pdf/Bluetooth_11_Profiles_Book.pdf

Background Bitmap

Background Bitmap

Background Bitmap

Background Bitmap

Department of Computer Science and Engineering

Page 71

_1099794326.vsd
�

Hand held computer�

Tower PC�

Laptop computer�

Workstation�

Cell phone�

�

�

�

�

10 meter�

_1099859177.vsd
�

Inquiry�

AddServiceList�

Discovery�

AssignPsmValue�

Disconnect�

Establish Connection�

Read/Write�

AssignPsmValue�

Establish Connection�

Disconnect�

�

_1099865323.vsd
�

FindL2CapPsm()�

AssignPsmValue()�

SetSecurityLevel()�

Register()�

_1099876640.vsd

_1099879163.vsd

_1099880684.vsd

_1226014053

_1226013952

_1099880039.vsd

_1099877712.vsd

_1099878312.vsd

_1099876886.vsd

_1099868599.vsd
�

�

�

�

Application Game by any developers�

CBitmap�

Csprite�

CFileIO�

CTime�

CSimpleBT�

CWaveOut�

CUserInput�

CToken�

CWave
Device�

_1099874459.vsd

_1099875515.vsd

_1099865362.vsd
�

AssignPsmValue()�

Register()�

SetSecurityLevel()�

�

_1099862291.vsd
�

StartInquiry()�

Save Bluetooth device Infomation�

StopInquiry()�

Wake up by OnDeviceResponded()�

Wake up by OnInquiryComplete()�

Main Thread�

_1099863583.vsd
�

Connect()�

�

Client�

Listen()�

�

Server�

Wake up by OnIncomingConnection() by Server Bluetooth thread �

Accept()�

Wake up by OnConnected() by Client Bluetooth thread �

Write()�

Wake up by OnConnected() by Server Bluetooth thread �

Write()�

Disconnect()�

Wake up by OnDataRecieved() by Client Bluetooth thread �

Wake up by OnDataRecieved() by Server Bluetooth thread �

End�

End�

_1099861648.vsd
�

�

StartDiscovery()�

�

�

Wake up the Main Thread by the Bluetooth Thread when it calls OnDiscoveryComplete()�

ReadDiscoveryRecords()�

Main Thread�

_1099859655.vsd
�

AddServiceClassldList()�

AddServiceName()�

AsddL2CapProtocolDescriptor()�

�

_1099836623.vsd
�

Link Manager
(SOFTWARE)�

Link Controller
(HARDWARE)�

Baseband�

Baseband�

Link Controller
(HARDWARE)�

Physical Layer�

Link Manager
(SOFTWARE)�

�

Link Manager Protocol�

_1099840986.vsd
SDP Client�

SDP Server�

Client Application�

Server Application�

SDP Requests�

SDP Responses�

_1099853401.vsd
�

Hand held computer�

Tower PC�

Laptop computer�

Workstation�

Cell phone�

�

�

�

�

�

_1099837031.vsd
MS Windows CE Explorer�

Shell IF�

BT Explorer�

COM Interfaces�

Bluetooth Profiles�

GOEP & OBEX�

Customer Application Using DK�

DK Interfaces
SDP, FTP Client, OPP Client RFCOMM, L2CAP, SPP, OBEX�

Bluetooth Kernel Driver & Protocol Stack
SDP, L2CAP, RFCOMM�

USB�

PCI�

PC Card�

Serial�

�

User Mode�

Kernel Mode�

_1099823424.vsd
�

Hand held computer�

�

�

�

IrDA Connection�

_1099826949.vsd
Scanner�

Firewall�

Ethernet�

Router�

�

Hand held computer�

�

IBM Compatible�

�

�

�

�

�

�

�

Access Point�

_1099834800.vsd
�

Baseband�

L2CAP�

SDP�

RFCOMM�

TCS�

Audio�

ACL�

Packetized audio data�

_1099797523.vsd
�

Hand held computer�

Slave�

Slave�

Slave�

Slave�

Slave�

Slave�

Slave�

�

Master�

_1099797579.vsd
�

Hand held computer�

Slave�

Slave�

Slave�

Slave�

Slave�

Slave�

�

�

Slave�

Slave�

Slave�

Slave�

Master�

Slave�

Slave�

Slave�

�

Slave�

Slave�

Slave�

Slave�

Slave�

Slave�

Slave�

Slave�

�

Master�

Master�

�

�

�

_1099779359.vsd
�

�

�

�

�

�

�

�

�

�

�

Initialization�

Game Over?�

Update Object State
Use 1/frequency as delta value for calculation�

Exit Game�

If not updating object state then
Draw Frame�

Yes�

No�

Start Thread�

�

As fast as possible�

Check Controls�

End Thread�

_1099781954.vsd
Workstation�

�

Hand held computer�

�

Data Communication�

�

�

�

_1099782266.vsd
Workstation�

�

Hand held computer�

�

Server�

Client�

Client�

Client�

Client�

�

�

�

�

_1099793772.vsd
text�

Bluetooth Radio�

Baseband�

LMP�

L2CAP�

TCS-BIN�

Audio�

SDP�

RFCOMM�

OBEX�

vCard/vCal�

TCP�

PPP�

IP�

UDP�

WAP�

WAE�

AT-Commands�

�

Host Controller Interface�

_1099780219.vsd
�

�

�

�

�

�

�

�

�

�

�

Initialization�

Game Over?�

Update Object State
Use 1/frequency as delta value for calculation�

Exit Game�

If at a suitable place to pause object state updating to allow drawing then
Draw Frame�

Yes�

No�

Start Thread�

�

As fast as possible�

Check Controls�

End Thread�

_1099776959.vsd
�

�

�

�

�

�

�

�

�

�

�

Initialization�

Game Over?�

Check Controls�

Draw Frame�

Update Object State�

Exit Game�

Yes�

No�

�

Fixed Frequency�

_1099777146.vsd
�

�

�

�

�

�

�

�

�

�

�

Initialization�

Game Over?�

Update Object State�

Exit Game�

If not updating object state then
Draw Frame�

Yes�

No�

Start Thread�

�

Fixed Frequency�

Check Controls�

End Thread�

_1099775844.vsd
�

�

�

�

�

�

�

�

�

�

�

Initialization�

Game Over?�

Check Controls�

Draw Frame�

Update Object State�

Exit Game�

Yes�

No�

