Department of Computer Science and Engineering, CUHK
Final Year Project Report

Department of Computer Science and Engineering The Chinese University of Hong Kong

Finial Year Project Report

2000-2001

LYU0004

Mobile Agent’s Community

Prepared by

Cheng Tsz Hei

(98600162)

Ho Man Lam

(98600162)

Supervised by
Prof.

Lyu Rung Tsong Michael

Printed on December 2, 2000

Table of Content
4Abstract

5Chapter 1 Introduction

51.1
Project objectives

51.2
Mobile agent

51.2.1 What are Software Agents?

51.2.1 What are mobile Software Agent?

71.2.2 Advantage of Mobile Agent

91.2.3
Common applications for mobile agents

12Chapter 2 Grasshopper

122.1
Introduction to Grasshopper

132.2
Architecture of Grasshopper

15Chapter 3
Overview of Project Architecture

153.1
Definition of Terms in the System

153.2 Model of System Architecture

19Chapter 4
Multi-Seller & Multi-Buyer scenario

194.1 Purpose of this scenario

194.2 Mobile Agent Paradigm in the Scenario

194.2.1 Weakness of traditional approach

204.2.2 Advantage of Mobile Agent approach

22Chapter 5 Economics in Trade

225.1 Basic Background

225.1.1 Definition of some terms

225.1.2 Supply and demand

235.1.3 Equilibrium of Supply and Demand

26Chapter 6 Zero-Intelligence-Plus (ZIP) Traders

266.1 Introduction

266.2 Trader Behaviors

266.2.1 Background Information

286.2.2 Altering Profit Margin

297.1 Seller Behaviors

297.1.2 Buyer Behaviors

307.1.3 Trader Adaptation(How to determine the shout price)

33Chapter 8
Project Progress and Summary

338.1 Project Progress

348.2 Difficulty of Project

348.2.1 Problem domain

348.2.2 Difficulty in configuration

348.2.3 Implementation of Grasshopper

348.2.4 Weakness of Java Serlvet

358.3 Summary

36Chapter 9 Future Works

369.1 Real-time Interaction

369.2 Learning Technique for Agents

369.2.1 Higher-order adaptation mechanisms

379.2.2 Game-Theory Analysis

379.3 Support More Scenarios in Mobile Agent’s Paradigm

379.4 Professional design of Web site

39Chapter 10 Bibliography

40Chapter 11 Acknowledgement

41Appendix

41A. Software

41Java API 1.1.8

41Java Servlet API 2.1

41Apache

42B. Hardware

42Web server

42Mobile Agent’s platform (workplace)

42C. Client-side Requirement

Abstract

It is known that the business transactions nowadays become more and more global and frequent around the world. In other words, the transactions are supposed to be undergone in 24 hours a day and they commit without location boundaries. In this case, electronic market is the best approach to cater for the rapid growth of demand.

However, it is no sense that the employers expect their salesmen to work for 24 hours a day in order to control and report the progress of the transaction. Thus, the traditional approach in electronic market is not able to fully satisfy the expectation of traders.

As a result, we are going to introduce some possible solutions in order to address the weakness of the traditional electronic market. That is, Multi-Sellers & Multi-Buyers in Mobile agent’s paradigm.

Chapter 1 Introduction

1.1
Project objectives

In this project we will focus on application-level programming together with well-known algorithm implementation [1]. That is, we are going to implement a comprehensive business software package in mobile agent’s paradigm.

We will use a wide variety of different programming language and development tool to develop this project, such as DHTML, Java Servlet, Java SDK 1.1.8, Grasshopper and JSP (See Appendix). All the information involved will be stored in Oracle database system.

Our project will implement the mobile agent as the middleware of the system. All the transaction process will be taken all the way through the communication among mobile agents. A mobile agent can act on behalf of the user, move to different hosts for execution and then carry out the assigned task.

1.2
Mobile agent
1.2.1 What are Software Agents?
Agent technology represents the state of the art for the design of innovative software solutions in the area of distributed systems and applications. In this context, agent technology can be regarded as an enhancement of distributed object technology.

1.2.1 What are mobile Software Agent?

Mobile agents are programs that can be dispatched from one computer and transported to a remote computer for execution. Arriving at the remote computer, they present their credentials and obtain access to local services and data. The remote computer may also serve as a broker by bringing together agents with similar interests and compatible goals, thus providing a meeting place at with agents can interact.

The mobile agents can act on behalf of the user in the computer network. That means, they can survive in computer network and do the mission independently. This paradigm of mobile agent is greatly different from the traditional concept of client/server base paradigm. The concept of difference can be seen in figure 1 and figure 2.

In figure 1, the client sends the request of service to the server, and then the server does the operation and sends back the result to the client. In this model, there exists a direct connection between two host computers during the period of server process. If there is an interrupt influencing the connection, the whole service will suddenly stop. That means the operation fails. Clients must establish the connection with server again and then perform the operation again.

In figure 2, mobile agent is sent from client to server side instead of single request. The client side then disconnects from the fixed network. The use can check the results when the mobile agent has carried out the task. In this paradigm, the client does not need to maintain the fix connection to the remote server and the mobile device does not need to have large computing power.

In addition, shorter communication between the mobile device and remote server can reduce the cost of resource and bandwidth. Therefore, the mobile agent architecture is well-suited or mobile computing environment.

[image: image1.wmf]Client program

Server Service

Request / Response

Figure 1. Client/Server-Based Model

[image: image2.wmf]Client program

Server Service

Request

Client program

Server Service

Response

Client program

Server Service

Disconnected

Figure 2. Mobile Agent-Based Model
1.2.2 Advantage of Mobile Agent

Mobile agent can be implemented in different aspects in the computer network. The reasons why people are willing to make use of it are listed in below:

Reduce Network Load
Distributed System often relies on communication protocols that involve multiple interactions to accomplish a given task. This is especially true when security measures are enables. The result is a lot of network traffic. Mobile agents allow you to package a conversation and dispatch it to a destination host, where the interaction can take place locally. Mobile agents are useful when it comes to reducing the flow of raw data in the network. When there are very large volumes of data rather the transferred over the network. The motto is simple: move the computations to the data rather tan the data to the computations.

Overcome network latency
Critical real-time systems, such as robots in manufacturing processes, need to respond in real time to changes in their environments. Controlling such systems through a factory network of substantial size involves significant latencies. For critical real-time systems, such latencies are not acceptable. Mobile agents offer a solution because they can be dispatched from a central controller act locally and directly execute the controller’s directions.

Robust and fault-tolerant
The ability of mobile agent is to react dynamically to unfavorable situations and events makes it easier to build robust and fault-tolerant distributed systems. If a host is being shut down, all agents executing on that machine will be warned and given time to dispatch and continue their operation on another host in the network.

Encapsulate Protocols
When data are exchanged in distributed system, each host owns the code that implements the protocols needed to properly code outgoing data and interpret incoming data, respectively. However, as protocols evolve to accommodate new requirements for efficiency or security, it is a cumbersome if not impossible task to upgrade protocol code property. As a result, protocols often become a legacy problem. Mobile agents, on the other hand, can move to remote hosts to establish “channel” base on proprietary protocols.
Execute Asynchronously and Autonomously

Often, mobile devices must rely on expensive or fragile network connections. Tasks that require a continuously open connection between a mobile device and a fixed network probably will not be economically or technically feasible. To solve this problem, tasks can be embedded into mobile agents, which can be then dispatched into the network. After being dispatch, the mobile agents become independent of the creating process and can operate asynchronously and autonomously. The mobile device can reconnect at a later time to collect the agent.

Naturally Heterogeneous
Network computing is fundamentally heterogeneous, often from both hardware and software perspective. This is because mobile agents are generally computer and transport-layer-independent. They depend only on their execution environment. They provide optimal conditions for seamless system integration.

Adapt dynamically

Mobile agents have the ability to sense their execution environment and react autonomously to changes. Multiple mobile agents possess the unique ability to distribute themselves among the hosts in the network so as to maintain the optimal configuration for solving a particular problem

1.2.3
Common applications for mobile agents
One of the main differences between mobile code, such as applets, and mobile agents is itinerary. Whereas mobile code usually travels just from point A to point B, mobile agents have an itinerary and can travel sequentially to many sites. One natural application of mobile agents, therefore, is collecting information spread across many computers hooked to a network.
An example of this kind of application is a network backup tool that periodically must look at every disk attached to every computer hooked to a network. Here, a mobile agent could roam the network, collecting information about the backup status of each disk. It could then return to its point of origin and make a report.
Searching and filtering

Given the ever-increasing amount of information available on the Internet and other networks, the activity of collecting information from a network often amounts to searching through vast amounts of data for a few relevant pieces of information. Filtering out the irrelevant information can be a very time-consuming and frustrating process. On behalf of a user, a mobile agent could visit many sites, search through the information available at each site, and build an index of links to pieces of information that match a search criterion.
Searching and filtering exhibits an attribute common to many potential applications of mobile agents: knowledge of user preferences. Although mobile agents do not have to be "representative" or "intelligent," they often are. Here, an agent is given knowledge of user preferences in terms of a search criterion and an itinerary, and sent out into the network on the user's behalf. It sifts through huge amounts of data for those pieces of information of particular interest to the user. At some point, it returns to the user to report its findings.
Monitoring

Sometimes information is not spread out across space (on the disks of many different computers hooked to the same network), but across time. New information constantly is being produced and published on the network. Agents can be sent out to wait for certain kinds of information to become available.
For example, an agent could go to a stock market host, wait for a certain stock to hit a certain price, then buy some of it on behalf of its user. Another example is personalized newsgathering. An agent could monitor various sources of news for particular kinds of information of interest to its user, and then report back when relevant information becomes available.

This kind of application highlights the asynchronous nature of mobile agents. If you send out an agent, you needn't sit and wait for the results of its information gathering. You can program an agent to wait as long as it takes for certain information to become available. Also, you needn't stay connected to the network until an agent returns. An agent can wait until you reconnect to the network before making its report to you.
Targeted information dissemination

Another potential use of mobile agents is to distribute interactive news or advertising to interested parties. Unfortunately, this means mobile agents, like e-mail, can be used for spasm -- indiscriminate distribution of information, usually advertising. (There will likely be a market for agents that filter the spasm out of incoming mobile agents.)
Negotiating

Besides searching databases and files, agents can gain information by interacting with other agents. If, for example, you want to schedule a meeting with several other people, you could send a mobile agent to interact with the representative agents of each of the people you want to invite to your meeting. The agents could negotiate and establish a meeting time.
In this case, each agent contains information about its user's schedule. To agree upon a meeting time, the agents exchange information.
Bartering

Electronic commerce is another good fit for mobile agent technology. A mobile agent could do your shopping for you, including making orders and potentially even paying. For example, if you wanted to fly from Silicon Valley to an island in the South Pacific, an agent could visit databases of flight schedules and prices for various airlines, find the best price and time, make reservations for you, and pay with your credit card number.
Electronic commerce also can take place between agents. For example, there could be an agent host dedicated to the buying and selling of automobiles. If you wanted to buy a car, you could give an agent knowledge of your preferences, including a price range and potentially a negotiation strategy. You would send your agent to the dedicated host, where it would mingle and haggle with agents seeking to sell a car.
If a potential match were found, your agent could report back to you, and you could contact each other in person to make the final arrangements. Alternatively, your agent potentially could consummate the deal on your behalf. If the opportunity is a good one, your agent may have only a few microseconds to act before someone else's agent buys the car.
Parallel processing

Given that mobile agents can move from node to node and can spawn subagents, one potential use of mobile agent technology is as a way to administer a parallel processing job. If a computation requires so much CPU time as to require breaking up across multiple processors, an infrastructure of mobile agent hosts could be an easy way to get the processes out there.
Entertainment

One last example of a potential application for mobile agents is entertainment. In this scenario, agents represent game players. The agents compete with one another on behalf of the players. Each player would program an agent with a strategy, and then send the agent to a game host. If the game host is executing on a computer in Las Vegas, then perhaps the agents could play for real money.

Chapter 2 Grasshopper

2.1
Introduction to Grasshopper

Grasshopper, the agent development platform launched by IKV++ in August 1998, enables the user to create a wealth of applications based on agent technology. It provides new and exciting opportunities for the enhancement of

1. Electronic commerce applications

2. Dynamic information retrieval

3. Advanced telecommunication services

4. Mobile computing.
Because Grasshopper allows software agents to move between different systems and to execute various tasks in the process, the platform is perfectly suited for distributed applications.

Seamless integration of different platforms or entire organizations is becoming one of the most important challenges for information technology specialists. One of the best ways to create open systems that fulfill the sophisticated requirements of today's inter-linking world is by using software agents.

Grasshopper not only has the unique capability of bridging the gap between legacy systems and new technologies but also provides the option to use both agents and client/server computing in one application.

Agents can perform complex tasks and communicate or co-operate with each other on behalf of the user. They are capable of operating without additional user input and act independently, even if the user is disconnected, which makes them ideally suited for the fulfillment of automated tasks.

2.2
Architecture of Grasshopper

[image: image3.png]Domain (Region)

Security
Registration

Persistence

Registration component

JUI

(Region Registry) E Management
B
£ g Local
o Management =% Transport ressources
< &
i <
Finder P 5
Communication I omntnicaton Senvices)

Communication channel (e.g., CORBA, RMI, Socket,...)

CORBA

non-agent-based distributed components, services, systems, applications

Figure 3, short overview of the grasshopper platform

In the above figure, it graphically explains the structure of a Grasshopper-based system environment which consists of several Grasshopper agent systems (agencies), grouped within a domain region), such as an intranet.

The system is divided into two main components, which are agency and agent. The agency is a Java process that enables and controls the execution, management, transport, communication, etc., of Grasshopper agents. Each agency covers the following servers/ components.

Security

Since a mobile agent must be considered as “alien element” on the visited hosts, a fundamental task of an agency is to protect the hosts from unauthorized agent access. On the one hand, Grasshopper provides external security mechanisms that allow encryption of agents during their migration, using SSL protocol.

Registration

Each agency registers all locally running agents in order to monitor and control the entire agency-internal processing and in order to enable agents to find each other for information exchanges

Persistence

In order to save agent-related data in case of a system crash, the agency’s persistence service can be used to periodically store the internal states of all locally running agents. In this way, the agents can continue their tasks after restarting the agency.

Management

Among others, the management service is responsible for creating, removing, suspending/resuming, and copying agents. Via a graphical user interface, administrators are always able to interfere in the agents’ execution.

Transport

The transport service enables the serialization of an agent’s state, the transfer of the agent to its destination agency (by accessing the agency’s communication service), and the restart of the agent at its destination.

Communication

The communication service enables the transfer of agents between different agencies, triggered by the transport service. On the other hand, the communication service is responsible for managing interactions between remote agents and non-agent-based entities. In this way, as explained above, Grasshopper achieves an integration of the traditional client/server approach (using remote communication) and mobile agent technology (using agent migration).

MAFAgentSystem

This component realizes an interface that is part of the OMG MASIF standard and that increases the interoperability between Grasshopper and other standard-compliant agent platforms.

Chapter 3
Overview of Project Architecture

In our system, it is divided into three parts. The first part is the interaction between web clients and web server. The second part is the interaction between the web server and the mobile agent enabled network computers. And the third part is the usage of Database in the system.

3.1
Definition of Terms in the System

In our system, we have defined some terms, which belong to be the part of the model and the action involved in the system.

Workplace / Marketplace

The mobile agent enabled network computers which is running at somewhere in the global network. The workplace is ready to accept all the requests from the web server and then the mobile agents with specific purpose will be created according to the preference of the web client. It provides the information for agents and allows them to communicate with each other in there. Sometimes, it is called marketplaces if the agents at there are performing bargaining behaviors.

Buyer / Seller Agent

They are the binary-compiled codes (mobile agents) that perform the tasks among the workplaces. The agents have some attributes, such as min. price and max. price. They tend to find the corresponding buyer / seller agents with the same preference in the workplace and then start to bargain.

3.2 Model of System Architecture

In figure 4, the web server is available to accept the request from all Internet browsers. The users can log on the system by suffering one of the web sites. The users can select their preference and send the request to the Web server.

Web server translates the client’s request into the creation signal of mobile agent to one of known workplaces.

Later, the mobile agent has completed the task or the time is out.
They go back the born place (specific workplace) and then inform the web server. The web server then records the result of agent by storing all the data in Oracle database.

After a while, the users log on again and check the result of agents through the browser.

[image: image4.wmf]Internet

Browser

Internet

Browser

Web Server

Internet

(Mobile agent's

community)

Request

Request

Creation Signal

Figure 3, Request to Community

[image: image5.wmf]Internet

Browser

Internet

Browser

Web Server

Internet

(Mobile agent's

community)

Response

Response

Result Signal

Web Server

Database

data transfer

Figure 4, Response from Community

In the Internet, the mobile agent’s community is maintained by means of the connection among those workplaces. At the beginning, the workplace will not identify all the addresses of other workplaces existing in the community. They only record one or more static IP addresses of workplaces from the local storage memory. They then start to exchange the information with other known workplaces and at last the entire community is found and recorded in the local cache. The agents arrived are able to obtain the pathway and the IP addresses of other workplaces by sending the query to the local workplaces.

[image: image6.wmf]Workplace

Workplace

Workplace

Workplace

Web

Server

Web

Server

Web

Server

Web

Server

agent's path

Agent's path

Agent's path

Agent's path

Request / Response

Request / Response

Request / Response

Request / Response

Figure 5, outlook of community

[image: image7.wmf]Workplace

Communication

Send Request

Service available

Ask

Information

Figure 6, Interaction of agents in workplace

In figure 6, the agents are grouped together at the same workplace and start to perform communication. The workplace offers all required services and facilities for the agents. Those activates are co-coordinated by the controller in workplace. The agents can migrate in or emigrate out arbitrarily in the workplace.

Chapter 4
Multi-Seller & Multi-Buyer scenario
4.1 Purpose of this scenario

In this scenario, the buyers or the sellers can assign their trade strategies by using user graphical user interfaces in the web site. One of workplaces connecting to the web then delegates mobile agents to autonomously perform the assigned tasks for the client.

Without the intervention of the clients, the delegated mobile agents will move back and forth among all the marketplaces to complete the trade.

4.2 Mobile Agent Paradigm in the Scenario

Nowadays, there are many biding companies starting their business in the World Wide Web. This type of business is very popular in different countries. The technology involved in biding may be using Perl, ASP, JavaScript and then store all transaction information to the database.

Now, we are going to launch mobile agent paradigm instead of conventional approach, since we found that there exists several weak points in the previous approach and we tend to deal with those limitations.

4.2.1 Weakness of traditional approach

Central Access Point

All the activities are performed in the same web server. If there are large amount of requests from anywhere in the network, the server will fail to response such large workload and so it will be down in server. This phenomenon is so prevalent that it cause traffic jam for some region of network.

Deficiency of Interaction

In general case, the sellers will set the minimum price for their products together with a long period of biding. The reason is that this method of bargain lacks of interaction between buyer’s side and seller’s side. The user ought to surfer and web site frequently in order to find out the list of available products for sale. And each round of bargain is time consuming. Sometimes, the buyers may miss the time slot of argument.

Transaction Localization

Since all transactions are undergone in the central server, and through one access point, the transaction cannot be globalization. In other words, it limits the number of potential sellers and number of potential buyers in the electronic market. It requires large resources for promoting the URL of websites throughout the world.

4.2.2 Advantage of Mobile Agent approach

Location Transparency

Location transparency means that data can be accessed without knowing the physical position of the data.
Originally, the users at least identify the URL of website in order to send the bid prices. This approach may limit the number of potential clients since users in different countries may not know the same URL. In order to tackle this difficulty, the mobile agent’s community can help to hide the real location of marketplace where the transactions are going to take part. The agents will locate the paths of possible marketplaces and then argue the best prices for the users.
Failure transparency

Failure transparency means that the users will not discover the system failure even some services fail to carry out properly.
In our system, several workplaces are running at the same time. They are all welcome to serve all incoming agents. If one of workplaces stops the service due to system fault, the agents there can move to another enabled workplaces and complete their tasks. The agent’s process will not be suspended on and even discarded.

Scaling transparency
The workplaces can automatically build up the table of possible workplaces in the computer network. That means more workplaces are able to participate in at any time and leave without transferring acknowledgement. The crowd of the marketplace is allowed to extend arbitrarily.

Fast response

In the traditional electronic market, the seller will set the minimum prices and then set the long due date for the biding process. The reason is that it lacks of interaction between the buyers and the sellers. The users cannot take immediate responses in order to argue the optimal price. Sometimes, the users may lose the product due to the time delay in the network or miss the due time of transaction.

In our system, it avoids the same phenomenon by sending agents. The agents now act as the biding representative to their clients in the bargaining sites. They can do the immediate response according to their preference.

Chapter 5 Economics in Trade

5.1 Basic Background

We concern the basis of Economics in our project, which acts as a fundamental economical activity in business transaction between sellers and buyers.

5.1.1 Definition of some terms

Economics

It is a study of the steps of the production of products, how they are distributed for selling to the public and how the public responds to buying the product.

Market place

It is a place where people meet to exchange goods and services.

Market Price

It is the price people are willing to pay for a product or service depending upon the supply available and the demand for the product and or service.

Supply

It is the amount of a product needed or available for the public to buy.

Demand

It is the relationship between price and quantity demanded for a particular good and service in particular circumstances. For each price the demand relationship tells the quantity the buyers want to buy at that corresponding price. The quantity the buyers want to buy at a particular price is called the Quantity Demanded.

5.1.2 Supply and demand

The theory of supply and demand is a theory of price and output in competitive markets. Economists Adam Smith had argued that each good or service has a "natural price." If the price (of beer, for example), were above the natural price, then more resources would be attracted into the trade (brewing, in the example), and the price would return to its "natural" level. Conversely if the price began below its "natural" level.

The "theory of supply and demand" is a central part of economics. It is widely applicable, and also is a model of the way economists try to think most problems through, even when the theory of supply and demand is not applicable. The theory can directly apply in our multi-sellers and multi-buyers auction.

5.1.3 Equilibrium of Supply and Demand

In economic theory, the interaction of supply and demand is understood as equilibrium. We may think of demand as a force tending to increase the price of a good, and of supply as a force tending to reduce the price. When the two forces balance one another, the price would neither rise nor fall, but would be stable. This analogy leads us to think of the stable or natural price in a particular market as the "equilibrium" price.

This sort of "equilibrium" exists when the price is just high enough so that the quantity supplied just equals the quantity demanded. If we superimpose the demand curve and the supply curve in the same diagram, we can easily visualize this "equilibrium" price. It is the price at which the two curves cross. The corresponding quantity is the quantity that would be traded in market equilibrium.

For example:

Supply of Beer:

	Price cents/gal
	Quantity supplied millions of gals

	50
	0

	60
	0

	70
	0

	80
	1304.4

	90
	2894

	100
	4483.6

	110
	6073.2

	120
	7662.8

Table 6, table of Supply curve

[image: image8.png]100¢

50¢

o 1000 2000 3000 4000

Figure 7, Supply curve

Demand of Beer:

	Prices cents/gal
	Quantity supplied millions of gals

	50
	4899.27

	60
	4355.67

	70
	3812.07

	80
	3268.47

	90
	2724.87

	100
	2181.27

	110
	1637.67

	120
	1094.07

Table 8, table of Demand curve

[image: image9.png]100¢

50¢

o 1000 2000 3000 4000 Q

Figure 9, Demand curve

[image: image10.png]50¢

1000

2000

20

2682

Predited 0

3000

4000

Figure 10, Equilibrium of Supply and Demand of Beer

Chapter 6 Zero-Intelligence-Plus (ZIP) Traders

6.1 Introduction

We use Zero-Intelligence-Plus (ZIP) Trades to implement our multi-sellers and multi-buyers system. ZIP is developed by Dave Cliff. ZIP use simple mechanisms, which can reach the market behavior for human being. Some of contents of this chapter and next chapter are extracted from Dave Cliff. Minimal-Intelligence Agents for Bargaining Behaviors in Market-Based Environments. Technical Report HP-97-91, Hewlett Packard Laboratories, Bristol, England, 1997.

6.2 Trader Behaviors

6.2.1 Background Information

Our goal is to implement a trader market that will behave as human market. But it is very difficult to do because human behavior is hard to simulate. Some researches have been done and found a trader with some machine learning can behave close to human double auction market. Double auction market is a market where seller can quote a price foe their good and buyer can also bid a price for seller’s good. If only the seller can quote price is a retail market.

[image: image11.png]Price|

Figure 11, the price of transaction to Day

The above figure shows time series of shout prices for bid and offers, both accepted and rejected. This synthetic data shows an idealization of the market process in 5-day experiment. Shout prices for bids are shown as triangles, while offers are shown as squares. Open symbols are shouts that are ignored, while filled symbols are shouts that were accepted. The horizontal dashed line indicates the theoretical equilibrium price P0, and the vertical dashed line indicates the end of trading periods or ‘day’. For clarity, a line joins the sequence of accepted bids and offers: as the experiment progress, the transaction prices approach equilibrium, and on successive days there is less variance from, and faster approach to, the value of P0.

Human beings are notoriously smart creatures: the question of just how much intelligence is required of an agent to achieve human-level performance is an intriguing one. In human market, all prices is regulated by supply and demand. The price this market will eventually approaches to equilibrium prices by the theory of supply and demand. Some experiments were done and shown traders converge rapidly to a competitive equilibrium under double auction mechanism.

In our system, two groups of traders interact with each other to make transactions (deal). Sellers always want to maximize their profit with selling higher prices than limit prices. But buyers also want to maximize their profit with by buying lower prices than their limit prices. Limit prices for sellers are the lowest prices that sellers only sell their goods above these prices. Limit prices for buyers are the highest prices that buyers only buy goods below these prices. It seems that there is a conflict between sellers and buyers. So a good algorithm is need for this system to ensure it is fair to sellers and buyers.

6.2.2 Altering Profit Margin

Traders do not have to perfect knowledge of supply and demand. The limit price of each trader is private. The only information available is shout-prices observed in the market.

In a competitive market, if a trader set its profit margin too high, no transactions my be done. They will have to reduce them in order to remain competitive. Thus agents in market adjust their profit margins up or down, on the basis of the prices of bids and offers made by the other traders, and whether those shout are accepted, leading to deals, or ignored.

Each ZIP trader alters its profit margin on the basis of four factors. The first is whether the Trader is active in the market (i.e., still capable of making a transaction), or inactive (i.e., has sold or bought its full entitlement of units, and has ‘drop out’ of the market for the remainder of this trading period). The three other factors all concern the last (most recent) shout: its price, denoted by q; whether it was a bid or an offer; and whether it is accepted or rejected.

Chapter 7 Algorithm For Trading
7.1 Seller Behaviors

if (the last shout was accepted at price q)

then

1. any seller si for which pi <= q should raise its profit margin

2. if(the last shout was a bid)

then

1. any active sellers si for which pi >= q should lower its margin

else

1. if the(last shout was an offer)

then

1. any active seller si for which pi >= q should lower its margin

where q is the shout price of the last shout.

 pi is shout price of trader i

7.1.2 Buyer Behaviors

if (the last shout was accepted at price q)

then

1. any buyer bi for which pi >= q should raise its profit margin

2. if(the last shout was a offer)

then

1. any active buyers bi for which pi <= q should lower its margin

else

1. if the(last shout was an offer)

then

1. any active buyer bi for which pi <= q should lower its margin

where q is the shout price of the last shout.

pi is shout price of trader i

7.1.3 Trader Adaptation(How to determine the shout price)

At a given time t, an individual ZIP trader (denoted by subscript i) calculates the shout-price pi(t) for unit j with limit price λi,j using the trader’s real-valued profit-margin μi(t) according to the following equation:

pi(t) =λi,j(1 + μi(t))

(1)

This implies that a seller’s margin is raised by increasing μi and lowered by decreasing μi with the constraint that 0 <= μi(t) < ∞ for all t. The situation is reversed for buyers: they raise their margin by decreasing μi and lower it by increasing μi, subject to -1 <= μi(t) < 0 for all t. The aim is that the value μi for each trader should alter dynamically, in response to the actions of other traders in the market, increasing or decreasing to maintain a competitive match between the trader’s shout-price and the shouts of the other traders. In order to do this, some form of adaptation or ‘update’ rule will be necessary. One of the simplest update rules in machine learning, which forms the basis of adaptation algorithms such as back-propagation in neural network and reinforcement in classifier systems, is the Widrow-Hoff “delta rule”:

A(t + 1) = A(t) + △(t) (2)

Where A(t) is the actual output at time t; A(t + 1) is the actual output on the text time-step; and △(t) is the change in output, determined by the product of learning rate coefficient β and the difference between A(t) and the desired output at time t, denote by D(t):

△(t) = β(D(t) – A(t)) (3)
It is clear that, if the desired output remains constant (D(t) = k for all t), the Widrow-Hoff rule give asymptotic convergence of A(t) to D(t), at a speed determined by β. This adaptation method will employed in the ZIP traders: when a trader is required to increase or decrease its profit margin, a ‘target price’ (denoted by τi(t)) will be calculated for each trader, and the Widrow-Hoff rule will then be applied to take the trader’s shout-price on the next time-step (pi(t + 1)) closer to the target price τi(t). Because the shout prices is calculated using the (fixed) limit price λi,j and (variable) profit margin μi on the transition from time t to t + 1:

μi(t + 1) = (pi(t) + △i(t)) / λi,j – 1 (4)

Where △i(t) is the Widrow-Hoff delta value, calculated using the individual trader’s learning rate βi:

△i(t) =βi(τi(t) - pi(t))

(5)

All that remains is to determine how to set the target price τi(t). While a simple method would to set the target price equal to the price of last shout (i.e., τi(t) = q(t)), this presents a significant problem. When the last shout price is very close to, or equal to, the trader’s shout price (i.e., pi(t) ～ q(t)), the value of △i(t) given by Equation 5 will be very small, or zero. Thus, traders who would have shouted prices close to q(t) are likely to make negligible alterations to their profit margins, and so will shout very similar prices when next given the opportunity. But in a competitive market, there is a need for the agents to be constantly testing the market, always pushing for higher margins. For example, if it happens that all traders are shouting prices in the range $1.00 to $1.05, the differences between their shouts and the transaction prices will never be more than a few cents, so they will hardly alter their shout, and the system will stabilize at this price range even if the true competitive equilibrium is at $10.00. This sounds unlikely because, intuitively, it is desirable to have sellers always trying for higher prices and buyers always trying for lower prices. Thus, it is necessary for the target price to be different from the current shout or transaction (deal) price: for example, if a transaction occurs at $1.00, a trader with a limit price of $0.50 shout aim for a higher than $1.00, while a buyer with a limit price of $1.75 should aim for a target rice lower than $1.00.

There are many ways in which the target price τi(t) could be determined. In the current ZIP traders, the target price is generated using a stochastic function of shout price q(t), shown in Equation 6:

τi(t) = ψi(t)q(t) + Bi(t)

(6)

Where ψi is a randomly generated coefficient that sets the target price relative to the price q(t) of the last shout, and Bi(t) is a (small) random absolute price alteration (or perturbation). When the intention is to increase the dealer’s shout price, ψi > 1.0 and Bi > 0.0; when the intention is to decrease it, 0.0 <ψi < 1.0 and Bi .< 0.0. Every time a trader’s profit margin is altered, the target price is calculated using newly-generated random values of τi(t) and Bi, which are independent and identically distributed for all traders. The use of relative increase ensures that large values of q(t) are altered by greater amounts than small values of q(t). For example, a shout of $10.00 might lead to a seller’s target price of $12.50 (an absolute increase of $2.50) while a shout of $2.00 leads to a target of $2.50 (an absolute increase of $0.50), but the relative increase is the same in both cases (i.e., 25%). The use of small absolute perturbations ensures that even very small shout prices lead to targets that differ by a few cents, and can be considered as random noise in the calculation of the target price.

Finally, in many application of the Widrow-Hoff rule where the desired output D(t) varies dynamically, the learning system requires ‘damping’ to prevent high-frequency oscillations around D(t). Consider the case where a trader’s observations of the shouts and transactions in the market lead it to repeatedly increase its profit margin: if the next transaction to occur indicates that the profit margin is now too high, it may be premature to immediately reduce the margin; it might be better to reduce the rate of increase of the margin, rather than the margin itself. If the first indication that the margin should be reduced is reinforced by subsequent shouts or transactions, then eventually the rate of increase can take on a negative value (leading to reduction in the profit margin). Figuratively, the sequence of prices for shouts and transactions builds a “momentum” indicating which way the profit margin should be altered. This can easily be achieved by giving each trader a momentum coefficient, denote by γi (0 <= γi <= 1) so that if γi = 0 the trader takes no account of past changes when determining the next change to the value of the profit margin μi, but with larger non-zero values of γi greater emphasis is accorded to past change. Such momentum mechanisms are often employed in back-propagation neural network learning (Rumelhart et al. 1986). Equation 7 shows the general form of the equation for momentum-based updates, with Τi(0) = 0; for all i:

Τi(t + 1) = γiΤi(t) + (1 - γi)△i(t) (7) Using Τi in place of △i(t) in Equation 4, and defining Τi(0) = 0; for all i, gives the following update rule, which is used in the ZIP traders:

μi(t + 1) = (pi(t) + Τi(t)) / λi,j – 1 (8)

Chapter 8
Project Progress and Summary

8.1 Project Progress

	Time
	Things Done

	May, 2000
	Learning Java

Learning concept of Mobile Agent

	June, 2000
	Decision of adopting Grasshopper as API

Learning how to program Grasshopper

	July, 2000
	Decide to implement Load Balancing in

Mobile Agent’s paradigm

	August, 2000
	Discuss Load Balancing Issue

	September, 2000
	Abort the implementation of Load Balancing

Investigate the feasibility of Multi-Sellers & Multi Buyers \Scenario

Learning JDBC

	October, 2000
	Learning Java Serlvet

Learning Swing

Search possible algorithm for Multi-Buyers & Multi-Sellers

	November, 2000
	Implement Multi-Sellers & Multi Buyers

Scenario without GUI

8.2 Difficulty of Project

8.2.1 Problem domain

During the study of our project, we found that it has difficulty in finding a suitable problem domain, which can be tackled in mobile agent’s paradigm. At the beginning, we decided to implement the Load Balancing Issue in heterogeneous platform.

However, after reading lots of papers and journal, we found that the performance and the efficiency in the approach of mobile agents is not the best solution is the real world since the overhead introduced by involvement of mobile agent is larger than the time reduced by Load Balancing. So, we aborted our target and start thinking another feasibility of problem domain.

8.2.2 Difficulty in configuration

In our project, we have established several websites and many additional development tools in our project machine. The configuration of those things is not a straightforward manner. Since we need set-up that environment in Windows and Linux platform, the environment parameters are too complicated and spent lots of time.

8.2.3 Implementation of Grasshopper

Grasshopper is mobile agent’s development API in Java platform. The concept of this programming paradigm is not unfamiliar for us and it is difficult to initiate for new users.

8.2.4 Weakness of Java Serlvet

Java Serlvet is one of CGI programming language which can be developed in Java platform the efficiency and the memory usage are not acceptable when compared with other CGI development programming languages such as Perl and PHP. And also, the request should re-submit each time in order for the front-end users to refresh the information on the screen.

8.3 Summary
In these three months, we have investigated a possible problem domain in E-commerce system and then try to find out the best scenario for implementation of mobile agents.

Until now, we have implemented multi-seller and multi-buyer scenario for our first objective in the project. We have studied lots of papers and journals in order to find out a appropriate algorithm, which fair and efficient is the criteria, to handle the bargaining behavior during the interaction (biding) among transaction process.

Also, with the new web technology of web programming language and development tool, we are able to develop a comprehensive web site, which acts as a bridge between the mobile agents and its clients.

Our development is still in a progress. We, at the next semester, expect that our system can be completed entirely and finally works as a true mobile agent’s community.
Chapter 9 Future Works
In this section, we will discuss the future plan and the work will be done on our project in the following semester. It includes real time interaction between the mobile agents and their clients, learning techniques for mobile agents, more scenario implementation in the community and Professional web site development.
9.1 Real-time Interaction

Until now, users are allowed to create a specific agents and the agents can work as a their representatives in the computer network. All the parameters and preference as well as the biding technique, which is used in bargaining process, are all fixed in their life cycles after they are created in the workplace. Sometimes, this approach is inadequate for some users, which they feel like observing and even taking a partial control to the agents. It is reasonable to do so in the real world. However, the real-time modification of agent’s setting will lead to a new technique difficulty, bandwidth problem. This remote control from the client to agent, which is located in somewhere in the computer network, will consume large network bandwidth in the Internet. If the number of agents sited in the same marketplace is growing, this crisis will become worse and even the whole system go to unstable state. Thus, in the next semester, we would like to study the feasibility and extends of real time interaction that the system can tolerant.
9.2 Learning Technique for Agents

We attempt to implement other transitory bidding rules and update methods in our multi-seller and multi-buyer scenario, because the world is not stochastically stable, and the number of players is not known. It is necessary for the agents to learn in the bidding process so as to obtain an optimal price in each transaction.

Some approaches are listed as below:
9.2.1 Higher-order adaptation mechanisms

Before, the parameter of for each agent is fix, but in this mechanism, some parameters such as value of learning rate β in equation 2 and momentum in equation 7 will be changed dynamically according to the basis of that agent’s experiences in the market.

Other variables may be introduced into the adaptation and bargaining mechanisms. There are a number of variables that the current ZIP traders do not take account of which a human trader might use to determine more profitable prices. Examples include: whether there are more buyers than sellers (or more offers than bids shouted) and vice in supply and demand; the average prices of the competition (to allow aggressive or predatory pricing, under-selling or over-bidding to attack the competition); and so on. Also, the current ZIP traders are specified as discrete-time processes, but in more realistic markets, it is likely that continuous times process will be required.

9.2.2 Game-Theory Analysis

In our previous algorithm, all sellers and buyers have an uncontrolled chance in bargain transaction. We would like to introduce the Game theory. That is, the clients are able to control the strategies in each biding transaction.

9.3 Support More Scenarios in Mobile Agent’s Paradigm

The objective of our project is to establish the mobile agent’s community. In this case, we expect our system is able to perform more and more activities except transaction market.
For example, the agents help to seek the friends with the same preference in the community. Also, the agents are able to collect the useful information for the clients.

We continue to collect related resources and study the feasibility of other scenario by using mobile agent’s paradigm.
9.4 Security Issue

The mobile program has to deal with malicious host, unreliable communications and uncooperative or other untrustworthy mobile agents. We do protect any possible attack by implementation of standard solution such as SIAS (Shopping Information Agent System).

9.5 Professional design of Web site

For the time being, the web page is written in DHTML and the web application is programmed in Java Servlet. The main weakness of Java Servlet is that it fails to update and synchronize the information in the same screen. That means, the web clients should refresh the screen or click the update buttons each time in order to retrieve the up-to-second information. It is difficult for the clients to perform real-time modification of the agent’s parameter if information is not shown on the screen immediately. This is because the biding process is taken very fast. Even a few second’s delay will also advertise influence on the outcome. In order to tackle the technical problem we encountered at this stage, we will adopt Java Server Page, JSP as the main web programming language in next version.

JSP is a new programming technique for web page design, the Java codes are directly written in each web page. It allows the possibility of the real-time interaction between the web client and web server. It is not necessary to refresh the screen in each client’s request. The pages observed from the client’s side, thus more stable and user-friendly. This technique greatly enhances presentation of the result of data on the web page.

Chapter 10 Bibliography

[1]
Dave Cliff, “Minimal-Intelligence Agents for Bargaining Behaviors in Market-Based Environments, June 1997.
[2]
Nir rVulkan, Chris Perist, “Automated Trading Agents-based Markets for Communication Bandwidth
[3] Grasshopper User Guide, http://www.grasshopper.de/
[4] Fourth International Conference on AUTONOMOUS AGENTS (Agents 2000), URL: http://www.iiia.csic.es/agents20000/
[5] Web Application Development, http://www.winwinsoft.com/articales/wad.html
[6] JDK 1.1.8 Documentation, http://java.sun.com/docs/books/tutorial
[7] HPL-98-58 Shop ‘Til You Drop I: Market Trading Interactions as Adaptive Behavior – Ciff, Dave; Bruten Janet

[8] HPL-98-59 Shop ‘Til You Drop II: Collective Adaptive Behavior of Simple Autonomous Trading Agents in Simulated Retail Markets – Cliff, Dave; Bruten, Janet

Chapter 11 Acknowledgement

We would like to express our gratitude toward Michael Rung Tsong LYU, our project supervisor. He has provided many useful opinions and guidelines to us throughout this project. We are much appreciate by his patience and kindness in advising us.

Moreover, we would like to thanks, T. Y. Wong M. Phil Year 1 student, which help us a lot in discussing the design of the project

Appendix

A. Software

Java API 1.1.8

Java is an object-oriented language, which is popular all around the world today. This is due to its portability, is grows along with the internet related technologies. Its complete and robust API brings programmer and software developer a convenient developing environment. Since it is slower than native programming language, Java is not suitable for low level programming or real time processing. On the other hand, it is perfect for networking application programming. One of the most critical factors determining the performance of network application is the connection speed. So it compromise slow execution speed of Java.

Java Servlet API 2.1

Servlets are the Java platform technology of choice for extending and enhancing Web servers. Servlets provide a component-based, platform-independent method for building web-based application, without the performance limitations of CGI programs. And unlike proprietary server extension mechanisms (such as the Netscape Server API or Apache modules), Servlets are server and platform independent.

Servlets is able to access to the entire family of Java API as it is written in Java. Servlets also access library of HTTP-specific calls, and all the benefits of the mature Java language, including portability, performance, reusability and crash protection.

Apache

Apache is a HTTP server that mainly runs in Unix platform environment. It is free distributed and developed by a group of volunteers. It is installed in our web site and provides all web service for Internet clients.

B. Hardware

Web server

AMD K6 300MHZ, 64 MB memory

The machine is installed with Java serlvet and apache web server program. It process all the request from the web clients and then re-direct the agent’s creation request to the Grasshopper(mobile agent’s platform) where mobile agent is created. Also it acts as a bridge between the Oracle Database system and the web client.

Mobile Agent’s platform (workplace)

Any SUN Sparc machines

All the machines are running with Grasshopper and provide the place and services for mobile agents. Therefore, the mobile agents can communication with other agents and retrieve the required information in the journey.

C. Client-side Requirement

Internet Explorer 4.0+

Since the web site is written in DHTML, in which Netscape is not fully support for the time being. However, Netscape claims that the next version in Netscape 5.0 will be fully support the standard of new DHTML. So, this is not the case in the future.

PAGE
40
LYU0004 Mobile Agent’s Community

_1037044505.vsd

_1037045953.vsd

_1037057078.vsd

_1037145147

_1037048522

_1037044975.vsd

_1037044132.vsd

_1037043753.vsd

