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Main Objective

Using Machine Learning to beat the odds



Our Solution

 Easy to obtain data
* Optimized for betting



Easy to Obtain Data
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Optimize for Betting

* Kelly Formula — a simple and optimal betting strategy
e Relates probability of winning and payoffs (odds) together
 Compute the optimal bet size that maximizes the growth of profit

* Payoffs are known, probability is unknown

» Build machine learning model
to map features into probability



Model Requirements

1. Activation and Loss Function
2. Ensemble model



1. Activation and Loss Function

Sigmoid Function

* Objective: Mapping features into probability

e Activation in output layer: Sigmoid
* To produce values ranging from 0 -1

* Loss Function in training: Binary Cross Entropy
* The optimal loss function to use with Kelly Betting
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2. Ensemble model

* Kelly Formula assumes an unbiased probability
* Overestimation causes bankruptcy quickly!

* To improve robustness
* Train multiple models
* Group them into an ensemble
* Output Ensemble Mean

* 300 — 1000 models in an ensemble
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Betting strategies

* Kelly Betting (Full Kelly):
e Use Kelly Formula to compute the optimal bet size

* Fractional Kelly:
* Multiply a fraction (e.g. 20%, 30%) to the Kelly Formula

* Improved Kelly:
 Solve for the optimal fraction under given uncertainty estimation

Kelly Formula Deterministic Probability, Odds Optimal bet
Improved Kelly PDF of Probability, Odds Optimal fraction + Optimal bet

\

PDF of Probability: Uncertainty in prediction




Improved Kelly

Original Kelly Predicted Probability, Odds Optimal bet
Improved Kelly PDF of Probability, Odds Optimal fraction + Optimal bet
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* Assume the uncertainty = ensemble variance —

* We obtain the PDF by performing Beta fit on
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Proposed Models

1. Closing Model
2. Continuous Model



Overview

1. Closing Model

* Model that just before closing
 Closing (J&#%): the moment that bookmakers do not accept bets anymore

2. Continuous Model
 Model that continuously until closing



Overview

* Select an odds considering period
e Every period is in 1-minute interval

* Use the odds-implied probabilities in that period to form features

* For example: 0 min —29 min before closing
e Odds-implied probabilities: [P(t=0min), P(t=1min), ..., P(t=28min), P(t=29min)]



1. Closing Model

 Regression-based Closing Model (Term 1)
e LSTM-based Closing Model



Application in Horse Racing —

Forming Records
e Aim: Predict Pr(Win) for each horse

* Pick an Odds Considering Period
* Sequence of Odds-Implied Probabilities (P)

* Create a record for each horse:
e [astP, minP, maxP ....
» Coefficients from Polynomial Regression

1. Regression-based Closing Model



1. Regression-based Closing Model

Application in Horse Racing —
Forming Records

* Training Set: Data from 2017/01/01 — 2018/12/31 (19647 records)
 2-Year Data

* Testing Set: Data from 2019/01/01 — 2019/12/31 (9827 records)
* 1-Year Data



1. Regression-based Closing Model

Application in Horse Racing —

Results:

* Kelly Betting
* |nitial capital: $10000
* Betting against the highest closing odds among = 10 bookmakers

* We tried models with different configurations
* The best model is €

Model Return
0-39-4deg 21287
* Problem: 0-39-6deg 20941
* The returns are very sensitive to g'jg'f{;’;g ‘f:jg? (Bighest)
. . . . -39-10deg 95
the choice of degree in polynomial regression 535 120ea e
0-39-14deg 17472
0-39-16deg 10185
0-39-18deg 213




2. LSTM-based Closing Model

Application in Horse Racing —
Improvement: LSTM-based




2. LSTM-based Closing Model

Application in Horse Racing —
Improvement: LSTM-based



Application in Horse Racing —

Results

* Best regression-based model
* 0-39-8deg

* |nitial capital: $10000

* Betting against the highest closing
odds among = 10 bookmakers

* Every LSTM-based model can
outperform the Regression-based

2. LSTM-based Closing Model
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2. LSTM-based Closing Model

Application in Horse Racing —
Results- By Luck? NO
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2. LSTM-based Closing Model

Application in Soccer

[E] FCERR 00 BEAEBR =

* Tested in the Over/Under ( ABK K 4H) market X s =

* Guess the total goal is Over(°X) or Under(4f]) a Line | 545 2.5] 1.48
* Models predict the probability of Over

* Using € to compute features
* Odds Considering Period: €

 Data

* Training Set: games before 2019/07/01 (18847 lines)
* Testing Set: games from 2019/07/01 —2020/03/08 (8567 lines)



2. LSTM-based Closing Model

Application in Soccer—
Results
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Application in Soccer—
Results- By Luck? NO

Bet Sim (Fractional Kelly)
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2. LSTM-based Closing Model




2. Continuous Model

e LSTM-based Continuous Model
e Convolution-based Continuous Model



3. LSTM-based Continuous Model

Applicationin Horse Racing —
LSTM-based Continuous Model

 Similar structure to the LSTM-based Closing Model
* Continuous Prediction can be achieved by replicating data records
* Model:

* Give minute-by-minute predictions for period O min — 29 min before closing

Sequence of odds-implied probability P4y

Minute
lastP before Pavg(to) Pavg(t1) Pavg(t2) Pavg(t29)
closing
Pavg(to) 0 0.1080 0.1101 0.1117 0.1378 0
Payg (1) 1 -1 0.1101 0.1117 0.1378
Pavg(tz) 2 -1 -1 0.1117 0.1378
Payg(tz9) 29 -1 -1 -1 0.1378

Records formed by a single horse



Application in Horse Racing_ 3. LSTM-based Continuous Model
Results

* Since it is difficult to achieve optimal in continuous betting
 We compute the Binary Cross Entropy on the testing set instead
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3. LSTM-based Continuous Model

Limitation

* Data size grows with number of timesteps
e Original: 19647 records
* After replicating records for every horse: 19647 x 30 =589 410

* Not suitable for long period prediction

* For example: Soccer games
* Bookmakers offer odds several days or even a month before kickoff



4. Convolution-based Continuous Model

Convolution-based

* Designed for long period prediction

* Input a sequence of odds-implied probability

* output a sequence of predicted probability with time dependency
preserved



4. Convolution-based Continuous Model

Convolution-based

e Casual Convolution

* Preserves time dependency in a Sequence
 Example: Window Size = 2
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Application in Soccer—

Data & Model
e Over/Under ( AEBK A 4H)

* Predict Pr(Over) minute by minute in
period 0 — 1439 mins before closing

4. Convolution-based Continuous Model



Ap p I l CatIO n | n SOCCG r = 4. Convolution-based Continuous Model
Results: BCE Test
o

* Smaller window is better



Applicationin Horse Racing —
Results — BCE Test

4. Convolution-based Continuous Model
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Conclusion

 We created the following models in this project

1. Regression-based Closing Model
2. LSTM-based Closing Model
3. LSTM-based Continuous Model

4. Convolution-based Continuous Model

 Above models are shown to be potentially profitable and able to
outperform the betting odds

* Using to odds to beat the odds!



