Opensource E-voting System for 8 million mobile devices

ESTR4999 Graduation Thesis Presentation

Maxwell Chan presents

supervised by Prof. Michael Lyu

Review of Term 1

Review of Term 1

Motivation

- Disadvantage of paper-based voting
- Blockchain
- End-to-end verifiable voting

Design

- Helios
- Permissioned blockchain

Review of Term 1

Implementation

- Election encryption & decryption
- "Backbone" of blockchain
- Draft user interface

Election description				
Question 1: Is CUH	K the best?			
Question 1 options: Yes;No				
Question 2:				
Question 2 options:				
Crypto - p: qUN9TE	qk5T2fepN	liYeRiF0		1
Crypto - g: Aw==				
Crypto - Trustee public keys:		HdcnBVN	li7a7bxV	py8=;Pxdua/z iX7FisZPxIR7
Voter 1 public key:	MFwwDQYJI gMaEkzRcC 56JsSaJSI Bi+WGH0Lg END END MFwwDQYJI 1RUg1KpD	KoZIhvc QbVvqTop N+hLNq6c gzaOjQQ PUBLIC IN PUBLI KoZIhvc /GKM+NxC PANogbLc nyY3pqoi	DEbFqAR4 JApOdFnB JAGbsCAw KEY IC KEY VAQEBBQA DfDPfy/v epyNLDcH n1eTECAw	DSWAWSAJBAKS rg6cdV xMx3igGZe3CZ EAAQ== - - DSWAWSAJBAOY k9kcHP Zz7d8trjIMKL EAAQ==
Voter 2 public key:	END	PUBLIC	KEY	-
1 5				

Objective

Overall schedule

Objective

Objective of Term 2

- Zero-knowledge proof
- Communication full verification
- User interface design
- Load test

Protocol design

Zero-knowledge proof

- Sigma protocol
- Non-interactive mode

Trustee knowledge on private key

- Need all private key for decryption
- Malicious example:

Trustee public key: y_i private key: x_i

Submit public key as: $y_i/(y_1y_2y_3...y_n)$

Election public key = $(y_1y_2y_3...y_n) \times y_i/(y_1y_2y_3...y_n) = y_i$

Trustee honest decryption

- Must use the private key
- Malicious example: $x_i g^1$ or $x_i g^{-1}$
- Ballot aggragation

Voter honest encryption

- Encrypt only 0 or 1
- Limit number of selection
- Use "simulated proof" for other values
 - Reverse the Sigma protocol
 - Verify sum of "Challenge"

Q1 (1-3 selection)	1 real, 2 simulated
Choice 1	1 real, 1 simulated
Choice 2	1 real, 1 simulated
Choice 3	1 real, 1 simulated

Protocol design

Authentication method

- Signature bound with ballot
- Key generation problem
 - Server generate, send via email
 - Voter self-enrollment
 - Election administrator upload directly

Roles and permission

Different type of administrator:

- Server administrator
- Election administrator
- Trustee

Block design

- 1. Election details
- 2. Ballots
- 3. Election tally

Block generation - Node selection

- Use Server ID instead of address
- Unique ID for each server key pair

Implementation

System architecture

- Modularized design

Demo

- 1. Vote in a prepared election
- 2. Tally the election
- 3. Decrypt the election
- 4. Show result

Overview

- Aim: Bottleneck of scaling up
- Load test (2 round)
 - Block length test
 - Arrival rate test
 - Ballot aggregation test
- Reliability test

Environment

- CSE machine x3
 - 4 CPU @ 2.8GHz
 - 8GB RAM
- Google Cloud Virtual Machine
 - 8 CPU @ 2.5GHz
 - 56GB RAM

Block length test - CSE machine

- Case of 100,000 ballots

Block length test - CSE machine

- Case of 1,000,000 ballots
 - Database out of memory
 - Some ballots in multiple blocks

Block length test - Google VM

- Case of 1,000,000 ballots -
 - Processing time increase -

7AM

Arrival rate test - 1 node - CSE machine

- 11 Ballots per second

- 12 Ballots per second

Arrival rate test - 1 node - Google VM

- 12 Ballots per second

Ballot aggreagtion test - CSE machine

- 3 nodes on same machine
- 100 Ballots: 0.07 second
- 1000 Ballots: 0.6 second
- 10000 Ballots: 72 seconds

Summary & Improvement

- Cannot scale up
- Single thread \rightarrow Low CPU utilization
 - Fork child processes for ballot processing

Summary & Improvement

- High database memory usage \rightarrow Long response time
 - More index
 - electionID \uparrow , blockType \uparrow , blockSeq \downarrow , data.voters.id \uparrow
 - electionID \uparrow , blockSeq \downarrow

Block length test - Google VM

- Case of 1,000,000 ballots
 - Crash at ~950,000 ballots

- Extended test

Arrival rate test - 1 node - Google VM

- 48 Ballots per second

- 56 Ballots per second

Arrival rate test - 1 node - Google VM

- 48 Ballots per second

56 Ballots per second

-

Arrival rate test - CSE machine

- 1 node
 - 30-31 Ballots per second
- 2 nodes
 - 28-29 Ballots per second

Ballot aggregation test

- With 1 or 2 node(s) on CSE machine

Summary & Improvement

- Great improvement
- Able to scale up
- Memory leakage problem
 - Fixed (on block generation)

Testing

Reliability test

- 3 nodes on the same CSE machine
- Able to adapt the situation
- Need time to sync

Conclusion

Overview of Term 2

- Zero-knowledge proof
- Reviced design
 - Authenication
 - Blockchain
- Implementation
 - Full verification between nodes
 - User interface & authenication
- Testing & improvement
- Opensource

Conclusion

Possible application

Legislative Council Election

- 5 geographical constituencies (GC)
- 1 million voters per GC
- 100,000 votes per hour
- 28 ballots per second

Future work

- Improvement on scalability
- Improvement on reliability
- Full implementation of the proposed design
- Enforce more security measure
- Use newer communication protocols
- Possibility of enabling "Voting-as-a-service"

Improvement on scalability

- More Child processes
 - Blockchain, Election, Handshake
- Partially broadcasting ballots
 - nodes with same database

Improvement on reliability

- Ballot re-broadcasting
 - Voter experience
- Smarter blockchain synchronization
 - Sequence of 'invalid blocks'
- Clock synchronization
 - For block generation

Full implementation of the proposed design

- Kiosk voting
- Authentication method

Enforce more security measure

- Removed for the ease of testing
- Replay attack \rightarrow Nonce
- Secure connection \rightarrow HTTPS

Use newer communication protocols

- Current: All via HTTP
- Improvement: Some via TCP
- Future: Use QUIC

Possibility of enabling "Voting-as-a-service"

- Pay for computation power used
- Earn by hosting as a node

