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Breast cancer diagnosis
* 10+ gigapixels per patient

* agreement in diagnosis < 48%
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Current automatic diagnosis
e Statistics

* Jargons

e Codes
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Naive Neural DNN
> Bayes >> >VM >>Network>> DNR >>on GPU>

Development of Classification
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Feature Viola- RCNN Fast Faster Mask
Matching Jones RCNN RCN RCNN

Development of Object Detection
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structures detection

segmentation

Deep Learning for
Medical Images

labeling and
captioning

computer aided
detection or diagnosis
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— S Deep Learning
S Diagnosis
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Introduction: Objective

Not Cancer

Mammogram . . Cancer Tumor
. Diagnosis .
Analysis Detection

Not Sure

Deep Learning

DIﬂg“DSIS . Image Classification Pﬂthﬂlﬂg? Diagnosis Cancer
Analysis
. Object detection

Not Cancer

Image Caption
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Term One Review: Overview

Not Cancer

Cancer

l Not Sure

Pathology . . Cancer
. Diagnosis
Analysis

Not Cancer

Deep Lea rtning

DIEgHGSIS Image Classification

Object detection

Image Caption
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Term One Review: Dataset

Breast Cancer Histopathological Image Classification (BreakHis)

different magnifying factors (40x, 100x, 200x, and 400x)
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Term One Review: Model Architecture

224x224
X2 Convolution network
56> 56
28x28 s
*
77
1x1
t 7
Max
o ax pooling tax
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Term One Review: Model Architecture

Residual Blocks: fix degradation problem

H(x) —x » F(x)

H(x) = F(x) + x



Term One Review: Model Architecture

Residual Blocks: fix degradation problem

weight layer

F(x)
weight layer

F(x)+x

ImageNet Large Scale Visual Recognition Challenge 2015 winner
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Term One Review: Result

Patient Level Accuracy (%)

95
93
01 ® Our work is better than other
- research using same dataset in
almost all of cases
87 ® The difference can be as large as
85 5% in most cases.
83 ® |[ow magnification factors, such
81 I I as 40x and 100x, has a fewer
information and features for
79
I model to catch and learn
77
75

100x 200x 400x
® Traditional CNN 2 SVM Traditional CNN1 DeCAF Our work
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Related Work

Deep Multi-instance Networks with Sparse Label

Mass Segmentation via Cascaded Random Forests
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Deep Multi-instance Networks with Sparse Label



Related Work: Deep Multi-instance Networks

* End-to-end network
* Multi-instance learning
* Max pooling based loss

* Label assignment based loss

* Sparse loss

* Whole mammogram as input

Otsu’s
segmentation

E—

Resize

L(I,I)

Max pooling loss Three MIL

Losses & I
Label assign. loss [ <: z 2
L( I, l)+ uL( ,_ )
Sparsity loss

UOISSIIBIY

1 Ranked probability Ranking

Layer
|

Instaﬁce[Patch

W. Zhu et al.

Ieaury
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Mass Segmentation via Cascaded Random Forests




Related Work: Cascaded Random Forests

—————————————————————————————————————————————————————————————————————————————

Multi-scale Segmentation
Muf{l-bca]tﬁ: Clustering

Morphological|—> fat
1 Filtering Segmentation :

- * Filters at several scales

* Self-adjusting #layers

* Narrowing down false-positives

Sca.’el Scale, Scale; Scale, |

H. Min et al.
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Method: Dataset

Digital Database for Screening Mammography (DDSM)

two views of both side (left CC+MLO, right CC+MLO)



Method: Dataset

Digital Database for Screening Mammography (DDSM)

4 N 4 N

benign 870

- J - J

4 N 4 N 4 N

2479 cases malignant 914

- J - J - J

4 N 4 N

normal 095
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Digital Database for Screening Mammography (DDSM)

—
Time of study: 531991
Patient age: 63
<
Scanner resolution: 42
Keyword description: 2
N—

rich meta information
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Method: Preprocess

LJPEG and Chain Code

|dea: decompress the data




Method: Preprocess

W | JPEG and Chain Code

Contrast Limited AHE |dea: make image clearer




Method: Preprocess

W | JPEG and Chain Code

P8 Contrast Limited AHE

Image Augmentation |dea: make dataset larger
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Method: Model Architecture

preprocessed image (2048x2048x3) , ,
* Find region proposals

Base Model (ResNet101)

* Classify region proposals
feature map* (64x64x2048)

Region Proposal Network

ROI (N_ROIx4)
\ 2

ROI Align

rproposal (N_ROIx14x14x80)——proposal (N_ROIx14x14x80)1

Class and Box (ResNet) Mask (Fully Convolutional Networks)

Output




Method: Model Architecture

* Find region proposals

* Classify region proposals

] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
1mage proposals (~2k) CNN features regions




Method: Model Architecture

Residual Network: fix degradation problem

weight layer

F(x)
weight layer

F(x)+x

ImageNet Large Scale Visual Recognition Challenge 2015 winner



Method: Model Architecture

Base Model

ResNet 101 — feature map

[ 1x1,64
Ix3,64 | X3
| 1x1,256 |

I 1%1, 128 |

‘ preprocessed im}ge( 22222222222 ) 3 X 3. l 28 X 4
| Base Model (ResNet101) ‘ | % l. 5 | 2

feature map* (64x64x2048)

| Region Proposal Network ‘ [ l X ]. 256
3x3,256 | x23

[ romw ] { %1, 1024

[
ROI (N_ROIx4)

rproposal (N_ROIx14x14x80)———proposal (N_R0|x14x14x80)1

L1, 512
Class and Box (ResNet) | ‘ Mask (Fully Convolutional Networks) 3 X 3~ 5 l 2 X 3

| I ' [ 1, 2048

| Output ‘




Method: Model Architecture

Region Proposal Network
feature map — RPN —region of interest

2k scores 4k coordinates <mm  kanchor boxes
cls layer \ ’ reg layer
preprocessed imfge (2048x2048x3) 256"d
| Base Model (ResNet101) ‘ intermediate layer
‘ feature mapI (64x64x2048) '
h 4
| Region Proposal Network ‘

|
ROI (N_ROIx4)
v ;
| ROI Align ‘ -
rproposal (N_ROIx14x14x80)———proposal (N_R0|x14x14x80)1

sliding window

Class and Box (ResNet) | ‘ Mask (Fully Convolutional Networks)

| 7 l conv feature map

| Output ‘




Method: Model Architecture

Region Proposal Network

ROI Align region of interest — ROl Align —region proposal

| I | | | |
| [ [ | @ -] | @ | |
preprocessed image (2048x2048x3) ! | | | | |
v | I | | | |
| Base Model (ResNet101) ‘ [ | | | | |
I . A T T L |- — — — — -
feature map (64x64x2048) [ [ . | @ . I | |
[ [ | | | |
| Region Proposal Network ‘ [ [ L : I I

} }
| [ [ | | | |

ROI (N_ROIx4)

v I I o | @ o | @ | |
| ROI Align ‘ === == — = + =1 - =1 - = ==== =
[ [ | | | |
[ I | | | |
rproposal (N_ROIx14x14x80)———proposal (N_R0|x14x14x80)1 | | I | | |
[ [ o] | @ o] | @ | |
Class and Box (ResNet) | ‘ Mask (Fully Convolutional Networks) [ [ | | | |
| | | | ] | | |
¢ [ I | | | |
| Output ‘ l l I | ! !
[ [ | | | |
[ | | | | |
L — |- — — — O S - — — — — _I



Method: Model Architecture

Region Proposal Network
ROI Align reglon prOpOsal — FQeSl\let_> ClaSS + bOX

Class and Box Generation

preprocessed im: f ge (2048x2048x3 )
| eeeeeeeee (ResNet101 ) ‘
[
‘eature map (64x64x2048)
v
| Region Proposal Networl ‘
|
Ol (N_ROIx4)
v
| ROI Alig ‘
‘ l—proposal (N_ROIx14x14x80)———proposal (N_RO| )
| ass and Box (ResNet) | ‘ ( )




Method: Model Architecture

01

Base Model

Region Proposal Network

EE} roi Align

region proposal — mask

28 Class and Box Generation A V4
,f'.'/"; : V. .
I & 74
Mask Generation e 27 | ave
= >
preprocessed image (2048x2048x3) R O I N ] O 2 4 ! re S 5 x 2 O 4 8
| Base Model (ResNet101) ‘ // : //"
feature map (64x64x2048)
h 4
| Region Proposal Network ‘ e e
ROI (NI_ROIx4)
A7
| ROI Align ‘ _>

rproposal (N_ROIx14x14x80)———proposal (N_ROIx14x14x 80)—l l

Class an

d Box (ResNet) |

‘M ask (Fully Convolutional Networks)

v

Output ‘

Faster R-CNN

w/ ResNet [14]
— » class
>(2088]3] -
14x14 14x14
x256 x80
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Method: Loss Function

Original Loss Function

X — X

Ly = W'
y—y

ty = P
w
tW=logW
h

w'

W

Black: Predicted box
Red: True box
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Original Loss Function

X — X

Ly = W'
y—y

ty = P
w
tW=logW
h

Black: Predicted box
Red: True box



Method: Loss Function

Original Loss Function

X — X
ty = W'
!/
LYY
y h'
w
tW — log_, Black: Predicted box
w Red: True box
h Dark Red: Scaled box
th = logﬁ

Motivation: make IOU 100%

B DetectionResultNGroundTruth
"~ DetectionResultUGroundTruth

[oU



Method: Loss Function

Original Loss Function

Our New Loss Function

_—1
0, if int(x, > xy) +int(x3 > x3) =1
t, =< max(xy — xg, X5 — X3) .
" , otherwise

Black: Predicted box
Red: True box

Dark Red: Shifted box

Motivation: make OR 100%

B DetectionResultNGroundTruth
B DetectionResult
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Method: Evaluation

Intersection over Union

B DetectionResultGroundTruth B Area of Overlap

loU

"~ DetectionResultUGroundTruth Area of Union

|dea:; exact match Is best




Method: Evaluation

Il Intersection of Union

Overlapping Ratio

_ DetectionResultNGroundTruth _ Area of Overlap

OR = =
DetectionResult

Area of Detection

|dea: one tumor cell spolls the whole sample



Method: Evaluation

Il Intersection of Union

Overlapping Ratio

Mean Average Precision

1 #TP(x)
|classese| #TP(c) + #FP(c)

ecclasses

mAP =

ldea: precision of all test data. The probability of
successful prediction for each predicted mask.
Higher is better



Method: Evaluation

Il Intersection of Union

Overlapping Ratio

Mean Average Precision

False Positive Per Image

FPPI = average number of false positive samples

|dea: false positive of all test data. The number of
wrong predicted masks per image. Lower is better



Method: Evaluation

Il Intersection of Union

Overlapping Ratio

Mean Average Precision

False Positive Per Image

Mean Sensitive

# (successfully predicted truth boxes)

15 tive =
ensitive #(all truth boxes)

|dea: true positive of all test data. The probability of
successful prediction for each existing mammogram mass.
Higher is better



05. Results



Experiment Results

Analysis and Discussion
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Experiment Results

Preprocess Positive
Decision




Experiment Results

1
Preprocess



Experiment Results: Preprocess

Original

Contrast Limited AHE




Experiment Results

Positive
Decision




Experiment Results: Positive Decision

Intersection over Union

B DetectionResultGroundTruth B Area of Overlap

loU

"~ DetectionResultUGroundTruth Area of Union




Experiment Results: Positive Decision

Il Intersection of Union

Overlapping Ratios

_ DetectionResultNGroundTruth _ Area of Overlap

OR = =
DetectionResult

Area of Detection
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Method: Loss Function

Original Loss Function

Our New Loss Function

_—1
0, if int(x, > xy) +int(x3 > x3) =1
t, =< max(xy — xg, X5 — X3) .
" , otherwise

Black: Predicted box
Red: True box

Dark Red: Shifted box

Motivation: make OR 100%
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Experiment Results

100

90

80

7

(@)

6

(@)

5

(@)

4

(@)

3

(@}

2

(@)

1

(@)

(@}

Our Work-O  Our Work-O+P

Our Work- Our Work- Random Forest
O+P+E O+P+E+L

® Mean AP ®Mean Sensitive

RCNN

Genetic System

O: original method

P: new preprocess method
E: new positive decision

L: new loss function

Our work using new
preprocess method gets a
comparable mean sensitive
(73%) with previous work

Our work using new loss
function gets a impressive
mean AP but the mean
sensitive is not satisfactory.



Experiment Results

Our Work-O  Our Work-O+P

Our Work-

O+P+E

Our Work- Random Forest

O+P+E+L

PP

—|nference Time

RCNN

Genetic System

1000

100

10

1

All of our results behave
much better than other
works on inference time.

Also, our work outperforms
other works with the lowest
FPPI
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Analysis and Discussion

Confidence Training

Threshold Strategy




Analysis and Discussion

Confidence
Threshold




Analysis and Discussion: Confidence Threshold

* X:confidence threshold *
10

* When the confidence
threshold becomes larger,
the mean sensitive does
not increase as we expect!

* We conjecture that the
reason is classification and
bounding box regression
part doesn’ t work!

v 0.64 1 1,
=
= - 1.0
é 0.62 - :
a‘ - 0.9
m 0.60 1
5 - 0.8
o
L
£ 0.58 - - 0.7
g —— Mean Precision
@A —— Mean Sensitive - 0.6
Y 0.56
o —— Mean Accuracy —— FPPI
(S - 0.5
T T T T T T T T T
0 1 2 3 4 5 6 7 8
preprocessed image (2048x2048x3)
| Base Model (ResNet101)
feature ma;i (64x64x2048)
| Region Proposal Network ‘
ROI (NI_ROIx4)
o]
’ ROI Align

Don’ t work!

‘ ——proposal (N_ROIx14x14x80)—

\ 4
| Class and Box (ResNet) |

—proposal (N_ROIx14x14x80)1

Mask (Fully Convolutional Networks)

v

| Output ‘

FPPI



Analysis and Discussion

Training
Strategy




Analysis and Discussion: Training Strategy

Stage 1: train different layers
one by one

Stage 2: train base model

Stage 2: fine tune all layers

Mean sensitive benefits a lot
from the training of base
model

For each stage, 15 epochs are
enough to avoid overfitting

mPresion,mSensitive

|
—— Mean Average Precision

0.70 7 Stage 1 Stage 2 —— Mean Sensitive
Stage 3
0.65 -
0.60 - /\.
0.55 A
—— FPPI

0.50 -

10 20 30 40 50 60 70

epoch
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Limitations: Small Feature Maps

Small Feature Maps

* The corresponding feature maps of mask
Is too small so that it has no enough
representation information

* One direct idea is that using another
network which adopts masks in image as
Input, instead of the feature maps to get
the final classification and regression score.

Y

preprocessed image (2048x2048x3)

Base Model (ResNet101)

feature mapv (64x64x2048)

Region Proposal Network

I

ROTmEResd) ROl in image

“RO™=#gm= Resize

——proposal (N_ROIx14x14x80)—

Class and Box (ResNet)

—proposal (N_ROIx‘l4x14x80)1

Mask (Fully Convolutional Networks)

Qutput




Limitations: Too Few Training Data

Small Feature Maps

Few Training Data

* the key point of a successful is not the power of model, but the power
of dataset

* Although we outperform other work using same dataset, but the results

are still not impressive using private dataset stored in hospital and
university.
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User Interface

Web Portal

Human Readable Report
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User Interface: Web Portal

Authentication

[ Breast Cancer Diagnos %

&« C @ 127.0.0.1:4899/index.html

Breast Cancer Diagnosis

Username
Password
PNG file VEIRN A AR e

Submit

http://127.0.0.1:4899/index.html



http://127.0.0.1:4899/index.html

User Interface: Web Portal

Submission

Breast Cancer Diagnosis

Username qli5
Password =~ |eeeee
PNG file BERSH | C_0195_1.RIGHT_CC.png

It may take up to 120s to process an image. Please wait...
1. Upload Image

2. Process

I 3. Generate Report

Report:

Submit

http://127.0.0.1:4899/index.html
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User Interface

Human Readable Report



User Interface: Human Readable Report

cancer 0.816

* Bounding box

* Region mask

* Short description
* Confidence level

e Different color for different classes
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Conclusion: Project Review

Mask
4 I RCNN 4 N\
b ~ 1 User
Resnet
Interface
Our

Project



Conclusion: Project Review

Resnet

\_ W \ J

* High accuracy which was up to 90%
average compared with 86%
average in previous work.



Conclusion: Project Review

* Achieves a comparable result with a fewer
FPPI

* Uses new loss function and positive sample
decision method, making precision
improves significantly from 60% level to 90%
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4 I
4 N\ 4 N\
- . User
Interface
\_ . \ J

* Efficient and user-friendly
* From theory to production
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Conclusion: Future Work

Network

| Pre-trained
Metainfo Vodel
New More Data
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