Using Deep Learning for Breast Cancer Diagnosis

LYU1706

01. Introduction

Background

02

Objective

02 Background

Breast cancer diagnosis

- **10+** gigapixels per patient
- agreement in diagnosis < 48%

Current automatic diagnosis

- Statistics
- Jargons
- Codes

Background

02

Development of Classification

Introduction: Background

Development of Object Detection

Introduction: Background

02 Background

Introduction: Objective

Introduction: Objective

02. Term One Review

02 Dataset

03 Model Architecture

04 Result

02 Dataset

03 Model Architecture

04 Result

Term One Review: Overview

Dataset

03 Model Architecture

04 Result

02

Term One Review: Dataset

Breast Cancer Histopathological Image Classification (BreakHis)

different magnifying factors (40x, 100x, 200x, and 400x)

02 Dataset

03 Model Architecture

04 Result

Term One Review: Model Architecture

Residual Blocks: fix degradation problem

$$H(x) - x \rightarrow F(x)$$

$$H(x) = F(x) + x$$

Residual Blocks: fix degradation problem

ImageNet Large Scale Visual Recognition Challenge 2015 winner

02 Dataset

03 Model Architecture

04 Res

Patient Level Accuracy (%)

- Our work is better than other research using same dataset in almost all of cases
- The difference can be as large as
 5% in most cases.
- low magnification factors, such as 40× and 100×, has a fewer information and features for model to catch and learn

03. Literature Review

01 Deep Multi-instance Networks with Sparse Label

Mass Segmentation via Cascaded Random Forests

01 Deep Multi-instance Networks with Sparse Label

Mass Segmentation via Cascaded Random Forests

Related Work: Deep Multi-instance Networks

- End-to-end network
- Multi-instance learning
 - Max pooling based loss
 - Label assignment based loss
 - Sparse loss
- Whole mammogram as input

Deep Multi-instance Networks with Sparse Label

Mass Segmentation via Cascaded Random Forests

Related Work: Cascaded Random Forests

- Filters at several scales
- Self-adjusting #layers
- Narrowing down false-positives

04. Method

02 Preprocess

03 Model Architecture

04 Loss Function

05 Evaluation

02 Preprocess

03 Model Architecture

04 Loss Function

Digital Database for Screening Mammography (DDSM)

two views of both side (left CC+MLO, right CC+MLO)

Digital Database for Screening Mammography (DDSM)

Digital Database for Screening Mammography (DDSM)

Time of study: 5 3 1991

. . .

Patient age: 63

Scanner resolution: 42

Keyword description: 2

rich meta information

02

Preprocess

03 Model Architecture

04 Loss Function

05 Evaluation

Method: Preprocess

⁰¹ LJPEG and Chain Code

Method: Preprocess

01 LJPEG and Chain Code

⁰² Contrast Limited AHE

Idea: make image clearer

Method: Preprocess

01 LJPEG and Chain Code

02 Contrast Limited AHE

⁰³ Image Augmentation

Idea: make dataset larger

02 Preprocess

03 Model Architecture

04 Loss Function

- Find region proposals
- Classify region proposals

Residual Network: fix degradation problem

ImageNet Large Scale Visual Recognition Challenge 2015 winner

ResNet $101 \rightarrow$ feature map

01 Base Model

⁰² Region Proposal Network

feature map \rightarrow RPN \rightarrow region of interest

01 Base Model

02 Region Proposal Network

⁰³ ROI Align region of interest \rightarrow ROI Align \rightarrow region proposal

03

ROI Align

Region Proposal Network 02

- region proposal \rightarrow ResNet \rightarrow class + box
- 04 **Class and Box Generation**

- Region Proposal Network 02
- **ROI** Align 03
- Class and Box Generation
- 05 Mask Generation

region proposal \rightarrow mask

02 Preprocess

03 Model Architecture

04 Loss Function

⁰¹ Original Loss Function

$$t_x = \frac{x - x'}{w'}$$
$$t_y = \frac{y - y'}{h'}$$
$$t_w = \log \frac{w}{w'}$$
$$t_h = \log \frac{h}{h'}$$

Black: Predicted box Red: True box

⁰¹ Original Loss Function

$$t_x = \frac{x - x'}{w'}$$
$$t_y = \frac{y - y'}{h'}$$
$$t_w = \log \frac{w}{w'}$$
$$t_h = \log \frac{h}{h'}$$

Black: Predicted box Red: True box Gray: Shifted box

⁰¹ Original Loss Function

$$t_x = \frac{x - x'}{w'}$$
$$t_y = \frac{y - y'}{h'}$$
$$t_w = \log \frac{w}{w'}$$
$$t_h = \log \frac{h}{h'}$$

Black: Predicted box Red: True box Dark Red: Scaled box

Motivation: make IOU 100% $IoU = \frac{DetectionResult \cap GroundTruth}{DetectionResult \cup GroundTruth}$

01 Original Loss Function

⁰² Our New Loss Function

$$t_x = \begin{cases} 0, & \text{if } \inf(x'_0 > x_0) + \inf(x'_3 > x_3) = 1\\ \frac{\max(x'_0 - x_0, x'_3 - x_3)}{w}, & \text{otherwise} \end{cases}$$

Black: Predicted box Red: True box Dark Red: Shifted box

Motivation: make OR 100%

 $OR = \frac{DetectionResult \cap GroundTruth}{DetectionResult}$

02 Preprocess

03 Model Architecture

04 Loss Function

⁰¹ Intersection over Union

01 Intersection of Union

⁰² Overlapping Ratio

Idea: one tumor cell spoils the whole sample

- 01 Intersection of Union
- 02 Overlapping Ratio
- ⁰³ Mean Average Precision

$$mAP = \frac{1}{|classese|} \sum_{e \in classes} \frac{\#TP(x)}{\#TP(c) + \#FP(c)}$$

Idea: precision of all test data. The probability of successful prediction for each predicted mask. Higher is better

- 01 Intersection of Union
- 02 Overlapping Ratio
- 03 Mean Average Precision
- ⁰⁴ False Positive Per Image

FPPI = average number of false positive samples

Idea: false positive of all test data. The number of wrong predicted masks per image. Lower is better

- 01 Intersection of Union
- 02 Overlapping Ratio
- 03 Mean Average Precision
- 04 False Positive Per Image
- ⁰⁵ Mean Sensitive

$Sensitive = \frac{\#(successfully predicted truth boxes)}{\#(all truth boxes)}$

Idea: true positive of all test data. The probability of successful prediction for each existing mammogram mass. Higher is better

05. Results

02 Analysis and Discussion

Limitations

02 Analysis and Discussion

03 Limitations

Experiment Results: Preprocess

⁰¹ Original

⁰² Contrast Limited AHE

Experiment Results: Positive Decision

⁰¹ Intersection over Union

Experiment Results: Positive Decision

01 Original Loss Function

⁰² Our New Loss Function

$$t_x = \begin{cases} 0, & \text{if } \inf(x'_0 > x_0) + \inf(x'_3 > x_3) = 1\\ \frac{\max(x'_0 - x_0, x'_3 - x_3)}{w}, & \text{otherwise} \end{cases}$$

Black: Predicted box Red: True box Dark Red: Shifted box

Motivation: make OR 100%
Experiment Results

Experiment Results

- O: original method
- P: new preprocess method
- E: new positive decision
- L: new loss function
- Our work using new preprocess method gets a comparable mean sensitive (73%) with previous work
- Our work using new loss function gets a impressive mean AP but the mean sensitive is not satisfactory.

Experiment Results

- All of our results behave much better than other works on inference time.
- Also, our work outperforms other works with the lowest FPPI

Analysis and Discussion

Analysis and Discussion

Analysis and Discussion: Confidence Threshold

- X: confidence threshold * 10
- When the confidence threshold becomes larger, the mean sensitive does not increase as we expect!
- We conjecture that the reason is classification and bounding box regression part doesn't work!

Analysis and Discussion

Analysis and Discussion: Training Strategy

Stage 1: train different layers one by one

Stage 2: train base model

Stage 2: fine tune all layers

Mean sensitive benefits a lot from the training of base model

For each stage, 15 epochs are enough to avoid overfitting

02 Analysis and Discussion

03

Limitations

Limitations: Small Feature Maps

⁰¹ Small Feature Maps

- The corresponding feature maps of mask is too small so that it has no enough representation information
- One direct idea is that using another network which adopts masks in image as input, instead of the feature maps to get the final classification and regression score.

Limitations: Too Few Training Data

- 01 Small Feature Maps
- ⁰² Few Training Data
 - the key point of a successful is not the power of model, but the power of dataset
 - Although we outperform other work using same dataset, but the results are still not impressive using private dataset stored in hospital and university.

06. User Interface

01 Web Portal

01 Web Portal

User Interface: Web Portal

⁰¹ Authentication

	Breast Cancer Diagnosi ×	_	X
	Breast Cancer Diagnosis		
	Username Password PNG file	选择文件未选择任何文件	
[Submit	

http://127.0.0.1:4899/index.html

User Interface: Web Portal

01 Authentication

⁰² Submission

Breast Cancer Diagnosis

Username Password PNG file qli5

•••••• 选择文件 C_0195_1.RIGHT_CC.png

Submit

It may take up to 120s to process an image. Please wait... 1. Upload Image

2.	Process
3.	Generate Report
Repo	ort:

http://127.0.0.1:4899/index.html

User Interface: Human Readable Report

- Bounding box
- Region mask
- Short description
- Confidence level
- Different color for different classes

07. Conclusion

Conclusion

01 Project Review

Future Work

02

Conclusion

01 Project Review

02 Future Work

Conclusion: Project Review

Conclusion: Project Review

Conclusion: Project Review

Conclusion

02 Future Work

Thank you