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Methodology

Compare different approaches
○ Horse win or lose     (Binary classification)
○ Horse rank                 (Multi-class classification)
○ Horse finishing time (Regression)

Use regression to predict the horse finishing 
time individually
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Feature Engineering

Construct a racing record and weather 
database
Evaluate a number of conditions
○ Divide and Conquer on location (‘ST’ and ‘HV’)
○ Augmented weather data
○ Win odds

Result: Location partition and additional features 
is useful in prediction

Recap of last semester 



Issue

Our model predict the 
horse finishing time 
individually

However, horse racing 
concerns “group”

Worse Performance on 
inconsistent race prediction

Recap of last semester 



Question:
Can learning help horse racing prediction?



But we need to resolves the reported issue, and bet with strategies
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Objective

Make use of additional data
Predict consistent finishing time within each 
race
Improve bet (WIN & PLACE) accuracy
Explore actual bets

Objective
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Last semester: useful additional information 
can improve the prediction results and bet 
accuracy
Following this idea, we retrieve complete 
horse data on the HKJC website

Additional Horse Dataset

Data Preparation



Additional Horse Dataset

The horse dataset 
contains 7 essential 
features to distinguish the 
horses

This information is another 
golden criteria to assess 
the horse performance

Data Preparation

Features Meanings

Horseid Unique Identifier 

Origin Place of Birth

Birth Birth Date

Color Fur Color

Sex Horse Gender

Sire Father

Dam Mother

Dam’s Sire Maternal 
Grandfather



Additional Horse Dataset

Data Preparation



Embedding network

Learn the similarity between difference 
instance - cosine distance

Mapping network f: X ->Y, 
○ X: input; Y feature vector to learn

Easy to use t-SNE to visualize the data (for 
future research on game selections)

Data Preparation
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Motivation

Try use RNN to learn from horse records -
set data
○ The race is grouped in training and prediction

The set2seq framework is first developed by 
Vinyals (2015)

Set to Sequence Framework



Mechanism

Set to Sequence Framework

Read: Embedding 
network

Process: LSTM (A 
RNN unit) with 
attention mechanism

Write: Pointer Network



Process Module

Set to Sequence Framework

Attention mechanism
Associated memory 
a. Activation function over 

the input mi and output qt. 
b. Softmax to calculate 

importance of each input 
to output

c. Generate a context vector 
rt (importance array)  
attached to the input.



Write Module (decoder)

Pointer Network
Soft pointer pointing the most 
impossible horse (with 
maximum likelihood)
○ Softmax function over process 

units
○ Can have duplicated output

Set to Sequence Framework



Two Experiments

Implement the framework with Keras
Races with 12 horses. Horses ordered by horse 
no.
Goal:
a. Point the horses in correct sequence directly
b. Learn the finishing time race by race (Write module 

becomes normal LSTM)

Set to Sequence Framework



Results & Discussion

All experiments fail
○ 1st model output duplicate horses (entries) -

cannot interpret as rankings
○ 2nd model output the finishing time following the 

horse no.
Although the framework works in simple 
cases i.e. sorting number 
We claim that the model cannot learn from 
complex data such as race records

Set to Sequence Framework
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Covariate shift
○ cause the race finishing time 

inconsistency
Though input data is normalized, 
layer output distribution deviates
from zero mean,unit variance
The effect gets extraneous when 
multiple layers stack up
Propagation to the result

Motivation - Focus on race aspects

BN Model



Batch Normalization

Idea: normalize the input of 
each layer (output  of the 
former layer)

The BN transforms with the 
normalized output from last 
layer

In our model, We insert the 
layer after each dense layer

BN Model



Experiment & Results

BN model predict the finishing time on the same data as last 
semester
Results (and comparisons)are shown in the following:

BN Model

Models Random Odds Based Old Model BN Model

MSE - - 417.7 3.68

MAE - - 18.43 1.42

Accuracy_win 0.083(1/12) 0.273 0.107 0.244

Accuracy_place 0.25(3/12) 0.558 0.314 0.489

Net gain - -1754/-1792 -568/-1285 -1284/-1221

Return/Bet - -21%/-22% - -15%/-15%



BN model predict the finishing time in a race aspect 
automatically
Large increase in WIN/PLACE accuracy
Net gain better than public intelligence (note1)
Claim: consistent time distribution boost the performance of 
the model

Models Random Odds Based Old Model BN Model

MSE - - 417.7 3.68

MAE - - 18.43 1.42

Accuracy_win 0.083(1/12) 0.273 0.107 0.244

Accuracy_place 0.25(3/12) 0.558 0.314 0.489

Net gain - -1754/-1792 -568/-1285 -1284/-1221

Return/Bet - -21%/-22% - -15%/-15%



Analysis on our Claim

BN Model
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Motivation

BN model learns the consistent finishing time 
distribution of each model.
Yet the regression methodology under BN 
model has a major drawback:
○ Learn the finishing time distribution 
○ Cannot inference the relative rankings between 

horses (ultimate goal)

Rank Model



Rank model

To learn the ultimate goal, we propose to 
learn the ranking by pair:
Consider the BN model as a nonlinear 
network function f: Rd -> R, which map the 
input features to the finishing time.
Ranking is defined using f(x). 
f(xi)<f(xj): xi is faster than xj, denoted as xi < xj

Rank Model



Rank model

In this task, we aim to learn P(xi < xj), which 
can be approximate by εij, the difference of 
horse finishing time
To learn P(xi < xj), we establish a trainable 
bound using the sigmoid activation.

Rank Model



Rank model

For simplicity, we define the zij ≡ f(xi)-
f(xj) to be the difference in finishing 
time of horse xi, xj

Our model learns the following:

Then the loss (cross entropy) 
becomes:

where εij is also after activation

Rank Model



Rank model

During training, we freeze the bottom 
layers and only train on the topest 
layer
○ Maintain the finishing time distribution
○ Learn the minor difference

In prediction, we only extract the 
output of the BN model part (finishing 
time)

Rank Model



Experiments & Results`

Rank model outperforms BN model
Positive net gain on WIN bet

Models Odds Based BN Model Rank Model1

Accuracy_win 0.273 0.244 0.305

Accuracy_place 0.558 0.489 0.521

Net gain -1754/-1792 -1284/-1221 181.5/-124.5

Return/Bet -21%/-22% -0.15%/-0.15% 17%/-12%

Rank Model



A finding

Model works better on higher class (class 1 and 
2)

Rank Model

Class 1 2 3 4 5

Accuracy_win 0.5625 0.409 0.2355 0.1904 0.2457

Accuracy_place 0.625 0.6363 0.5181 0.492 0.5084

Net gain (WIN) 78 103.5 -918.5 -1216 -133.5

Return/Bet (WIN) 0.43 0.12 -0.33 -0.38 -0.11

Net gain (PLACE) -27.9 -96.6 -706.3 -829.2 -187.5

Return/Bet 
(PLACE) 

-0.17 -0.11 -0.25 -0.26 -0.15



A finding

Model works better on higher class (class 1 and 
2)

Rank Model



Final result

◉ We present our results using a set of rank models to establish confidence. 
Combined with our claim, we have:

Rank Model



Real-time bets
We step forward and predict the future race (for fun)
Here we show a race where we predict the 1st correctly

http://racing.hkjc.com/racing/Info/meeting/Results/English/Local/2
0180402/ST/7

raceid class place finishtime rankmodel rankmodel place

2018040207 Class 2 1 81.14 80.116 2

2018040207 Class 2 2 81.51 80.031 1

2018040207 Class 2 3 81.71 80.272 5

2018040207 Class 2 4 81.84 80.248 4

2018040207 Class 2 5 81.87 80.134 3

2018040207 Class 2 6 82.14 80.478 7

2018040207 Class 2 7 82.19 80.445 6
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Conclusion

Additional horse data 
Review 3 models
○ Set2seq
○ BN model
○ Rank model

Achieve promising results
Try actual bet




