
Predicting Horse
Racing Results with
Machine Learning

LYU 1703
LIU YIDE 1155062194

Supervisor:
Professor Michael R. Lyu

Outline

Recap of last semester
Object of this semester
Data Preparation
Set to sequence framework
BN network
Rank network

Recap of last
semester 1

Methodology

Compare different approaches
○ Horse win or lose (Binary classification)
○ Horse rank (Multi-class classification)
○ Horse finishing time (Regression)

Use regression to predict the horse finishing
time individually

Recap of last semester

Feature Engineering

Construct a racing record and weather
database
Evaluate a number of conditions
○ Divide and Conquer on location (‘ST’ and ‘HV’)
○ Augmented weather data
○ Win odds

Result: Location partition and additional features
is useful in prediction

Recap of last semester

Issue

Our model predict the
horse finishing time
individually

However, horse racing
concerns “group”

Worse Performance on
inconsistent race prediction

Recap of last semester

Question:
Can learning help horse racing prediction?

But we need to resolves the reported issue, and bet with strategies

Objective2

Objective

Make use of additional data
Predict consistent finishing time within each
race
Improve bet (WIN & PLACE) accuracy
Explore actual bets

Objective

Date Preparation3

Last semester: useful additional information
can improve the prediction results and bet
accuracy
Following this idea, we retrieve complete
horse data on the HKJC website

Additional Horse Dataset

Data Preparation

Additional Horse Dataset

The horse dataset
contains 7 essential
features to distinguish the
horses

This information is another
golden criteria to assess
the horse performance

Data Preparation

Features Meanings

Horseid Unique Identifier

Origin Place of Birth

Birth Birth Date

Color Fur Color

Sex Horse Gender

Sire Father

Dam Mother

Dam’s Sire Maternal
Grandfather

Additional Horse Dataset

Data Preparation

Embedding network

Learn the similarity between difference
instance - cosine distance

Mapping network f: X ->Y,
○ X: input; Y feature vector to learn

Easy to use t-SNE to visualize the data (for
future research on game selections)

Data Preparation

Set to Sequence
Framework4

Motivation

Try use RNN to learn from horse records -
set data
○ The race is grouped in training and prediction

The set2seq framework is first developed by
Vinyals (2015)

Set to Sequence Framework

Mechanism

Set to Sequence Framework

Read: Embedding
network

Process: LSTM (A
RNN unit) with
attention mechanism

Write: Pointer Network

Process Module

Set to Sequence Framework

Attention mechanism
Associated memory
a. Activation function over

the input mi and output qt.
b. Softmax to calculate

importance of each input
to output

c. Generate a context vector
rt (importance array)
attached to the input.

Write Module (decoder)

Pointer Network
Soft pointer pointing the most
impossible horse (with
maximum likelihood)
○ Softmax function over process

units
○ Can have duplicated output

Set to Sequence Framework

Two Experiments

Implement the framework with Keras
Races with 12 horses. Horses ordered by horse
no.
Goal:
a. Point the horses in correct sequence directly
b. Learn the finishing time race by race (Write module

becomes normal LSTM)

Set to Sequence Framework

Results & Discussion

All experiments fail
○ 1st model output duplicate horses (entries) -

cannot interpret as rankings
○ 2nd model output the finishing time following the

horse no.
Although the framework works in simple
cases i.e. sorting number
We claim that the model cannot learn from
complex data such as race records

Set to Sequence Framework

BN Model5

Covariate shift
○ cause the race finishing time

inconsistency
Though input data is normalized,
layer output distribution deviates
from zero mean,unit variance
The effect gets extraneous when
multiple layers stack up
Propagation to the result

Motivation - Focus on race aspects

BN Model

Batch Normalization

Idea: normalize the input of
each layer (output of the
former layer)

The BN transforms with the
normalized output from last
layer

In our model, We insert the
layer after each dense layer

BN Model

Experiment & Results

BN model predict the finishing time on the same data as last
semester
Results (and comparisons)are shown in the following:

BN Model

Models Random Odds Based Old Model BN Model

MSE - - 417.7 3.68

MAE - - 18.43 1.42

Accuracy_win 0.083(1/12) 0.273 0.107 0.244

Accuracy_place 0.25(3/12) 0.558 0.314 0.489

Net gain - -1754/-1792 -568/-1285 -1284/-1221

Return/Bet - -21%/-22% - -15%/-15%

BN model predict the finishing time in a race aspect
automatically
Large increase in WIN/PLACE accuracy
Net gain better than public intelligence (note1)
Claim: consistent time distribution boost the performance of
the model

Models Random Odds Based Old Model BN Model

MSE - - 417.7 3.68

MAE - - 18.43 1.42

Accuracy_win 0.083(1/12) 0.273 0.107 0.244

Accuracy_place 0.25(3/12) 0.558 0.314 0.489

Net gain - -1754/-1792 -568/-1285 -1284/-1221

Return/Bet - -21%/-22% - -15%/-15%

Analysis on our Claim

BN Model

Rank model6

Motivation

BN model learns the consistent finishing time
distribution of each model.
Yet the regression methodology under BN
model has a major drawback:
○ Learn the finishing time distribution
○ Cannot inference the relative rankings between

horses (ultimate goal)

Rank Model

Rank model

To learn the ultimate goal, we propose to
learn the ranking by pair:
Consider the BN model as a nonlinear
network function f: Rd -> R, which map the
input features to the finishing time.
Ranking is defined using f(x).
f(xi)<f(xj): xi is faster than xj, denoted as xi < xj

Rank Model

Rank model

In this task, we aim to learn P(xi < xj), which
can be approximate by εij, the difference of
horse finishing time
To learn P(xi < xj), we establish a trainable
bound using the sigmoid activation.

Rank Model

Rank model

For simplicity, we define the zij ≡ f(xi)-
f(xj) to be the difference in finishing
time of horse xi, xj

Our model learns the following:

Then the loss (cross entropy)
becomes:

where εij is also after activation

Rank Model

Rank model

During training, we freeze the bottom
layers and only train on the topest
layer
○ Maintain the finishing time distribution
○ Learn the minor difference

In prediction, we only extract the
output of the BN model part (finishing
time)

Rank Model

Experiments & Results`

Rank model outperforms BN model
Positive net gain on WIN bet

Models Odds Based BN Model Rank Model1

Accuracy_win 0.273 0.244 0.305

Accuracy_place 0.558 0.489 0.521

Net gain -1754/-1792 -1284/-1221 181.5/-124.5

Return/Bet -21%/-22% -0.15%/-0.15% 17%/-12%

Rank Model

A finding

Model works better on higher class (class 1 and
2)

Rank Model

Class 1 2 3 4 5

Accuracy_win 0.5625 0.409 0.2355 0.1904 0.2457

Accuracy_place 0.625 0.6363 0.5181 0.492 0.5084

Net gain (WIN) 78 103.5 -918.5 -1216 -133.5

Return/Bet (WIN) 0.43 0.12 -0.33 -0.38 -0.11

Net gain (PLACE) -27.9 -96.6 -706.3 -829.2 -187.5

Return/Bet
(PLACE)

-0.17 -0.11 -0.25 -0.26 -0.15

A finding

Model works better on higher class (class 1 and
2)

Rank Model

Final result

◉ We present our results using a set of rank models to establish confidence.
Combined with our claim, we have:

Rank Model

Real-time bets
We step forward and predict the future race (for fun)
Here we show a race where we predict the 1st correctly

http://racing.hkjc.com/racing/Info/meeting/Results/English/Local/2
0180402/ST/7

raceid class place finishtime rankmodel rankmodel place

2018040207 Class 2 1 81.14 80.116 2

2018040207 Class 2 2 81.51 80.031 1

2018040207 Class 2 3 81.71 80.272 5

2018040207 Class 2 4 81.84 80.248 4

2018040207 Class 2 5 81.87 80.134 3

2018040207 Class 2 6 82.14 80.478 7

2018040207 Class 2 7 82.19 80.445 6

Conclusion6

Conclusion

Additional horse data
Review 3 models
○ Set2seq
○ BN model
○ Rank model

Achieve promising results
Try actual bet

