Predicting Horse Racing Results with TensorFlow

())/

LYU 1703

LIU YIDE WANG ZUOYANG

News

CUHK Professor , Gu Mingao, wins 50 MILLIONS dividend using his "sure-win" statistical strategy.

News

AlphaGO defeats human world champions at the Chinese ancient game of GO.

Introduction

- Motivation

Can we predict the horse racing results, using
 ○ Machine Learning (specifically, Neural Network)
 only
 ★ instead of statistical inference*

* Professor Gu's work on this topic is NOT PUBLISHED by the time of the presentation.

Few work on related topic is published.

- Williams and Li (2008)
 - Reviewed neural network algorithms. (BP, Quasi Newton, etc.)
 - Predicted horse finishing time of individual horses.
 - Claimed to have great performance (little result data).
- LYU1603
 - Predicted horse finishing time of all horses.
 - Obtained actual net gain with a threshold (>95%)
 - Problem: too high threshold (bet <10 times in a season)

Introduction

Outline

- Background
- Two Approaches
 - Additional information Weather
 - Divide and Conquer
- Model Architecture
- Results & Discussion
- Conclusion & Future Work
- Q&A

Horse Racing Background

- Professional sport to run horse in time
 - Horses are competing in a game for speed.
- Professional & National entertainment events for Hong Kong citizens
 - Over 45% of citizens have betting account.
 - Advanced Pari-mutuel betting.
 - >20 bet types.

Bets Meaning				
Win	1st in a race			
Place	1st, 2nd, 3rd in a race			

Table 1: Bets of focus in this project

Objective: Build a prediction model to obtain positive net gain.

results

Horse racing result is very difficult to model.

- Horse win
 - Predict whether a horse will win
 - Binary classification of win or not
 - Problems:
 - Unevenly distributed dataset (1 win and 13 losses, normally)
 - Cannot model a race
 - Repetitive wins in a race

Possible ways to model

results

Horse racing result is very difficult to model.

- Horse ranks
 - Predict ranks of horses in a race
 - Multi-class classification
 - Problems:
 - Races of different horses
 - Ambiguous

Repetitive	Horse\Place	1st	2nd	3rd
	#1	60%	40%	20%
	#2	30%	60%	50%
	#3	50%	40%	60%

results

Horse racing result is very difficult to model.

- Horse finishing time
 - Predict horse finishing time in a race
 - Regression problem
 - Reflect recent horse strength to some extent
 - Problems:
 - Predict finishing time individually
 - But then grouped into a race

Approach

- Additional Information
 - Weather
 - Extract horse racing features
 - Weight difference/ Previous Place
- Divide and Conquer
 - Divide on location
 - Shatin (ST) and Happy Valley (HV)
 - (Extract horse racing features)

Weather Features

Horse Performance is influenced by the weather

- Average performance
- Individual performance

• Collected Features:

- Moon phase
- Wind direction and speed
- Humidity and weather condition
- Temperature

Average Performance

- Average horse finishing time can be influenced by weather features
- Temperature 1
 Finishing time 1

alla

*Finishtime is averaged and normalized by distance to represent horse performances.

Individual Performance

 Individual horse has different performances in different weather

ollo

 Weather is closely correlated to both average and individual performances.

*Finishtime normalized by distance to represent horse performances.

- Two racecourses: Sha Tin and Happy Valley;
- Previous studies show some patterns;
- Tuning sub-models to optimize in the future.

Divide and Conquer By Location

- Split the data set into two subsets;
- Build and train NN models based on both subsets;
- Predict separately on both models and combine.

- Odds is closely related to the prediction by intuition.
- However LYU 1603 chose to exclude this feature.
- Compare models with odds and without odds to figure it out.

Structures and settings of the models

- Commonly used structures are used for this semester;
- Number of layers: 2;
- Batch size: 128;
- We assume this network configuration is representative.

- Need to be comparable to LYU 1603 and 1604;
- Train data: 2011 2014;
- Test data: 2015 2016.

Number of training steps

To search for a best number of training steps, a simple experiment is conducted.

Number of Steps	Noodds_noweather	noodds_weather	odds_noweather	odds_weather
10k	4.025	3.603	4.347	3.263
100k	4.291	4.697	4.819	3.668
1m	5.192	5.221	5.088	4.281

TABLE 3.1: Experiments on the number of training steps

– Evaluation Standard

- Loss: Mean-square-error between predicted and actual finishing time
- Accuracy_win: Accuracy of correct win bets
- Accuracy_place: Accuracy of correct place
 bets
- Net gain: Overall profits of all bets

>	Models	Model 000	Model 001	Model 010	Model 011	Model 100	Model 101	Model 110	Model 111
	Loss	515.2	461.2	556.4	417.7	583/ 575	527/ 536	629/ 577	652/ 589
	Accuracy _win	0.08367	0.07029	0.08090	0.10742	0.08798/ 0.08014	0.07725/ 0.07292	0.08155/ 0.09028	0.07940/ 0.06944
	Accuracy _place	0.42926	0.41954	0.47547	0.47789	0.44277/ 0.43902	0.43419/ 0.46766	0.44778/ 0.47052	0.4542/ 0.47685
	Net gain	-1087	-991	-1378	-568	37/ -1005	-1088/ -1579	655/ -917	339/ -1724

- Notation: three binary digits representing divided/undivided, odds/no odds and weather/no weather.
- For the divided models, the first values refer to Sha Tin and the second refer to Happy Valley.

3	Models	Model 000	Model 001	Model 010	Model 011	Model 100	Model 101	Model 110	Model 111
	Loss	515.2	461.2	556.4	417.7	583/ 575	527/ 536	629/ 577	652/ 589
	Accuracy _win	0.08367	0.07029	0.08090	0.10742	0.08798/ 0.08014	0.07725/ 0.07292	0.08155/ 0.09028	0.07940/ 0.06944
	Accuracy _place	0.42926	0.41954	0.47547	0.47789	0.44277/ 0.43902	0.43419/ 0.46766	0.44778/ 0.47052	0.4542/ 0.47685
	Net gain	-1087	-991	-1378	-568	37/ -1005	-1088/ -1579	655/ -917	339/ -1724

• Loss:

- Weather features reduce prediction loss.
- Win odds increases prediction loss.
- Dividing the dataset will increase prediction loss.

}	Models	Model 000	Model 001	Model 010	Model 011	Model 100	Model 101	Model 110	Model 111
	Loss	515.2	461.2	556.4	417.7	583/ 575	527/ 536	629/ 577	652/ 589
	Accuracy _win	0.08367	0.07029	0.08090	0.10742	0.08798/ 0.08014	0.07725/ 0.07292	0.08155/ 0.09028	0.07940/ 0.06944
	Accuracy _place	0.42926	0.41954	0.47547	0.47789	0.44277/ 0.43902	0.43419/ 0.46766	0.44778/ 0.47052	0.4542/ 0.47685
	Net gain	-1087	-991	-1378	-568	37/ -1005	-1088/ -1579	655/ -917	339/ -1724

• Accuracy:

- Weather features reduce prediction accuracy.
- Win odds affects prediction accuracy unclearly.
- Dividing the dataset does not affect prediction accuracy significantly.

\$ Models	Model 000	Model 001	Model 010	Model 011	Model 100	Model 101	Model 110	Model 111
Loss	515.2	461.2	556.4	417.7	583/ 575	527/ 536	629/ 577	652/ 589
Accuracy _win	0.08367	0.07029	0.08090	0.10742	0.08798/ 0.08014	0.07725/ 0.07292	0.08155/ 0.09028	0.07940/ 0.06944
Accuracy _place	0.42926	0.41954	0.47547	0.47789	0.44277/ 0.43902	0.43419/ 0.46766	0.44778/ 0.47052	0.4542/ 0.47685
Net gain	-1087	-991	-1378	-568	37/ -1005	-1088/ -1579	655/ -917	339/ -1724

• Net gain:

- Weather features increase net gain this time.
- No obvious patterns shown for win odds or dividing the data.
- Races in Sha Tin are much more predictable than those in Happy Valley.

\$ Models	Model 000	Model 001	Model 010	Model 011	Model 100	Model 101	Model 110	Model 111
Loss	515.2	461.2	556.4	417.7	583/ 575	527/ 536	629/ 577	652/ 589
Accuracy _win	0.08367	0.07029	0.08090	0.10742	0.08798/ 0.08014	0.07725/ 0.07292	0.08155/ 0.09028	0.07940/ 0.06944
Accuracy _place	0.42926	0.41954	0.47547	0.47789	0.44277/ 0.43902	0.43419/ 0.46766	0.44778/ 0.47052	0.4542/ 0.47685
Net gain	-1087	-991	-1378	-568	37/ -1005	-1088/ -1579	655/ -917	339/ -1724

- Decrease in loss \neq Increase in accuracy.
- Higher accuracy \neq higher net gain (because of win odds).
- Net gain is low because we bet on all the horses the predictions suggest.
- To increase net gain, more strategies need to be applied.

Why?

- Using Loss to evaluate a model hardly works
 - Finishing time is predicted individually
 - yet grouped together in a race
 - Loss is too simple to model the prediction results
- Confidence/Trend matters
 - imply the relative horse performance
 - Help lessen being influenced by randomness

Bet on best predicted races

Bet on best predicted races

Net gain & Accuracy in different time intervals on training set (undivided)

Bet on best predicted races

Confidence

- Explore the best way to predict the results
- Build a more solid regressor in use

Future Outlook

Directions <u>In Progress</u>

- Investigate in depth on the relations between Loss(MSE) and our goal.
 - Models trained with 1m steps. (Overfit, increasing loss)
 - Models with regularizations (e.g. dropout) to minimize MSE
- Use average finishing time to regularize finishing time in a race
 - Combine our understandings on horse racing and model design
 - Test error (MSE) \approx 0.59

Future Outlook

Goal

Build a more solid system

- Maybe Shatin racecourse
- Maybe average finishing time
- Deploy models to train on individual horse records
 - Similar to markov chain
 - Where future state depends on current state (& past in this case)
 - Inspired by Prof. Gu wengao in STAT department
- Tru other here

- Horse racing prediction is not a traditional machine learning problem;
- Loss, accuracy and net gain are less related to each other than we expected;
- However, divide-and-conquer and apply the idea of confidence help improve the prediction.

