Visual Question Answering with Deep Learning

Review

Bananas

What is the mustache made of

New Features

• Model

- Naïve Method => Neural Reasoner Based Model
- Language
 - English => French
- Content
 - Image => Video

Previous Model

NEURAL REASONER

- Neural Reasoner is a framework for neural network-based reasoning over natural language sentences
- Reasoning is widely used in natural language processing tasks
- Architecture
 - Encoder Layer
 - Reasoning layer
 - Answering Layer

NATURAL LANGUAGE PROCESSING

•
$$Q \xrightarrow{encode} q^{(0)}, F_k \xrightarrow{encode} f_k^{(0)}, k = 1, 2, ..., K.$$

• $\left\{ q^{(l)}, f_1^{(l)} \dots, f_K^{(l)} \right\} \xrightarrow{reasoning} \left\{ q^{(l+1)}, f_1^{(l+1)} \dots, f_K^{(l+1)} \right\}$

REASONING

• Question-Fact Iteration

•
$$\left[q_k^{(l)}, f_k^{(l)}\right] \stackrel{\text{def}}{=} gDNN_l \left(\left[\left(q^{(l-1)}\right)^T, f_k^{(l-1)}\right]^T; \Theta_l\right)$$

- Pooling
 - Max/Average Pooling
 - Gating
 - Model-Based (CNN / RNN)

IMAGE PROCESSING

• Input Image $\xrightarrow{Object \ Localization} F_k, k = 1, 2, ..., K.$

•
$$Q \xrightarrow{encode} q^{(0)}, F_k \xrightarrow{encode} f_k^{(0)}, k = 1, 2, ..., K.$$

• $\left\{q^{(l)}, f_1^{(l)}, ..., f_K^{(l)}\right\} \xrightarrow{reasoning} \left\{q^{(l+1)}, f_1^{(l+1)}, ..., f_K^{(l+1)}\right\}$

OBJECT LOCALIZATION

- BING ++
- Edge Boxes
- Objectness
- YOLO Darknet ✓

YOLO

- Divide image into S * S grid
- Within each grid cell predict:
 - B Boxes: 4 coordinates + confidence
 - Class scores: C numbers
- Regression from image to 7 * 7 * (5 * B + C) tensor
- Direct prediction using a CNN

OVERALL STRUCTURE

FEATURES:

- Support French Q&A (French Question and French Answer)
- Not need French VQA dataset for training.

BASIC IDEA:

- Key component: Bilingual Model
- Described in paper: *Bilingual word representations with monolingual quality in mind*.
- By using Bilingual Model, we can achieve the equivalence between English and French.

BILINGUAL MODEL STRUCTURE

Bilingual Model

Monolingual Model 1

> Embed English

Monolingual Model 2

> Embed French

These two monolingual models embed words in two languages with same meaning into 2 vectors that are close.

For example: "Cat" (in English) "Chat" (in French)

BILINGUAL MODEL TRAINING

- Step 1: Training two monolingual models separately using Skip-Gram.
- Keep on
 - Moving words in context closer and closer.
 - Moving words outside context further and further.

BILINGUAL MODEL TRAINING

• Step 2: Training two monolingual model together using Biskip-Gram.

Context

- Biskip-Gram is based on the idea of Skip-Gram.
 Target
- Language1: A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 M1 N1
- Language2: A2 B2 C2 D2 E2 F2 G2 H2 I2 J2 K2 L2 M2 N2

TRAINING & PREDICTING

 Training: Based on the properties of bilingual model, we can consider French words and English words as the similar vectors. Therefore, we only need English-version dataset for training.

Video Question Answering

METHODOLOGY

Video Question Answering

VIDEO SCENE DETECTOR

- Content-Aware Detector
- Threshold Detector

Video Question Answering

CONTENT-AWARE DETECTOR

 The content-aware scene detector finds areas where the difference between two subsequent frames exceeds the threshold value that is set

THRESHOLD DETECTOR

 The threshold-based scene detector compares the intensity/brightness of the current frame with a set threshold, and triggering a scene cut/break when this value crosses the threshold.

Training

NEURAL REASONER BASED MODEL

Loss

Accuracy

NEURAL REASONER BASED MODEL

• Accuracy

	First Semester	Second Semester
Yes/No	74.62	80.62
Number	31.76	31.78
Other	31.32	40.02
Overall	45.87	48.53

- First Semester
 - What is this animal?
 - **zebra**, giraffe, horse, cow, zebras
 - How many animals are there?
 - 2, 3, **4**, 1, 5
- Second Semester
 - What is this animal?
 - zebra, zebras, giraffe, cow, horse
 - How many animals are there?
 - **4**, 3, 2, 1, 6

- First Semester
 - What are flying through the sky?
 - kites, plane, kite, clouds, airplane
 - How many objects in the sky?
 - 13, 10, <mark>4</mark>, 5, 1
- Second Semester
 - What are flying through the sky?
 - plane, airplane, kites, kite, clouds
 - How many objects in the sky?
 - **4**, 5, 2, 3, 1

FRENCH Q&A

- *English:*What is this boy doing?
 Eating.
- French:
 Qu'est-ce qu'il fait?
 - Manger

FRENCH Q&A

- *English:* - What animal is this? - Elephant
- French:
 - Qu'est-ce que c'est animal?
 - l'éléphant

VIDEO QUESTION ANSWERING

VIDEO QUESTION ANSWERING

- Which animal is this?
 - Dog
- What are they doing?
 - Posing

NEURAL REASONER BASED MODEL

- Positive
 - Neural Reasoner
- Negative
 - Object localization algorithms
 - Training set

VIDEO QUESTION ANSWERING

- Regards each frame as individual (Ignore the relation between frames and frames)
 - Motions
 - Actions
- Key frames to represent the whole video (Lose information)

FRENCH SUPPORT

• Although we can find some correct answers in our French Q&A, the most of answers are not correct. After analyzing the model, we think there are two reasons causing this problem.

FRENCH SUPPORT

- Reason 1: Semantic structures of French and English are not the same.
- What animal is this

Qu'est-ce que c'est animal

FRENCH SUPPORT

- Reason 2: The bilingual model is not accurate enough.
- v1 = English_word_to_vec("cat")
- v2 = French_word_to_vec("chat")
- |v1 v2| / |v1| = 1.113
- |v1 v2| / |v2| = 0.818

Thank You