TERM2 FYP REPORT

Prepared for: Dr. LYU Rung Tsong, Dr. Sun Hanqiu
Prepared by: LAM Chi Kit, Wong Ka Lam
FYP Title: Virtual Notice Board




Table of Contents

1. INTRODUCTION......coiiuiiiuiiieiieieiieseniesesiesesresessessssesssssssssssssssssssassssassess 4
T A OVERVIEW ceueiiiiniiiiiiiiiteeteeetetesesasesesssssssessassesesesesesnsnsnsnsnsnssssesesasasnsns 4
T2 MOTIVATION. e titetiiiieit e eeeetettneeeeseteneneasesenssensasesencnssesensnsnsasesensnsnsesenees 6
.3 OBUECTIVE .entiiiiiiiiiiiinieneteeetetetesesesestsentnessassesesesesesnsnsnsnensnsassesesasasnsns 8
1.4 OS PLATFORM ... cuuiuuiiuiuniiniinitieirtnetetaetnstaetneenetaseaesansessrnseassansesnsnns 9

2. MILESTONE.........ccoiiuiiiuiinieiiienieresieseresessessssassssssssssssssassessssesassesasseses 10

3. MSGCRAFT OVERVIEW........cciiiiiiiiiiiniinieieiieseiiesitssstsssssasssssssessssesasseses 14
B TR RT3V N 14
B I | o 5 [0 Y N 14

4. MSGCRAFT DESIGN......cccicitiiiiiiiiiinieiieieiieseitestsssssssssessssessssessssassssessns 15
g ST = =1 N 15

4.1.1 Server-Side System Architecture................uueeeeuveeeeeieeeneevaannnnnn. 15
4. 1.2 DAtADASE. .........ccuouueeeniiiiaieiiiiiiiiiiiiiiiieiiriiiieeiertaeatairiisiirinsaens 16
4.1.3T€rm 1 ER DIAGIAIMN. ......cuaaeeeeeeeeeeeeeeeeeeeeeaeeareeteeasesiasesnsssssssasnnns 17
4.7.4Term 1 SCHOMA ..........c.oueeeeeveiveiiiiiiieiiiiiiviiiiiviiiieaisiisiisisinsannns 18
4.1.5Term2ERDIAGIAINM. .......cueneeeeeeeeeeeeeeeeeeeeteeeeeeeasseransssssnnnnns 79
4A.6TEIM2ECHOMA ......uoueeeneeeeeeeeeeieeeeieieieieereeeseeerereaesasnnnnenns 20
4.1.78eqUuUeNCe DIAQIam ............ce.eueeueeeeeeeeaeeeeeseeeaeeseeesesiasesnsssssesasens 22
A .2 PHONE APP...cutieiiiiiiiin ittt et s e ee st st s easanseastaeassanssnssnssnnsas 24
4.2.7Term T FIOW CRArt...........cc.ceuveevenveiiiiiiiiiiiveiiiiiiiivieiiiiisisisannnnnnn 24
422Term2FIOW CRArt ..........ceeeeeeeeeeeeieeeieieeeeeeeeeieieieieennnnnnn, 26
G2.3MOQUICS ........ouoeaeeeaeeeeeeeeeeeeeteeteeeeereeiereeeieriesiasiesisssssassassnsnnses 28
4.2.3.1TermM I MVC ...t sttt s s etaa e s e taae s s esane s sesnnsesenes 29
4.2.3.2Term 1 Class DIagram .......cc.ceeeueieeniiieerenirereereenereenereeeeenseeesseesessnssssessssnsssennns 31
4.2.3.3TErM 2MVC ..coiiiniiiiieiiiiieeeeiiteeeette e e et e e s ettt e e e saateeesssaaaeesenneeeeennnseeeas 33
4.2.3.4Term 2 Class Diagram........ccceuiininiiiireriiereeeeeeeeeeenenenenenenensnsesasesesesessannnnnes 36

5. MSGCRAFT IMPLEMENTATION.....ccoicitiiiiiiniiiruriinsrsasiesasresessesassesssseses 37

T RS =1 = N 37
5.1.7 Term 1 RetrieVing MESSAQGES. .........ceeeeeeereeeeereerreereraeeessrressrnnenns 37
5.1.2Term 1 POSt MESSAQE........ceeeeeeeeeeeeeeeeeereeeeeieeeraressssssssssssssnsnnnnes 39
5.1.3 Term 2 RetrieVing MESSAQGES. ........ccceeeeeeeeeeeeeeeereeeenrerersisnennsnnns 41
5.1.4Term2 POStMESSAGE ......c.cueveeeeeeeeeeeeaeeereeeeerenresensieesesessannns 41

5.2TER T IPHONE APP ....cuiiiiiiiiiiiiiiii ettt et e st ca st saa s easanseaesannas 43
O.2.T UIDESIGIN caaneeeeneeeeeeeeeerieeereeeeerieeriesesnerasssesssnesesssessssesssnssnes 43

5.2.1.1 Map View ANNOtatioNs .........ooiiiiiiiiiiiiiiiie et eeeee e eeene s ereneseenanen e 43
5.2.1.2 Map View Category MENU ........c.coiiieuiiiiiiiiieiiereetiieeeeteneeeeteneseeenneesereneaseennnenns 44
5.2.1.3 POSt MESSAGE VIEW...c.uuniiiiiiiiiiiiieiice ettt eecee e et e e erae s s eeanesenene s eennnenns 47



5.2.1.4 Message DisSplay VIEW .........ooiiuuiiiiiiiiiiiiieeeciee ettt eeeee s eeene s ereneseenanen e 49

5.2.1.5 Range slider bar for selecting time period..............ccoovviiiiiiiiiiiiiiiiiiiicineeeanes 51
5.2.1.6 MeSSage DiSPIay.....cceuueiiiimiiiiiiiiiiiieee ettt eree e e e e s e e e s e rea e e e e nane e 53
S.22MOQUIES ..........ouoaaeaiaaeieieiiiiiiieiiiieiviieiiaiieiesieiisiisiisisansansnnns 54
5.2.2.1 Implementation of Location Services: ..........cccceiviiiiiiiiiiniiiiiiiieniciieeeereeeeeeeanee 55
5.2.2.2 Implementation of CLLocation and CLHeading: ........ccccceeviiueiiiiiiiiiieninnnennnenns 56
5.2.2.3 Implementation of Longitude-Latitude Distance.........cc.cccccoueiriiiiiiiiiniinncnnnns 57
5.2.2.4 Implementation of MapViewController. ...........ccocouuiiiiiiiiiiiiiieiriiieceereeeeeeeanes 59
5.2.2.5 Implementation of postMsgViewController..........c.cccervueiriiriiiriiiirininiiieeeenenn. 63
5.2.2.6 implementation Of SEQUE .........ccoueiiiiiiiiiiiiiirie et seeeere e eea e eens 64
5.2.2.7 Implement of Danmaku(Message Display) ......cccceeeunrrieeirnereenerieerennereneenenenns 66
5.2.2.8 Implementation of RangeSIider ..........coeiiiiiiiiriiiiiiiiicre e eeaeeens 68
5.3TermM 2 IPhONE AP PP «ocviniiuiniiiiiiiiiiteiieeneieeatareneneaesssenenssnsasasansnsensnns 70
O. 3T UIDESIGN.....cuaaaneeeeeeeeeeeeeeeeeereaeereeenresersssessssessssesessssensssanses 70
5.3.1.1 previeWMeSSage VIEW ......c.cuiiiiniiiiiiiiiiiiiieiee et et et e teenraeeeeennenenns 70
5.3.1.2 preiewMessage View GPS and Beacon............ccocvvuviiiieiiiinecinininenenenenenenennns 71
5.3.1.3 previewMessage View Category Menu...........cccoeiiiiiiiiiiiiiiiiiniiiiiineneeeennee 73
5.3.1.4 previewMessage View Refresh Button.............cceeeiiiiiiiiiiiiiiiiiiiiniiiiiieeeeees 75
5.3.1.5 previewMessage View Content/ Emoji Mode...........ccccceieiiiiiiiiiiiiiiininnenenns 76
5.3.1.6 POSIMESSAGE VIEW ....nniniiiiiiiiiiiiiii ettt et e e e e e s e eneeanns 80
5.3.1.7 previewMessage View Navigation..........cccceeeiiiiiiiiiiiiiiiiiiiiiiiririrreeneneeeeeennes 83
E5.3.2MOQUIES ..........aouaeananaiieiiiiiiiaieiaiiiiiiiieieiieitiiiiiiieeeeaaanas 84
5.3.2.1 Implementation of Beacon ServiCes ..........ccooveiiiiiiiiiiiiiiiiiiiiice e 85
5.3.2.2 Implementation of 3D ReNdering.......ccceiiiiiiiiiiiirrreeeeeeeeeeeeenenenenenns 87
5.3.2.3 Implementation of postMessageView..........cccoeviiiiiiiiiiiiiiiiiiiiiiiceeeeeeens 90
6. LIMITATIONS AND DIFFICULTIES .....ccovvueueueneenenneneneneesesssseseneesessssenes 93
G.1.LIMITATION OF BEACON: ....cuiuitninieineeetnenaenenreeenrncenceseesnsessnsessnsnsensnsensnses 93
6.2. LIMITATION OF SCREEN SIZE: ......ceuiiuniiuiinniiniiniiiieerinieietieanreneeensensennes 93
6.3. DIFFIFULTIES OF BUILDING 3D OBUECT .....ceuiuieinineeninnenenrenensecensnsencnsensnnes 94
7. CONCLUSION......cceiiuiiiureiieneiiesetasestassesassessssessssesssssssssssssssssssssssssssnss 95
8. REFERENGCGE:..........cccotiiiuiiiiiiiiiiiiniriiiesieteseiresesassesassesassesassesassesasseses 97
9. ACKNOWLEDGEMENT: ......cciuiiitiiiniiiieniiesiesesresassessssessssessssessssassssassns 98



1. Introduction

1.1 Overview

Notice Board is a platform that let people post public message. It can
be used in many purposes. We can use it to advertise goods that for
sale, to promote events/activities, to announce information or to
express personal feelings and so on. The traditional Notice Boards are
often made of cork to make the message adding and removing easily.
At the university, there is a well known notice board call Democracy
Wall which let student express their feeling of themselves; At the
canteen or supermarket, we can often see that there is also a notice
board inside to let the customer leave their opinions in order to
improve the quality of the shop. But the traditional notice board is not
that popular nowadays. It is mainly because the inconvenience of
leaving messages and the
duration the messages can
last. Indeed, when people
want to post some
messages on the notice
board, they have to
print/write a note first. Then

use some sticker to stick

that post on the board. Indeed, there is too much things to prepare.
Because of the inconvenience of using notice board, traditional notice

board is not that popular nowadays.



Apart from the traditional notice board, there is an electronic version of
notice board, Internet forums. Although using the Internet forums is
more convenient, it lost the location characteristic of it. Say, if there is
a physical notice board inside a canteen, the information on the notice
board may contain the promotion of that canteen, others’ feedback and
so on. Those characteristics cannot be replaced by online discussion

forums.



1.2 Motivation

Although a traditional board is not that popular now, we still think that it
has its values. But a notice board has limitations. In case if there is a lot
of post, all the post cannot be put on the board at the same time
because of the boundary of size and the lack of space. We find that
there are always some notes on the board cover the others note.
Moreover, if someone sees a post that they don’t like, maybe related to
the complainant of an event, the haters may try to damage it in order to
make some post disappear. In addition, traditional notice board is not
environmental friendly as many paper and stickers are used for leaving

messages.

The second motivation that we want to achieve is to keep record of the
post. In the previous year, there is Lennon Wall created during
Umbrella Movement, located at Central Government Complex. There is
a large-scale notice board (the wall) that full of colorful post-it notes
with many people written message on the universal suffrage and
democracy. However, with the end
of the Umbrella Movement, the Hong
Kong government cleared the notes
that stick on the wall very soon. And
the colorful mosaic wall returned to
an empty grey wall. We observe that

many people express their feel and




opinion through the notes on the wall. But that kind of physical wall can

be removed or destroyed easily.

The third motivation is that after adding both outdoor positioning
system (GPS) and indoor-positioning system (Beacon), virtual notice
board can perform their post and read function very well with accurate
position in everywhere. Virtual notice not only can let people to express
their feelings, it can also perform navigation by specifying the direction
of some specific buildings so that viewers can know which direction
should go in order to get to that place. For example, in Ho-Sin Hang
Engineering Building, there has a board to show the room number of
each professor and name of each room, however, there is no direction
sign in each floor to indicate the route to each room. Student may take
a long time to search for the room. By using the virtual notice board
student can easily know where should go. In addition, the room
availability of a room can also be see so that student can know is it free

to use lab.

So we consider making the notice board on an electronic way. On the
one hand, we focus on how to keep the notice board’s characteristic
and enhance it to break out its current limitation; Moreover, we hope
this app can act as a history book. When the user use this app, they can
know what have been happen on the past, from the discount of a shop,
the changing of taste of food to the student campaign the year before.

And that's why we have this project.



1.3 Objective

The goal of our project is to create a virtual notice board using a
locational-based approach. We have set the following objectives for
our app to achieve the goal.

The app should

1. Keep the advantage of traditional notice board. The beauty of
traditional notice board is that the message is open to public.
Everyone can see the message on the board. And the information
of the post almost related to the things nearby.

2. Enhance the functionality of a notice board. The notice board has
its boundary of size. We have to consider about how to handle
the huge numbers of post the user post using the app

3. Has good user-experience and user-interface. User may feel
inconvenient they have bad user-experience that made user stop
using our app. A good user-experience and user interface may

make the user addicted to use the app.



1.4 OS Platform

In our project, we have decided to build an 10S application in Swift.

Swift

This is our first time to build a mobile application. We found that I0S
has a more uniform app development platform; it may be easier for us
to get started on building an app then Android application.

Moreover, with a uniform development platform, standardized
environment and detail documentation of 10S, it is more convenient for
searching suitable development tools, as well as future development.
Another reason is that Apple provides CorelLocation Framework, which
contains CLLocation for outdoor positioning and CLBeacon for indoor
positioning. In addition, Apple also provides a 3D framework game
technology, SceneKit, which is easy to use 3D framework, therefore we
can build a 3D message reading and posting with this APIl. With this
three API, we believed that our app can be built in more efficient and

can work well in both indoor and outdoor positioning.



2. Milestone

In the term 1, we are going to implement the basic function of a virtual
notice board. They are the functionalities of read and write a note. The
following are the problems and consideration we going to solve in
order to implement a virtual notice board.

1. Leaving a location based message. Since a notice board is a
location-based object that people can leave a message in a
particular location, such as inside a student hostel, a restaurant
or a supermarket. So our app will record the current location of
the user who wants to leave a post. GPS outdoor positioning
system will be used to tackle this problem. GPS is widely used
most of the location-based application, as it works all over the
world with accurate positioning.

2. Locating all post. Since our target is making a virtual notice
board over the world. And the board can be placed in
everywhere. Then it comes with a problem - how can we know
the place where having messages? Based on the location record
we stored when the user post a message. We decided to make a
collection of messages’ location and point it out on the map to
make a clear view of location of each message.

3. Filtering message. The number of message the user post will be
more and more over the time. Assume there is add up over 10
thousand of message in the map. How the user find the post that

they are interested in or they want to see. The filtering process

10



becomes important when there are a huge number of messages.
Posting message with a category is a way to filter the messages
and it can help the user know what type of messages they are
reading in a particular place. And the second filtering method we
going to use is showing message by time period. We decided to
have a range selection bar that allow user to choose messages
within a period of time.

. Reading message. A good user interface is very important. We
have mentioned before, a well-designed interface can made the
user addict on our app. We found that most of the messenger
application has a very similar user interface. It make user feel
they are the same and not creative. We want to have some
breakthrough in displaying or reading the messages. At this
stage we decided to make application into a reading message
view with a much more simple gesture - rotate the iPhone to

landscape. User does not need even a click to switch the screen.

11



In term 2, our target is to improve the app built in the last semester
which have the basic functionality, so that our apps can work well in
every scenario and have a better performance. There are several
areas that we aim to improve.

1. Positioning System. In term 1, GPS is adopted as the only
positioning system in our app to locate user location. It works
excellent in outdoor, but we found that it works with great error
when the the device come into an indoor due to blocking and
interference of the signal. It brings a grate limitation to our app
which only work in outdoor scenario. So it is necessary to
enhance the positioning system that supports both indoor and
outdoor usage. We want our app can be more widely used in
every scenario. So our first target in term 2 is making our app
supporting indoor positioning as well. We decided to implement
beacon technology that is now widely used in indoor positioning.
It helps device determine their approximate location in indoor.

2. Simplify User Interface. Some feedback says that rotating the
phone still complicated and not easy to use in interchanging the
post message view and preview message view. User experience
is one of our major concern in this project, so more simplified
user interface is needed. We decided to fix our app in landscape
mode, so that no more rotating is needed in using the app. In
addition, the interchanging of posting view and reading view is
simply clicking one button. In addition, as the app is going to

support both indoor and outdoor by two different positioning

12



system, a symbol will be added to notify the user which
positioning system the app is using.

. More fancy user interface. A great user interface is very
important in attracting user keep on using our app and give user
good user experience. In term 1, we have decided a new of
checking message by rotating the phone, then showing the
message in a Danmaku view. But it is still a 2D plain text, we want
a funnier and interesting way in reading the messages. Instead of
displaying the message on 2D plain, we are going to build a 3D
displaying engines. Our target is posting and reading a message
in 3D space. Moreover, instead of displaying the full content of
the message, symbol or emoji can be displayed. So that users
can easily identify the category of each message. And clicking
the symbol will show the full content of the message.

. More filtering category. Originally there is only 4 kind of category,
they are fashion, food, lifestyle and entertainment. We found that
four categories may not enough. Therefore, more category will
be added. For example, navigation category will be added. We
believe that with well positioning system, the message can

perform direction sign function.

13



3. MsgCraft Overview

POST is a social app that user can use it to leave message to perform

as a virtual notice board.

3.1 Server

The server is used to store and manipulate the information about the
location, category of the message and the message content. In this
project, our server is put inside CSE department. It can be easy to

setup the environment by using CSE and have a reliability server.

3.2 IPhone app

Our app has four major components: 1. Locate messages; 2. Post

message; 3. Filter the messages; 4. Read the messages.

The message will locate in the place that the user visited such as
lecture room, canteen, student hostel, etc. The user can leave
message in the current location. To get the location of the users, the
user has to switch on the GPS and blue-tooth for searching beacon

before they post and read the messages. The app will record the

latitude and longitude information with the direction together and send

to the database.

14



4. MsgCraft Design
4.1 Server
4.1.1 Server-Side System Architecture

iPhone Map View Post Message View
PHP
MySQL

Database Message Information

The above diagram is showing the server side system architecture. The
iPhone application retrieves and uploads messages to database via

PHP and MySQL. The data transfer is mainly the message content and

message information.

15



4.1.2 Database

The database for this app at this stage is storing all the information
related to the message and corresponding location information.
Including message content and tag, position (longitude, latitude,
heading), date of post. As the data is not complex, a single table is

good enough to handle all the data.

In term 2, the database has to store six more attributes to differentiate
beacons and record the orientation of the device. UUID, major and
minor are used to identify beacons. Roll, pitch and yaw are used to
indicate the orientation of the device as the message will be post along

a 3D space.

16



4.1.3 Term 1 ER Diagram

heading

tag

The pid of each message is unique.

All message are identified by the pid.

Besides pid, others attributes can be the same.

17



4.1.4 Term 1 Schema

There is a record for each message posted on virtual notice board.

Each message has its pid, longitude, latitude, heading, message

content, tag, date of post.

Attribute | Format Description
pid Non-empty positive A unique identifier for
integer message
longitude | Non-empty real number The longitude of the
message when it post
latitude | Non-empty real number The latitude of the
message when it post
heading | Non-empty real number The heading of the
message when it post
msg Non-empty text The message content
tag Non-empty string with at | The message tag
most 80 character
pdate Non-empty data in the The date of message post

format of

YYYY-DD-MM

18




4.1.5 Term 2 ER Diagram

longitude

heading

Messages

o

Ip

The pid of each message is unique.
All messages are identified by the pid.

Besides pid, others attributes can be the same.

19



4.1.6 Term 2 Schema

There is a record for each message posted on virtual notice board.

Each message has its own pid, longitude, latitude, heading, message,

content, tag, date, UUID, major, minor, raw, pitch and yaw post.

Attribute | Format Description
pid Non-empty positive A unique identifier for
integer message
longitude | Non-empty real number The longitude of the
message when it post
latitude | Non-empty real number The latitude of the
message when it post
heading | Non-empty real number The heading of the
message when it post
msg Non-empty text The message content
tag Non-empty string with at | The message tag
most 80 character
pdate Non-empty data in the The date of message post

format of

YYYY-DD-MM

20




uuiD

Non-empty string

The UUID of a beacon

Major Non-empty positive The major value of a
integer beacon
Minor Non-empty positive The minor value of a
integer beacon
Roll Non-empty real number The roll value of device
orientation
Pitch Non-empty real number The pitch value of device
orientation
Yaw Non-empty real number The yaw value of device

orientation

21




4.1.7 Sequence Diagram

Get Message Sequence

-
I
0

iphone App Database

T

- |

Get Message Request

T
I
I
I
|
|
I

Select all from database

- All Message Information

| @ All Message Information
| |

-
0

iphone App Database

www.websequencediagrams.com

The above sequence diagram is showing how the message is get from the
database. The app first sends a http request to server, via the PHP send a
SQL command to database to retrieve all the message information. The
messages will send back to app via the PHP by an http response. The above
get message procedure will be invoked when map view is pull to the

foreground.

In term 2, the above sequence diagram is still used. Moreover, there will be 3
case to automatically invoke this procedure. A timer is added to invoke the get
message procedure again, when there is no message received. Another case,
is there is a change of beacons. The last case is user have move 50m away
from the previous location. So that user does not need to keep on pressing
the refresh button to check the existence of message. The message will be

retrieved from time to time which is more user friendly.

22



Post Message Sequence

|-
o~

iphone App

P

p

i
User Message Input _ !

Post Request _

T
I
I
I
I
I
I

Database

Insert Data Into Database _

-
-

Finish Insertion

_HTTP Respond

Reflesh Page :

|
-

iphone App

0
0

The above sequence diagram is show how the message being post to

Database

www.websequencediagrams.com

database. User input message and choose tag, after pressing the

submit button, the app send a http post request with message

information to the server, via the PHP a SQL insert command is send to

database. Then the server will send back http respond to indicate the

message is successfully upload. The app then refreshes the page to

map view, the get message procedure will immediately invoked to

update message information.

23



4.2 Phone App
4.2.1 Term 1 Flow Chart

( Start

Get messages from
data base

Rotate portrait Exit

Map View showing
locatoin of message

Tap Post
Button

Rotate landscape
left / right

See message Type in message & | |
content choose tag

Post
message

Put message into
database

Mobile app may be suspended or interrupted by various event at any
time, for example incoming phone, user pressing home button etc. In
the above program flow diagram, the suspension and interruption
problem is ignored. It only focuses on how the app works in foreground
mode.

When the app begins, it get all the messages information from the

database, then a map view with message location will shown. User can

24



see where are the message posts before, filter the messages with
category.

When rotate to landscape mode, it goes the preview message mode
users can see the filtered message content. User can also filter
message at this mode by selecting time zone. When rotate back to
portrait mode, the app make request to server to get update

information.

In the map view, user can tap on post button to switch to post message

view. User can go back to map view, by clicking cancel button. Or user

type in the message, post to server, then get update the information

from database and back to map view.

25



4.2.2 Term 2 Flow Chart

( Start )

Get messages from

data base
Tap emoji /
If no message
message button / filter )
found meaage by Exit
category
Showing 3D
mesasge category
emoji / message
content
Tap Post
Button
Tap 3D
object
Type in message &
Message Conent choose tag
Tap OK/
Cancel
Post
message
Put message into

database

In term 2, the flow of the app has a few changes.

First, map view is deleted. After retrieving the message from database,
it immediately showing the 3D message content or the 3D emoji to
indicate the message type.

Second, the phone is fixed to landscape mode, there will be no change

of view by rotation. All the views, will packed in a singe landscape view.

26



The rotation event will be replaced by a buttons. And the first incoming
view is already the preview message view.

So now, after getting all the messages information from the database,
then a preview message view will be shown. This view will be camera
background with 3D object showing the content of messages or emoji
indicating the category of messages. There will be a button to allow
user to inter-switching the 3D emoji to 3D message content. Tap on the
3D object, a dialog box will be shown to show the full message content.
Then, clicking the OK button will back to view message and the
corresponding 3D object will be deleted. If cancel is clicked, it will back
to view message but the corresponding 3D object will still appear.
Moreover, if there are no messages retrieved, the preview messages
view will still be shown. Then the get message from database
procedure will be invoked from time to time in order to automatically
get the message from database according to user location. So that the

user does not need to click the refresh button again and again.

27



4.2.3 Modules

Basically there are two modules, get message and post message. Get
message modules is getting messages from database and showing
message to user. Post message is getting input from user and put into
database. The whole program actually is the interchanging of these

two modules.

Get Message Post Message

In IOS application development, the above modules can be further
elaborate in a model-view-controller design pattern (MVC) which can

much clearly show how the programs and the whole structure behind.

28



MVC is an object-oriented design pattern. Model object is defining the
data and logic that manipulates that data. View object is presenting
information and getting user input. Controller is performing set-up and

coordinating tasks among model object and view object.

4.2.3.1 Term 1 MVC

Display msg
& location
model

Post msg &
location
model

The above diagram is showing the MVC model of our app. They are
divided into three modules, Map View, Preview Message View and Post
Message View. Each controller is having different or same model

object to serve for the purpose of that view.

Switching amount screen display / view is actually switching from one
controller to another controller. The switch mechanism in factis a

stack; the root view controller is the entry view that is the mapView.

29



Switching to another view is pushing the view controller into a stack.
And only top element will be shown. Switch back to previous controller

is pushing the top element out from the stack.

MapViewController is the entry of the app. It is a map view showing the
location of messages. Behind the scene, it is getting message from
database, storing the information of each data including the message
identifier, content, position. Also, it allows user to filter message. At the
same time, it is providing the location service to find the exact location

of user and determine which message user is nearby.

PreviewMsgViewController is for displaying the message content. It
contains function for filtering the message by a time selection bar and

function to handle how the message content will be shown on screen.

PostMsgViewController is for posting message to the database. User
input the message content from view, via the controller the message is
passed the post msg & location model to do the encoding with current

location, then send to database.

30



4.2.3.2 Term 1 Class Diagram

The class diagram of mapViewController

mapViewController

msgID : int[]

latitudeArray : Double([]
longitudeArray : Double[]
headingArray : Double[]
postDayArray : String[]
msgContent : String[]

tag : String(]

annotatons : MKAnnotation(]
pinAnnotation : MKAnnotation([]
locaton : CLLocationMangaer
curlongitude : Double
curLatitude : Double
curheading : Double

outMsg : String(]

outHeading : Double(]
outPostDate : NSDate

vidDidLoad()
setUpMapView()
getAllLocation()
getMapAnnotation
openSideBarButton(UIButton)
closeSideBarButton(Ulbutton)
filterTagButton(UiButton)
chooseAnnotations(String)
dtr(Double) : Double
calculatedDistance(Double,
Double) : Bool
didUpdateLocatoins()
didUpdateHeading()




The class diagram of postMessageViewController

postMessageViewController

locaatio : CLLocationManager
curlatitude : Double

longitude : Double

heading : Double

message : String

tag : String

viewDidLoad()
didUpdateLocations()
didUpdateHeading()
postMessageButton(UIButton)
postToServer()

This is the class diagram of previewViewController

previewViewController

location : CLLocationManager
heading : Double

danmakuView : DSDanmakuView
outMessage : String(]
outMessageOriginal : Sring(]
outHeading : Double[]
outheadingOriginal : Double[]
outPostDate : NSDate[]
outPostDateOriginal : NSDate[]

viewDidLoad()
viewWillAppear()
viewDidAppear()
updateHeading()
rangeSliderValueChanged
(RangeSlider)

startTime()

timeout()




4.2.3.3Term2MVC

Post msg &
location
model

Display msg
content

Dispaly Msg
View

The above diagram is showing the MVC model of term 2 app. The map
view is deleted. There will be mainly two modules, Preview Message

View and Post Message View.

Preview Message View will be the entry view of the app. It is showing
the near by message with a 3D message content or 3D emoji. It first
gets message from database, storing the information of each data and
display suitable messages to users. It contains function for filtering the
message by category, switching from viewing 3D message content or
3D emoji, showing which positioning system is using and providing
orientation and location information of device, post messages to
database.

Post Message View is for posting message to the database. After user
input the message content and choosing the category. It will send

those information to preview message view for uploading.

33



4.2.3.4 Term 2 Class Diagram

The class diagram of previewViewController

preViewMessageView

currHeading : Double
curLongitude : Double
CurrrLatitude : Double
currBeacon : CLBeacon
currYaw : Double
currPitch : Double
currRoll : Double
oldLat : Double
oldLong : Double
oldBeacon : CLBeacon
firstHeading : Double
counter : Integer
messages : messagelnfo[]
messagelnfo:

ID : Integer

latitude : Double
longitude : Double

tag : String

content : String
heading : Double

data : String

uuid : String

major : Integer

minor : Integer

roll : Double

pitch : Double

yaw : Double

cameraNode : SCNode

scene : SCNScene

movementManager : CMMotionManager
messageToPost : String
messageCaegpry : String
post3DSCNView : SCNView
post3DScene : SCNScene

randomColor()

viewDidLoad()

viewDidAppear()
didReceiveMemoryWaring()
supportedinterfaceOrientations()
checkRefresh()

initMenuBar()
menuButtonTap(AnyObject)
closeMenuButtonTap(AnyOjbect)
buttonOn()
captureButtonTap(AnyObject)
changeMode(AnyObject)
refresh(AnyObject)
refreshView()

34




remvoeAllMessage()
postButtonTap(AnyObject)
initLocation()
locationManager(didUpdatalLocation)
locationManager(didUpdatingHeading)
locatoinManager(didRangeBeacons)
getAllMessage()
filterButtonTap(AnyObject)
dtr(degree)

calculateDistance(lat1, lon1, lat2, lon2)
filterMessage()

initCamView()

init3DText()
renderMessageWithTitle()
renderMessageWithlcon()
handeTap(gestureRecognize)
initPost3D()
unwindForSegue(unwindSegue)
renderPost3D(messge, category)
postAction(UIButton)

postToServer()
corrHeading(currHeading)

35



The class diagram of postMessageViewController

postMessageViewController

message : String
categoryName : String
categorys : String([]

viewDidLoad()
textViewDidBeginEditing(textView)
textViewDidEndEDiting(textView)
postMesasge(AnyObject)
numberOfSectioninTableView
(talbeView)

tableView(tableView, section)
tableView(tableView, indexPath)

36



5. MsgCraft Implementation

5.1 Server

5.1.1 Term 1 Retrieving messages

The app gets and retrieves message from database through PHP. First,
it have to add a key in info.pist which require authorization from user to

allow connection to internet as well as connect to database server.

v App Transport Security Settings -
Allow Arbitrary Loads - NO
¥ Exception Domains ~
¥ Cs0.cuhk.e0u hk Dctionary
NSInclugesSubdomains Booiean YES
NS Temporaryt xceptionAliow Boolean YES
NS TemporaryExceptionMin String TLSvid

To retrieve messages, an http request with post method is made to

server.

let request = NSMutableURLRequest(URL: NSURL(string: "http://appsrv.cse.cuhk.edu.hk/~cklam4/getAll.php")!)
request.HTTPMethod = "POST"
let task = NSURLSession.sharedSession().dataTaskWithRequest(request) {
data, response, error in
if error != nil {
print("error=\(error?.description)")
return

let responseString = NSString(data: data!, encoding: NSUTF8StringEncoding)!
let responseArray = responseString.componentsSeparatedByString("#")

The getAll.php is to get all the messages from the database. The
retrieved information is stored in responseString and each information
entry is separated by a special character “#”. So the actual data can be

decoded more efficiently.

37



<?php
// MySQL connection
$con= ’ ’
(mysqli_connect_errno ($con))

echo Q );

}

$sql = ;
$result = $con, $sql);
//search for region

$result) > 0){

$row = $result))q{
echo $rowl 1 . . $rowl[ 1 . $rowl[ 1 . $rowl[
[] . $rowl[ 1. ‘
$rowl 1. . $row[ ] = :
}
}
{
echo H
}
$con);

The getAll.php first make a connection to the database, and then
create a SQL command to get all the data from database. As shown in
the above coding, each data is separated by “#” and concatenate as a

long string and send back to the app.

38



5.1.2 Term 1 Post Message

In order to post a message to server, another http request has to be

made to server.

let todaysDate:NSDate = NSDate()

let dateFormatter:NSDateFormatter = NSDateFormatter()
dateFormatter.dateFormat = "yyyy-MM-dd"

let DateInFormat:String = dateFormatter.stringFromDate(todaysDate)

//print(DateInFormat)

let request = NSMutableURLRequest(URL: NSURL(string: "http://appsrv.cse.cuhk.edu.hk/~cklam4/
msg_post02.php")!)

request.HTTPMethod = "POST"

let postString = "lat=\(latitude)&long=\(longitude)&msg=\(message)&tag=\(userInputTag.titleForSegmentAtIndex
(userInputTag.selectedSegmentIndex)!)&heading=\(heading)&date=\(DateInFormat)"

request.HTTPBody = postString.dataUsingEncoding(NSUTF8StringEncoding)

After user tap the post, all of the information about this message will be

encoded into a single string postString, and send to server via http.

echo $date;

$date);
'Y-m-d', $time);

R
~+
-
3
o
nn

$sql = “INSERT INTO lyul504_stdplace (latitude, longitude, name, msg, tag, headlng, pdate) VALUES
('".$lat

‘KI'IH.[L\”W‘” [U :’I, 0' |v=“1ﬁAg (’\='I,".QWrU”I,IH,EQLEG 1 IK“:ZJ",‘, :wl)ll;

,..Af tud

echo $date;
$con, $sql);

$con);
7>

39



<?php
// MySQL connection
$con=
(mysqli_connect_errno ($con)){
echo

}

$latitude = $_POSTI 1;
$longitude = $_POSTI[ 1;
$heading = $_POSTI 1;
// $name = $_GET["name"];
$message = $_POST( 1;
$tag = $_POSTI 1;

$date = $_POSTI[ 1;

|

echo $date;

$time = $date);
$date = 'Y-m-d', $time);

( 1

$sql = "INSERT INTO lyul504_stdplace

);

(latitude, longitude, name, msg, tag, heading, pdate) VALUES
’a' 1 I’I I'I I'l I)ll;

The msg_post02.php first connect to the database, and then start

decoding the http body, which is the postString. After that, it saves the

message information to the corresponding variables. Then make a SQL

insert command with these variables.

40



5.1.2 Term 2 Retrieving messages

The info.pist and http request is the same interm 2. No changes is
needed for this two part. As well as the getAll.php, we simple retrieve
all the information back to the device it self. So no changes is needed

for this part also.
5.1.3 Term 2 Post message

The http request and php has to be changed because the message
information is increased due to beacon information and device
orientation, corresponding changes to the postString and query

statement is needed.

let request = NSMutableURLRequest (URL: NSURL(string: "http://appsrv.cse. cuhk.edu.hk/~ckland/msg_post02.php")!)
request.HTTPMethod = "POST"
let heading = corrteading(locationInfo.curreading)

var postString = ""
if locationInfo.currBeacon == nil{
postString = "lat=\(locationInfo.currlatitude)&long=\(locationInfo. currlongitude)&msg=\(messageToPost)&tag=\
(self.messageCategory)&heading=\ (heading)&date=\(DateInFormat)&uuid=0&major=0&minor=0&title=0&roll=\(motionInfo.currRoll)&pitch=\
(motionInfo,currPitch)&yaw=\(motionInfo.currYaw)"

}
else{
postString = "lat=0&long=08msg=\ (messageToPost)&tag=\ (self.messageCategory)Sheading=\(heading) &date=\(DateInFormat)Suuid=\
(locationInfo.currBeacon!.proximityUUID,UUIDString)&major=\(locationInfo.currBeacon!.major)éminor=\
(locationInfo.currBeacon!.minor)&title=0&roll=\(motionInfo.currRoll)&pitch=\(motionInfo. currPitch)&yaw=\(motionInfo.currYaw)"
} Tat nnrdChrina = 1Matal [TanatianTnfa anrnl abitidalflana=) [TanatianTafa rinel anntdidalfmaac) (marnanaTalard | (danchahalhandinaa)

The request function need to check determine which positioning
system is using by checking is there any existence beacon. By default,
the app will adopt GPS, when there is beacon signal, it indicates itis in

indoor or at specific location, then it will choose the closest beacon.

41



Then according to each positioning system, corresponding postString

content need to be change.

If GPS is used, the value of uuid, major and minor need to set to zero to

indicate it is GPS based message.

If beacon is used, the value of longitude and latitude need to set to zero

to indicate it beacon based message.

42



5.2 Term 1 IPhone App

5.2.1 Ul Design
5.2.1.1 Map View Annotations

ooooo < 09:41 i 7 100% —"

FOOD
From: 2015-11-14

) ®

Map Post

The map view is the main view of the app. It is the first page we can see
when user open our app. It will show a map of user’s current location. If
there is a message, the map will display annotations that indicate the
actual position of that message. Also, the user can know which type the
message is by tapping on the annotation. There will be a pop up remark
for the category of the message and the date of the message being

post.

43



5.2.1.2 Map View Category Menu

09:41

7 100% = 4

When there are a huge number of messages. It is hard for the user to
search message that they want to see. We have divided the messages
into four category, fashion, food, lifestyle and entertainment. Each
message has its own message type called tag. The app has a filtering
function to help the user search for the message that they want to see
at a quick manner. For the filtering process, the users have to tap the

menu icon on the top left corner. And the category menu will pop up.

44



FASHION

LIFESTYLE

w ENTERTAINMENT

When the menu bar pops up, the background will be darker than the
normal in order to make the sense of multi-level. And when the users

tap on the dark region, the app will return to the map view.

45



FASHION FASHION

b

LIFESTYLE LIFESTYLE

3 ENTERTAINMENT ENTERTAINMENT

There are four categories for the messages, fashion, food, lifestyle and
entertainment. User can choose a category message they are
interested in.

As shown in the above diagram, it shows all kind of messages by
default. After pressing, FOOD button, the number of annotation on the

map is less than before, as it only shows the messages in food category.

46



5.2.1.3 Post Message View

7 100% =0 4

< Cancel

On map view, there is a Post button. By clicking the post button, it will
switch to postMsgView, user can write their comment about this place

at the postMsgView.

47



=S - = s P —

= - = = — cs0se T 09:41 *11‘100%:H
< Cancel POST

demo it @ i

= L ] & B
o°| IS} FOOD \UFESTYN IENTERT”] 7 %
! !

gwer tyui op -

alsjdjflglhlilk]!

e zZ I xlclvibinim &

) @

123 & ¢ space return Map Post

At the postMsgView, there is a white text field allow user to type in
message content. The segment right below is to choose the tag
category that is related to their message content. After finish typing,

click on the enter button on the right hand side, the message will be

uploaded to server and route back to mapView. The message just post

will also be displayed on the map view.

Of course, user may want to get back to map view without posting

anything, there is a cancel button at the top left hand corner to route to

map view.

48



5.2.1.4 Message Display View

7 100% =24 8

How to read a message is a very important objective of our project.

In many existing messenger apps, almost all of them use the same way
for message reading. It provides a table of messages. The users have
to click on each message to see the details. We think it is a boring way
for message checking using in a notice board. Our goal is to make a
new and creative Ul design. We have designed a fantastic way for the
messages watching. The users just need to rotate their phone and scan

the message out.

49



e D oD
: all messad¥”]
e "’ N ] 5

This is the message checking view. We use a camera view as a
background. In the above example, we have left a message on the table
and the message content is a crying emoji that expressing my feeling
about too many things are on my desk. Then my roommate can read
this crying face by rotating his phone in landscape mode and let the
camera point to my desk. This is a new way for reading message that
can give the user the new experience when they use the app. Also, then
is an interesting method to show to messages. The message will keep
moving from the right hand side to the left hand side in order to make a

great effect.

50



5.2.1.5 Range slider bar for selecting time period

@@é@@m

At the bottom of the message checking view, there is a range slider bar.
Users can use that 2-sided slider bar to select the messages that post
on that interval. The above example shows that i have select all the
messages between today to 1 month ago. The camera shows the crying

emoji that is the content of message 1 post the week before.

51



1 moenth™=13 month

This is the second example. It shows that the user change the time
interval, but still at the same position. The message checking view
won’t show the crying message. Instead of the crying message, it
shows “There is no message” to indicate that there is no message in

that particular time interval.

52



5.2.1.6 Message Display

The message will appear only when the user is at the right position and
face with the right angle. When the user is standing in the right position
but wrong angle, the view will not show the message. There will be two
arrow at the left and right side to remind to user to turn around their

phone, point it to the right angle to grep the messages.

53




5.2.2 Modules

MNap Post

<Cancel POST

Preview View Controler

By following the MVC discussed before, there are mainly 3 modules, the
MapViewController, PostMsgViewController and PreviewViewController. The location
service is repeatedly used among the three controllers. So the implementation of

location service function will be discussed first.

54



5.2.2.1 Implementation of Location Services:

In IOS, there is a APl CorelLocation service which provide most of the
functions and methods for building a location-based application. For
example, it provides GPS location services, region monitoring of a
defineded location, the direction of the device pointing to. This app
requires all of these services in order to get the accurate location for
user to post or read a message in a specific region.

To use this API, first set up CLLocationManager class instance that is
the central part for configuring the location related events. it is used to
control the start and stop of delivery of location events. Moreover, it is
used to retrieve most of the location data. Another function of
CLLocationManager is to request the authorization to activate the GPS
function of the iPhone from user and a key in the info.pist should also

be added to get the usage of GPS.

NSLocationAlwaysUsageDescription 4  String GPS

var location = CLLocationManager()

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
NSNotificationCenter.defaultCenter().addObserver(self, selector: "rotated", name: UIDeviceOrientationDidChangeNotification, object: nil)

mapView.delegate = self

self.location.requestAlwaysAuthorization()

self.location.delegate = self

self.location.desiredAccuracy = kCLLocationAccuracyBestForNavigation
self.location.startUpdatinglLocation()
self.location.startUpdatingHeading()

closeSideBarOutlet.hidden = true
setUpMapView()

55



5.2.2.2 Implementation of CLLocation and CLHeading:
A CLLocation object represents the location data generated
by a CLLocationManager object. After implemented

ClLLocationManager, CLLocation can be implemented to get the

actually location of the users in longitude and latitude by writing the

event handler didUpdateLocations() to retrieve position data. It will be

invoked whenever there is a slightly change in location as we have se
the accuracy to the highest level via the CLLocatinManager. The
CLLocation works really well, it locates user position with 10-meter

variants and with a very fast respond to any changes in location.

func locationManager(manager: CLLocationManager, didUpdatelLocations locations:

print(count++)

print("locaton update")

latitude = location.location!.coordinate.latitude
longitude = location. location!.coordinate.longitude
print("latitude = \(latitude)")

print("longtitude = \(longitude)")

CLHeading is also implemented in a same way as CLLocation.

didUpdateHeading() is to retrieve heading data that is computed valu

t

[CLLocation]) {

es

for magnetic north. It works extremely sensitive to slightly changes in

direction of the device pointing to.

func locationManager(manager: CLLocationManager, didUpdateHeading newHeading: CLHeading) {

headingInfo.currHeading = location.heading!.magneticHeading

}

56



5.2.2.3 Implementation of Longitude-Latitude Distance

To resolve the problems of declaring a region and have quick respond
in notifying user’s region. We decided to implement a longitude-latitude
distance calculator. When message’s location information is get
updated, this calculator will be invoked and distance of user current
location to each messages will be calculated immediately. Message
with distance within the certain radius will be shown, the others will be
ignored.

The equation we use for the calculator is Haversine fomula:

hav (§> = hav(¢@y — @1) + cos(@y) cos(@z) hav(Ay — Ay)

r
where

e havis the haversine function:

.o [0 1 — cos(#)
l(,’ 0 — 11 — = —
1av(f) = sin <2> 5

o dis the distance between the two points (along a great circle of the sphere; see spherical distance),

o ris the radius of the sphere,
e (01, (o latitude of point 1 and latitude of point 2
e A1, Ag: longitude of point 1 and longitude of point 2

Haversine formula is used to calculate the great-circle distance
between two points by assuming the earth is spherical with radius 6371
km. Surely it has error due to the assumption (earth is very slightly

ellipsoidal), but the accuracy is good enough for our application.

57



func dtr(degree:Double)->Double{
return degree / 180 x M_PI

func calculateDistance(latl : Double, lonl : Double) -> Bool{

let R = 6371000.0 // metres

let lat2 = latitude

let lon2 = longitude

let rlatl = dtr(latl)

let rlat2 = dtr(lat2)

let dlat = dtr(lat2-latl)

let dlon = dtr(lon2-1lonl)

let a = sin(dlat/2) * sin(dlat/2) + cos(rlatl) * cos(rlat2) * sin(dlon/2) * sin(dlon/2)
let ¢ = 2 % atan2(sqrt(a), sqrt(1-a))
//var d = R % c;

let d =R % ¢C

print(d)

if d < 10{

return true

}else{

return false

calculateDistance() is implementation of Haversine formula

programmatically , lat1 and lon1 is representing latitude, longitude of a

message location, lat2 and lon2 is representing latitude, longitude of

user current location. If the distance is within 10 meter, it returns true

indicates it’s within a region and message of that particular location

will shown, otherwise return false and message of that location will be

ignored.

58



5.2.2.4 Implementation of MapViewController.

MapViewController main function is to get the message information
from database and show the location of each message on a map view.
Besides this, it also responsible to gain the authorization of GPS usage
and Internet access from user at the early beginning of the app.
Moreover, it has to calculate user current position to the message and

do filtering to determine which message will be displayed.

getalllocatons() is function for getting messages from database. The
data get from the database will be stored in responseString and each
data entry will be separated by “#” character. So by tokenizing the
string with “#” character, all of the message information can be

retrieved.

59



func getAllLocations(){
print("sxxin getalllocations")

let request = NSMutableURLRequest(URL: NSURL(string: "http://appsrv.cse.cuhk.edu.hk/~cklam4/getAll.php")!)
request.HTTPMethod = "POST"
let task = NSURLSession.sharedSession().dataTaskWithRequest(request) {
data, response, error in
if error != nil {
print("error=\(error?.description)")
return
}
let responseString = NSString(data: data!, encoding: NSUTF8StringEncoding)!
let responseArray = responseString.componentsSeparatedByString("#")

print("skxresponseArray")
print(responseArray)

for var i = @ ; i < responseArray.count-1 ; i++ {
if(i%7 == 0){
self.msgID.append(Int(responseArray[i])!)

}

else if(i%7 == 1){
self.latitudeArray.append(Double(responseArray[i])!)

}

else if(i%7 == 2){
self.longitudeArray.append(Double(responseArray[i]l)!)

}
else if(i%7 == 3){
self.tag.append(String(responseArray[i]))

}
else if (i%7 == 4){
self.msgContent.append(String(responseArray([i]))

}
else if (i%7 == 5){
self.headingArray.append(Double(responseArray[i])!)

else {
self.postDateArray.append(String(responseArray[il))

}
self.annotations = self.getMapAnnotation(self.latitudeArray, long: self.longitudeArray, tag: self.tag,
date: self.postDateArray)

self.pinAnnotations = self.annotations

let dateFormatter = NSDateFormatter()
dateFormatter.dateFormat = "yyyy-MM-dd"

for var i = @ ; i < self.postDateArray.count ; i++ {
self.formattedPostDateArray.append(dateFormatter.dateFromString(self.postDateArray[i])!)
}

print(self.postDateArray)
print(self.formattedPostDateArray)

self.mapView.addAnnotations(self.pinAnnotations)

}
task. resume()
print("sxxafter resume")

After retrieving each message information, every data entry will pass
to getMapAnnotation() to prepare annotate that will show on map view.
The location information is need for pinning the annotation. Also, in

order to let the map view more interactive, message tag, message post

60



date is added as title and subtitle of annotation. When users tap on
annotation, the title and subtitle will shown. After looping through the
entire message, the annotation will be add to the map view, and

location of each message can be clearly shown.

func getMapAnnotation(lat: [Double], long: [Doublel, tag:[String], date:[String]l) -> [MKAnnotation]{
var annotations = [MKAnnotation]()

for var i = 0; i < lat.count; i++ {
let annotation = MKPointAnnotation()
annotation.coordinate = CLLocationCoordinate2DMake(lat[i], long[i])
annotation.title = tag[il
annotation.subtitle = "From: \(date[i])"
annotations.append(annotation)

}

return annotations

There is a sidebar in MapView as mention before to let user choose
what category of message they want to display on map, in fact, itis

remove and add of annotation.

61



//MARK: Choose Tag
@IBAction func filterTagButton(sender: UIButton) {

switch sender.currentTitle!{

case "ALL":
mapView.removeAnnotations(pinAnnotations)
pinAnnotations = annotations
choosenTag = "ALL"
mapView.addAnnotations(pinAnnotations)

case "FASHION":
mapView.removeAnnotations(pinAnnotations)
pinAnnotations. removeAll()
choosenTag = "FASHION"
chooseAnnotations(choosenTag)
mapView.addAnnotations(pinAnnotations)

case "FOOD":
mapView.removeAnnotations(pinAnnotations)
pinAnnotations. removeAll()
choosenTag = "FOOD"
chooseAnnotations(choosenTag)
mapView.addAnnotations(pinAnnotations)

case "LIFESTYLE":
mapView.removeAnnotations(pinAnnotations)
pinAnnotations.removeAll()
choosenTag = "LIFESTYLE"
chooseAnnotations(choosenTag)
mapView.addAnnotations(pinAnnotations)

case "ENTERTAINMENT":
mapView.removeAnnotations(pinAnnotations)
pinAnnotations. removeAll()
choosenTag = "ENTERTAINMENT"
chooseAnnotations(choosenTag)
mapView.addAnnotations(pinAnnotations)

default:break

}

print(sender.currentTitle)

}

private func chooseAnnotations(chooseTag: String){
for(var 1 = @ ; i < annotations.count ; i++){
if(tag[i] == chooseTag){
pinAnnotations.append(annotations[i])
}

}
}
We first remove all the annotations on the map, then sort out the
required by loop through the downloaded information again. Finally,

add the required annotation back on map.

62



5.2.2.5 Implementation of postMsgViewController

postMsgViewController is a view for user to post message together

with current location and heading information. It has implemented

location service as mentioned before.

@IBAction func postMessageButton(sender: UIButton) {

¥

message = userInputText.text.stringByAddingPercentEncodingWithAllowedCharacters(NSCharacterSet.
URLQueryAllowedCharacterSet())!

print("detail of the")

print("latitude = \(latitude)")

print("longtitude = \(longitude)")

print("content = \(message)")

postToServer()

performSegueWithIdentifier("exitPost", sender: nil)

func postToServer(){

//get the current day

let todaysDate:NSDate = NSDate()

let dateFormatter:NSDateFormatter = NSDateFormatter()
dateFormatter.dateFormat = "yyyy-MM-dd"

let DateInFormat:String = dateFormatter.stringFromDate(todaysDate)

let request = NSMutableURLRequest(URL: NSURL(string: "http://appsrv.cse.cuhk.edu.hk/~cklam4/msg_post@2.php")!)

request.HTTPMethod = "POST"

let postString = "lat=\(latitude)&long=\(longitude)&msg=\(message)&tag=\(userInputTag.titleForSegmentAtIndex
(userInputTag.selectedSegmentIndex)!)&heading=\(heading)&date=\(DateInFormat)"

request.HTTPBody = postString.dataUsingEncoding(NSUTF8StringEncoding)
let task = NSURLSession.sharedSession().dataTaskWithRequest(request) {
data, response, error in

if error != nil {
print("error=\(error?.description)")
return

}

let responseString = NSString(data: data!, encoding: NSUTF8StringEncoding)
print ("sekkckskskokkkkkokkokkQ@RERRERAE kK k*kkkkkkkk'" )
print(responseString)

task. resume()

When user click on post button, postToServer() function is invoked. It

first get message content from the text field and tag from title segment,

current position information. Then combine all these information into a

string format and update to server.

63



5.2.2.6 implementation of segue

< Cancel

B

st

A segue in swift is for view transection. It controls how a user can go
from one view to another view. In swift, it can be setup by just click and
drag. It also allow programmer customizing his own segue. The default
segue is not power enough for our use, so we have to implement the

segue function by our own method instead of the given one.

64



import UIKit

class mySegue: UIStoryboardSegue {
override func perform() {
let sourceVC = self.sourceViewController
let destinationVC = self.destinationViewController
destinationViewController.view.tag = 100
sourceVC.view.addSubview(destinationVC.view)
print(“add camera")

}

mySegue class is putting a new sub-layer above the current layer. We
implement it when we rotate our phone. This action will trigger the

segue and bring the user from the mapView to previewView.

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
if let identifier = segue.identifier{
switch identifier{
case "rotateSegue":
if let vc = segue.destinationViewController as? previewViewController{

vc.outMessage = outMsg
vc.outMessageOriginal = outMsg
vc.outHeading = outHeading
vc.outHeadingOriginal = outHeading
vc.outPostDate = outPostDate
vc.outPostDateOriginal = outPostDate

outMsg. removeAll()

outHeading. removeAll()

outPostDate.removeAll()
vc.message = msgContent
outMsg = ""

}
default: break

}

}
The function of prepareForSeque() is work before we transit from the

mapView to the previewView. It prepare the datas that we want to pass

to previewView and let us use it in the previewView.

65



5.2.2.7 Implement of Danmaku(Message Display)

The function addDanmakus() get an array of message as input. Then
divide it one by one.

func addDanmakus(textsArray: [String], attrbute:DSSanmakuAttribute) {
for text in textsArray {
self.addDanmaku(text, attribute:attrbute)
}

The function addDanmaku() get a message as input. Then it will count the
available position for the message to avoid multiple messages appear on the

same level causing overlapping.

func addDanmaku(text:String, attribute:DSSanmakuAttribute) {
let danmakulLabel = DSDanmakulLabel(danmakuText:text, attribute:attribute

let point = self.countAvailablePositionForDanmaku(danmakulLabel)

danmakulLabel.setPosition(point)
danmakulLabel.calculateReaminTime( (Double) (CGRectGetWidth(self.frame)))

self.addSubview(danmakuLabel)|
self.playDanmaku(danmakuLabel)
self.addMovingDanmaku(danmakulLabel)

The above function set all the displaying condition. The function
playDanmaku() is enable displaying the message. When finish playing the
message, it will remove the message from the array to avoid repeating display

the same message

66



func playDanmaku(danmaku:DSDanmakulLabel) {
weak var wself = self
danmaku.startPlay({(complete:Bool) -> Void in
if (complete) {
danmaku. removeFromSuperview()
if let index = wself!.movingDanmaku.index0f(danmaku){
wself!.movingDanmaku. removeAtIndex(index)
}

3

The function countAvailablePositionForDanmaku() is the function that finding
the available position for displaying message. Our algorithm is randomly get a
position first. Then check this position to see whether it is occupied by another
message or not. If the position is free, then accept. If it is not free, then
generate a new position and check for the availability again.

func countAvailablePositionForDanmaku(danmaku:DSDanmakulLabel) -> CGPoint {
let x = CGRectGetWidth(self.frame)
let y = CGFloat(rand()%(Int32)(CGRectGetWidth(self.frame) - 50))
var rect = CGRectMake(x, y, CGRectGetWidth(danmaku.frame), CGRectGetHeight(danmaku.frame))
var intersect:DSDanmakulLabel?
var intersectY = CGFloat(@.0)
repeat {
if let value = intersect {
rect.origin.y = intersectY
if (rect.origin.y + CGRectGetHeight(danmaku.frame) > CGRectGetHeight(self.frame)) {
rect.origin.y = 0.0
rect.origin.x = CGRectGetMaxX(value.layer.presentationLayer()!.frame)
}

intersect = nil

var index:Int
for index = @; index < movingDanmaku.count; index++ {
let existDanmaku = movingDanmaku[index]
if let compareRect = existDanmaku.layer.presentationLayer()?.frame{
if (CGRectGetMaxX(compareRect) < CGRectGetMaxX(self.frame)) {

continue
}
if (CGRectIntersectsRect(compareRect, rect)) {
if intersect == nil {
intersect = existDanmaku
intersectY = CGRectGetMaxY (existDanmaku. frame)
rect.origin.y = CGFloat(rand()%(Int32) (CGRectGetWidth(self.frame) - 50))
}
}
}
} while (intersect != nil)

return rect.origin

67



5.2.2.8 Implementation of RangeSlider

A rangeSlider is a combine of two class. They are the

RangeSliderTrackLayer and the RangeSliderThumbLayer.

class RangeSliderTrackLayer: CAlLayer {
weak var rangeSlider: RangeSlider?

override func drawInContext(ctx: CGContext) {
if let slider = rangeSlider {
// Clip
let cornerRadius = bounds.height * slider.curvaceousness / 2.0
let path = UIBezierPath(roundedRect: bounds, cornerRadius: cornerRadius)
CGContextAddPath(ctx, path.CGPath)

// Fill the track

CGContextSetFillColorWithColor(ctx, slider.trackTintColor.CGColor)
CGContextAddPath(ctx, path.CGPath)

CGContextFillPath(ctx)

// Fill the highlighted range

CGContextSetFillColorWithColor(ctx, slider.trackHighlightTintColor.CGColor)

let lowerValuePosition = CGFloat(slider.positionForValue(slider.lowerValue))

let upperValuePosition = CGFloat(slider.positionForValue(slider.upperValue))

let rect = CGRect(x: lowerValuePosition, y: 0.0, width: upperValuePosition - lowerValuePosition, height: bounds.height)
CGContextFillRect(ctx, rect)

class RangeSliderThumbLayer: CALayer {
var highlighted: Bool = false {
didSet {
setNeedsDisplay()

}

weak var rangeSlider: RangeSlider?

override func drawInContext(ctx: CGContext) {
if let slider = rangeSlider {
let thumbFrame = bounds.insetBy(dx: 2.0, dy: 2.8)
let cornerRadius = thumbFrame.height = slider.curvaceousness / 2.0
let thumbPath = UIBezierPath(roundedRect: thumbFrame, cornerRadius: cornerRadius)

// Fill

CGContextSetFillColorWithColor(ctx, slider.thumbTintColor.CGColor)
CGContextAddPath(ctx, thumbPath.CGPath)

CGContextFillPath(ctx)

// Outline

let strokeColor = UIColor.grayColor()
CGContextSetStrokeColorWithColor(ctx, strokeColor.CGColor)
CGContextSetLineWidth(ctx, 0.5)

CGContextAddPath(ctx, thumbPath.CGPath)
CGContextStrokePath(ctx)

if highlighted {
CGContextSetFillColorWithColor(ctx, UIColor(white: @.0, alpha: 0.1).CGColor)
CGContextAddPath(ctx, thumbPath.CGPath)
CGContextFillPath(ctx)

68



The following functions are about touching the slider bar. They record
the range that the user slide between the interval of user begin to touch

and end with touch.

// MARK: - Touches
override func beginTrackingWithTouch(touch: UITouch, withEvent event: UIEvent?) -> Bool {
previouslocation = touch.locationInView(self)

// Hit test the thumb layers

if lowerThumbLayer.frame.contains(previouslocation) {
lowerThumbLayer.highlighted = true

} else if upperThumbLayer.frame.contains(previouslocation) {
upperThumbLayer.highlighted = true

return lowerThumbLayer.highlighted || upperThumbLayer.highlighted
}

override func continueTrackingWithTouch(touch: UITouch, withEvent event: UIEvent?) -> Bool {
let location = touch.locationInView(self)

// Determine by how much the user has dragged
let deltalLocation = Double(location.x - previouslocation.x)
let deltaValue = (maximumValue - minimumValue) * deltalLocation / Double(bounds.width - bounds.height)

previouslocation = location
// Update the values
if lowerThumbLayer.highlighted {
lowerValue = boundValue(lowerValue + deltaValue, toLowerValue: minimumValue, upperValue: upperValue - gapBetweenThumbs)
} else if upperThumbLayer.highlighted {
upperValue = boundValue(upperValue + deltaValue, toLowerValue: lowerValue + gapBetweenThumbs, upperValue: maximumValue)

sendActionsForControlEvents(.ValueChanged)

return true

}

override func endTrackingWithTouch(touch: UITouch?, withEvent event: UIEvent?) {
lowerThumbLayer.highlighted = false
upperThumbLayer.highlighted = false

Finally, based on the range between two tumb. Then use function
positionForValue() and function boundValue() to calculate the value
inside the range.

func positionForValue(value: Double) —> Double {
return Double(bounds.width - thumbWidth) *= (value - minimumValue) /
(maximumValue - minimumValue) + Double(thumbWidth / 2.0)

}

func boundValue(value: Double, toLowerValue lowerValue: Double, upperValue: Double) -> Double {
return min(max(value, lowerValue), upperValue)
}

69



5.3 Term 2 IPhone App
5.3.1 Ul Design

5.3.1. re(’ewMessage View

In term 2, the mapView showing the location of message is deleted. The
previewMessage view become the first and main view of the app. This
view by default is in emoji mode which is indicating the category of the
messages. On the top left corner, the incon is showing the positioning
system (GPS and beacon) the app is adopting, and the above symbol is
showing that it is using GPS. On the right hand-side is a tool bar. From
the top, ii is filtering category, when tap on this icon, a category menu
bar will be pop up. The second one is refresh button that is to retrieve
messages from database and refresh the whole preview message view.
The third one is change the display mode, by default it is emoji mode.
The last one is post message button. A post view will pop up to allow

user type in the message content.

70



5.3.1.2 previewMessage View GPS and Beacon

The above view is showing that the GPS is adopted, when there is no
registered beacon nearby, GPS will be used to locate user position that

is mainly used for outdoor.

The above view is showing that beacon is adopted, when there is

registered beacon beacon nearby, instead of using GPS, beacon will
be immediately choosing as the position system. The transparency of

icon is indication the signal strength of beacon. There is 3 level, far,

7"



near and immediate. If signal strength is immediate, the icon
transparency is low, the icon will be clearly shown, or vice versa. The

above is immediate level signal.

72



53.1.3 prewewMessage l//ew Categozy Menu

Although the preview message view is displaying the category of each
messages already, some users may want to see a specific type of
message. So a category menu is provided for user to filter the type of

messages.

73



After clicking the category menu button, the menu bar will pop. The

tool bar will be disappeared. The background will be darker in order to
make the sense of multi level. There are totally 8 categories, they are
happy, sad, angry, warning, food, yummy, bad and navigation. After
clicking the category icon, the messages will be filtered and return
back to preview. Users can also tap on the dark region to back to

preview.

74



5.3.1.4 previewMessage View Refresh Button

Tap on the refresh button, the app will delete the stored messages
information immediately, then a http request will be sent to server to
retrieve the message information again. After that the 3D icon will be
render, an up-to-date message will be shown.

The refresh event will also be automatically invoked when there is a
change in positioning system, change in registered beacon, there is no

message and device moved about every 50m from previous position.

75



5.3.1.5 previewMessage View Content/ Emoji Mode

Besides of displaying messages category emoji, by clicking the change

mode button, full content of the messages can be shown.

The above view is the full content mode, we can see that all the

messages content are shown on screen. Of course, by clicking the

change mode button again, the view will change to emoji mode.

76



In addition, there is one more way to view the messages content. That

is tap on the emoji, then a box will pop up showing full message.

message33
no good

Cancel

After clicking the bad emoji, a box has pop up showing the message ID
and the message content. If clicking the cancel button, the box will
disappear and return to preview. If clicking the seen button, it will back
to preview, but the corresponding message emoji will be deleted, so

that the users can omitte the message that have read already.

77



The above view is showing that after clicking the seen button, the emoji

of that message will be disappeared

Similarly, in the content mode, users can also click on the message

object.

78



message33

no good

Cancel

After clicking the message “no good”, a box is displayed to show the
message ID and content. Clicking the cancel button will go back to
preview. But if clicking the seen button, the message will disappear in

preview.

This view is showing that after clicking the seen the corresponding

message object will be deleted in preview.

79



5.3.1.6 postMessage View

To post a message, tap on the bottom left icon.

f Cancel Post Something

Category What's on your mind
Not Selected

Then the postMessage view will pop up. On the left hand side, it shows
which category has chosen by the user, as it just change to post view,
no category is selected. Swipe up and down on the category table to

chose the most suitable category to express users feeling.

80



Cancel

Category
Not Selected

rooau

-~ Yummy

i~ Navigation

Post Something

Double click on the text box to type in the message content.

For example, the message Yummy category is clicked and “47&” is the

message content.

Cancel

S Category HE
N—b Yummy

rooau

4~ Navigation

Post Something

Post

@

Then click the post button.

81



Then it will pop up a post preview mode, user can move their phone
and put the message in the position they like. Click OK to confirm the

position. Click cancel will back to the preview message view.

This view is showing after click the OK button, the Yummy emoji will be

posted.

82



There is a special kind of category that is navigation. The navigation

messages will render at the bottom part of the view. It does not have 3D
emoji; it will have an arrow pointing toward the location direction with

the messages content.

83



5.3.2 Modules

Post View Controller

Cancel Post Something

Category What's on your mind?
Not Selected

Label

As mentioned before, we want a simpler user interface, so map view is
deleted. PreviewMessage View will be the entry view and the main view
of the app. Most of the function and device information is done in the
view. The segue connecting preview and post view is a standard pop
up segue.

Most the functionality is inherited from term 1, like location services,
CLLocation, CLHeading, Longitude-Latitude Distance.

Although it has less modules, we have implemented few more to
enhance the app.

In addition, a big change in user interface has been made in

postMessageView.

84



5.3.2. 1 Implementation of Beacon Services:

In this app, one of the biggest improvement is allowing indoor
positioning that is using Beacon. In I0S, API CorelLocation services, it
provides many methods supporting usage of beacon. This APl is
already imported in the first term, so we simply need to look for

suitable function in the API and apply them in this app.

let regionB = CLBeaconRegion(proximityUUID: NSUUID(UUIDString:
"6375686B-2E65-6475-2E68-6B2E30303031") !, identifier: "ViewlLab-Beacons")

First, we have to specify the UUID of the Beacons that the app will

monitor.

func locationManager(manager: CLLocationManager, didRangeBeacons beacons: [CLBeacon], inRegion region: CLBeaconRegion) {
// print(region.identifier)
// print(beacons)
let knownBeacons = beacons.filter{ $0.proximity != CLProximity.Unknown }
if( knownBeacons.count > 0){

GPSImage.hidden = true

beaconImage.hidden = false

let closestBeacon = knownBeacons[@] as CLBeacon
//BEACON ADD

locationInfo.currBeacon = closestBeacon

locationInfo.closeBeacon = closestBeacon.minor
print(“closebeacon: \(locationInfo.closeBeacon)")
print("closebeacon: \(locationInfo.currBeacon!.proximityUUID.UUIDString)")
let prox = closestBeacon.proximity.rawValue
if( prox == 1){
beaconImage.alpha = 1

}
else if ( prox == 2){
beaconImage.alpha = 0.7

else{

beaconImage.alpha = 0.2

}

else{
//BEACON ADD
locationInfo.currBeacon = nil
locationInfo.closeBeacon = @
GPSImage.hidden = false
beaconImage.hidden = true

print(*“closeBeacon: \(closeBeacon)")
H

Then, didRangeBeacons function need to be added. This function will
be automatically invoked when the device has detected beacon. As
there may be more then one beacon nearby, in order to choose the
strongest signal beacon, we need to sort the beacon array according

to the strength and pick the first element. Then according to its

85



strength set the beacon transparency of beacon symbol and hide the
GPS icon in preview view. If the beacon signal gone, this function will

invoke again, then it hide the beacon icon and turn on the GPS again.

86



5.3.2.2 Implementation of 3D Rendering:

After retrieving all the messages from data base, it tokenizes the
response as before to differentiate the message information. Then
according to the messages information a 3D object is rendered to

preview view.

let cameraNode = SCNNode()
let scene = SCNScene()
@IBOutlet weak var scnView: SCNView!

First add the cameraNode and scene that is to define the angle of
viewing the 3D space and 3D space.
Then renderMessagwWithTitle() is called. This function is used to

create 3D text in preveiew message view content mode.

func renderMessageWithTitle(){
print("render message")

for x in @ ..< messages.count {
print(messages[x].content)

let roll = Float(messages[x].roll)

let z1 = -cos(-roll)
let 212 = 21 % z1

let lenght = sqrt(4900 - z12)
let targetHeading : Float = GLKMathDegreesToRadians(Float(messages[x].heading))

if messages[x].tag != "Navigation"{
let temp = SCNText(string: messages([x].content, extrusionDepth: 2)
temp.firstMaterial!.diffuse.contents = UIColor.randomColor()
let tempNode = SCNNode(geometry: temp)
tempNode.eulerAngles = SCNVector3Make(-roll, @, -Float(targetHeading))
tempNode.position = SCNVector3(x: lenght % sin(targetHeading), y: lenght % cos(targetHeading), z: 50 * z1)
tempNode.name = "\(x)"
var minVec = SCNVector3Zero
var maxVec = SCNVector3Zero
if tempNode.getBoundingBoxMin(&minVec, max: &maxVec) {
let bound = SCNVector3(
x: maxVec.x - minVec.x,
y: maxVec.y - minVec.y,
z: maxVec.z - minVec.z)
tempNode.pivot = SCNMatrix4MakeTranslation(bound.x / 2, bound.y / 2, bound.z / 2)
}

scene. rootNode.addChildNode (tempNode)

87



} else {
var postContent = ""
let messageContent = messages[x].content
1/ let loopTimes = messageContent.characters.count/2 -1

for _ in @ ..< messageContent.characters.count/2 {

postContent += " "

print(messageContent.characters.count)

postContent += "o\n"
postContent += messageContent

let temp = SCNText(string: postContent, extrusionDepth: 2)
temp.firstMaterial!.diffuse.contents = UIColor.randomColor()
let tempNode = SCNNode(geometry: temp)

tempNode.eulerAngles = SCNVector3Make(@, @, -Float(targetHeading))
tempNode.position = SCNVector3(x: 50 * sin(targetHeading), y: 50 * cos(targetHeading), z: -70)
tempNode.name = "\(x)"

var minVec = SCNVector3Zero
var maxVec = SCNVector3Zero
if tempNode.getBoundingBoxMin(&minVec, max: &maxVec) {
let bound = SCNVector3(
Xx: maxVec.x - minVec.x,
y: maxVec.y - minVec.y,
z: maxVec.z - minVec.z)

tempNode.pivot = SCNMatrix4MakeTranslation(bound.x / 2, bound.y / 2, bound.z / 2)

L
scene.rootNode.addChildNode (tempNode)

This function mainly divided into two part. The first part is checking the
message category is navigation type or not. If yes, render the message
on the bottom part of the 3D space according to message
information(orientation of device). If not, simply render all the
messages to its corresponding location.

Then, renderMessagelcon() is invoked. This method is used to render

the 3D emoji in preview message view emoji mode.

88



func renderMessageWithIcon(){
for x in @ ..< messages.count {

let roll = Float(messages[x].roll)

let z1 = -cos(-roll)
let 212 = 21 * z1

let lenght = sqrt(3600 - z12)

let targetHeading : Float = GLKMathDegreesToRadians(Float(messages[x].heading))

if messages([x].tag != "Navigation"{
print("the cat is ")
print(messages[x].tag)
let categoryScene = SCNScene(named: "art.scnassets/\(messages([x].tag).scn")!
let object = categoryScene.rootNode.childNodeWithName("\(messages[x].tag)", recursively: true)!
//object.geometry?.firstMaterial?.diffuse.contents = UIColor.randomColor()

var tempNode = SCNNode()
tempNode = object

if messages[x].tag == "Angry"{
tempNode.eulerAngles = SCNVector3Make(-roll , @, -Float(targetHeading))
} else if messages([x].tag == "B" {
tempNode.eulerAngles = SCNVector3Make(-roll - Float(M_PI_2), @, -Float(targetHeading))
} else if messages[x].tag == "C" {
tempNode.eulerAngles = SCNVector3Make(-roll - Float(M_PI_2), @, -Float(targetHeading))
} else if messages[x].tag == "D"{
tempNode.eulerAngles = SCNVector3Make(-roll - Float(M_PI_2), @, -Float(targetHeading) + Float(M_PI))

tempNode.eulerAngles = SCNVector3Make(-roll , @, -Float(targetHeading))
tempNode.position = SCNVector3(x: lenght * sin(targetHeading), y: lenght * cos(targetHeading), z: 50 * z1)

tempNode.name = "\(x)"
_scene.rootNode.addChildNode (tempNode)

} else {
var postContent = ""
let messageContent = messages[x].content
// let loopTimes = messageContent.characters.count/2 -1

for _ in @ ..< messageContent.characters.count/2 {

postContent += " "
print(messageContent.characters.count)
postContent += "o\n"
postContent += messageContent
let temp = SCNText(string: postContent, extrusionDepth: 2)
temp. firstMaterial!.diffuse.contents = UIColor.randomColor()
let tempNode = SCNNode(geometry: temp)
tempNode.eulerAngles = SCNVector3Make(@, @, —Float(targetHeading))

tempNode. position = SCNVector3(x: 50 *x sin(targetHeading), y: 5@ * cos(targetHeading), z: -70)

tempNode.name = "\(x)"
var minVec = SCNVector3Zero
var maxVec = SCNVector3Zero

if tempNode.getBoundingBoxMin(&minVec, max: &maxVec) {
let bound = SCNVector3(
x: maxVec.x - minVec.x,
y: maxVec.y - minVec.y,
z: maxVec.z - minVec.z)

tempNode.pivot = SCNMatrix4MakeTranslation(bound.x / 2, bound.y / 2, bound.z / 2)

}
scene. rootNode.addChildNode (tempNode)

The mechanism of this function is similar to rendMessageWiithTitle().

89



5.3.2.3 Implementation of postMessageView:

postMessageView consist of two part, the table-view for choosing the

category and text field.

The text field functions are inherited from last app. So this part will only

focus on the table-view.

@IBOutlet weak var categoryName: UILabel!
@IBOutlet weak var categoryImage: UIImageView!

override func viewDidLoad() {
self.messageToPost.delegate = self

messageToPost.text = "What's on your mind?"
messageToPost.textColor = UIColor.lightGrayColor()

self.categoryTableView.dataSource = self
self.categoryTableView.delegate = self
// loadCategorys()

In the view, it has to declare a categoryTableView and set the

dataSource and delegate to be the postViewController.

90



import UIKit
class CategoryTableViewCell: UITableViewCell {

@IBOutlet weak var categoryImageView: UIImageView!
@IBOutlet weak var categorylLabel: UILabel!

override func awakeFromNib() {
super.awakeFromNib()
// Initialization code

}

override func setSelected(selected: Bool, animated: Bool) {
super.setSelected(selected, animated: animated)

// Configure the view for the selected state

Then, we need to design a framework of a cell in a table.

func number0fSectionsInTableView(tableView: UITableView) -> Int {
// #warning Incomplete implementation, return the number of sections
return 1

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
// #warning Incomplete implementation, return the number of rows
return categorys.count

}

func tableView(tableView; UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

let cellldentifier = "CategoryCell"
let cell = tableView.dequeueReusableCelWithIdentifier(cellIdentifier, forIndexPath: indexPath) as! CategoryTableViewCell

let category = categorys[indexPath. row]
let image = images[indexPath. row]

// cell.categoryLabel.text = category.name

// cell.categoryImageView. image = category.photo
cell.categoryLabel.text = category
cell,categoryImageView, inage = UIImage(named: image)

return cell

}

func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath) {
let category = categorys[indexPath, row]
let image = images[indexPath. row]
self.categoryName.text = category
self.categoryInage. image = UIImage(named: image)

// MARK: problem in the second condition

if self.categoryName.text != "Not Selected" || self.messageToPost.text != "What's on your mind?" {
postButton.enabled = true

}

}

91



Then according to cell framework, draw the whole table one by one,

and input different category and its corresponding emoji.

92



6. Limitations and Difficulties

6.1Limitation of Beacon:

In 10S device, if the app has to detect beacons, the UUID of the
beacons need to be register in the app. Therefore, only the specified
beacons can be monitored by the app. This issue brings a big problem
to our app. As our app highly depends on beacon to do indoor
positioning, but we can only detect the beacons that we install. When
there is unknown beacon, we cannot use that beacon to do indoor
positioning. So that this app can only detect the beacons that we
installed in CUHK engineering building. It highly limits the scalability of

our apps.
6.2. Limitation of Screen Size:

The screen size is iPhone is small, so that the 3D objects need to in
small scale. It leads to the 3D effect of emoji and text is not clearly
shown. Moreover, when there is huge amount of messages, the 3D

object has chance of overlapping. The clarity of messages is worse.

93



6.3. Difficulties of Building 3D objects:

In this app, we render the 3D objects according to the orientation of the
device when posting the message. And the orientation of a device can
be resolved into three components: roll, pitch and yaw. This coordinate
system is defined when the phone is in portrait mode, but our app is fix
to landscape mode. That means it need some calculation to change the
coordinate system to landscape mode. But we take a long time to
figure out this problem. Moreover, our teams do not have any
knowledge in 3D graphics and editing, we need lots of time to acquire
the related knowledge. In addition, the 3D object is not stable, when
there is a sudden movement of the device, the position of the 3D cannot
stay at its correct position. But the 3D objects should still at the original

postion.

94



7. Conclusion

To conclude, the application that we developed this year is a funny
product. Although the technique that we use is not that new, we try to
combine lots of the existing things to produce an exciting experience
that can surprise the user.The application make use of indoor
positioning, outdoor positioning, and orientation of the phone to

perform a stable platform to let the use say what they want to say.

Also, this app can be apply in many direction such us being a digital
road signs over the world. It also can perform as a digital democracy

wall instead of the one we are using in the 7 K. For the

entertainment aspect, we also can apply the app in playing

orienteering, etc.

Last but not least, since there are still many ways to apply such
concept of the location based message. We hope that the user using
our app can make use of these features that we made and will be able

to discover more, having fun on our app.

95



8. Reference:

[1] Calculate distance, bearing and more between
Latitude/Longitude

points[Online]
http://www.movable-type.co.uk/scripts/lationg.html
[2] Harversine Fomula, Wikipedia[Online]

https:/len.wikipedia.org/wiki/Haversine formula#The haversine

formula
[3] Applelinc.iOS Developer Library[Online]
https://developer.apple.coml/libraryl/ios/navigation/#section=Framewor

ks&topic=CorelLocation

96



9. Acknowledgement:

We would like to express our appreciation to our supervisor, Professor Lyu

Rung Tsong Michael, for giving valuable guidance and comments.

In addition, we would like to thank Mr. Edward Yau in ViewLab for giving

inspiring idea and advices.

97



