An elephant runs on cloud

Cloud computing technologies and applications

Supervised by Prof. Michael R. Lyu

Group: LYU1005

Chu Yan Shing (1008618841)

Wu Bing Chuan, Bill(1008612783)

Road map

- Background information
- introduce cloud and what we did on it
- introduce hadoop and what we did on it
- Conclusion

- File sizes increase rapidly
- File formats are much more complicated

Blu ray video:50 GB

- Machine has many limitation
 - CPU clock rate, I/O time, Bandwidth, storage
- Run something parallel is the best solution
 - Single Google Query uses 1000 machines in 0.2 seconds

I put all the data in memory.

One of our ideas:

Giving a video frame, find it from the video database

One of our ideas:

Giving a video frame, find it from the video database

- w but....
 - buying expansivefacilities is expansive
 - Develop a parallel application is also difficult
 - 1

out.....

- buying expansivefacilities is expansive
- Develop a parallel application is also difficult

I reduce the cost

I make development simple

out.....

- buying expansivefacilities is expansive
- Develop a parallel application is also difficult

In this term, we focus on understanding these technologies.

I reduce the cost

Cloud

Cloud is a IT resource service through network

Elastic

Reduce cost

Reduce cost

- Pay as you go
- Fast response
- No maintenance cost

andard Instances

Instances of this family are well suited for most applications.

Small Instance - default*

1.7 GB memory

1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)

160 GB instance storage

32-bit platform

I/O Performance: Moderate

API name: m1.small

Large Instance

7.5 GB memory

4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)

850 GB instance storage

64-bit platform

I/O Performance: High API name: m1.large

Extra Large Instance

15 GB memory

8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)

1,690 GB instance storage

64-bit platform

I/O Performance: High

API name: m1.xlarge

ux/UNIX Usage	Windows Usage	
	Windows Usage	
0.085 per hour	\$0.12 per hour	
\$0.34 per hour	\$0.48 per hour	
\$0.68 per hour	\$0.96 per hour	
	\$0.34 per hour \$0.68 per hour	

Easy to use

Amazon Elastic Amazor Amazon EC2 Amazon S3 Amazon VPC CloudFro MapReduce Navigation Amazon Machine Images Region: ■ US-East ▼ Register New AMI Launch Viewing: All Images All Platforms 💠 EC2 Dashboard AMI ID Manifest INSTANCES ami-0022c769 level22-ec2-images/ubuntu-7 Instances ami-005db969 alestic-64/ubuntu-8.04-hardy П IMAGES \checkmark ami-005dba69 rbuilder-online/new-example > AMIs ami-005eba69 kaavo-ntier-db/imod-ntier-32 Bundle Tasks ami-00e70069 abami/image.manifest.xml ELASTIC BLOCK STORE ami-0118fe68 citrix-c3-lab/XenApp5.0_32b Volumes ami-0129cc68 П cer-64-centos5_10-1/image. Canachata

Easy to use

Cloud application

Run our applications there

Why use cloud?
-Use a large resource pool
-Scalability
-Reduce cost

Cloud application

Run our applications there

Why use cloud?
-Use a large resource pool
-Scalability
-Reduce cost

- Eucalyptus are compatible to Amazon Web Service
- Eucalyptus enable us to have a private cloud
- Private cloud is a group of technology:
 - Intel's VT-x, KVM, xen, Virtio.....

Structure of Eucalyptus

Controller

Our private cloud

We built a tiny privatecloud to understand thecharacteristics of cloud andHadoop

Credentials	Images	Store	Users	Configuration	Services	Extras			
ubun	tu [®] En	terpris	e Clou	d			Logged in	as admin	Logout
М	Name	_	_		_	Kernel	Ramdisk	State	Action
eri-8670136D	vm13/initrd.img-2.6.32-24-generic-pae.manifest.xml						available	Disable	
eri-7A8C133F	vm6/initrd.img-2.6.32-24-generic-pae.manifest.xml					available	Disable		
eki-4E0A1294	vm13/vmlinuz-2.6.32-24-generic-pae.manifest.xml					available	Disable		
emi-8E5A0F40	vm12/vm12_scsi_LVM.img.manifest.xml			eki-40E51293	eri-866F1378	available	Disable		
eri-ECA5087C	mv0/initrd.manifest.xml					available	Disable		
eri-86E21379	vm14/initrd.img-2.6.32-24-generic-pae.manifest.xml						available	Disable	
emi-3D9416E2	vm11_h_autoinit/vm_11_h2_withAutoinit.img.manifest.xml				eki-78871358	eri-86571438	available	Disable	
emi-A8000F8F	vm_11_h2d/vm_11_h2_d.img.manifest.xml				eki-78871358	eri-86571438	available	Disable	
emi-58E41312	vm_11_hadoop_2/vm_11_hadoop2.img.manifest.xml				eki-78871358	eri-86571438	available	Disable	
eri-7A391340	vm5,(nitrd.img-2.6.32-24-generic-pae.manifest.xm)					available	Disable		
eki-42C01264	vm6/vmlinuz-2.6.32-24-generic-pae.manifest.xml					available	Disable		
emi-EE9E0874	vm5/vm3.img.manifest.xml				eki-42541262	eri-7A391340	available	Disable	
eki-78871358	vm11 blvmi	nuz-2 6 32	24-ceneric	-pae.manifest.xml				available	Disable

Ubuntu running Hadoop in Cloud

cluster1	192.16	8.1.9			
- vm types	free /	max	cpu	ram	disk
- m1.small	0000 /	0006	1	256	2
- c1.medium	0000 /	0006	1	370	30
- m1.xlarge	0000 /	0003	2	740	60
- m1.large	0000 /	0000	2	760	60
- c1.xlarge	0000 /	0000	2	760	100

Our cloud's configuration

VNC play a role as display

Eucalyptus+Hadoop

- Allocate any number of virtual machines (elastic)
- Instance are independent to others.
 - Put Hadoop on them

Eucalyptus+Hadoop

- Allocate any number of virtual machines (elastic)
- Instance are independent to others.
 - Put Hadoop on them

Eucalyptus+Hadoop

- Allocate any number of virtual machines (elastic)
- Instance are independent to others.
 - Put Hadoop on them

An software layer to run a parallel application

Demo 1

Start up Hadoop.


```
The second company of the second of the seco
```

Inside the cloud

Games

🔏 Graphics

Internet

omee.

≠ Programming Sound & Video

👸 Ubuntu Software Center

4-- 🔀 Sat Dec 4, 8:51 AM

Initialize all node (e.g. change node names)

Eucalyptus is useful

- Reduce the time to start up a large application
- Environment is similar to host
- Run many applications at the same time.

Performance Test(Stand alone)

- 1.12X user time(89%)
- ♠ 1.6X system time(62.5%)
- 1.47X IO time(68%)

Performance Test(Stand alone)

- ♠ 1.3X overall Tin e(76%)
- 1.12X user time(89%)
- ♠ 1.6X system time(62.5%)
- 1.47X IO time(68%)

Performance Test(run two process at the same time)

* 2.3 X IO time(43%)

Performance Test(run two process at the same time)

Performance Test (Pure computation, memory access & bandwidth)

Computation	Memory access	Bandwidth
97.5%	76%	~50% (~20MBytes/s)

Start up time

- ◆ 5GB ~10mins
- **10GB~20MINS**

- M AWS ~ 2 mins
 - faster network

Advantage of using Eucalyptus

- Fast system set up
- make general resource shareable
- reduce cost
- Support many platform

Weakness Eucalyptus

- Performance trades off
- Instance can't be saved
- Slow instance start up
- Need a large resource pool
 - Runing large scale application on public cloud is a good solution

WHO ARE USING HADOOP

facebook

YAHOO!

The New York Times

amazon.com

Microsoft

Facebook:

4 TB of compressed new data added per day 135TB of compressed data scanned per day

Size:

4800 cores, 5.5 PetaBytes storage 12 TB per node

Terasort Benchmark:

100 TB in 173 minutes 3452 nodes x (2 Quadcore Xeons, 8 GB memory, 4 SATA)

- Store and process Petabyte of Data
- Handle frequent hard drive failure
- Have efficient I/O in large scale of data

- Store and process Petabyte of Data
- Handle frequent hard drive failure
- •Have efficient I/O in large scale of data

Stores all metadata In RAM and HDD

Heartbeats

Block Placement

Rebalancer

Data Correctness

Data Pipelining

NameNode 'cc5:9000'

Started: Tue Nov 23 09:23:30 HKT 2010

Version: 0.20.2, r911707

Compiled: Fri Feb 19 08:07:34 UTC 2010 by chrisdo

Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs
Go back to DFS home

Live Datanodes: 3

Node	Last Contact	Admin State	Configured Capacity (GB)	Used (GB)	Non DFS Used (GB)	Remaining (GB)	Used (%)	Used (%)	Remaining (%)	Blocks
cc1	2	In Service	179.32	1.88	130.12	47.32	1.05		26.39	489
cc2	2	In Service	26.97	0.75	3.38	22.84	2.78		84.68	137
сс3	0	In Service	181.03	1.66	37.87	141.5	0.92		78.16	410

Hadoop, 2010.

- One JobTracker
- Many TaskTrackers

- Automatic parallelization and distribution
- •Fault-tolerance
- Backup Tasks

Task Attempts	Machine	Status	Progress	Start Time	Finish Time	Errors
attempt_201011232109_0001_m_0000003_0	Task attempt: /default- rack/cc3 Cleanup Attempt: /default- rack/cc3	FAILED	100.00%	24-Nov-2010 04:55:28	24-Nov-2010 05:05:50 (10mins, 21sec)	Task attempt_201011232109
attempt_201011232109_0001_m_000003_1	/default- rack/cc2	RUNNING	0.00%	23-Nov-2010 20:55:54		
attempt_201011232109_0001_m_000003_2	/default- rack/cc1	RUNNING	0.00%	23-Nov-2010 21:32:48		


```
/ mapper
private static class MapClass extends MapReduceBase implements
       Mapper<String, ImageWritable, Text, ImageWritable> {
    @Override
    public void map(String key, ImageWritable value,
            OutputCollector<Text, ImageWritable> output, Reporter reporter)
            throws IOException {
        Date startD = new java.util.Date();
       System.out.println("###Map:"+key+" Date:"+startD);
       EdgeDetector detector = new EdgeDetector();
        detector.setLowThreshold(0.5f);
       detector.setHighThreshold(1f);
       detector.setSourceImage(value.bufimage);
       detector.process();
       output.collect(new Text(key), new ImageWritable(detector.getEdgesImage()));
        //output.collect(new Text(key), value);
       System.out.println("###Map.Time delay:"+new java.util.Date()+ " (ms)"+(new java
```


- WordCount
- •Image Edge detection
- •Md5 Calculation
- Video Conversion

Test on I/O of HDFS
Full function of MapReduce
Map,Reduce,Combine,Sort

a 3001the 2023as 240

. . .

Edge detection

Md5 Calculation

- •Frequently appending text to file in HDFS
- Low network traffic

View Next chunk

100000	14ee22eaba297944c96afdbe5b16c65b
100001	e2a6a1ace352668000aed191a817d143
100002	bb36c34eb6644ab9694315af7d68e629
100003	3dc81e3f2c523fb5955761bbe2d150f2
100004	lea85063355fbfad3de73ab038261d62
100005	efdla2f9b0b5f14b1fac70a7f8e8a9e7
100006	758691fdf7ae3403db0d3bd8ac3ad585
100007	9e3fc2a6d0f45c7a999ab01ebcacaf94
100008	ab24c2fe5b396a574095a73b1ad23356
100009	795202367b2120e77b231d4d2b98e2b9
100010	daa28096f9e8879ab3a02b90aa0e2f83
100011	09a146c8d1cfdbdb54ceb60ede93cdab
100012	21bf043d935e1499b3749c2f483df890
100013	33932d50e450ef3ccfbcf69ac9ba04e5
100014	a3c3a95f3e42519d7ba5284cffcd4e25
100015	e025b5159bba8890d4f936973d0bcb2f
100016	89deb442ec0592fb5fc8b4908cbf1580
100017	07986d4ld4c0lc67d4b9lcdcfl0cb777
100018	lbelef5ef17c532b377b5238c07adf78
100019	8a8eac8eaeca4d75f0cafc20319c06af
100020	6372b5b816b700cbb03a54c7859c416c
100021	10e54ab2f0c23c9bele5e5c20e8bld8b
100022	70314ca6c279ed0aald108f91c088ca5
100023	65feb6b8c9726133b18ac2f2ac26e8bc
100024	a6b83cd033881e4b7e0ade6add26a17b
100025	e55a28b1bf2a323456ea0b7e759d6108

Video conversion

using the FFmpeg library only uses the Mappers and I/O of HDFS. High network traffic

Conclusion on Hadoop

- •Write once read many access model
- Good in Scalability
- Not efficient for computation intensive jobs
- •Fault-tolerance in both HDFS/MapReduce
- Easy parallelization(coding and deploying)
- •Easy large-scale computations

Why Hadoop needs to run in Cloud

- Flexible in Hadoop cluster managements
- Account isolation
- Reduce cost

What will we do next...

- Hive and HBase
 - Make use of Hadoop and Cloud

Data mining

. . .

Unsolved problems

