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8.1 Introduction

Software reliability and quality must be built in, starting in the early
design phase, and maintained throughout the software life cycle. Essen-
tial to this process is a sound understanding of software reliability in
production environments. There is no better way to acquire this under-
standing than through the direct measurement and analysis of real sys-
tems. Direct measurement means monitoring and recording naturally
occurring errors and failures in a running system under user workloads.
Analysis of such measurements can provide valuable information on
actual error/failure behavior, identify system bottlenecks, quantify relia-
bility measures, and verify assumptions made in analytical models.

Typically, a software engineer must decide what data to gather and
analyze, sometimes without the benefit of guidance, experience, or eas-
ily available intuition. How to obtain general models from experiments
or measurements made in a particular environment is by no means
clear. This chapter discusses the current issues in this area. The dis-
cussion centers around techniques, our experiences, and major devel-
opments. The chapter discusses measurement techniques, analysis of
data, model identification, analysis of models, and the effects of work-
load on software reliability. For each field, the key issues are discussed
and then detailed techniques and representative work are presented.
Analytical modeling techniques and statistical techniques relevant to
the discussions are reviewed in App. B.
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8.2 Framework

This section discusses the framework of measurement-based analysis
and reviews past work in the area of software reliability in the opera-
tional phase.

8.2.1 Overview

Once general directions are set, a measurement-based study consists of
two phases: measurement and analysis (Fig. 8.1). In the measurement
phase, you develop instrumentation techniques and make measure-
ments. You can conduct a measurement-based study of operational
software using two types of data: human-generated software error
reports and machine-generated event logs. The former provide detailed
information about the underlying software faults (or defects) and the
associated failure symptoms, while the latter provide accurate infor-
mation on the timing of software failures and recovery. Measurement
techniques are discussed in Sec. 8.3.

Given field error data collected from a real system, the analysis con-
sists of five steps, as shown in Fig. 8.1b: (1) preprocessing of data, (2)
analysis of data, (3) model structure identification and parameter esti-
mation, (4) model solution, if necessary, and (5) analysis of models.

In step 1, you extract necessary information from the field data.
The processing in this step requires detailed understanding of the
target software. [t can also require detailed knowledge of the operat-
ing system and system operation. The actual processing depends on
the types of data. The information in human-generated reports is
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Figure 8.1 Measurement-based analysis: (@) overall framework; () analysis phase.
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usually not completely formatted. Therefore, this step involves under-
standing the situations described in the reports and organizing the
relevant information into a problem database. In contrast, the infor-
mation in automatically generated event logs is already formatted.
Data processing of event logs consists of extracting error events and
coalescing related error events. Section 8.4.1 discusses the prepro-
cessing of data.

In step 2, you interpret the data. Typically, you begin this step with
a list of measures to evaluate. However, you can identify new issues
that have a major impact on software reliability during this step.
Results from step 2 are reliability characteristics of operational soft-
ware in actual environments and issues that must be addressed to
improve software reliability. Sections 8.4 and 8.5, which cover this step,
discuss fault and error classification, error propagation, error and fail-
ure distribution, software failure dependency, hardware-related soft-
ware errors, evaluation of software fault tolerance, error recurrence,
and diagnosis of recurrences.

In step 3, you identify appropriate models (such as Markov models)
based on the findings in step 2. You identify model structures and real-
istic ranges of parameters. Identified models are abstractions of the
software reliability behavior in real environments. Proposed software
reliability models include: performability models [Hsue88, Lee93al, an
error and recovery model [Hsue87], a software reliability model that
captures the effects of faults on the overall system [Lee94b], and work-
load-dependent software reliability models [Cast81, Iyer82a]. Statisti-
cal analysis packages such as SAS [SAS85] or measurement-based
reliability analysis tools such as MEASURE+ [Tang93b] are useful at
this stage. Step 3 is covered in Secs. 8.6 and 8.7.

Step 4 involves either developing or using known techniques to solve
the model. Model solution allows you to obtain measures, such as reli-
ability, availability, and performability. The results obtained from the
model must be validated against real data. You can use reliability and
performance modeling and evaluation tools such as SHARPE [Sahn87]
in this step. In step 5, you answer what-if questions, using the identi-
fied models. You vary factors in the models and evaluate the resulting
effects on software reliability. You determine reliability bottlenecks
and predict the impact of design changes on software reliability. Sec-
tion 8.6, which covers this step, discusses software reliability modeling
in the operational phase and the modeling of the impact of software
failures on performance, detailed error and recovery processes, and
software error bursts. You use knowledge and experience gained
through analysis to plan additional studies and to develop the mea-
surement techniques as shown in Fig. 8.1a.
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8.2.2 Operational versus development
phase evaluation

Figure 8.2 shows a simplified software life cycle. To construct new soft-
ware or to add a new feature, you begin with requirements and then
design, implement, and verify the software. After verification, the soft-
ware is released to the field. Problems found in the field are diagnosed,
fixes are made, and interim versions of the software are released to the
field. As a result, many versions of the same software exist in the field
at the same time. The process in Fig. 8.2 is repeated until the software
becomes obsolete.

You can perform an experimental evaluation of software reliability
at different phases of the software’s life. In the development phase,
data are generated as a result of code inspection and software testing.
Many studies have addressed the evaluation of data collected during
the development stage. However, the reliability of operational soft-
ware can be quite different from that of the software in its develop-
ment stage. In the operational phase, the software update rate is
relatively low. Due to the differences among the fault severities (i.e.,
their impact on system functionality) and due to software fault toler-
ance features in a system, not every software fault has the same
impact on software reliability. Workloads, interaction between soft-
ware and hardware platforms, and operational environment are also
factors that affect reliability. Thus, you cannot accurately estimate
software reliability in the operational phase using only the data col-
lected during the development phase. Understanding the reliability
of software requires direct measurement during the operational
phase.

8.2.3 Past work

Measurement-based reliability analysis of operational software has
evolved significantly over the past 15 years. Many studies have been
published. Table 8.1 lists some of the studies that are closely related to

New L
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Figure 8.2 Software life cycle.
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the theme of this chapter. These studies addressed the issues of fault
categorization, error/failure and recovery distributions, error propaga-
tion, failure dependency, the impact of software faults on system perfor-
mance and reliability, evaluation of software fault tolerance, recurrent Q
software failures, and failure diagnosis.

8.3 Measurement Techniques

Measurement is plagued by numerous theoretical and practical diffi-
culties. The question of what and how to measure is a difficult one.
Most studies use a combination of installed and custom instrumenta-
tion. From a statistical point of view, you should collect a considerable
amount of data for sound evaluations, because the accuracy of estima- :
tion is directly related to the number of samples. But the management
of collected data is a nontrivial task. In an operational system, you can
measure only detected errors. In modern computer systems, especially :
in fault-tolerant systems, failures are infrequent and, to obtain mean- i
ingful data, you should make measurements over a long period of time.
Also, you should expose the measured system to a wide range of usage
conditions for the results to be representative. Further, you should
work with users as well as development and service organizations to
collect data in the operational phase.

TABLE 8.1 Measurement-Based Studies of Software Reliability

Category

Issues

Data coalescing

Software fault
classification

Reliability census

Basic reliability
characteristics

Failure dependency

Error propagation

Software fault
tolerance

Recurrences and
failure diagnosis

Software reliability
modeling

Workload dependency

Analysis of time-based tuples
Clustering based on type and time

Fault and error profile

Contribution of software to system reliability

Error/failure bursts
TTE/T'TE/TTR distributions

Hardware-related & correlated software errors
Two-way and multiway failure dependency

First error, propagation mode, error detection

Recovery routines
Process pairs

Preventive software service
Symptom-based diagnosis of recurrences

Performability models for error detection/recovery
Two-level models for operating systems

Modeling of multiple errors

Reliability modeling in the operational phase

Workload-dependent software failure models

Studies f

[Tsao83, Hans92]
[Iyer86, Lee%1, Tang93a]

[Lee93b, Tang92¢, Hsue87]
[Chil92, Thay78, Endr75]

[Gray90, Leve90]

(Iyer86, Hsue87, Tang93al
[McCo79, Iyer85b, Lee93a]

[Iyer85a, Tang92h, Lee93al
[Duga9l, Leed1, Tang91]

[Lee93b]

[Vela84, Hsue8T7] ;
[Gray85, Gray90, Lee92, Lee93b] 4

[Adam84]
[Lee94al

[Hsue87, Hsue88]
[Lee93a, Tang93a, Lee92)
[Hsue87]

[Lee94b]

[Cast81, Cast82, Iyer82al
[Iyer85b, Mour87]
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Establishing a sound data collection process requires ongoing coop-
eration between data collectors and data consumers (e.g., a practi-
tioner). You can make two types of measurements: on-line machine
logging and manual reporting. On-line logging of errors during
machine operation is usually performed automatically by the operat-
ing system. Manual reports are generated by three types of data col-
lectors: users, problem analysts, and software developers. Both types of
data collection are essential for believable reliability analysis. Ideally,
you should be able to cross-reference the two types of data for most
incidents. Definitions and forms for data collection change as the data
collection process, the software, and the hardware evolve. A sound data
collection process is slow building, but it can break down easily.

The following subsections discuss issues in instrumentation and in
evaluating collected data, for automatic machine logging and manual
reporting.

8.3.1 On-line machine logging

Most large computer systems provide error-logging software in the
operating system. This software records information on errors occur-
ring in the operating system and its various subsystems, such as the
memory, disk, and network subsystems, applications, as well as infor-
mation on system events, such as reboots and shutdowns. The reports
usually include information on the location, time, and type of the error,
the system state at the time of the error, and error recovery (e.g., retry).
The reports are stored chronologically in a permanent system file.
Figure 8.3 shows a simplified picture of on-line event logging. The
collector is a system process which is in charge of event logging and
event log management. Application processes can generate events
when they detect abnormal conditions by means of their internal con-
sistency checks. System processes usually generate three types of
events: problems in the software components that run as system pro-
cesses, problems in applications that are detected by system processes,
and abnormal hardware conditions. When necessary, the human oper-
ator can intervene and collect additional data, such as the dump of a
process state or the dump of a processor memory. These dumps are not
usually stored in event logs because of their size, so they constitute a
part of human-generated error reports discussed in the next subsec-
tion. However, they can be treated as a part of on-line machine logs in
an advanced environment in which many operator tasks are pro-
grammed into the data collection module of the operating system.
Figure 8.4 shows a sample error entry extracted from a machine log
from a Tandem system [TANDS89]. The information in the event was
decoded to make it readable. An error record consists of a header and a
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body. The header contains general information, such as the time of
occurrence, the subsystem and device affected, and the type of the
event. Typically, all errors have the same header format. In this exam-
ple, the event reports a processor halt seemingly caused by a software
fault. The body contains detailed information about the event. The for-
mat of the body differs from event to event. In Fig. 8.4, the body
contains the apparent cause of the halt from an operating system per-
spective (halt error code) and a summary of the processor state at the
time of halt.

An event in an on-line log is structured and coded in a predefined
format. Issues in creating the instrumentation for automatic logging
include the definition of the set of events to be reported, the signature

Time Subsystem  Device Event
06SEP91 09:57:00 CPU CPU-2 CPU-Software-Halt
SECT-1
CAB-1
CPU-Type: 3
Halt-error-code: %4040
OS-Type: ©
P-register: %60544
E-register: %3407
L-register: %7250
Current-space-id: %147
Coldload-address: %351
Current-PCB-address: %107200
PCB-base-address:  %100100
DDT-status: %10,%0,%0,%343,%120 ‘
DDT-error-bits:  %0,%9,%0,%0,%2,% 0,%0,%0,%0,%0,%0,%210
Register-file:  %%4040,%0,%4317,%1 ,%0,%57,%1360,%12742,%0,%170000
%100,%0,%177440,%53,%20,%1

Figure 8.4 Sample error entry in error log.
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format of each event, and the meaning of each field in an event. These
issues are usually addressed at the system design stage, and the
resulting on-line error logging is an operating system function.
Related issues are the reporting mechanism between the operating
system and other subsystems and the event management within the
operating system. Such instrumentation should consider the possibil-
ity of introducing new events as subsystems and situations are added.
Clearly, the meaning of each event is valid only within a system. You
should consider the differences in hardware/software error detection
and logging mechanisms when evaluating the logs from different
types of systems.

The main advantage of on-line automatic logging is its ability to
record a large amount of information about transient errors and on-
line error recovery, which cannot be done manually. It records nearly
100 percent of key events and provides accurate timing information.
However, there are several challenges in evaluating on-line logs.

First, on-line error logs do not usually provide information on under-
lying faults and off-line diagnosis. Also, under some crash scenarios,
the system may fail too quickly for any error messages to be recorded.
Therefore you should supplement machine logs with manual (human-
generated) reports. Second, modern computer systems are reliable, and
you should make a long period of measurement (often on a number of
systems) to conduct a meaningful analysis. The size of the data can be
huge. You should develop software tools to manage the data and to
automate basic analysis steps. Third, the meaning of a record and the
format of an event in a log can differ between versions of the operating
system and between machine models. This is natural because the soft-
ware and hardware of a system evolve. Thus, you should update soft-
ware tools to ensure against such discrepancies.

8.3.2 Manual reporting

Manual reporting is initiated by problems found in the field (Fig. 8.2).
A problem could be simple in nature, such as a misunderstanding of
software features or a minor cosmetic error, or it could be as severe as
a system crash or loss of data. Initially, a report contains information
provided by the user, such as the time of occurrence, severity, system
identification, and a description of the problem. In the case of a system
crash or loss of data, additional information (e.g., a processor memory
dump) is also provided. As the reported problem is diagnosed and fixed
by analysts and developers, the log of all diagnostic actions, analysis
history, and information on the underlying faults, failure symptoms,
and fixes are appended to the report. Such information is difficult to
describe using a fixed format. As a result, a manual report of a software
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problem is mainly a collection of textual descriptions. Only the header
has a fixed format common in all reports. Another type of report, called
an operator log, is generated by the system operator. An operator log
contains information on system crashes, failure diagnosis, and hard-
ware and software updates.

Figure 8.5 shows a sample manual report extracted from the Tan-
dem Product Report (TPR) database [TAND85]. A TPR is used to report
all problems, questions, and requests for enhancements by customers
or Tandem employees concerning any Tandem product. The figure
shows mainly the header, which provides fixed fields for the informa-
tion such as the date, problem type, urgency, customer and system
identifications, and brief problem description. The body of a TPR is a
textual description of all actions taken by Tandem analysts in diagnos-
ing and fixing the problem. If a TPR reports a software failure, the body
of the TPR also includes the log of memory dump analyses performed
by analysts.

Software error reports contain detailed information about the under-
lying faults, symptoms, and fixes. As a result, you can use such reports
to address many software reliability issues. There are two major chal-
lenges in evaluating manual reports. First, underreporting can be sig-
nificant. It is estimated that the majority of processor software failures
in Tandem systems are not reported [Lee93b, Gray90]. Ideally, a cross-
referencing between on-line logs, manual reports, and operator logs
should be possible. Second, since they are textual reports generated by
humans, you cannot analyze them by automatic tools. Usually, you
should reorganize the raw data into a structured database. This
involves data categorization, that is, generating categories and count-
ing instances for each category. This in turn requires understanding
the details of problems long after their cases are closed, when impor-
tant information may no longer be available. Such reorganization can

Tandem Product Report

TPR number: 91-01-03 17:50 Severity: 2

Product Name: GUARDIAN Kernel Origination: ABC Financial Inc.
Classification: software problem 777 Lawrence Street
Date Received: 91-01-03 14:54 Chicago, IL 60661
Date Returned: 91-01-10 10:49 System Number: (056983

Accompanying Information: dump file location \ABC.prs.jan031750.%

Problem Description:  Halts on CPUs 4 and 5.
Process $ABC runs in CPU 4 backed up in CPU 5

Response:
All actions including dump analyses taken by Tandem analysts to diagnose the problem.

Figure 8.5 Human-generated software error report.
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be a serious hurdle, consuming most of the evaluation effort. You can
resolve this problem by generating categories before collecting data.
You can provide additional space for some free text to collect informa-
tion that is specific to a failure.

Table 8.2 shows an example of data categorization to collect and ana-
lyze reasons for code changes [Basi84a]. With the categories, data col-
lectors (developers, in this case) can just mark an appropriate category
on a code update. This is the most efficient and accurate way of collect-
ing data, and it allows you to analyze the data automatically (i.e., using
programs) later. In the example, the reason for collecting the informa-
tion would be to take action to minimize the number of code changes in
the future. Unfortunately, category generation is an imprecise science.
It is usually difficult to keep categories orthogonal. That 1s, categories
tend to overlap. Also, different people can interpret a category differ-
ently. In practice, you can overcome these problems by using a small
number of well-defined categories (see Chap. 9). You should generate
categories for each question to answer. Studies have shown that, with
a well-defined form, it takes a minimal amount of time for human col-
lectors to fill out the form when a case is closed.

8.4 Preliminary Analysis of Data

This section discusses preprocessing of data, fault and error classifica-
tion, error propagation, and distribution identification. Such analyses
investigate basic software reliability characteristics.

8.4.1 Data processing

Usually, field failure data contain a large amount of redundant and
irrelevant information in various formats. Thus, you should preprocess
data to extract necessary information and to put it into a database for
subsequent analyses. Preprocessing varies with the types of data.

TABLE 8.2 Sample Category Generation

Issue Category

Type of change Error correction
Planned enhancement
Implementation of requirements change
Improvement of clarity, maintainability, or documentation
Improvement of user services
Insertion/deletion of debug code
Optimization of time/space/accuracy
Adaptation to environment change
Other
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8.4.1.1 Preprocessing of automatically generated error logs. Informa-
tion in error logs is usually coded and structured because it is gener-
ated automatically by the operating system. Details of preprocessing
are machine-dependent because of the differences in error detection
and logging mechanisms and semantics among the systems. You usu-
ally perform two major types of processing other than reformatting:
data extraction and data coalescing. Data extraction means that you
select the events and fields that are necessary for the analysis. Data
coalescing is necessary, because a single fault in the system can result
in many repeated error reports in a short period of time. To ensure that
the subsequent analyses will not be distorted by these repeated re-
ports, you should coalesce entries that correspond to the same problem
into a single event.

A commonly used data-coalescing algorithm [Iyer82a] is merging all
error entries of the same error type that occur within a AT interval of
each other into a tuple. The algorithm is as follows:

[F <errcr type> = «<type of previous error>

AND <time away from previous error> < AT
THEN <put error into the tuple being built>
ELSE «<start a new tuple>

A tuple reflects the occurrence of one or more errors of the same type
that occur in rapid succession. It can be represented by a record con-
taining information such as the number of entries in the tuple and the
time duration of the tuple.

You can make two kinds of mistakes in data coalescing: collision and
truncation [Hans92]. A collision occurs when the detection of errors
caused by two faults are close enough in time (within AT’) such that they
are combined into a tuple. A truncation occurs when the time between
two errors caused by a single fault is greater than AT. In this case, the
two reports are split into different tuples. If AT is large, collisions are
likely to occur. If AT is small, truncations are likely to occur. You can
determine the value of time-interval threshold based on data. Collision
is not a big problem if you use the error type and device information in
data coalescing as shown in the above coalescing algorithm. Truncation
is not considered to be a problem [Hans92] because there are techniques
available to deal with truncations [Iyer90, Lin90]. These techniques
have been used for fault diagnosis and failure prediction.

8.4.1.2 Preprocessing of human-generated problem reports. Some infor-
mation in manual reports, such as a header that includes the date,
severity, and product and system identifications, is structured. The for-
mat of the rest of the report depends on the data collection process. As
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explained in Sec. 8.3, you usually perform the preprocessing in three
steps: (1) understanding the situations described in the reports, (2)
generating categories, and (3) counting the instances of each category
and constructing a database. If data categorization is done in advance
and the data is collected accordingly, you may be able to skip the first
and second steps.

8.4.2 Fault and error classification

Faults and errors identified from a software system can provide clues
of how to fine-tune the software development environment and how to
improve error detection and recovery. Fault and error categorization
1s frequently used in addressing such issues. Most studies have
addressed the issues by using faults found during the development
phase [Thay78, Endr75, Basi84a]. However, fault and error profiles of
operational software are just as informative and can be quite different
from those of the software in its development phase because of the dif-
ferences in the operational environment and the maturity of software.
Therefore, to improve software quality, it is important to investigate
software fault and error profiles in the field. Here we introduce fault
and error profiles obtained using field data collected from Tandem
GUARDIAN, IBM MVS, and VAX VMS operating systems [Lee93b,
Hsue87, Tang92c¢].

8.4.2.1 GUARDIAN. Table 8.3 shows the results of a fault classification
using 153 Tandem Product Reports (TPRs) that contain logs of processor
dump analyses of software failures performed by analysts. The table
shows both the number of TPRs and the number of unique faults. The
differences between the two represent multiple failures caused by the
same fault. From Table 8.3, you can see what kinds of faults the devel-
opers introduced. “Incorrect computation” refers to an arithmetic over-
flow or the use of an incorrect arithmetic function (e.g., use of a signed
arithmetic function instead of an unsigned one). “Data fault” refers to
the use of an incorrect constant or variable. “Data definition fault” refers
to a fault in declaring data or in defining a data structure. “Missing
operation” refers to an omission of a few lines of source code. “Side effect
of code update” occurs when not all dependencies between software
modules are considered when updating software. “Unexpected situa-
tion” refers to cases in which the software designers did not anticipate a
legitimate operational scenario, and consequently the software did not
handle the situation correctly. You can see from the table that “Missing
operation” and “Unexpected situation” are the most common types of
software faults in Tandem systems. Additional code inspection and test-
ing efforts can be directed for identifying such faults.
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TABLE 8.3 Software Fault Categorization for GUARDIAN

Fault Category No. faults No. TPRs
Incorrect computation 3 3
Data fault 12 21
Data definition fault 3 7
Missing operation: 20 27
—Uninitialized pointers 6) (1)
—Uninitialized nonpointer variables (4} (6)
—Not updating data structure on the occurrence of certain events (6) (9)
—Not telling other processes about the occurrence of certain events 4) (5)
Side effect of code update 4 5
Unexpected situation: 29 46
—Race/timing problem (14) (18)
—Errors with no defined error-handling procedures (4) (8)
—Incorreet parameters or invalid calls from user processes (3) (7
—Not providing routines to handle legitimate but rare operational scenarios (8) (13)
Microcode defect 4 8
Others (cause does not fit any of the above class) 10 12
Unable to classify due to insufficient information 15 24
All 100 153

A software failure caused by a newly found fault is referred to as a
first occurrence; a software failure caused by a previously reported
fault is referred to as a recurrence. The 153 TPRs whose software
causes were identified occurred due to 100 unique faults (Table 8.3).
QOut of the 100 software faults observed during the measured time win-
dow, 57 faults were diagnosed before the time window (i.e., were recur-
rences) and 43 were newly identified during the time window (i.e., were
first occurrences). That is, about 72 percent (110 out of 153) of the TPRs
reported recurrences of previously reported software faults. The issue
of recurrence is discussed further in Sec. 8.5.4.

8.4.2.2 MVS. In MVS, software error data on the type of detection
(hardware and software) and recovery are logged by the system onto a
data set called SYS1.LOGREC. Each error record in the LOGREC data
contains bits describing the type of error, its severity, and the results of
hardware and software attempts to recover from the problem. The gen-
eral software error status indicators are TYPE (of detection), EVENT
(causing the detection), and ERRCODE (code of symptom of the error).
Based on the ERRCODE information provided by the system, eight
classes of errors, which reflect commonly encountered problems, were
defined [Hsue87]:

1. Control (CTRL) indicates the invalid use of control statements or
invalid supervisor calls.

2. Deadlock (DLCK) indicates endless loops, wait states, or violation of
system- or user-defined time limits.
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TABLE 8.4 Software Error Classification for MVS

{(Measurement period: 12 months)

Error type Frequency Percent
Control 213 7.72
Deadlock 23 0.84
I/O & data management 1448 52.50
Program exception 65 2.43
Storage exception 149 5.40
Storage management 313 11.35
Others 66 2.32
Multiple error 481 17.44
All 2758 100.00

3. 1/0 and data management (1/0) indicates a problem occurred during
I/O management or during the creation and processing of data sets.

4. Storage management (SM) indicates an error in the storage alloca-
tion/deallocation process or in virtual memory mapping.

5. Storage exception (SE) indicates addressing of nonexistent or inac-
cessible memory locations.

6. Programming exception (PE) indicates a program error other than a
storage exception.

7. Others (OTHR) indicates errors which do not fit any of the above cat-
egories.

8. Multiple errors or error bursts (MULT) indicates error bursts con-
sisting of different types (listed above) of errors.

Table 8.4 lists the frequencies of different types of software errors
defined above. You can see that more than one half (52.5 percent) of
software errors are I/O and data management errors and another 11.4
percent of the errors are storage management errors. This result is
probably related to the fact that a major feature of MVS is multiple vir-
tual storage organization. Also, I/O and data management is a high-
volume activity critical to the proper operation of the system. It is
therefore expected that their contributions are significant. You can also
see that a significant percentage of errors are multiple errors, indicat-
ing that error detection and recovery need to take multiple errors into
account (to be discussed further in Sec. 8.6.4).

8.4.2.3 VMS. Software errors in a VAXcluster system are identified
from bugcheck reports in the error log files. All software-detected errors
were extracted from bugcheck reports and divided into four types in
[Tang92c]:
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TABLE 8.5 Software Error Classification for VMS
(Measurement period: 10 months for VAX1 and 27 months for VAX2)

Error type Frequency (VAX1) Frequency (VAX2) Fraction (%), combined
Control 71 26 50.0

Memory 8 4 6.2

/0 16 44 30.9

Others 1 24 12.9

All _ 96 98 100

1. Control. Problems involving program flow control or synchroniza-
tion. For example, “Unexpected system service exception,” “Excep-
tion while above ASTDEL (Asynchronous System Traps DELivery)
or on interrupt stack,” and “Spinlock(s) of higher rank already
owned by CPU.”

2. Memory. Problems referring to memory management or usage. For
example, “Bad memory deallocation request size or address,” “Dou-
ble deallocation of memory block,” “Pagefault with IPL (Interrupt
Priority Level) too high,” and “Kernel stack not valid.”

3. I/0. Inconsistent conditions detected by IO management rou-
tines. For example, “Inconsistent [/O data base,” “RMS (Record Man-
agement Service) has detected an invalid condition,” “Fatal error
detected by VAX port driver,” and “Invalid lock identification.”

4. Others. Other software-detected problems. For example, “Machine
check while in kernel mode,” “Asynchronous write memory failure,”
and “Software state not saved during powerfail.” These are actually
not software-related errors although their statistics are included.

Table 8.5 shows the frequency for each type of software-detected
error for the two measured VAXcluster systems. You can see that
nearly 13 percent of software-detected errors are type “Others,” and
almost 4dll of them belong to VAX2. The VAX2 data show that most of
these errors are “machine check” (i.e., CPU error). The VAX1 error logs
do not include CPU errors in the bugcheck category. A careful study of
the VAX error logs and discussions with field engineers indicate that
different VAX machine models may report the same type of error (in
this case, CPU error) to different classes. Thus, it is necessary to dis-
tinguish these errors in the error classification. Most “Others” errors
are judged to be nonsoftware problems.

8.4.3 Error propagation

Given that a complete elimination of software faults in a large, contin-
ually evolving software system is difficult, it is important that the soft-
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ware handles the effects of software faults efficiently. Such a design
requires understanding the effects of software faults and establishing
efficient software fault models. While efficient models for hardware
faults exist, the issue of software fault models is open.

You can build software fault models from two perspectives: software
engineering and software fault tolerance. Examples of software fault
models built from the software engineering perspective are those
resulting from software fault categorization. You can use such models
for fine-tuning the software development environment and for avoid-
ing or eliminating software faults. Software fault models built from the
software fault tolerance perspective are those based on a knowledge of
faults, the effects of software faults (i.e., errors), error propagation, or a
combination of these. You can use such models for designing efficient
error detection, diagnosis, and recovery strategies. This subsection dis-
cusses a re-creation of error propagation using the 153 TPRs used to
create Table 8.3 in Sec. 8.4.2, to build a model from the software fault
tolerance perspective.

The term first error is defined as the immediate effect of a software
fault on the processor state when the fault is exercised. In other words,
the first error of a software fault refers to the first program variable that
acquires an incorrect value because of the fault. The first errors identi-
fied from the 153 TPRs were classified into the five categories [Lee93b]:

1. Single address error.  An incorrect address word is developed.

2. Single nonaddress error. An incorrect nonaddress value is devel-
oped. Instances in this category are further divided into four sub-
classes: incorrect field size, incorrect index, incorrect flag, and the
rest.

3. Multiple errors. Multiple errors are generated at once. Instances in
this category are further divided into two subclasses: (1) random cor-
ruption in a memory area without regard to the data structure (e.g.,
a corruption caused by a stack area overlap or a missing initializa-
tion of a memory area) and (2) multiple regular errors in data struc-
ture (e.g., memory management tables become inconsistent due to
a partial update, or a request buffer is overwritten by another
request).

4. Others. The first error does not fit any of the above categories (e.g.,
an invalid request caused by a race condition).

5. Unable to classify. The first error cannot be identified due to insuf-
ficient information in the TPRs.

The propagation characteristics of first errors were classified into
three groups: no propagation, further corruption, and quick detection.
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No propagation refers to cases in which there is no possibility of error
propagation, i.e., the first error is certain to be detected on the first
access. Further corruption refers to error propagation across processes
and the generation of more errors. Quick detection lies between the
above two propagation modes. In this situation, there is no guarantee
that there will be no propagation. The problem is detected quickly, after
the first error is accessed for the first time, while the task that made
the first access is executed.

Figure 8.6 shows an overall picture of error propagation, from under-
lying software faults to problem detection. A circle or a rectangle rep-
resents a category, and the numbers inside it represent the number
of TPRs in that category and its percentage of the 153 TPRs. An ar-
row represents a transition, and the associated number represents a
branching probability from the source state. For example, you can see
that data faults account for 14 percent of the faults, and if a fault in
this category is exercised, there is a 24 percent chance that an incorrect
address will be generated. Figure 8.6 captures all major error propaga-
tion paths that must be eliminated. You can observe from the figure
that address errors are difficult to handle with consistency checks. The
data show no instances in which “Single address” error is guaranteed
to be detected on the first access.

In Figure 8.6, “No propagation” is a desired state, because it does not
threaten the integrity of the data in the system. It is a significant state
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Figure 8.6 Error propagation model.
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in the measured system because of the use of redundant data struc-
tures and consistency checks. You can see that all instances of “No
propagation” are detected by consistency checks. In 94 percent of the
instances of “Quick detection,” problems are detected due to address
violations; the rest are detected by consistency checks.

“Further corruption” is a dangerous state, in that error propagation
can occur recursively and multiple errors are generated until the prob-
lem is detected. Note that some of the errors may break the fault-
containment boundary assumed for on-line recovery and thus cause
another problem later. Any process that accesses corrupted data can
potentially assert a halt, and thus a single fault can cause a variety of
failure symptoms, which may complicate the diagnosis.

8.4.4 Error and recovery distributions

Probably the most basic software reliability characteristics are time to
failure/error (TTF/TTE) and time to repair (TTR) distributions. This
subsection discusses error/failure frequency and empirical distribu-
tions built from data.

8.4.4.1 Errorffailure frequency. It is often convenient to count the num-
bers of different types of errors and failures during the measurement
period. You can make an easy comparison of error types and can also
identify reliability bottlenecks using these counts. Table 8.6 shows the
error/failure statistics for a VAXcluster system [Tang93a]. In the table,
I/O errors include disk, tape, and network errors. Machine errors
include CPU and memory errors. Software errors are software-related
errars. Recovery probability is the probability that an error does not
cause a machine crash.

You can identify two bottlenecks from the table. First, although soft-
ware errors constitute only a small portion of all errors (0.3 percent),
they result in significant failures (25 percent). This is because software
errors have a very low recovery probability (0.1). Second, the major
error category is I/O errors (93 percent), i.e., errors from shared

TABLE 8.6 Error/Failure Statistics for the VAXcluster

Error Failure
Recovery
Category Frequency Fraction (%) Frequency Fraction (%) probability
1/0 25807 92.9 105 ' 42.9 0.996
Machine 1721 6.2 5 2.0 0.970
Software 69 0.3 62 25.3 0.101
Unknown 191 0.7 73 29.8 0.618

All 27788 100.0 245 100.0 0.99
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resources. This category of error has a very high recovery probability
(0.996). However, these errors still result in nearly 43 percent of all fail-
ures. This result indicates that, although the system is generally robust
with respect to I/O errors, the shared resources still constitute a major
reliability bottleneck due to the sheer number of errors. Improving such
a system may require using an ultrareliable network and disk system to
reduce the raw error rate, not just providing high recoverability.

8.4.4.2 Error distributions. A realistic, analytical form of TTE distribu-
tion is essential in modeling and evaluating software reliability. You
can obtain such distributions using the procedure described in App. B.
You can sometimes satisfactorily represent a raw distribution by mul-
tiple distributions, which are chosen based on data, prior knowledge,
and intuition. You can gain insights into different aspects of the data
from each of these fits. Often, for simplicity or due to lack of informa-
tion, the TTE is assumed to be exponentially distributed [Arla90,
Lapr84].

Figure 8.7 shows the empirical TTE or TTF distributions fitted to
analytic functions for Tandem GUARDIAN, DEC VAX VMS, and IBM
MVS operating systems [Lee93a]. Here, a failure means a processor or
machine failure, not a system failure. None of these distributions fit
simple exponential functions. The fitting was tested using the Kol-
mogorov-Smirnov or chi-square test at a 0.05 significance level. This
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Figure 8.7 Empirical software TTE/TTF distributions. (a) IBM MVS software TTE distri-
bution; (b) VAXcluster software TTE distribution; (¢) Tandem software T'TF distribution.
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result conforms to the previous measurements on IBM [Iyer85a] and
DEC machines [Cast81, McCo079]. Several reasons for this nonexpo-
nential behavior, including the impact of workload, were documented
in [Cast81].

The two-phase hyperexponential distribution provided satisfactory
fits for the VAXcluster software TTE and Tandem software TTF distri-
butions. An attempt to fit the MVS TTE distribution to a phase-type
exponential distribution led to a large number of stages. As a result,
the multistage gamma distribution was used. It was found that a five-
stage gamma distribution provided a satisfactory fit.

Figure 8.7b and ¢ shows that the measured software TTE and TTF
distributions can be modeled as a probabilistic combination of two
exponential random variables, indicating that there are two dominant
error modes. The higher error rate, A,, with weight o, captures both
the error bursts on a single instance of an operating system and con-
current errors on multiple instances of an operating system (Sec.
8.5.1). The lower error rate, A;, with weight o, captures regular errors
and provides an interburst error rate.

These error bursts may be repeated occurrences of the same software
problem or multiple effects of an intermittent hardware fault on the
software. Actually, software error bursts have been observed in labora-
tory experiments reported in [Bish88]. The study showed that, if the
input sequences of the software under investigation are correlated
(rather than being independent), one can expect more bunching of fail-
ures than those predicted using a constant failure rate assumption. In
an operating system, input sequences (user requests) are highly likely
to be correlated. Hence, a defect area can be triggered repeatedly.

8.4.4.3 Recovery distributions. Figure 8.8a plots the spline-fit for the
TTR distribution of multiple software errors in the MVS system
[Lee93a]. A multiple software error is an error burst consisting of differ-
ent types of software errors. The TTR distribution for multiple software
errors is presented because these errors have longer recovery times than
other software errors and are more typical in terms of recovery process
(Table 8.14 in Sec. 8.6.3). A three-phase hyperexponential function could
be used to approximate the distribution, suggesting a multiple mode
recovery process. Because most MVS software errors do not lead to sys-
tem failures, the TTR for multiple errors is short, although these errors
take the longest time to recover of all software errors.

Figure 8.8b and ¢ plots the empirical software TTR distributions for
the VAXcluster and Tandem systems. Because of their peculiar shapes,
the raw distributions are provided. Since each system has different
error semantics, recovery procedures, and maintenance environments,
you cannot compare the measured systems in terms of TTR distribu-
tion. In the VAXcluster (Fig. 8.85), you can see that most of the TTR
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instances (85 percent) are less than 15 minutes. This is attributed to
those errors recovered by on-line recovery or automatic reboot without
shutdown repair. However, some TTR instances last as long as several
hours (the maximum is about 6.6 hours). These failures are, in our
experience, probably due to a combination of software and hardware
problems. Since the Tandem system does not allow an automatic recov-
ery from a halt and all events considered are processor halts due to
software, its TTR distribution (Fig. 8.8¢) reflects the time to collect fail-
ure data and to reload and restart by the operator.

Typically, analytical models assume exponential or constant recov-
ery times. You can see from Fig. 8.8 that this does not apply universally.
None of the three TTR distributions is a simple exponential. For the
MVS system, since the recovery is usually quick, a constant recovery
time assumption may be suitable. For the VAXcluster and Tandem sys-
tems, neither exponential nor constant recovery time can be assumed.
You should use more complex multimode functions to model these TTR
distributions.

8.5 Detailed Analysis of Data

After preliminary analysis of data, you can perform a series of analyses
that evaluate features specific to the measured software system and
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data. You can gain insights into the types of analysis to be performed
additionally from the results of preliminary analysis. You can also per-
form a detailed analysis based on specific analysis goals set in advance.
This section discusses the analysis of failure dependency, hardware-
related software failures, evaluation of software fault tolerance due to
the use of process pairs and recovery routines, and the issue of recur-
rence.

8.5.1 Dependency analysis

Many underlying dependencies can exist among measured parameters
and components. Examples are the dependency between workload and
failure rate and the dependency or correlation among failures on dif-
ferent system components. Failure dependency is a special concern in
fault-tolerant systems and highly parallel systems. Nonetheless, few
measurement-based studies have addressed this issue. While you can
use analytic methods, such as Markov modeling, to represent the fail-
ure dependencies identified, you can identify the types of dependencies
that exist in actual systems and the range of realistic dependency
parameters based only on field data. Understanding and quantifying
such dependencies is important for developing realistic models and
hence better designs. This subsection introduces a real example of cor-
related software errors and two studies of failure dependency based on
real data: (1) an analysis of the two-way dependency between errors on
two different machines in a VAXcluster system [Tang93a] and (2) an
analysis of multiway dependency among failures on multiple proces-
sors in a Tandem fault-tolerant system [Lee91].

8.5.1.1 Correlated software errors. When multiple instances of a soft-
ware system interact with each other in a multicomputer environment,
you should consider the issue of correlated failures. Several studies
([Tang90, Wein90, Lee91]) found that significant correlated processor
failures exist in multicomputer systems. To understand how correlated
software failures occur, we will examine a real case in detail.

Figure 8.9 shows a scenario of correlated software failures observed
in a seven-machine VAXcluster [Lee93a]. In the figure, Europa,
Jupiter, and Mercury are machine names in the VAXcluster. A dashed
line represents that the corresponding machine is in a failure state.
Initially, a network error (netl) was reported from the CI (computer
interconnect) port on Europa. This resulted in a software failure (soft1)
13 seconds later. Twenty-four seconds after the first network error
(netl), additional network errors (net2,net3) were reported on the sec-
ond machine (Jupiter), which were followed by a software failure
(soft2). The error sequence on Jupiter was repeated (net4,netb,soft3) on
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the third machine (Mercury). The three machines experienced software
failures concurrently for 45.5 minutes. All three software failures
occurred shortly after network errors occurred, so they were probably
network-error-related.

Note that the above scenario is a multiple-component-failure situa-
tion. A substantial amount of effort has been directed at developing
general system design principles against correlated failures. Still, cor-
related failures exist due to design holes and unmodeled faults. Gener-
ally, correlated failures can stress recovery and break the protection
provided by the fault tolerance.

8.5.1.2 Two-way dependency. The first step in a dependency analysis
1s to build a data matrix based on the measured data. Assume that
there are n components in the measured system and that the mea-
sured period is divided into m equal intervals of At (e.g., 30 minutes).
Then you can construct an m x n data matrix such that the element
(i, j} of this matrix has a value of 1 if component j experiences an error
or a failure during the ith time interval; otherwise, it has a value of 0.
Atlternatively, you can define the value of the element (i, j) of the
matrix as the number of errors or failures occurred in component j
during the ith interval. Note that the jth column of the matrix repre-
sents the sample error or failure history of component j, while the ith
row of the matrix represents the state of the components in the ith
time interval.

You can calculate correlation coefficients based on the data matrix.
Each time, you pick up two columns (X; and X)) to calculate cor(X,,X,).
Table 8.7 lists the average correlation coefficients of the 21 pairs of
machines in a seven-machine VAXcluster for different types of errors
and failure [Tang93a]. The table also lists the recovery probability for
each error type. You can see that disk errors have the strongest corre-

netl softl reboot
Europa <~—+ ___________________________________________________ %
13 sec. 47.83 min.
net2 net3 soft2 reboot
Jupiter I | | Lo oo +.
! 24 sec. ! 9 sec. ! 10 sec. | 47.33 min.
net4 nets soft3 reboot
Mercury .| | | | o _____. H
] 60 sec. I 78 sec. | 1! sec. l 45.5 min. 4 sec.

Note:  softl, soft2, soft3 — Exception while above asynchronous system traps delivery or on interrupt stack.
netl, net3, net5 — Port will be restarted.  net2, net4 — Virtual circuit timeout.

Figure 8.9 A scenario of correlated software failures.
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lation. This is because errors in the disk subsystem often affect multi-
ple machines because of the sharing of disks. For similar reasons, net-
work errors are strongly correlated across machines. While software
error correlation across the machines is low, software failure correla-
tion across them is significant because of the low recovery probability
from a software error. This result is significant because even a small
failure correlation can have a significant impact on system availability.

8.5.1.3 Multiway dependency. The limitation of correlation analysis is
that the correlation coefficient can quantify a dependency between two
variables only. However, dependencies may exist within a group of
more than two variables or even among all variables. For example, in a
distributed system, a disk crash can cause failures on those machines
whose operations depend on a set of critical data on the disk, resulting
in multiway failure dependency in these machines.

Multivariate analysis techniques allow you to analyze multiway fail-
ure dependency. Principal component analysis, factor analysis, and
cluster analysis were used to identify the multiway failure dependency
(see App. B) in [Lee91]. Table 8.8 shows the results of factor analysis
using processor halt data collected from an eight-processor Tandem
system.

According to [Dill84], factor loadings greater than 0.5 are usually
considered significant. However, in reliability analysis, factor loadings

TABLE 8.7 Average Correlation Coefficients for VAXcluster Errors

Error Failure
All CPU Memory Disk Network Software All
Correlation coefficient 0.62  0.03 0.01 0.78 0.70 0.02 0.06
Recovery probability 099 0.97 1.00 0.99 0.99 0.08 —

TABLE 8.8 Factor Pattern of Processor Halts in a Tandem System

Common Common Common Common
Processor factor 1 factor 2 factor 3 factor 4 Communality
1 0.997 -0.004 -0.069 0.023 1.00
2 0.000 0.000 0.000 0.000 0.00
3 0.061 0.012 0.853 -0.133 0.75
4 0.001 0.999 -0.011 0.021 1.00
5 0.982 —0.000 0.188 -0.018 1.00
6 -0.001 0.447 -0.005 0.009 0.20
7 0.047 -0.002 0.862 0.506 1.00
8 -0.007 0.762 0.090 0.641 1.00
Var. 1.965 1.781 1.519 0.685

Var. % 246 22.3 19.0 8.6
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lower than 0.5 can be significant because even a small correlation can
have a significant impact on system reliability. The results of factor
analysis (Table 8.8) show that there are four common factors. You
can see that, for example, common factor 1 captures the dependency
between processors 1 and 5 and accounts for 24.6 percent of the total
variance. Common factor 2 captures the multiway dependency among
processors 4, 6, and 8, although the contribution of processor 6 is
smaller (0.447%, that is, 20 percent of its variance is explained by this
factor). Common factor 2 explains 22.3 percent of the total variance.
You can identify hidden failure dependencies and model the impact of
design improvements on system reliability from such an analysis. The
development of techniques to model such multiway dependencies effi-
ciently is an area of future work.

8.5.2 Hardware-related software errors

When software is running on hardware platforms, interactions
between hardware and software occur. Such interactions and their
effects on system reliability are particularly difficult to comprehend.
This is further compounded by the lack of real data. Results based on
actual measurements and experiments are essential for developing a
clear understanding of the problem.

The operating system’s handling of software errors related to hard-
ware was first studied using on-line event logs in [Iyer85a]. Such errors
are described as hardware-related software errors (or HW/SW errors).
More precisely, if a software error (failure) occurs in close proximity
(within a minute) to a hardware error, it is called a hardware-related
software (HW/SW) error (failure). You can explain hardware-related
software errors in several ways. For instance, a hardware error, such as
a flipped memory bit, may change the software conditions, resulting in
a software error. Therefore, even though the error is reported as a soft-
ware error, it is actually caused by faulty hardware. Another possibility
is that software may fail to handle an unexpected hardware status,
such as an unusual but legitimate condition in the network communi-
cation. This is a software design flaw. Sometimes, both the hardware
error and the software error are symptoms of another, unidentified
problem.

Table 8.9 shows the frequency and percentage of HW/SW errors/fail-
ures (among all software errors/failures) measured from an IBM 3081
system running MVS [Iyer85b] and two VAXclusters [Tang92b]. In the
IBM system, approximately 33 percent of all observed software failures
are hardware-related. HW/SW errors are found to have large error-
handling times (high recovery overhead). The MVS data show that the
system failure probability for HW/SW errors is close to three times
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that for software errors in general and that the operating system is sel-
dom able to diagnose that a software error is hardware-related. The
VAXcluster data show that most hardware errors involved in HW/SW
errors are network errors (75 percent). This is probably because pro-
cesses rely heavily on communications through the network in the
multicomputer system.

8.5.3 Evaluation of software fault tolerance

Two major approaches proposed for software fault tolerance are recov-
ery blocks and N-version programming [Aviz84, Rand75] (see Chap.
14). Both of these approaches require multiple, independently gener-
ated versions of software. As a result, they are not easily applicable to
large, continually evolving software systems due to cost constraints,
although critical code sections can be protected by these techniques.

It has been observed that some techniques originally intended for
hardware fault tolerance can cope with software faults [Gray85,
Gray90)]. Detailed evaluation of software fault tolerance achieved by
the use of process pairs in the Tandem GUARDIAN operating system
and recovery routines in the IBM MVS operating system has been per-
formed [Lee95, Vela84]. Process pairs are an implementation of the
checkpointing and restart technique, which is a general approach.
Recovery routines are a systematic implementation of exception han-
dling. [Lee95] showed that the use of process pairs in Tandem systems,
which was originally intended for tolerating hardware faults, allows
the system to tolerate about 75 percent of reported field faults in the
system software that cause processor failures. The loose coupling
between processors, which results in the backup execution (the proces-
sor state and the sequence of events occurring) being different from the
original execution, is a major reason for the measured software fault
tolerance. This result shows that there is another dimension in achiev-
ing software fault tolerance. (Refer to the cited works for further
details.) Clearly, software reliability can be improved by designs
exploiting such knowledge in similar environments. Recently, attempts
have been made to exploit the subtle nature of some software faults to
tolerate such faults in user applications using checkpointing and
restart [Huan93, Wang93].

TABLE 8.9 Hardware-Related Software Errors/Failures

Category HW/SW errors HW/SW failures
Measures Frequency | Percent Frequency Percent
IBM/MVS 177 11.4 94 32.8

VAX/VMS 32 18.9 28 214
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8.5.4 Recurrences

[Lee93b] showed that about 72 percent of reported field software fail-
ures in Tandem systems are recurrences (Sec. 8.4.2). Recurrences are
not unique in Tandem systems. A similar situation exists in IBM sys-
tems [Adam84] and AT&T systems [Leve95]. This shows that the num-
ber of faults identified in software is not the only important factor.
Recurrences can seriously degrade software reliability in the field.

Recurrences exist for several reasons. First, designing and testing a
fix of a problem can take a significant amount of time. In the mean-
time, recurrences can occur at the same site or at other sites. Second,
the installation of a fix sometimes requires a planned outage, which
may force users to postpone the installation and thus cause recur-
rences. Third, a purported fix can fail. Finally, and probably most
importantly, users who did not experience problems due to a certain
fault often hesitate to install an available fix for fear that doing so will
cause new problems.

This subsection discusses two issues to reduce the impact of recur-
rences: software service policy to minimize the number of recurrences
taking the cost of service into consideration [Adam84] and automatic
diagnosis of recurrences based on their symptoms [Lee94a].

8.5.4.1 Preventive software service. Corrective service is the process of
eliminating a software fault from a user’s code after the fault caused a
problem to the user. Preventive service is the process of eliminating a
software fault from a user’s code when the fault has not yet caused a
problem to the user. Preventive service can potentially reduce the num-
ber of recurrences, but it requires resources to prepare, distribute, and
install fixes. More important, it can cause additional problems because
of faults in the fixes. Then question is: what is the optimal preventive
service policy?

Based on the failure and shipment data of IBM products, [Adam84]
proposed a procedure to predict the number of recurrences. Table 8.10
shows a sample rediscovery matrix constructed using the procedure.
Here the terms recurrence and rediscovery are used interchangeably.
The rows and columns of the matrix are labeled by months counted
from the time of first customer shipment. The entry (i, /) of the matrix
is the number of projected rediscoveries in the user base during month
1 caused by faults first discovered in month j. The total of the numbers
in the ith row is the total number of rediscoveries expected in month ;.
The numbers are projected for a hypothetical product that has steady
month-to-month growth of usership, assuming that all users use the
initial version of the product.

You can see from the rediscovery matrix that the number grows
steadily down a column and diminishes strongly to the right across the
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row. The variation down the column reflects the continual entry of new
users who can have problems; the decrease to the right reflects the
diminishing virulence of faults found in later months. Table 8.10 shows
that the large numbers all occur in the columns to the left. This indi-
cates that you might be better off by limiting preventive software ser-
vice only to a relatively small number of highly visible faults that cause
problems in leftmost columns.

8.5.4.2 Automatic diagnosis of recurrences. The above mentioned
study ([Adam84]) and the reasons for recurrence indicate that recur-
rences will continue to be a significant part of field software failures.
Then the question is: how can you handle recurrences efficiently? An
approach to automatically identify recurrences based on their symp-
toms has been proposed in [Lee94al. The approach is based on an
observation that failures caused by the same fault often share common
symptoms [Lee93b]. Specifically, the study proposed the comparison of
failure symptoms, such as the stack trace and code location where
problems were detected, as a strategy for identifying (i.e., diagnosing)
recurrences. A stack trace is the history of procedure calls made by the
active process at the time of failure. It represents the software function
that detected a problem.

Figure 8.10 illustrates the type of automatic diagnosis environment
envisioned. The diagnosis tool is connected with many user systems by
an on-line alarm system. All previously reported failure symptoms and
associated information, such as underlying faults and fixes, are stored
in a database. On a failure alarm, the tool accesses the system that
sent the alarm, extracts the values of the common symptoms (e.g., a
stack trace and a detection location), and compares them with those of
previously reported faults in the database. If a match is found in the

Fault history database

- Fault & fix
Failure ——>| Failure symptom
\ / - Failure symptom
- Software version with fix
A
I
I
i
No Yes )
Database update
First
Recurrence

occuErence

Figure 8.10 Diagnosis environment.
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database, the new failure is declared a recurrence of the corresponding
fault; otherwise, it is declared a first occurrence. In the case of recur-
rence, the tool also identifies an available fix. After the diagnosis, the
database is updated with new failure data.

To apply symptom-based diagnosis of software failures, you should
consider the following two extremes: a software fault can cause failures
with different symptoms, and two software faults can cause failures
with identical symptoms. Figure 8.11 illustrates the first extreme: two
failures caused by the same software fault have different stack traces.
In the figure, a circle represents a procedure call, and an arrow repre-
sents the execution within a procedure. Figure 8.11 shows a failure in
which the base procedure MAINLOOP called the procedure NEX-
TREQ, which in turn called the procedure MONITORPRIMARY.
MONITORPRIMARY called the procedure TK_PROCESS_TK CKPT,
in which a fault was exercised and a processor halt was asserted. In
another failure, the same sequence was repeated, except that MAIN-
LOOP reached MONITORPRIMARY through the procedure INITIAL-
IZE. This calling path is also shown in the figure. Each chain of
procedure calls forms a stack trace and is represented by a set of con-
nected solid arrows in the figure. Because the software structure is
modular, there can be different program paths that reach the faulty
code section. Figure 8.11 shows two such paths. Each of the paths gives
a distinct stack trace.

Another example of the first extreme is the case of a wide range of
corruption in shared data. In this case, any software function can detect
some of the errors and assert a processor halt. This would lead to widely
different stack traces, problem detection locations, and error patterns.

The second extreme to consider is that different faults can cause fail-
ures with identical symptoms. A procedure typically contains multiple

Q TK_PROCESS_TK_CKPT

. MONITORPRIMARY O X X
\ ‘\ Fault Failure

\ exercise
A

)

NEXTREQ

INITIALIZE

MAINLOOP
Figure 8.11 A single fault causing failures with different symptoms.
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checks, and these checks test different conditions. As a result, errors
caused by different faults can be detected within the same procedure,
thus resulting in failures with identical stack traces.

You can clearly see that the effectiveness of a diagnosis strategy
under the two extremes must be evaluated using the actual data. The
proposed strategy was applied using the failure data from two Tandem
system software products [Lee94a]. Then the results obtained were
compared with the actual diagnosis and repair logs by analysts.
Results of the comparison showed that between 75 and 95 percent of
recurrences can be identified successfully by matching stack traces
and problem detection locations. Less than 10 percent of faults are mis-
diagnosed. ‘

The results show that the proposed automatic diagnosis of recur-
rences allows analysts to diagnose only one out of several software fail-
ures (i.e., primarily the failures caused by new faults). In the case of a
recurrence for which the underlying cause was identified, the diagnos-
tic tool can rapidly identify a solution. In the case of a recurrence for
which the underlying cause is being investigated, the diagnostic tool
can prevent a repeated diagnosis by identifying previous failures
caused by the same fault. These benefits are not free. Misdiagnosis is
harmful, because a single misdiagnosis can result in multiple addi-
tional failures. (Such a danger exists in diagnoses by analysts, also.)
You should implement the proposed approach in a pilot. You should
make measurements to determine how well the approach works in real
environments and to make design trade-offs.

8.6 Model Identification
and Analysis of Models

The data analyses discussed in the previous sections reveal the soft-
ware reliability behavior in real environments. Specifically, they iden-
tify the model structure and the range of parameter values. You can
use this information to tune existing analytic or simulation models and
to build new models. Then you can use the new models to predict vari-
ous reliability characteristics in a new design by evaluating the model
characteristics with a different set of parameters. This section dis-
cusses the modeling of the impact of software failures on performance,
software reliability modeling in the operational phase, modeling of
error detection and recovery, and modeling of software error bursts.

8.6.1 Impact of failures on performance

One of the key measures in evaluating gracefully degraded systems is
the impact of failures on system performance or service capacity. In
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fault-tolerant systems, it is also important to evaluate the effectiveness
of various fault-tolerance techniques implemented to enhance software
reliability. This subsection discusses the modeling of the impact of soft-
ware failures on performance. It also evaluates the operating system
fault tolerance achieved due to the built-in, single-failure tolerance in
the Tandem system by conducting Markov reward analysis (App. B).
Figure 8.12 shows a Markov model built using processor halt logs col-
lected from a 16-processor Tandem system [Lee92]. In the figure, S; rep-
resents the system state in which there are i failed processors because
of software faults and r; ; represents the transition rate from S, to S;.

Two reward functions are defined in the analysis (Egs. (8.1) and
(8.2)). In these equations, r; represents the reward rate for S.. The first
function (SFT) reflects the fault tolerance of the Tandem system. In
this function, the first processor halt does not cause any degradation.
For additional processor halts, the loss of service is proportional to the
number of processors halted. The second function (NSFT) assumes no
fault tolerance. The difference between the two functions allows evalu-
ation of the improvement in service due to the built-in fault tolerance
mechanisms.

SFT (single-failure tolerance):

1 ifi=0
t—1 . .

ri = 1——F if0<i<16 (8.1)
0 ifi =16

NSFT (no single-failure tolerance):

:1~—~— ] S.S .2
r 16 if0<i<16 (8.2)

Based on the above reward functions, the expected steady-state
reward rate is evaluated for software, nonsoftware, and all halts. The

Figure 8.12 Measurement-based Markov model.
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steady-state reward rate represents the relative amount of useful
service the system can provide per unit of time in the long run; it
is a measure of service-capacity-oriented software availability. The
steady-state reward-loss rate (or simply, reward loss) represents the
relative amount of useful service lost per unit of time due to proces-
sor halts.

The results of analysis are given in Table 8.11. Rows with “SFT” and
“NSFT” show the estimated steady-state reward-loss with SFT and
NSF'T, respectively. The bottom row shows the improvement in service
(i.e., reduction in reward loss) due to the fault tolerance. You can see
that the single-failure tolerance in the measured system reduces the
service loss due to software halts by 89 percent and the service loss due
to nonsoftware halts by 92 percent. This clearly demonstrates the effec-
tiveness of the implemented fault-tolerance mechanisms against soft-
ware failures as well as nonsoftware failures. You can also see that
software problems account for 30 percent of the service loss in the mea-
sured system (with SFT).

8.6.2 Reliability modeling
in the operational phase

Software reliability models typically attempt to relate the history of
fault identification during the development phase, verification efforts,
and operational profile [Musa87, Rama82]. Usually, it is assumed that
software is an independent entity and each identified fault has the
same impact. However, our restilts indicate that there are other factors
that significantly affect software reliability in real environments. First,
a single, highly visible software fault can cause many failures, and
recurrences can seriously degrade software reliability in the field. Sec-
ond, for a class of software, the fault tolerance of the overall system can
significantly improve software reliability by making the effects of soft-
ware faults invisible to users. Clearly, reliability issues for operational
software in general can be quite different from those for the software in
the development phase.

TABLE 8.11 Loss of Service Caused by Processor Halts
in the Tandem System

Measure Software Nonsoftware All
NSFT Reward 0.00062 0.002065 (1.00267
Loss 23.2 76.8 100
SFT  Reward © 0.00007 0.00016 0.00023
Loss 30.4 69.6 100

7 Improveﬁieiit - 89% 92% C91%
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This subsection discusses the factors that determine software relia-
bility in the operational phase, using a case study of the Tandem
GUARDIAN operating system [Lee94b].

8.6.2.1 Model construction. A hypothetical eight-processor Tandem
system whose software reliability characteristics are described by the
parameters in Table 8.12 was considered. Here the term software reli-
ability means the reliability of an overall system when only the faults
in the system software are considered. A system failure was defined to
occur when more than half of the processors in the system failed. All
parameters in the table except A and | were estimated based on the
measured data (Secs. 8.4.2 and 8.5.3). The values of A and 1 were deter-
mined to mimic the 30 years of software mean-time-between-failures
(MTBF) and the mean-time-to-repair (MTTR) characteristics reported
in [Gray90]. Thus, the objectives of the analysis are to model and eval-
uate reliability sensitivity to various factors, not to estimate the abso-
lute software reliability.

With the use of process pairs, a fault in the Tandem system software
can cause a single or double processor halt. Also, a double processor
halt can cause additional processor halts if the two halted processors
control key system resources that are needed by other processors.
(Refer to [Lee95] for further details.) In Table 8.12, “P(double CPU
halt | software failure)” is the probability that a double processor halt
(i.e., the failure of a process pair) occurs given that a software failure
occurs. A software failure refers to a processor halt due to software.
Similarly, “P(system failure | double CPU halt)” is the probability that
a system failure occurs given that a double processor halt occurs. These
two parameters are used to describe the major failure mode of the sys-
tem because of software. The parameter “P(system failure | single CPU
halt)” represents the secondary failure mode, which captures single
processor halts severe enough to cause system coldloads. The table
shows these probabilities for first occurrences, recurrences, and
unidentified failures. Unidentified failures refer to the cases in which

TABLE 8.12 Estimated Software Reliability Parameters

Failures First occurrence Recurrence Unidentified
Failure rate Ar=0.24) A =0.61A A, =0.15%
P{double CPU halt | seftware failure) Cy=0.23 C; =018 Cy =00
P(system failure | double CPU halt) Cor=0.44 C.r = 0.63 C = 0.0
P(system failure | single CPU halt) C.r=0.05 C, =00 C..=0.0

Failures:
Software failure rate = A = 0.32/year

Recovery:
Recovery rate = u = 1/hour
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analysts believed that the underlying problems are software faults but
had not yet located the faults.

Figure 8.13 shows the Markov model. In the model S;,i = 0,..., 4 rep-
resents that i processors are halted because of software faults. A sys-
tem failure is represented by the Sgi.. state. To evaluate software
reliability, no recovery from a system failure is assumed. That is, the
system failure state is an absorption state. The R; state represents an
intermediate state in which the system tries to recover from an addi-
tional software failure (ith processor halt) using process pairs.

If a software failure occurs during the normal system operation (i.e.,
when the system is in the S, state), the system enters the R, state. If
the failure is severe enough to cause a system coldload, a system fail-
ure occurs; otherwise, the system attempts to recover from the failure
by using backup processes located in other processors. If recovery is
successful, the system enters the S, state; otherwise, a double proces-
sor halt occurs. If the two halted processors control key system
resources (such as a set of disks) that are essential for system opera-
tion, the rest of the processors in the system also halt and a system fail-
ure occurs; otherwise, the system enters the S, state and continues to
operate. The value of r; the transition rate out of an R;, is small and has
virtually no impact on software reliability; a value of one transition per
minute is used in the analysis.

In Fig. 8.13, the three coverage parameters C,, C,;, and C,, are calcu-
lated from Table 8.12:

A;Car+ MCar + hCas

C; = P(double CPU halt | software failure) =
M+ A+ A,

(8.3)

C.q = P(system failure | double CPU halt) =
A'f Cd szdf + AerrCsdr + ?\'ququdu

4
%;Cay+ .Coy + MCos (8.4)
and
C,; = P(system failure | single CPU halt) = Ar CSS”?: j_‘fsi J?: ALl
(8.5)

From the model in Fig. 8.13, you can evaluate software reliability (i.e.,
the distribution of the time for the system to be absorbed to the system
failure state, starting from the normal state). You can use tools such as
SHARPE [Sahn87, Sahn95] to evaluate the distribution.
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Figure 8.13 System-level software reliability model.
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8.6.2.2 Sensitivity analysis. Table 8.13 shows the six factors consid-
ered. The second column of the table shows activities related to these
factors, and the third column shows the model parameters affected by
the factors. The coverage parameters C; and C,; are determined pri-
marily by the robustness of process pairs and the system configuration,
respectively. For example, C; can be reduced by conducting extra test-
ing of the routines related to job takeover. The parameter C,, is pri-
marily determined by the location of failed process pairs and the disk
subsystem configuration. The recovery rate | can be improved by
automating the data collection and reintegration process.

Figure 8.14 shows the software MTBF evaluated using the model in
Fig. 8.13 while varying the six factors in Table 8.13, one at a time. You
can see that C; and C,, are almost as important as A in determining the

TABLE 8.13 Factors of Software Reliability

Related parameters

Factor Activity Detailed Overall
Software failure rate Software development A Ay Ay A
Recurrence rate Software service Ay A, Cy, C, Co,
Coverage parameter C, Robustness of process pairs Cu, Capy Ca Cy
Coverage parameter C4 System configuration Ceirs Cogry Coay Cew
Coverage parameter C,, — Ceps Coors Coeu Co
Recovery time Diagnosability/maintainability vl 1l
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software MTBF. For example, a 20 percent reduction in C; or C,; has as
much impact on software MTBF as an 18 percent reduction in A. (The
figure shows that the impact is approximately a 20 percent increase in
software MTBF.) This result is understandable because the system
fails primarily because of a double processor halt causing a set of disks
to become inaccessible, not because of multiple independent software
failures. You can also see that the recurrence rate has a significant
impact on software reliability. A complete elimination of recurrences
(A, =0 in Table 8.12) would increase the software MTBF by a factor of 3.

Typically, it is assumed that the number of faults in software is the
only major factor determining software reliability. Figure 8.14 clearly
shows that in the Tandem system there are four degrees of freedom in
improving software reliability: the number of faults in software, the
recurrence rate, the robustness of the process pairs, and the system
configuration strategy. The first two are general factors, and the last
two are system-specific factors. Efforts to improve software reliability
can be optimized by estimating the cost of improving each of the four
factors.

8.6.3 Error/ffailure/recovery model

This subsection discusses the modeling of the detailed error detection
and recovery processes in an operating system, using the data from the
IBM MVS system running on an IBM 3081 mainframe [Hsue87]. The
MVS system attempts to correct software errors using recovery rou-
tines. The philosophy in MVS is that for major system functions the
designer envisions possible failure scenarios and writes a recovery rou-
tine for each. It is, however, the responsibility of the installation (or the
user) to write recovery routines for applications.

MTBF .,
MTBFcurrenl
2
A
1.8 =
] '6 - Y
d
1.4 —
1.2 Recurrence rate
C.\'S
! U Factor .,
| | | 1 | Factor qment
0.5 0.6 0.7 0.8 09 1 1.1

Figure 8.14 Software MTBF sensitivity.
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More than one recovery routine can be specified for the same pro-
gram. If the current recovery routine is unable to restore a valid state,
the recovery manager can give control to another recovery routine, if
available. This process is called percolation. The percolation process
ends if a routine issues a valid retry request or if no more recovery rou-
tines are available. An error recovery can result in any of the following
four situations:

1. Resume op (resume operation). The system successfully recovers
from the error and returns control to the interrupted program.

2. Task term (task termination). The program and its related sub-
tasks are terminated, but the system does not fail.

3. Job term (job termination). The job in control at the time of the
error is aborted.

4. System failure. The job or task, which was terminated, is critical
for system operation. As a result of the termination, a system failure
occurs.

8.6.3.1 Model construction. The model consists of eight types of error
states (Table 8.14) and three states resulting from error recoveries.
Figure 8.15 shows the model, where a circle represents a state and an
arrow represents a transition with an associated transition probability.
The normal state represents the operating system running error-free.
Note that the system failure state is not shown in the figure. This is
because the occurrence of system failure was rare, and the number of
observed system failures was statistically insignificant. Given that the
system is in state i, the probability that it will go to state j, p;, can be
estimated from the data as follows:

observed number of transitions from E; to E;

= ™ (8.6)
P observed number of transitions out of E;

TABLE 8.14 Mean Waiting Time
Mean waiting Standard
State No. observations time (sec.) deviation
Normal (error-free) 2757 10461.33 32735.04
CTRL (control error) 213 21.92 84.21
DLCK (deadlock) 23 4.72 22.61
/O (/0 & data management error) 1448 25.05 77.62
PE (program exception) 65 42.23 92.98
SE (storage or address exception) 149 36.82 79.59
SM (storage management error) 313 33.40 95.01
OTHR (other type) 66 1.86 12.98
MULT (multiple software error) 481 175.59 252.179
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Figure 8.15 MVS software errorfrecovery model.

An error recovery can be as simple as a retry or as complex as requir-
ing several percolations before a successful retry. The problem can also
be such that no retry or percolation is possible. You can see from Fig.
8.15 that about 83.1 percent of all retries are successful. You can also
see that 93.5 percent of I/O and data management errors and 78.4 per-
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cent of control-related errors resulted in a direct retry. These observa-
tions indicate that most I/O- and control-related errors are relatively
easy to recover from compared to the other types of errors, such as
deadlock or storage errors.

Table 8.14 shows the mean-waiting-time characteristics of the nor-
mal and error states in the model. (See Sec. 8.4.2 for the definitions of
error types.) You can see that the average duration of a multiple error
is at least four times longer than that of any type of single error, which
is typically in the range of 20 to 40 seconds, except for DLCK (deadlock)
and OTHR (others). The average recovery time from a program excep-
tion is twice as long as that from a control error (21 seconds versus 42
seconds). This is probably due to the extensive software involvement in
recovering from program exceptions.

8.6.3.2 Model evaluation. Table 8.15 shows the following steady-state
measures evaluated from the model. The detailed definitions of these
measures are given in [Howa71].

Transition probability () Probability that the transition is to state j,
given a transition to occur

Occupancy probability (P;) Probability that the system occupies state j
at any time point
Mean recurrence time ()) Mean recurrence time of state j

The occupancy probability of the normal state can be viewed as the
operating system availability without degradation. The state transi-
tion probability, on the other hand, characterizes error-detection and
recovery processes in the operating system. Table 8.15a lists the state
transition probabilities and occupancy probabilities for the normal and
error states. Table 8.15b lists the state transition probabilities and the
mean recurrent times of the recovery and result states. A dash (—) in
the table indicates a negligible value (less than 0.00001). You can see
that the occupancy probability of the normal state in the model is
0.995. This indicates that 99.5 percent of the time the operating system
is running error-free. In the other 0.5 percent of the time, the operating
system is in an error or recovery state. In more than half of the error
and recovery time (that is, 0.29 percent out of 0.5 percent) the operat-
ing system is in the multiple-error state.

By solving the model, you can find that the operating system makes
a transition every 43.37 minutes. Table 8.15a shows that 24.74 percent
of all transitions made in the model are to the normal state, 24.73 per-
cent to error states (obtained by summing the n’s for all error states),
25.79 percent to recovery states, and 24.74 percent to result states.
Since a transition occurs every 43 minutes, you can estimate that, on
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the average, a software error is detected every 3 hours and a successful
recovery (i.e., reaching the “resume op” state) occurs every 5 hours.
Table 8.15b also shows that more than 40 percent of software errors
lead to job or task terminations, thus causing the loss of service to
users. However, only a few of these terminations lead to system fail-
ures. This result indicates that recovery routines in MVS are effective
in avoiding system failures, but are not so effective in avoiding user job
terminations.

8.6.4 Multiple-error model

The error/failure/recovery model and analysis using the model in Sec.
8.6.3 showed that multiple errors are a significant source of system
degradation in the MVS system. Figure 8.16 shows a semi-Markov
model for a multiple error developed from the data from an IBM MVS
system [Hsue87] (Secs. 8.4.2 and 8.4.4). The model was constructed
assuming zero waiting time in the normal state (i.e., assuming the
occurrence of a multiple error). The figure not only illustrates the inter-
actions among different software errors, but also provides detailed
information on the occurrence of transitions. For example, if a program
exception error (PE) occurs, there is about a 63 percent chance that a
storage exception error (SE) will follow. Further, there is about a 50
percent chance that a storage error (SE or SM) will be followed by
another error of the same type.

Table 8.16 lists the characteristics for a multiple error obtained by
solving the semi-Markov model described in Fig. 8.16 with a zero hold-
ing time in the normal state (i.e., given that a multiple error occurs). In
the table, e; (entry probability) represents the probability that the sys-
tem enters state j, given an entrance to occur [Howa71]. You can see
(from &, transition probability) that nearly 30 percent of the transitions
are made to the storage exception state when the system enters a mul-
tiple error mode. Once in a multiple error mode, a storage exception
error occurs every 1 minute and 45 seconds (@ = 0.0292 hours in Table
8.16), while the average duration of multiple errors is about 2 minutes
and 56 seconds (© = 0.0489 hours, the recurrence time of the normal
state). Note that the average duration of a multiple error predicted
here from the model is very close to the mean duration of a multiple
error, 175.5 seconds obtained from the real data, listed in Table 8.14.
This provides evidence that the semi-Markov process is a good model
for the measured system. As soon as an entry into a multiple error is
made, consecutive errors are detected almost every 31 seconds (by tak-
ing the reciprocal of the sum of all entry probabilities e in Table 8.16).
This indicates that about five to six errors will be detected, on average,
once a multiple error occurs.
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Figure 8.16 State transition diagram of multiple error (MULT).

8.7 Impact of System Activity

This section discusses the relationships between software failures and
various workload parameters. Several studies have shown that you
cannot consider software reliability in real environments without tak-
ing the system workload into account. [Cast81, Cast82,] and [Iyer82a]
proposed analytic or regression models of such relationships. Markov
models of such relationships have been proposed in [Hsue88].

8.7.1 Statistical models
from measurements

8.7.1.1 Workload-dependent cyclostationary model. An early study
[Cast81] introduced a workload-dependent cyclostationary model to
characterize system failure processes. The model is based on the obser-
vation of the periodic nature of daily workload profile and failures. The
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TABLE 8.16 Characteristics of Multiple Errors

Error state

Normal
Measure state CTRL DLCK I/0 PE SE SM OTHR
s 0.1767 0.0327 0.0048 0.1451 0.1473 0.2957 0.1360 0.0617
()] 0 0.0648 0.0130 0.3004 0.0837 0.2202 0.2717 0.0462
e 0.00568 0.00105 0.00015 0.00466 0.00473 0.00950 0.00437 0.00198
© (hr) 0.0489 0.2647 1.8126 0.0596 0.0587 0.0292 0.0636 0.1401

underlying idea is that a higher workload implies that the kernel of the
operating system is exercised more per unit of time, increasing the
probability of system failure. It is assumed that the instantaneous fail-
ure rate of a system resource can be approximated by a function of the
usage of the resource considered. Specifically, the failure rate of a par-
ticular resource, A(t), is assumed to be

M) =au(t)+b (8.7)

where u(¢) is a usage function of the resource that, in turn, consists of
a deterministic, periodic function of time, m(t) and a modified, station-
ary gaussian process, z2(t):

ult)=m@t)y+z(t) (8.8)

The failure arrivals are assumed to follow a Poisson process. Thus,
the failure process involves two stochastic processes: a Poisson process
and a gaussian process. Such a process is defined as a doubly stochas-
tic process. The following workload-dependent cyclostationary reliabil-
ity function due to software is derived:

R(t) -1 q)(t)e—klt_kz(l—e—kBt)—k4(1ve—k5f) (8.9)

where ¢(¢) is a periodic function of time, depending on the periodic com-
ponent of AM(z) and ky, k,, ks, ks, and ks are constants determined from
the failure and usage process characteristics (Egs. (8.7) and (8.8)).

8.7.1.2 Load hazard model. In [Iyer82a], a load hazard model was intro-
duced to measure the risk of a failure as the system activity increases.
The proposed model is similar to the hazard rate defined in reliability
theory. Given a workload variable X, the load hazard is defined as

2(x) = Plfailure in load interval (x, x + Ax)] _ _ &%) (8.10)

Pino failure in load interval (0, x)] Ax 1-Gx)
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where g(x) is the probability density function (pdf) of the variable “a
failure occurs at a given workload value x” and G(x) is the correspond-
ing cumulative distribution function (cdf). That is,

g(x) = P(failure occurs | X =x) = _lf%—; (8.11)

where /(x) is simply the pdf of the workload in consideration:
lx)=PX =x) (8.12)
and flx) is the joint pdf of the system failure and the workload:
flx) = P(failure occurs and X =x) (8.13)

The load hazard z(x) (in close analogy with the classical hazard rate
in reliability theory) measures the incremental risk involved in
increasing the workload from x to x + Ax. A constant hazard rate
implies that failures are occurring randomly with respect to the work-
load. An increasing hazard rate on the increase of X implies that there
is an increasing failure rate with increasing workload.

The load hazard model was applied to the software failure and work-
load data collected from an IBM 3081 system running the VM operat-
ing system [Iyer85b]. Based on the collected data, I(x), f(x), g{x), and
z(x) were computed for each workload variable. Figure 8.17 shows the
2(x) plots for three selected workload variables:

OVERHEAD The fraction of CPU time spent on the operating system
PAGEIN The number of page reads per second by all users
SI0 (start 1/0) The number of input/output operations per second

The regression coefficient, R?, which is an effective measure of the
goodness of fit, is also shown in the figure.

You can see from the hazard plots shown that the workload parame-
ters appear to be acting as stress factors, i.e., the failure rate increases
as the workload increases. The effect is particularly strong in the case

: 1072
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T 103}
E () 107} z{x) ot + . z(x)
3 10747, R =10.95 RY=0.8 107*E + R*=0.91
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x = OVERHEAD x = PAGEIN x =8I0

Figure 8.17 Workload hazard plots for an IBM 3081 system.
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of the interactive workload measures OVERHEAD and SIO. The cor-
relation coefficients of 0.95 and 0.91 show that the failure process
closely fits an increasing load hazard model. The risk of a failure also
increases with increased PAGEIN, although at a somewhat lower cor-
relation (0.82). Note that the vertical scale on these plots is logarith-
mic, indicating that the relationship between the load hazard z(x) and
the workload variable is exponential, i.e., the risk of a software failure
increases exponentially with increasing workload.

It was hypothesized that, in addition to the reasons reported in
[Cast81], there are other load-induced effects [Iyer82b]. The first is the
latent discovery effect. Problems must be detected in order to cause
failures. Even if failures may not be caused by increased workload,
they are revealed by this factor. The second effect is the load-induced
software failures. Many typical software faults exist in the operating
system. These faults can be divided in two groups, those triggered
under high load and those that are load-independent but appear to be
load-induced because of an increased execution time effect.

8.7.2 Overall system behavior model

This subsection introduces a measurement-based performability
model based on error and resource-usage data collected on a produc-
tion IBM 3081 system running under the MVS operating system
[Hsue88].

8.7.2.1 Workioad model. The workload data were collected by sam-
pling, at predetermined intervals, four resource usage meters:

CPU The fraction of the measured interval for which the CPU is
executing instructions

CHB The fraction of the measured interval for which the channel is
busy and the CPU is in the wait state (commonly used to mea-
sure the degree of contention in a system)

SI10 The number of successful start I/O and resume I/O instructions
issued to the channel

DASD The number of requests serviced on the direct-access storage
device

At any interval of time, the measured workload is represented by a
point in a four-dimensional space (CPU, CHB, SIO, DASD). Statistical
cluster analysis (App. B) is used to divide the workload into similar
classes according to a predefined criterion. This allows you to concisely
describe the dynamics of system behavior and extract a structure that
already exists in the workload data. Each cluster (defined by its cen-
troid) is then used to depict a system state, and a state-transition dia-
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gram (consisting of intercluster transition probabilities and cluster
sojourn times) is developed. A k-means algorithm [Spat80] is used for
clustering. .

Figure 8.18 shows the workload model built by the above procedures
using the CPU and CHB data. This combination was found to best
describe the CPU-bound load, while models based on SIO and DASD
were found to best describe the I/O workload. Note that the null state
W, has been incorporated to represent the state of the system during
the nonmeasured period. (The measurements were not made continu-
ously during the entire measurement period.) The time spent in the
null state is assumed to be zero. Table 8.17 shows the results of the
clustering operation. You can see that for about 36 percent of the time
the CPU was heavily loaded (0.96), and for 76 percent of the time the
CPU load was above 0.5.

8.7.2.2 Resource-usage/error/failure model. Error data during the mea-
surement period were passed through a coalescing algorithm and then
through an additional reduction technique based on the probabilistic
relationships between errors [Iyer90]. The resulting errors were then
classified into five classes:

from W, to W from W,
0 0 0 o W
0.351 0.037 0.162 %o
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0.037 0.4
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from W, 0.036 N\ 0.045
0.410 4
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to W0 from W0 to W0 from W0

Figure 8.18 State transition diagram of CPU-bound load.
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TABLE 8.17 Characteristics of CPU-Bound Workload Clusters

Cluster % of Mean Mean Std. dev. Std. dev.
id obs of CPU of CHB of CPU of CHB
W, 7.44 0.0981 0.1072 0.0462 0.0436
W 0.50 0.1126 0.5525 0.0433 0.0669
W, 2.73 0.1547 0.2801 0.0647 0.0755
W, 12.41 0.3105 0.1637 0.0550 0.0459
Ws 0.74 0.3639 0.3819 0.0365 0.1923
Ws 17.12 0.5416 0.1287 0.0560 0.0511
W, 22.58 0.7207 0.0848 0.0576 0.0301
Wi 36.48 0.9612 0.0168 0.0362 0.0143

R%of CPU=0.9724
R? of CHB = 0.8095
overall R? = 0.9604
(R® the square of correlation coefficient)

1. CPU Errors that affect the normal operation of the CPU; may
originate in the CPU, in the main memory, or in a channel

2. CHAN Channel errors (the great majority are recovered)

3. DASD Disk errors, recoverable (by data correction or instruc-
tion retry) and nonrecoverable

4. SWE Software incidents due to invalid supervisor calls, pro-
gram checks, and other exceptions

5. MULT Multiple errors that affect more than one type of compo-
nent (i.e., involving more than one of the above)

The recovery procedures were divided into four categories based on
recovery cost, which was measured in terms of the system overhead
needed to handle an error. The lowest level (hardware recovery or
HWR) involves the use of an error correction code (ECC) or hardware
instruction retry; it has minimal overhead. If hardware recovery is not
possible or unsuccessful, software-controlled recovery (SWR) is invoked.
This could be simple (e.g., terminating the current program or task in
control) or complex (e.g., invoking a specially designed recovery rou-
tine(s) to handle the problem). The third level, alternative (ALT),
involves transferring the tasks to functioning processor(s) when one of
the processors experiences an unrecoverable error. If no on-line recov-
ery is possible, the system is brought down for off-line (OFFL) repair.

The separate workload, error, and recovery models developed were
combined into a single model, shown in Fig. 8.19. Due to the complex-
ity of the entire model, the figure shows only a part of the model. The
null state W, is not shown in the diagram. The model in Fig. 8.19 cap-
tures the workload-dependent error and recovery process in the sys-
tem. The model has three classes of state: normal operation states (Sy),
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error states (Sg), and recovery states (Sg). Under normal conditions,
the system makes transitions from one workload state to another. The
occurrence of an error results in a transition to one of the error states.
The system then goes into one or more recovery states after which,
with a high probability, it returns to one of the workload states. You can
see from the state transition diagram that nearly 98.3 percent of hard-
ware recovery requests and 99.7 percent of software recovery requests
are successful.

8.7.2.3 Performability analysis. The resource-usage/error/recovery model
was used to evaluate the performability of the system. Reward func-
tions were used to depict the performance degradation due to errors
and due to different types of recovery procedure (App. B). Since the
recovery overhead for each error event in the modeled system is
approximately constant, the total recovery overhead, and thus the
reward, depends on the error rate during the event. On this basis, the
reward rate r; (per unit time) for each state of the model is defined as

S; ip
r. = s+ e ifi e SN USE (814)
0 ifi ESR
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Figure 8.19 State transition diagram of resource-usage/error/recovery model.
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where s; and e; are the service rate and the error rate in state i, respec-
tively. Thus one unit of reward is given for each unit of time when the
system stays in the normal states Sy. The reward rate decreases with
Increasing number of errors generated in an error state. Zero reward is
assigned to recovery states.

The reward rate of the modeled system at time ¢ is a random variable
X{(2). Therefore, the expected reward rate E[X(¢)] can be evaluated from
E[X(#)] = Z, p{#)r; where p,(t) is the probability of being in state i at time
t. The cumulative reward by time ¢ is Y(¢t) = [{ X(6)do, and the expected
cumulative reward is given by

t
ElY®OI=E ( JO X(G)dG) = Z r; fot p{o)do (8.15)

The impact of different types of errors were evaluated by calculating
the expected reward rate with different definitions of absorption state.
In Fig. 8.20, “OFFL’ represents the expected reward rate when only off-
line repairs are considered as an absorption state. This curve actually
represents the system reliability. “MULT” represents the expected
reward rate when off-line repairs and multiple errors are considered as
an absorption state. The difference between the two curves captures
the impact of multiple errors on performability.

8.8 Summary

In this chapter, we discussed the current issues in the area of mea-
surement-based analysis of software reliability in the operational
phase. The discussion centered around techniques, our experiences,
and major developments in this area. This chapter addressed mea-
surement techniques, analysis of data, model identification, analysis of
models, and the effects of workload on software reliability. For each
field, we discussed the key issues and then presented detailed tech-
niques and representative work.
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Figure 8.20 Expected reward rate.
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Significant progress has been made in all these fields over the past
15 years. Increasing attention is being paid to: (1) combining analytical
modeling and experimental analysis and (2) combining software design
and evaluation. In the first aspect, state-of-the-art analytical modeling
techniques are being applied to real operational software to evaluate
various reliability and performance characteristics. Results from
experimental analysis are being used to validate analytical models and
to reveal practical issues that analytical modeling must address to
develop more representative models. In the second aspect, software
failure data from the operational phase are being used to identify and
address software design issues for improving software reliability. Effi-
cient on-line recovery and off-line diagnosis techniques are being
developed based on data collected from the operational phase. Further
interesting studies and advances in this area can be expected in the
near future.

Problems

8.1 Discuss the power and limitations of measurement-based approach, as
compared with analytic or simulation-based approach.

8.2 Reliability characteristics of operational software can be quite different
from those of the software in its development phase. List the factors that con-
tribute to such differences.

8.3 Describe general steps to build a software reliability model from mea-
surements. What is the use of a measurement-based model?

8.4 It has been shown that software errors tend to occur in bursts. Discuss
the reasons for error bursts. What are the effects of error bursts on software
reliability?

8.5 Software and hardware components of a computer system may not fail
independently of each other. Discuss the reasons for such correlated failures.
Discuss the techniques for analyzing two-way and multiway failure depen-
dencies.

8.6 Checkpointing and restart implemented in distributed transaction pro-
cessing environments can allow a system to tolerate certain software faults.
What are the reasons for the software fault tolerance? What are the factors
that determine the level of software fault tolerance achieved with the tech-
nique in such environments? What are the advantages and disadvantages of
using the above technique as compared with using the techniques such as
N-version programming and recovery blocks?

8.7 It has been shown that, in environments where many users run the same
software, the majority of field software failures are recurrences. What are the
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reasons for recurrences? What are the effects of recurrences on software relia-
bility? How can we reduce such effects?

8.8 What are the effects of increased system activity on software reliability in
an operational system? Discuss the reasons for such relationships.

8.9 Table 8.18 shows software time-to-failure (TTF) data measured on a mul-
ticomputer system. Table 8.19 shows the completion time (CT) of a benchmark
running on a multicomputer system under different workload conditions. The
time in Tables 8.18 and 8.19 represents the time at the end of the correspond-
ing time interval. For example, the first column of Table 8.18 indicates that
there are 29 TTF instances whose values are smaller than 1 day. Do the fol-
lowing work using the data:

a. Construct an empirical distribution for each set of data.

b. Fit both empirical distributions to an exponential function, the TTF
distribution to a two-phase hyperexponential function, and the CT
distribution to a two-phase hypoexponential function, respectively.

c. Test the goodness of fits using the chi-square test.

8.10 Table 8.20 (shown below and in the Data Disk) gives processor failure
data collected from a distributed system consisting of five processors connected
by a local network. Each record in the table has the following format:

Processor id Failure time Recovery time Error type

The time unit is second and time 0 is 12 A.M., 10/1/1987. The measurement
started from 12 A.M., 12/9/1987 (29,548,800), and ended at 12 A.M., 8/15/1988
(51,148,800), covering 250 days. The error type means the type of error that
causes a processor failure. Possible error types are CPU, I/O (network or disk
problems), software, and unknown. Do the following work using the data:

a. Obtain failure rate and recovery rate for each processor.

TABLE 8.18 Software TTF Data from a Multicomputer

TTF (days) 1 2 3 4 5 6 7 8 9 10 11 12
Frequency 29 8 6 5 3 3 1 3

TTF (days) 14 15 15 17 18 19 20 21 22 23 24 25
Frequency 0 2 0 1 0 0 0 0 0 0 0 0

13

26

TABLE 8.19 Completion Time of a Benchmark

Time (min.) 2 4 6 8 10 12 14 16 18 20 22
Frequency 2 10 12 18 16 13 15 7 6 4 2

Time (min.) 26 28 30 32 34 36 38 40 42 44 46
Frequency 4 1 0 1 4 0 0 1 1 0 0

24

48
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TABLE 8.20 Processor Failure Data from a Five-Processor
Multicomputer System

Processor id Start time End time Error type
1 29604556 29605120 Software
1 29704893 29706486 I/O
1 20770774 29772334 Software
1 29779466 29779946 /O
1 29918361 29919001 1/0
1 29938155 29938995 Unknown
1 29968514 29969314 170
1 30204850 30206947 /0
1 30300136 30300482 1/0
1 30315829 30316496 vo
1 30552159 30555408 Unknown
1 30571134 30571529 /O
1 31762359 31762897 /o
1 31830453 31831347 I/0
1 31837833 31838304 /O
1 31839160 31839628 /O
1 31951476 31952241 /0
1 32123531 32124925 /O
1 32126834 32127160 1/0
1 32177392 32178646 /0
1 32963455 32964054 Software
1 33014870 33015438 /0
1 33152933 33153737 Software
1 34616577 34617326 Software
1 34770846 34771459 1/0
1 37813703 37814561 Unknown
1 38007128 38049817 /0
1 38955976 38956597 Unknown
1 38961843 38962658 Unknown
1 39465650 39467247 /O
1 39809295 39810575 Unknown
1 40069978 40071607 /O
1 41000249 41001273 Software
1 41366807 41387784 Software
1 41391480 41392113 Software
1 42272616 42273174 Software
1 42831896 42833058 Software
1 43309767 43313204 Software
1 43348292 43350322 Software
1 43952410 43953022 Software
1 44877091 44877998 Software
1 45841909 45842888 Software
1 46961851 46962724 Software
1 48878979 48880349 Unknown
1 48888392 48890586 Software
2 29570604 29570904 /0
2 29577262 29577562 1/0
2 29767256 29767556 /0
2 29782058 29782358 1/O
2 29788920 129789718 /0
2 29886930 29887230 /O
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TABLE 8.20 (Continued) Processor Failure Data
from a Five-Processor Multicomputer System

Processor id Start time End time Error type
2 29909506 29909806 1/0
2 29910884 29911926 1/0
2 29913095 29913465 1/0
2 29914121 29915273 /0
2 29916032 29916705 1/0
2 29917194 29917844 1/0
2 29918236 29919428 1/0
2 20939825 29940125 Unknown
2 29946828 20947128 Unknown
2 29949602 29950199 1/0
2 29953804 29954104 /O
2 29957176 29957476 /O
2 29963079 29963379 1/0
2 29964579 29966271 /0
2 29967435 29968115 /0
2 30550260 30550560 Unknown
2 30550946 30553816 Software
2 30660369 30660669 Unknown
2 31774557 31774857 /0
2 31775859 31776450 /0
2 31781002 31781783 I/0
2 31832367 31832781 o
2 31839101 31841182 /o
2 32122929 32129036 /O
2 32176731 32177250 Software
2 32178134 32180594 /O
2 32183767 32184321 /0
2 32449592, 32450399 Unknown
2 32962291 32962591 Unknown
2 32975370 32975670 /O
2 32976674 32976974 /0
2 32983427 32983727 /0
2 33049654 33050104 I/O
2 33052795 33053095 /O
2 33057253 33057553 /O
2 33059795 33060095 I/0
2 33087233 33087533 /0
2 33089396 33089696 /0
2 33120965 33121265 Unknown
2 33148035 33148430 i/0
2 34011900 34012200 Unknown
2 34770845 34771810 19(0)
2 34774453 34774753 Unknown
2 34775145 34776270 /o
2 34777013 34777313 /0
2 34777969 34778269 /O
2 34780806 34781106 /0
2 35659389 356662510 Unknown
2 35668585 35668885 1/0
2 35725413 35725713 /0
2 35726840 35727669 /0
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TABLE 8.20 (Continued) Processor Failure Data
from a Five-Processor Multicomputer System

Processor id Start time End time Error type
2 35730910 35731210 /O
2 35744817 35745117 I/O
2 35753244 35753544 /O
2 36785044 36785772 Unknown
2 36789532 36789988 Software
2 36796257 36847121 1/0
2 38249305 38249785 Software
2 38251655 38252099 Unknown
2 38744311 38744777 Software
2 38745674 38746341 CPU
2 38955454 38956597 Unknown
2 39805355 39808038 /0
2 43064089 43065444 Unknown
2 44732995 44733453 Software
2 45221452 45221917 /O
2 46375146 46375583 Unknown
2 49391794 49392273 Software
2 50068269 50069049 /O
3 30550976 30554633 Software
3 31760114 31760624 Software
3 32806356 32806844 Software
3 33152933 33153558 Software
3 34370843 34385770 1/0
3 34779280 34779754 Unknown
3 36783938 36786522 /O
3 36787771 36788262 Software
3 37800626 37811789 1/0
3 37812929 37813548 Software
3 43175442 43175990 Software
3 43326842 43327797 Unknown
3 43330318 43330785 CPU
3 43331708 43332312 CPU
3 43334898 43338477 CPU
3 43338720 43340663 /O
3 43342983 43345110 CPU
3 43691509 43692018 Software
3 43693033 43693689 Unknown
3 43693580 43694622 I/0
3 43695584 43696455 Unknown
3 43697283 43698493 1/0
3 47651456 47651969 Software
3 49057997 49058626 Software
3 49568366 49568810 Unknown
3 50043031 50043500 Software
3 50697666 50698119 Unknown
3 50930312 50930764 Unknown
4 29939050 29940425 /O
4 29943202 29948396 /O
4 30550948 30554287 /0
4 30762674 30762976 /O
4 34777878 34778529 /O
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TABLE 8.20 (Continued) Processor Failure Data
from a Five-Processor Multicomputer System

Processor id Start time End time Error type
4 37563700 37567137 1/0
4 37811277 37811786 1/0
4 38956002 38963057 /0
4 39204773 39205074 /0
4 43175015 43175315 Unknown
4 47239532 47243366 I/0
4 47641698 47642345 /O
4 48939418 48940072 Unknown
4 49144906 49145430 170
4 50662627 50663276 Unknown
4 50668168 50672456 170
4 50758111 50758751 I/0
4 50941271 50943381 /O
5 30545108 30545606 Software
5 30551262 30553813 Unknown
5 31769662 31770215 Software
5 31953896 31954395 Unknown
5 33152335 33153779 Unknown
5 33153616 33156417 Software
5 34774852 34780711 /0
5 37813181 37813664 Unknown
5 38955806 38962854 Unknown
5 40928410 40934268 Software
5 40936013 40936767 Unknown
5 43189066 43193507 Software
5 43252583 43254201 Unknown
5 43256847 43257890 Unknown
5 43328379 43333113 Software
5 44903066 44903945 Unknown
5 47064423 47069097 1/0
5 49125607 49126676 Software
5 49478273 49478888 Unknewn
5 50618397 50623146 Software

b. Assuming failures on different processors are independent, build a
Markov model based on the failure and recovery rates obtained in
item a.

c. Assuming the modeled system is a three-out-of-five system, solve the
model (using SHARPE [Sahn87, Sahn95] or similar tools) to obtain the
reliability of the system. (Note: To obtain SHARPE, contact Professor
Kishor Trivedi at Duke University. Phone: (919) 660-5269, e-mail:
kst@ee.egr.duke.edu.)

d. Build a measurement-based Markov model using the data without
assuming failures on different processors are independent.

e. Solve the measurement-based model (using SHARPE or similar
tools) to obtain the reliability of the three-out-of-five system, and
compare the result with that obtained in item c.

/ Construct a failure data matrix and then use the matrix to calculate
correlation coefficient for each pair.




