Chapter

Software Reliability Measurement
Experience

Allen P. Nikora
Jet Propulsion Laboratory

Michael R. Lyu
AT&T Bell Laboratories

7.1 Introduction

The key components in the SRE process, as described in Chap. 6, include
reliability objective specification, operational profile determination, reli-
ability modeling and measurement, and reliability validation. These
techniques were applied to several internal projects developed within
Jet Propulsion Laboratory (JPL) and Bell Communications Research
(Bellcore). The project background, reliability engineering procedures,
data collection efforts, modeling results, data analyses, and reliability
measurements for these projects are presented in this chapter. Model
comparisons for the software reliability applications, lessons learned
with regard to the engineering effort, and directions for current and
future software reliability investigations are also provided.

One major thing we observed is that for the failure data we analyzed,
no one model was consistently the best. It was frequently the case that
a model that had performed well for one set of failure data would per-
form badly for a different set. We therefore recommend that for any
development effort, several models, each making different assumptions
about the testing and debugging process, be simultaneously applied to
the failure data. We also recommend that each model’s applicability to
the failure data be continuously monitored. Traditional goodness-of-fit
tests, such as the chi-square or Kolmogorov-Smirnov tests, can be used.
In addition, the model evaluation criteria described in Chap. 4 are also
strongly recommended.

255

256 Practices and Experiences

Another discovery is that, of the software development efforts we
studied, few had quantitative reliability requirements that were mea-
surable. Strictly speaking, it is not necessary to have a reliability
requirement for a system in order to apply software reliability mea-
surement techniques. It is quite possible to measure a software sys-
tem’s reliability during test and make predictions of future behavior.
However, the existence of a requirement is very helpful in that:

1. Specifying a reliability requirement helps the users and developers
focus on the components of the system that will have the most effect
on the system’s overall reliability. Potentially unreliable components
can be respecified or redesigned to increase their reliability.

2. A reliability requirement will serve as a goal to be achieved during
the development effort. During the testing phases, software develop-
ers and managers can estimate software reliability and determine
how close it is to the required value. The difference between current
and required reliability can be converted into estimates of the time
and resources that will be required to achieve the goal.

We also discovered that one of the most important aspects in an SRE
program is identifying the data to be collected and setting up mecha-
nisms to ensure that the data collected are complete and accurate. We
found that development organizations generally have the capability to
collect the type of data that is required to use software SRE techniques.
Every software development effort that we studied has a mechanism
for recording and tracking failures that are observed during the testing
phases and during operations. Most projects also have requirements
for the test staff to keep an activity log during the testing phases. Prop-
erly used, these data collection mechanisms would provide accurate
failure data in a form that could easily be used by many currently
available software reliability models. However, since many software
managers and developers are not aware of the types of analysis that
can be done with these data, they do not devote the effort required to
ensure that the collected data are complete and accurate.

Finally, we discovered that a properly defined linear combination of
mode] results produced more accurate predictions over the set of fail-
ure data that we analyzed than any one individual model [Lyu92c].
This linear combination modeling scheme is discussed in detail.

7.2 Measurement Framework

To enhance a company’s ability to deliver timely, high-quality products
through an application of SRE practices, as well as to help ensure that
software vendors deliver high-quality component products, several ele-

Software Reliability Measurement Experience 257

ments are included in our investigation. Figure 7.1 shows an SRE
framework in our current practice. You can see that this framework is
similar to that displayed in Fig. 6.1; however, it is more focused on the
product life-cycle phases during system test and postdelivery.

First, customer usage is quantified by developing an operational pro-
file. Second, quality is defined quantitatively from the customer’s view-
point by defining failures and failure severities, by determining a
reliability objective, and by specifying balance among key quality
objectives (e.g., reliability, delivery date, and cost) to maximize cus-
tomer satisfaction. We then advocate the employment of operational
profile and quality objectives to manage resources and to guide design,
implementation, and testing of software. Moreover, we track reliability
during testing to determine product release. This activity may be
repeated until a certain reliability level has been achieved. We also
analyze reliability in the field to validate the reliability engineering
effort and to introduce product and process improvements.

From Fig. 7.1 we can identify four major components in the SRE pro-
cess, namely, (1) reliability objective, (2) operational profile, (3) reliabil-
ity modeling and measurement, and (4) reliability validation. A
reliability objective is the specification of the reliability goal of a prod-

Determine reliability Develop
objective operational profile

Perform system testing

Y
»| Collect failure data

Y

Apply software
reliability tools

¥

Select appropriate software
reliability models

Y

Use software reliability models
to calculate current reliability

Continue testing
A

Reliability
objective
met?

Y

Start to deploy

Y

Validate reliability | Feedback to
in the field the next release

Figure 7.1 Software reliability engineering process overview.

258 Practices and Experiences

uct from the viewpoint of the customer. If a reliability objective has
been specified by the customer, that reliability objective should be
used. Otherwise, you can select a reliability measure which is most
intuitive and easily understood, and then determine the customer’s tol-
erance threshold for system failures in terms of this reliability mea-
sure. For example, customer A might be mostly concerned with the
total number of field failures product X may produce. Therefore, the
reliability objective could be specified as, say, “product X should not
produce more than 10 failures in its first 50 months of operation by
customer A.”

Operational profile concepts and techniques are described in Chap.
5. It is a set of disjoint alternatives of system operation and their asso-
ciated probabilities of occurrence. The construction of an operational
profile encourages testers to select test cases according to the system’s
operational usage, which contributes to more accurate estimation of
software reliability in the field.

Reliability modeling is an essential element of the reliability estima-
tion process. It determines if a product meets its reliability objective
and is ready for release. You are required to use a reliability model to
calculate, from failure data collected during system testing (such as
failure report data and test time), various estimates of a product’s reli-
ability as a function of test time. Several interdependent estimates
make equivalent statements about a product’s reliability. They typi-
cally include the product’s failure intensity as a function of test time ¢,
the number of failures expected up to test time ¢, and the mean time to
failure (MTTF) at test time ¢. These reliability estimates can provide
the following information useful for product quality management:

1. The reliability of the product at the end of system testing.

2. The amount of (additional) test time required to reach the product’s
reliability objective.

3. The reliability growth as a result of testing (e.g., failure intensity
improvement factor, defined as the ratio of the value of the failure
intensity at the start of testing to the value at the end of testing).

4. The predicted reliability beyond the system testing already per-
formed. This can be, for example, the product’s reliability in the field,
if the system testing has already been completed, or the predicted
reliability at the end of testing, if the system testing has not yet been
completed.

Chapter 3 gives a comprehensive survey on existing reliability mod-
els. Degpite the existence of more than 40 models, the problem of model
selection and application is manageable. Guidelines and statistical

Software Reliability Measurement Experience 259

methods for selecting an appropriate model for each application are
developed in Chap. 4. Furthermore, experience has shown that it is suf-
ficient to consider only a dozen models from among the 40 models, par-
ticularly when they are already implemented in software tools (see
App. A).

Using these statistical methods, best estimates of reliability are
obtained during testing. These estimates are then used to project the
reliability during field operation in order to determine if the reliability
objective has been met. This procedure is an iterative process since
more testing will be needed if the objective is not met. When the oper-
ational profile is not fully developed, application of a test compression
factor can assist in estimating field reliability. A test compression factor
is defined as the ratio of execution time required in the operational
phase to execution time required in the test phase to cover the input
space of the program. Since testers during testing are trying to “break”
the software by searching through the input space for difficult execu-
tion conditions, while users during operation execute the software at
only a normal pace, this factor represents the reduction of failure rate
(or increase in reliability) during operation with respect to that
observed during testing.

Finally, the projected field reliability has to be validated by compar-
ing it with the observed field reliability. This validation not only estab-
lishes benchmarks and confidence levels of the reliability estimates,
but also provides feedback to the SRE process for process improvement
and better parameter tuning. For example, the model validity could be
established, the growth of reliability could be determined, and the test
compression factor could be refined.

Various components in this SRE framework are discussed in detail
below.

7.2.1 Establishing software reliability
requirements

Software reliability requirements are specified during earlier develop-
ment phases, and SRE techniques are used to estimate the resources
that will be required to achieve those requirements during test and
operations. The resource requirements are translated into testing
schedules and budgets. Resource estimates are compared to the
resources actually available to make quantitative, rather than qualita-
tive, statements concerning achievement of the reliability require-
ments.

7.21.1 Expressing software reliability. Reliability and reliability-related
requirements can be expressed in one of the three following ways:

260 Practices and Experiences

1. Probability of failure-free operation over a specified time interval
2. MTTF

3. Expected number of failures per unit time interval (failure intensity)

The first form, the basic definition of software reliability, is a proba-
bilistic statement concerning the software’s failure behavior. The other
two forms can be considered relating to reliability. Reliability and
reliability-related requirements must be stated in quantitative terms.
Otherwise, it will not be possible to determine whether the require-
ments have been met. To help in understanding how to develop these
requirements, examples of testable and untestable reliability require-
ments are given in the following paragraphs.

The following statements, paraphrased from a JPL software devel-
opment effort, represent a requirement for which SRE can be used to
determine the degree to which that requirement has been met.

Reliability quantifies the ability of the system to perform a required func-
tion under the stated conditions for a period of time. Reliability is mea-
sured by the MTTF of a critical component. Under the expected operational
conditions, documented elsewhere in this requirements document, the
probability of the MTTF for the software being greater than or equal to 720
hours shall be 90 percent.

The above requirement is stated in a testable manner. If the expected
operational conditions are stated in terms of the operational hardware
configuration and the fraction of time each major functional area is
expected to be used (the operational profile), the test staff can then
design tests to simulate expected usage patterns and use reliability
estimates made during these tests to predict operational reliability.
Confidence bounds should be associated with reliability or reliabil-
ity-related requirements. If the above MTTF requirement had been
stated as being simply 720 hours, it would have been possible to meet
that requirement with a very wide confidence interval (for example, 90
percent probability of the MTTF lying between 200 and 1240 hours).
This could have resulted in the delivery of operational software whose
MTTF was considerably less than the intended 720 hours. Yet the end
users of the delivered software would be told that the reliability
requirement had been met. Not until the software was actually oper-
ated would the users realize the discrepancy. To avoid this problem,
express the reliability requirement as the minimum value of the confi-
dence interval. This will allow the end users to know the probability of
the software meeting its reliability requirement, and permit them to
plan accordingly. It is often needed to specify a tighter confidence inter-
val. The price to pay for this improvement, though, is the need for extra
validation effort to establish the tighter confidence interval.

Software Reliability Measurement Experience 261

An example of an untestable reliability-related requirement is now
given. Again, the text is paraphrased from that found in a JPL devel-
opment effort’s system requirements document.

The system is designed to degrade gracefully in case of failures. As a first
priority, system fault protection shall ensure that no system failures or
component failures will compromise system integrity. As a second priority,
minimum mission science ohjectives previously described in this docu-
ment shall not be compromised. Accordingly, each instrument shall be
designed so that if one fails (either through hardware or software failures),
it will not jeopardize the safety of the system or damage adjacent instru-
ments. This includes provision for isolation from the system via the instru-
ment power supply. If a system fault occurs, the system will automatically
stop any science data gathering and go to a safe state. After a safe state is
achieved and subsystems are reinitialized, science can be resumed.

The foregoing type of requirement, frequently seen in industry for crit-
ical applications, does not provide a basis for measuring the reliability
of the system under development, as it contains no quantitative state-
ments concerning the system’s failure behavior. Rather, it is a state-
ment of design constraints that are intended to localize damage
resulting from a component failure to the immediate area (e.g., assem-
bly, subsystem) in which the failure occurred. During subsequent
phases of system development, it may indeed be possible to determine
whether such constraints have been reflected in the system design and
implementation. However, this information alone is not sufficient to
make quantitative statements concerning the system’s reliability.
Although specifying constraints such as these is an important aspect of
system specification, specific reliability requirements, similar in form
to the first reliability requirement discussed in this section, would
have to be provided if it were intended to use SRE techniques to deter-
mine compliance to a reliability requirement.

7.2.1.2 Specifying reliability requirements. To specify reliability re-
quirements, use one or more of the three methods described below. The
methods are [Musa87]:

1. System balance
2. Release date
3. Life-cycle cost optimization

It is possible to use one of these methods for developing the require-
ments for one component of the system, and another for a separate
component,

The system balance method is primarily used to allocate reliabilities
among components of a system based on the overall reliability require-

262 Practices and Experiences

ment for that system. The basic principle of this method is to balance
the difficulty of development work on different components of the sys-
tem. The components having the most severe functional requirements
or being the most technologically advanced are assigned less stringent
reliability requirements. In this way, the overall reliability require-
ment for the system is met while minimizing the effort required to
implement the most complex components. For software, this might
translate to assigning less stringent reliability requirements to func-
tions never before implemented or functions based on untried algo-
rithms. This approach generally leads to the least costly development
effort in the minimum time. The system balance method is frequently
used in developing military systems.

The second approach is used when the release date is particularly
critical. This is appropriate for flight systems facing a fixed launch
time, or commercial systems aiming at delivery within a profit window.
The release date is kept fixed in this approach. The reliability require-
ment is either established by available resources and funds, or is
traded off against these items. With this approach, it is desirable to
know how failure intensity trades off with release date. First, the way
in which the failure intensity trades off with software execution time is
determined. This execution time is then converted to calendar time.
The following example uses the Goel-Okumoto exponential Poisson
model (GO) model and Musa-Okumoto logarithmic Poisson (MO)
model for illustrations.

Example 7.1 For the GO model, the relationship between the ratio of failure
intensity change during test and the execution time is given by (see Sec. 3.3.2)

In == (7.1)

where t = elapsed execution time
Ao = initial failure intensity
Ay = required failure intensity
b = failure detection rate per failure

This model also has a parameter N, which specifies the number of failures that
would be observed if testing were to continue for an infinite amount of time. For
the MO model, the relationship between the ratio of failure intensity change dur-
ing test and the execution time is given by (see Sec. 3.5.3)

{= i(ﬁ _ 1) 7.9

where ¢, &g, and Ap as above
0 = failure intensity decay parameter

Software Reliability Measurement Experience 263

For this example, the failure history data from one of the testing phases of a JPL
flight program (see J3 in the Data Disk) are used. Applying the GO and MO mod-
els to this data set, the following model parameter and failure intensity esti-
mates are obtained:

Goel-Okumoto Musa-Okumoto
o= 0.3383 failures/CPU hour A, = 0.3249 failures/CPU hour
N = 414.76 failures 6 = 0.001256/failure

b= 0.0008156 per failure

The above equations can be used to determine the amount of test time that will
be needed for various failure intensity improvement factors:

Failure intensity

improvement factor Execution time (CPU hours)
Ao Ay GO model MO model

10 2,823 22,052

100 5,647 242 573

1,000 8,670 2,442,782

10,000 11,293 24,499 873

Note the differences between the predictions made by the two models. In the MO
model, the relationship between additional execution time needed and the
improvement factor is linear, while in the GO model it is logarithmic. At this
point, a choice between the two models must be made. Since it is not possible to
know a priori which model is best suited to the data, the applicability of models
to a set of failure data must be evaluated while the models are being applied.
Once the model most applicable to the failure data has been identified, that
model’s relationship between failure intensity improvement factor and execution
time can be used in conjunction with the relationship between execution and cal-
endar time to determine the failure intensity requirement.

The basis of the third approach, life-cycle cost optimization, is the
assumption that reliability improvement is obtained by more extensive
testing. Costs and schedules for nontesting phases are assumed to be
constant. The part of development cost due to testing decreases with
higher failure intensity requirements (i.e., more failures are allowed),
while the operational cost increases. The total cost therefore has a min-
imum. This is shown below in Fig. 7.2.

To find this minimum, testing cost as a function of failure intensity
must be computed. If testing cost can be related to calendar time, and
if the relationship between calendar and execution time is known
[Musa87], this calculation can be done for a specific model. Similarly,

264 Practices and Experiences

A

Total Cost

Cost Operation Cost

System Test Cost

= -

Failure Intensity Objective
Figure 7.2 Reliability objective by life-cycle cost optimization.

the operational cost as a function of failure intensity could be com-
puted [Ehrl93]. The following costs could be considered:

1. Terminating an improperly functioning program in an orderly
manner

Reconstructing affected databases

Restarting the program

Determinihg the cause(s) of the failure

Developing procedures to prevent further failures of that type

S o N

Repairing the fault(s) causing the failure if the severity and criti-
cality of the failure warrants corrective action

7. Testing the software to validate any repairs

Effect of similar failures in the future on mission or program success

o

9. Loss of customers’ goodwill

10. Other costs, such as settling lawsuits in the event of failures in life-
critical systems (e.g., commercial avionics, medical systems)

As a result, the cost of operational failures depends on many compli-
cated factors and is hard to determine accurately. In particular, the last
two types of costs may be nonlinear with increasing failure intensity.

Software Reliability Measurement Experience 265

However, we may start by assuming that failures are equally costly in
each severity class. Another simple alternative is to assume all opera-
tional failures cost the same, in which case an average cost figure, nor-
mally available in each corporation, could be used. This number
typically ranges from $10,000 to $100,000, depending on the size and
the criticality of each project. .

Note that the cost of testing could be expressed as an increasing
function of time or number of test cases. Three conditions are normally
considered: (1) the cost of testing is linear, i.e., it is constant per unit
time; (2} it is linear up to time ¢,,,, and infinite beyond that, i.e., that
project has to be finished by the time ¢,.,; and (3) initially it is linear,
while later it increases exponentially due to the loss of credibility, lost
market window, penalties, etc.

Determination of the failure intensity requirement then becomes a
constrained-minimum problem that can be solved analytically or
numerically. A typical economic model [Dala88, Dala90] is illustrated
in Example 7.2.

Example 7.2 This model includes costs and benefits derived from trade-off
between testing and operation cost due to failure. For simplicity, it is assumed
that fault and failure have a one-to-one relationship, and could thus be referred
simultaneously. Let

N = expected total number of faults in the program
K(¢) = number of faults observed up to time ¢
x = cost of fixing a fault when found during testing
y = cost of fixing a fault when found in the field
¢ = (y —x) = net cost of fixing a fault after rather than before release

Further, we assume that there is a known nonnegative monotone increasing
function g(¢) that gives the sum of the cost of testing up to time ¢ plus the oppor-
tunity cost of not releasing the software up to time ¢. Here we also assume that
all the failures are equally costly.

Now the following total cost of testing up to time ¢ could be formulated as follows:

Li¢, K(¢), N) =g(t) + xK(t) + y(N — K(¢))
=g(t) - cK@t) +yN (7.3

It can be shown that if the amount of time it takes to find a fault X during test-
ing is distributed with a known distribution function Fy{¢), and the failure times
are independent, then the stop-testing rule turns out to be

g Fx(t)

e > K(¢t) (7.4)

where fx(t) is the density function of Fy{t).

Now if we take g(f) to be linear, i.e., g(t) =g - £, and if we apply the GO model (see
Sec. 3.3.2) for Fi(t), namely, Fx(¢) is 1 — ™ and fx(¢) is be™*, then the stopping rule
in Eq. (7.4) reduces to

266 Practices and Experiences

(g/be) (€™ — 1) = K(¢) (7.5)

Note that this stopping rule depends on g(¢) and ¢ only through the ratio g/c. Also
note that K(t) can be estimated and predicted by

Kit)=N(1-e™) (7.6)

7.2.2 Setting up a data collection process

When you set up an SRE program, you should avoid the ambition to
keep every bit of information about the project and its evolvement over
the life cycle. Often, people do not have a clearly defined objective for the
data collection process. As a result, much effort is expended with little
gain. There have been many instances in which large data collection
efforts have been implemented without any capability to analyze the
data. Clearly defined objectives are necessary to help define the SRE
requirements. In addition, when a large amount of data are required,
the development staff is usually affected. Cost and schedule suffer
because of the additional effort of collecting the data. Project manage-
ment complains about the large amount of overhead involved in the
data collection without any constructive feedback that could help the
development process.

Therefore, we recommend you use the following sequence of steps to
set up a data collection process:

1. Establish the objectives. Establishing the objectives is often the dis-
tinguishing point between successful and unsuccessful data collec-
tion efforts.

2. Develop a plan for the data collection process. Involve all of the con-
cerned parties in the data collection and analysis. This includes
designers, coders, testers, quality assurance staff, and line and proj-
ect software managers. This ensures that all parties understand
what is being done and the impact it will have on their respective
organizations. The planning should include the objectives for the data
collection and a data collection plan. Address the following questions:
a. How often will the data be gathered?

b. By whom will the data be gathered?

¢. In what form will the data be gathered?

d. How will the data be processed, and how will they be stored?

e. How will the data collection process be monitored to ensure the
integrity of the data and that the objectives are being met?

f Can existing mechanisms be used to collect the data and meet the
objectives?

g. How much effort will be required to collect the data over the life
of the project?

Software Reliability Measurement Experience 267

3. If any tools have been identified in the collection process, their avail-
ability, maturity, and usability must be assessed. Commercially avail-
able tools must not be assumed to be superior to internally developed
tools. Reliability, ease of use, robustness, and support are factors to be
evaluated together with the application requirements. If tools are to
be developed internally, plan adequate resources—cost and sched-
ule—for the development and acceptance testing of the tool.

4. Train all parties in use of the tools. The data collectors must under-
stand the purpose of the measurements and know explicitly what
data are to be collected. Data analysts must understand a tool’s
analysis capabilities and limitations.

5. Perform a trial run of the data plan to iron out any problems and
misconceptions. This can save a significant amount of time and
effort during software development. If prototyping is being done to
help specify requirements or to try out a new development method,
the trial-run data collection could be done during the prototyping
effort.

6. Implement the plan. Make certain that sufficient resources have
been allocated to cover the required staffing and tool needs, and that
the required personnel are available.

7. Monitor the process on a regular basis to provide assurance that
objectives are met and that the software is meeting the established
reliability goals.

8. Evaluate the data on a regular basis. Don’t make the reliability
assessment after software delivery. Waiting until after delivery
defeats the usefulness of software reliability modeling because you
have not used the information for managing the development pro-
cess. Based on the experiences reported in [Lyu91a], weekly evalua-
tion seems appropriate for many development efforts.

9. Provide feedback to all parties. This should be done as early as pos-
sible during data collection and analysis. It is especially important
to do so at the end of the development effort. It is very important to
provide feedback to those involved in data collection and analysis so
they will be aware of the impacts of their efforts. Parties who are
given feedback will be more inclined to support future efforts, as
they will have a sense of efficacy and personal pride in their accom-
plishments.

7.2.3 Defining data to be collected

Many projects already have in place some data collection mechanisms
for failure data. For example, JPL has Problem/Failure Report (P/FR),

268 Practices and Experiences

AT&T Bell Laboratories, Bellcore has Modification Request (MR) data-
base, and IBM has Authorized Program Analysis Report (APAR). These
mechanisms track the date and time at which the failure was observed,
a description of the failure, and some information about the system
configuration at the time the failure was observed. Specific information
that needs to be collected is listed in the following subsections.

7.2.3.1 Time between successive failures. Collect the execution time
between successive failures first. If execution time is unavailable, test-
ing time between successive failures, measured by calendar time, can
be used as a basis of approximation. Collect the start and completion
time of each test session. If time-between-failures data cannot be col-
lected, then collect test interval lengths and the number of failures
encountered during each test interval. In many cases, this failure-
count (or failure frequency) information is more easily collected than
the time-between-failure information. Test interval lengths should also
be accurately recorded. If possible, collect the CPU utilization during
the test periods to determine the relationship between CPU and calen-
dar time.

For many development efforts, failure-count information is the only
available type. However, some software reliability tools can use only
time between failures as input. In this instance, the failure-count data
can be transformed to time-between-failures data in one of two ways
- described in Sec. 1.4. Since the uncertainty in reported failure times
affects the accuracy of modeling results, problem-reporting mecha-
nisms should be structured such that the mechanism’s resolution is
greater than the average interfailure time throughout the test cycle.

7.2.3.2 Functional area tested. This can be done with reference to a
software requirements document or a software build plan. Reliability
predictions may be dramatically different when this information is or
is not available. The importance of tracking this information is illus-
trated in the following example.

Example 7.3 Failure data set J3 in the Data Disk is used for this example. The
software reliability estimates are made using software reliability modeling tool
SMERFS and CASRE (see App. A for descriptions). The Goel-Okumoto NHPP
model was applied to the data. The software is assumed to be composed of two
largely independent functional areas, and each functional area would be exe-
cuted 50 percent of the time during operations. In producing the estimates seen
in Fig. 7.3, the model was first applied to the entire set of failure data. This yields
an estimated failure rate of three failures per week at week 41 of the testing
phase.

The actual failure rate curve, however, is bimodal. There is clearly a change in
the test procedure after week 14 of the testing phase. If the two functional areas
are tested such that the first functional area is tested during the first 14 weeks,

Software Reliability Measurement Experience 269 y

3 0 T T T T T T T T

J3 Failure Data &—
GO Modeling Fit ——

S N bl st ,.‘v,ﬂ

number of failures

0 5 10 15 20 25 30 35 40 45
test week

Figure 7.3 Application of GO model to entire data set.

while the second functional area is tested after week 14, then the reliabilities of
the two functional areas can be separately modeled to yield a more accurate reli-
ability estimate.

Figure 7.4 shows the reliability estimates for the two individual functional areas.
By the end of week 14, the expected number of failures per week is 8 for the first
functional area. During the interval between weeks 15 and 41, only the second
functional area is tested. By the end of week 41, the expected number of failures
per week is 1. If the software is delivered to operations at the end of week 41, it
is seen that during operations, 4 failures per week can be expected while execut-
ing the first functional area, and 0.5 failures per week can be attributed to the
second functional area. The resulting estimate of 4.5 failures per week is signifi-
cantly different from the 3 failures per week that were estimated without taking
the change in test focus into account.

As a numerical comparison, the mean square error for the predictions in Fig. 7.3
1s 42.9, while that for the predictions in Fig. 7.4 is 28.3, a significant improve-
ment. Note that the mean square error for the predictions in weeks 15-41 in Fig.
7.4 further drops to 14.2. The close fit in this period can been seen in the figure.

This analysis also shows that the first functional area needs more testing if it
occurs frequently in the operational profile.

7.23.3 Changes during testing. Significant events that may affect the
failure behavior during test include:

270 Practices and Experiences

3 0 T T T T T T T

J3 Failure Data —=—
GO Modeling Fit —+—

number of failures

0 5 10 15 20 25 30 35 40 45
test week

Figure 7.4 Separate GO model application of distinct functional areas.

1. Addition of functionality to the software under test or significant
modification of existing functionality. If the software under test is
still evolving, the failure intensity may be underestimated during the
early stages of the program’s development, yielding overly optimistic
estimates of its reliability.

2. Increases or decreases in the number of testers. This will, for
example, increase or reduce the failure-count data (expressed in calen-
dar time) as testers are added to or taken away from the development
effort. The time spent by each tester in exercising the software must be
recorded so that the failure-count or time-between-failures inputs to
the models are accurate.

3. Changes in the test environment. Examples are addition/removal
of test equipment and modification of test equipment. If the test equip-
ment is modified during a test phase to provide greater throughput, the
time-between-failures and failure-count data recorded subsequently to
the modification will have to be adjusted. For instance, if the clock speed
in the test computer is increased by a factor of 2, the test intervals sub-
sequent to the clock speed increase will need to be half as long as they
were prior to the speedup if failure-count information is being recorded.
If time-between-failures information is being recorded, the interfailure

Software Reliability Measurement Experience 271

times recorded subsequent to the speedup will have to be multiplied by
2 to be consistent with the times between failures recorded before the
speedup occurred.

4. Changes in the test method. Examples are switching from white-
box to black-box testing and changing the stress of software during
test. If the test method changes during a testing effort, or if the soft-
ware is exercised in a different manner, new estimates of the software’s
reliability will have to be made, starting at the time when the testing
method or testing stress changed.

7.2.3.4 Other considerations. Interfailure times expressed in terms of
CPU time are the preferred data. However, failure-count data are also
recommended since existing problem-reporting mechanisms can often
be used. The relative ease of collecting this information will encourage
the use of SRE techniques. Currently, most problem-reporting systems
collect the number of failures per unit test time interval. If your projects
have existing mechanisms for collecting software failure data during
developmental testing, use these data to obtain time-between-failures
or failure-count data.

If failure-count data are used, a useful length for the test interval
must be determined. This is influenced by such considerations as the
number of testers, the number of available test sites, and the relative
throughputs of test sites. Many testing teams summarize their find-
ings on a weekly basis. Typically, a week during subsystem or system-
level testing is a short enough period of time that the testing method
will not change appreciably. Enough failures can be found in a week’s
time during the early stages of test to warrant recomputing the relia-
bility on a weekly basis.

Many development projects require that test logs be kept during
developmental and system-level testing, although the information
recorded in these logs is generally not as accurate as that tracked by
the problem-reporting system. Used as intended, these logs can be uti-
lized to increase the accuracy of the failure-count or time-between-fail-
ures data available through the problem-tracking system. Without
much effort beyond what is required to record failures, the following
items can be collected:

1. Functionality being tested. The functionality can be related to items
in a software build plan or requirements in a software requirements
document. The reliability for each functional area should be modeled
separately.

2. Test session start date and time.
3. Test session stop date and time.

272 Practices and Experiences

In addition, it may be possible to gather CPU utilization data from
the test bench’s accounting facilities for each test period recorded.

If only one functional area is to be tested during a session, record
only one start and stop time. If more than one functional area is to be
tested, however, start and stop times should be recorded for each func-
tional area. If testing is being done at more than one test site, keep a
log at each test site. To determine test interval lengths, use the test logs
from all test sites to determine the amount of testing time spent in a
fixed amount of calendar time. Count the number of unique failure
reports from all test sites written against that functional area in the
chosen calendar interval to determine the failure-count data. These
failure counts and test interval lengths can then be used as inputs to
software reliability models. Note that the reliability of each functional
area is separately determined.

7.2.4 Choosing a preliminary set of
software reliability models

After specifying the software reliability requirements, you need to
make a preliminary selection of software reliability models. Examine
the assumptions that the models make about the development method
and environment to determine how well they apply to your project. For
instance, many models assume that the number of faults in the soft-
ware has an upper bound. If software testing does not occur until the
software is relatively mature and there is a low probability of making
changes to the software actually being tested, models making this
assumption can be included in the preliminary selection (e.g., Goel-
Okumoto model, Musa basic model). If, on the other hand, significant
changes are being made to the software at the same time it is being
tested, it would be more appropriate to choose from those models that
do not assume an upper bound to the number of faults (e.g., Musa-
Okumoto and Littlewood-Verrall models). Many models also assume
perfect debugging. If previous experience on similar projects indicates
that most repairs do not result in new faults being inserted into the
software, choose from those models making this assumption (e.g., Goel-
Okumoto model, Musa-Okumoto model). However, if a significant num-
ber of repairs result in new faults being inserted into the software, it is
more appropriate to choose from those models that do not assume per-
fect debugging (e.g., Littlewood-Verrall model).

It is important to note that there is currently no known method of
evaluating these assumptions to determine a priori which model will
prove optimal for a particular development effort [Abde86]. You are
advised that this preliminary selection of models will be a qualitative,
subjective evaluation. After a model has been selected, its performance

Software Reliability Measurement Experience 273

during use can be quantitatively assessed (see Chap. 4). However, these
assessment techniques cannot be applied to the preliminary selection.
If a model has been shown valid for a similar project or the early
release of the same project, use that model continuously and consis-
tently. If you have no practical experience with software reliability

models, you are advised to use the following models, as recommended
by AIAA [AIAA93]. The order of this list is arbitrary:

1. Generalized exponential model (see Sec. 3.7.1), which includes Jelin-
ski-Moranda model (JM) [Jeli72] and Shooman model [Shoo73] (also
in Sec. 3.3.1), Musa basic model (MB) [Musa79a] (also in Sec. 3.3.4),
and Goel-Okumoto model (GO) [Goel79] (also in Sec. 3.3.2)

2. Schneidewind model (SM) [Schn75] (also in Sec. 3.3.3)

3. Musa-Okumoto logarithmic Poisson model (MO) [Musa84] (also in
Sec. 3.5.3)

4. Littlewood-Verrall model (LV) [Litt73] (also in Sec. 3.6.1)

7.2.5 Choosing reliability modeling tools

Many software reliability tools are available to model and measure soft-
ware reliability automatically. See App. A for a comprehensive survey.

In our study we use two tools: SRMP [Litt86] and CASRE [Lyu92d].
The CASRE tool calculates a product’s reliability (the present reliabil-
ity as well as future predictions of reliability) as a function of test time,
and represents it in terms of several interrelated reliability measures,
such as cumulative number of failures, failures per time interval, and
the product’s reliability function. This enables us to analyze a product’s
reliability from several points of view. CASRE is capable of providing
product reliability estimates not only during system testing but during
the product’s field operation as well. In the latter case, product relia-
bility is expressed as a function of field operation time. CASRE allows
users to select and apply existing software reliability models to the
data displayed in the work space. These models come from the model
library of the SMERFS tool [Farr88], and consist of two categories
based on their input data: time-between-failures models take the
sequence of times between failures as the input, while failure-count
models take number of failures per interval as the input.

7.2.6 Model application and application
issues

After setting up a data collection mechanism and selecting the model(s)
and tool(s), measurement of software reliability can be started. Do not
attempt to measure software reliability during unit test. Although fail-

274 Practices and Experiences

ures may be recorded during this testing phase, the individual units of
code are too small to make valid software reliability estimates. Our
experience indicates that the earliest point in the life cycle at which
meaningful software reliability measurements can be made is at the
subsystem software integration and test level. Experience gained in our
study, as well as empirical evidence reported in [Musa87], suggests that
software reliability measurement should not be attempted for a soft-
ware system containing fewer than 2000 lines of uncommented source
code. Instead, other measures (e.g., statement coverage, data and con-
trol flow coverage, data definitions and uses) could be investigated.
Chapter 12 provides some emerging techniques in this area.

We now turn to the assumptions made by some of the more widely
used software reliability models. Chapter 3 discusses the model
assumptions in detail. These assumptions are made to cast the models
into a mathematically tractable form. However, there may be situa-
tions in which the assumptions for a particular model or set of models
do not apply to a development effort. In the following paragraphs, spe-
cific model assumptions are listed and the effects they may have on the
accuracy of reliability estimates are described.

1. During testing, the software is operated in a manner similar to the
anticipated operational usage. This assumption is often made to
establish a relationship between the reliability behavior during testing
and the operational reliability of the software. In practice, the usage
pattern during testing can vary significantly from the operational
usage. For instance, functionality that is not expected to be frequently
used during operations (e.g., system fault protection) will be exten-
sively tested to ensure that it functions as required when it is invoked.

When the operational usage distribution is not obtainable, one way
of dealing with this issue is to model the reliability of each functional
area separately, and then use the reliability of the least reliable func-
tional area to represent the reliability of the software system as a
whole. Predictions of operational reliability that are made this way will
tend to be more pessimistic than the reliability that is actually
observed during operations, provided that the same inputs are used
during test as are used during operations. If the inputs to the software
during test are different from those during operations, there will be no
easily identifiable relationship between the reliability observed during
test and operational reliability.

2. There are a fixed number of faults contained in the software.
Because the mechanisms by which faults are introduced into a pro-
gram during its development are poorly understood at present, this
assumption is often made to make the reliability calculations more
tractable. Models making this assumption should not be applied to

Software Reliability Measurement Experience 275

development efforts during which the software version being tested is
simultaneously undergoing significant changes (e.g., 20 percent or
more of the existing code is being changed, or the amount of code is
increasing by 20 percent or more). Among the models making this
assumption are the Jelinski-Moranda, the Goel-Okumoto, and the
Musa Basic models. However, if the major source of change to the soft-
ware during test is the correction process, and if the corrections made
do not significantly change the software, it is generally safe to make
this assumption. In practice, this would tend to limit application of
models making this assumption to subsystem-level integration or later
testing phases.

3. No new faults are introduced into the code during the correction
process. Although introducing new faults during debugging is always
possible, many models make this assumption to simplify the reliability
calculations. In many development efforts, the introduction of new
faults during the correction process tends to be a minor effect. If the
volume of software (measured in source lines of code) being changed
during correction is not a significant fraction of the volume of the
entire program, and if the effects of repairs tend to be limited to the
areas in which the corrections are made, this assumption is deemed
acceptable. In the event that code is changing quickly or new faults are
introduced when trying to fix old faults [Leve90], reliability models are
still adaptable by examining the code “churns” [Dala94].

4. Detections of failures are independent of one another. This
assumption is not necessarily valid. Indeed, evidence shows that detec-
tions of failures occur in groups, and there are some dependencies in
detecting failures. However, this assumption enormously simplifies the
estimation of model parameters. Determining the maximum likelihood
estimator of a model parameter, for instance, requires the computation
of a joint probability density function (pdf) involving all of the observed
events. The assumption of independence allows this joint pdf to be com-
puted as the product of the individual pdf’s for each observation, keep-
ing the computational requirements for parameter estimation within
practical limits.

Practitioners using any currently available models have no choice
but to make this assumption. Almost all the models analyzed in Chap.
3 make this assumption. Nevertheless, studies from AT&T, Hewlett
Packard, and Cray Research report that the models produce fairly
accurate estimates of current reliability in many situations [Ehrl90,
Rapp90, Zinn90]. If the input data to the software are independent of
each other, failure detection dependencies may be reduced.

When the above assumptions are deemed necessary for analytical
approaches to reliability modeling, other techniques have been devel-

276 Practices and Experiences

oped to relieve some of these assumptions. Simulation approaches (see
Chap. 16) and neural networks (see Chap. 17) are two of the promising
attempts.

7.2.7 Dealing with evolving software

Most models described in Chap. 3 assume that the software being
tested will not be undergoing significant changes during the testing
cycle. This is not always the case. A software system undergoing test
may be simultaneously undergoing development, with changes being
made to the existing software or new functionality being added period-
ically. To accurately model software reliability in this situation,
changes made to the software have to be taken into account. Three
approaches in handling changes to a program under test are available
(see also Sec. 6.5.2.2):

1. Ignore the change.
2. Apply the component configuration change method.
3. Apply the failure time adjustment technique.

Ignoring changes is the simplest method, and is appropriate when
the total volume of changes is small compared to the overall size of the
program. In this case, the continual reestimation of parameters will
reflect the fact that some change is in fact occurring.

The component configuration change approach is appropriate for
the situation in which a small number of large changes are made to
the software, each change resulting from the addition of independent
components (e.g., addition of the telemetry gathering and downlinking
capability to a spacecraft command and data subsystem). The reliabil-
ity of each software component is modeled separately. The resulting
estimates are then combined into a reliability figure for the overall
system.

The failure time adjustment approach is most appropriately used
when a program cannot be conveniently divided into separate inde-
pendent subsystems and the program is changing rapidly enough to
produce unacceptable failures in estimating the software’s reliability.
The three principal assumptions that are made in failure time adjust-
ment are:

1. The program evolves sequentially. At any one time, there is only one
path of evolution of the program for which reliability estimates are
being made.

2. Changes in the program are due solely to growth. Differences between
version k and version k+1 are due entirely to new code being added to

TR TR ST SN e o e T

Software Reliability Measurement Experience 277

version k. In practice, there may be reductions in one area of the code
between versions k and k+1, while growth in other areas occurs. If the
reductions are small in comparison to the growth, as often occurs in
repairing faults, they can usually be ignored.

3. The number of faults introduced by changes to the program are pro-
portional to the volume of new code.

7.2.8 Practical limits in modeling
ultrareliability

It is important to note a limitation of applying software reliability mod-
eling techniques to verify systems for ultrahigh reliability (e.g., one
failure per 107 hours of operation). It could be shown [Butl91] that
quantification of software reliability in the ultrareliable regime is
infeasible, since the required amount of testing time exceeds practical
limits. For example, a system having a required probability of failure of
1077 for a 10-hour mission implies that MTTF of the system (assuming
exponentially distributed) T is approximately 10® hours. There are
two basic approaches: testing with replacement, and testing without
replacement. In either case, testing continues until r failures have been
observed. In the first case, when a system fails, a replicated system is
put on test in its place. In the second case, the failed system is not
replaced. For the first case, the expected time on test, D,, is given by

D, =Ty 7.7
n

where n is the number of items placed on test. For the second case, the
expected time on test is
4 1

D, = TFJZ:1 m (7.8)

If r is set to 1, this gives the shortest test time possible. Table 7.1 shows
the expected test duration as a function of the number of test repli-
cates, n. The expected test time with or without replacement is the
same in this case.

TABLE 7.1 The Expected Test Duration as a Function of n

No. of replicates (n) Expected test duration D,

1 10% hours = 11415 years
10 107 hours = 1141 years
100 10f hours = 114 years
1,000 105 hours = 11.4 years

10,000 10* hours = 1.14 years

278 Practices and Experiences

To get satisfactory statistical significance, larger values of r are
required, which translates to even more testing. Given that economic
considerations rarely allow the number of test replicates to be greater
than 10, life testing of ultrareliable systems looks quite hopeless.

We should note, however, that the critical software function which
requires such an ultrareliability seldom executes the complete period
of the 10-hour mission. In fact, it could only require a small portion of
the CPU time (e.g., the final landing approach of a long airplane flight).
If we assume that only 0.1 CPU hour of the 10-hour mission requires
this 1077 failure probability, then Tr becomes approximately 106 CPU
hours for the critical function. Consequently, the numbers in Table 7.1
become those in Table 7.2.

It is noted that the critical function could be tested in a more power-
ful CPU, which is equivalent to an increase of the number of replicates.
For example, if we use 10 replicates, each running a CUP that is 100
times faster than the original one, then the goal could be practically
achieved in 42 CPU days. There are, of course, obstacles to overcome
before this kind of testing and validation can happen. But its achieve-
ment would not be completely infeasible.

7.3 Project Investigation at JPL

For project applications in SRE practice, we have conducted a study on
SRE techniques using JPL projects. The objectives of this study include:

1. Examine the applicability of software reliability models to real-
world projects.

2. Apply model selection criteria and compare models.

3. Determine if there is a best model suitable for all applications.

4. Evaluate the cost-effectiveness of SRE techniques.

7.3.1 Project selection and characterization

Data set J1. Project J1 was one of the first spacecraft in which a sig-
nificant fraction of the functionality was provided by software. This
software system, totaling approximately 14,000 lines of uncommented

TABLE 7.2 The Expected CPU Test Duration as a Function of n

No. of replicates (n) Expected CPU test duration D,

1 10% hours = 114 years

10 10° hours = 11.4 years

100 10* hours = 1.14 years
1,000 10° hours = 42 days

10,000 10? hours = 4.2 days

Software Reliability Measurement Experience 279

assembly language, was divided among three real-time embedded sub-
systems: the Attitude and Articulation Control Subsystem (AACS), the
Command and Control Subsystem (CCS), and the Flight Data Subsys-
tem (FDS). The failure data we analyzed come from spacecraft system
testing, at which point the AACS, CCS, and FDS had been integrated
into the spacecraft. Among the items recorded on the P/FR during sys-
tem test are (1) time of failure, (2) failure type, and (3) subsystem in
which the failure occurred. During J1 system test, approximately 9.5
faults per thousand lines of code (KLOC) were discovered.

Data set J2. Launched in 1989, project J2 was developed as a plane-
tary orbiter carrying an atmospheric probe. As with the project J1, a
large fraction of project J2’s functionality was provided by software.
Approximately 7000 uncommented source lines of HAL/S were imple-
mented for the AACS, while about 15,000 source lines of assembly lan-
guage were developed for the Command and Data Subsystem (CDS).
Project J2 failure data come from spacecraft system testing. During J2
system test, approximately 10.2 faults per KLOC were discovered.

Data set J3. Failure data for the project J2 CDS during one phase of
subsystem-level integration testing were available for analysis. We
were able to reconstruct some elements of the testing profile. For exam-
ple, it was known to us that the number of hours per week during
which testing occurred was nearly constant throughout this phase,
which was composed of two testing stages. In addition, the main func-
tional areas of the software received roughly the same amount of test-
ing every calendar week. This information resulted in the failure data
being more accurate than that for other projects. During J3 subsystem
test, approximately 10.1 faults per KLOC were discovered.

Data set J4. Like project J2, project J4 has an AACS and a CDS, and
the number of uncommented source lines of code for each is roughly the
same as that for project J2. As with projects J1 and J2, the failure data
come from the spacecraft system test period. During J4 system test,
approximately 8.0 faults per KLOC were discovered.

Data set J5. Project J5 is a facility for tracking and acquiring data
from earth resources satellites in high-inclination orbits. Totaling
about 103,000 uncommented source lines of code, the software is writ-
ten In a mixture of C, Fortran, EQUEL, and OSL. About 14,000 lines
were reused from previous efforts. The failure data reported here were
obtained from the development organization’s anomaly reporting sys-
tern during software integration and test. During J5 system test,
approximately 3.6 faults per KLOC were discovered.

This variety of project data would give us a chance to see whether the
reliability measurement techniques developed for one type of develop-
ment effort would work well for another.

280 Practices and Experiences

7.3.2 Characterization of available data
For all of the JPL efforts, the following data were available:

1. Date on which a failure occurred

2. Failure description

3. Recommended corrective action

4. Corrective action taken

5. Date on which failure report was closed.

For each of the flight projects, the severity of each failure was also
available.

Note that the following items were not systematically recorded, and
were generally unavailable for use in the modeling effort:

1. Execution times between successive failures, or comparable informa-
tion (e.g., total time spent testing during a calendar interval).

2. Test interval lengths; it was therefore necessary to assume that they
were constant.

3. Operational profile information (e.g., functional area being tested,
referenced to requirements or design documentation; subsystem
being tested; points at which the testing method may have changed.)

The data collected from these development environments tend to be
very noisy, and the assumptions of most software reliability models do
not necessarily hold under the described circumstances. Nevertheless,
failure data collected based on calendar time are typically under simi-
lar circumstances in many other projects.

7.3.3 Experimental results

In the reliability analysis of the JPL project data J1 through J5, we
have to assume that the test time per unit interval of calendar time
was relatively constant and that the testing method remained con-
stant, since this information was not systematically recorded. Largely
because of this lack of information, we decided to model the reliability
of the facility as a whole, rather than attempt to model the component
reliabilities. Subsequently, we applied the SRMP reliability tool to the
five JPL projects and obtained the following model comparison results.
Note that all the JPL project data were collected in failure-count for-
mat, and we had to convert the data into time-between-failures format
for proper execution by SRMP. Random distribution of the grouped fail-
ure data was assumed for the conversion.

We evaluated a number of models surveyed in Chap. 3 and selected
six models—JM, GO, MO, Duane model (DU) [Duan64] (also in Sec.

Software Reliability Measurement Experience 281

3.5.1), Littlewood model (LM) [Litt81], and LV—for project applications
[Lyu91b]. Tables 7.3 to 7.7 summarize the analysis of model applicabil-
ity for the JPL efforts. For each development effort, the models applied
were evaluated with respect to evaluation criteria (Sec. 4.3), including
model accuracy (prequential likelihood value), model bias (z-plot), bias
trend (y-plot), and variability. The value for each criterion is given in
the tables, while the corresponding ranking is given in parenthesis.
Each of these criteria was given equal weighting in the overall ranking.

From Tables 7.3 to 7.7 we found that there was no one best model for
the development efforts that were studied. This is consistent with the
findings reported in Chap. 4. It is easy to see that a model that per-
forms well for one development effort may do poorly in another. For
instance, the Littlewood-Verrall model performs very well for the first
three data sets—in fact, it outperforms all of the other models. How-
ever, it comes in last for the remaining two projects. This inconsistency
is repeated for the other five models as well. There were no clear dif-
ferences between the development processes for the five JPL applica-
tions, certainly none that would favor the selection of one model over
another prior to the start of test. These findings suggest that multiple
models be applied to the failure data during the test phases of a devel-
opment effort, preferably models making different assumptions about
the failure detection and fault removal processes. In addition, the mod-
els should be continually evaluated for applicability to the failure data.
The model(s) ranking highest with respect to the evaluation criteria
should then be chosen for use in predicting future reliability.

7.4 Investigation at Bellcore

After the study of JPL historical project data, we learned the lesson
that data collection plays a crucial role in SRE applications. We also
learned that multiple models should be applied to project data and the
selection of best model(s) should be done continuously. Another study
was performed to investigate Bellcore projects for SRE applications
[Carm95]. The objectives of this study were:

1. Apply a better data collection effort and observe the effect.

2. Search better model(s) for particular projects as a posteriori.

3. Observe and quantify the growth of reliability during testing.

4. Classify the characteristics of reliability models.

7.4.1 Project characteristics

Project Bl is a key telecommunications software system for daily
telephony operations. This system has been in existence for over 10

(m) (9} (9 () (2) (€ Huwl [[erss0)

(%) 7952 (9) GF0'¥ (1) L8T'C {8)8L9% (¥) 806'€ (9) cF0¥ Ayiqerrep
(1) 9E¥c 0 (&) 0S¥€°0 (9)Z8%F0 (%) 29G¥ 0 (%) 80¥E0 (€) 05%€°0 puai,
(9 I8S3'0— (D PBLTO (Z)B¥LTO () 00LT0 (8) €8LT°0 () E8LT0 setq
(T) €219 (8) 0°EF9 (9) §'8GL (9)T°189 (%) £°6E9 (8) 0°E¥9 £oeandoy
ATl W1 na O 0D r 2INSBIN
ejeq g£r 4o} sbupjuey [spop §°Z 319vl

48] (9 §2] (9) (€ (%) Juel [[eI2A0)

(9) €82 (¥) ¥89°C () 1PS'¥F (T) G6£°3 (T) 864G (8) L09T Lyr[iqeLIep
(1) 28010 (¥) ¥96¥%°0 (Z) 819%'0 (9) T¥0G°0 (¥) ¥46¥%°0 (£) 396¥%°0 pusLy,
(Z) B6SZT 0 (9) G8€L°0 (M ¥¥6T°0 (9) 6LEE°0 () 8LEE0 (€) 8LEE0 selg
(1) 1501 (3) #LOT (9) 8601 (9) 8L0T (F) GLOT (Z) 7LOT Aoeanooy
A1 W1 na O 09 Nr anses|y
B)eq 2r 404 sbupjuey [9poiy ' 31GVL

(T (9) (2) (e 9 jueld [[etoA()

(%) IS'%3 (G) o {1) 20¥'8 (3) 92G'6 (8) I8°CT (G) o0 ANTIqeLIBA
(1) 9L80°0 (¥) ¥660°0 (9) TGSZ0 (%) L9600 (€) §960°0 (6) 66600 pua4j,
(T) £€6L0°0 (Q) ¥662°0 (3) €0LT°0 (8)6%82°0 (€) 6¥82°0 (8) ¥662°0 serq
() T°6%¢ (9) 6'628 (%) 9°98¢ () g1LS (€Y 1829 (9) L'¥68 £oeIndoy
AT W1 na O 0o nr INSBI

ejeq Lr o) sbunjuey jopoy €2 318vVL

282

(9) (2) (9 (&) ¥ (D Yuel [[BI8AQ

(9) 68T'E (¥) 688’1 (9)089'T (D ss6ET (%) 0FS'1 () L8S'T Aiqerep
(9) 600170 {1)9090°0 (%) 8160°0 (¥) 0290°0 (8) S190°0 (1)9090°0 pus4g,
(6)8L98°0— (1) E€30L0 (9) 6%37°0 (T) €208°0 (1) €80€°0 (1) £302°0 serq
(%) 6°0%6 (T) L°GT6 (9) §'6z6 (I) L'S16 (¥) 8°GI6 (T) 1'G16 £oeanaoy
AT W'T na O 0D nr INSEIP]
eleq Sr 1o} sbupjuey jppoW Z°Z 319Vl

(9) (@ (T (D (€) (€) Hued [[BI2A)

(9) g9¢°'¢ (¥) 600°T (G) €002 () LOO'T (1) 2001 (1) 2001 ANIqerIep
(1) 6e¥T1°0 (8) 66880 (Z) 08120 (8) 66€%°0 (€) 66£2°0 (€)66£%0 pusij,
(9) €8¥%€°0— (2) 69630 (T) 8G81°0 (3) 69620 (¥) 89630 (¥) 89620 selg
(%) 6'629 (8) 1T°L%9 (1) 0'919 (8) 1229 (8)T°LE9 (8)1°L39 Aormay
AT W11 na O oD nr aInseay

eleq ¢ 104 sbupjued |spopy 9°2 374Vl

3
[
~N

284 Practices and Experiences

years and it is deployed by all the regional Bell operating companies.
The whole system includes around 1 million lines of C source code, with
the main application being composed of 700K lines of code. During test-
ing of various project Bl releases, complex interactions with other
large telecommunications systems are involved. Since test metrics
were collected in an automatic testing environment, some approxima-
tions to software execution time are available, which include the num-
ber and size of messages received per day, as well as total and unique
test cases executed per day. The failure reports represent testing activ-
ities conducted by a group of 15 staff members that were involved with
testing the current release, which includes about 250K lines of new and
changed lines of code.

7.4.2 Data collection

Failure data for project B1 are collected from Bellcore internal problem
tracking systems. This database stores information about all the fail-
ures (i.e., Modification Requests, or MRs) found during testing and
operation. The discovery date, description, originator, severity, and
other tracking information are associated with each failure. A query is
available to return the number of failures found on each testing day.
Staff time related information is collected manually for the project. The
data collection form for this process is shown in Fig. 7.5. In addition,
project B1 is able to automatically extract some time-related records to
represent the intensity of testing.

From several months’ effort of software failure data collection during
system testing, the following scenarios were made available for the
project (B1):

1. Bl.calendar: This data set collects software failure data reported
during B1 system testing, based on calendar time.

2. Bl.staff: This data set records Bl system testing failures based on
staff time reported by each tester during testing.

3. Bl.all_test: This data set records B1 failures based on the total test
cases executed per testing day. The test case information is auto-
matically collected.

4. Bl.uniq_test: This data set records B1 failures based on the number
of unique test cases executed each day. Repeated test cases run on the
same day are not counted. This information is automatically collected.

5. Bl.message: This data set records B1 failures based on the messages
the system sends out. The number of messages is considered an indi-
cation of the intensity of software execution. This information is
automatically collected.

Software Reliability Measurement Experience 285

7.4.3 Application results

We used the CASRE tool to apply software reliability models to the
Belleore data sets. There are two types of models in CASRE: time-
between-failures (TBF) models and failure-count (F'C) models. Table
7.8 presents a comparison of TBF models, including LV, geometric
model (GEO) [Farr83] (also in Sec. 3.5.2), MB, JM, and MO, for the proj-
ect B1 data using messages as a time measure (Bl.message). Table 7.9
shows comparable results for FC models, which include generalized
Poisson model (GP) [Farr83], Brooks and Motley Poisson model (BMP)
and binomial model (BMB) [Farr83], NHPP (same as GO) model, and
Yamada delayed S-shaped model (YSS) [Yama83] (also in Sec. 3.4.2).
The first row lists the models being compared. These are followed by
the rows that record results from several model evaluation criteria,
discussed in Sec. 7.3.3, and goodness-of-fit measure (Kolmogorov-
Smirnov test for TBF data, chi-square test for FC data). Rank ordering

Test Data Collection Sheet

<Project Name>

Testing phase: Week no.: Tester ID:

Monday’s date:

Mon. Tues. Wed. Thurs. Fri. Sat. Sun.

Calendar working
time (hours)*

Staff tesling time
(hours)**

No. of total test
cases run

No. of unrepeated
test cases run

No. of severity |
failures

No. of severity 2
failures

No. of severity 3
failures

No. of severity 4
failures

* Record the official working hours at the company (usually 7.5 hours).

*# Record the tester’s time (hours) spent on system testing. Include: (1) functional test, (2) regression testing
(3) test case preparation.

NOTE: Do not count tester time spent meeting with developers regarding MR fixes.

AT B R e

Figure 7.5 Sample data collection form.

286 Practices and Experiences

TABLE 7.8 TBF Model Comparisons for B1.message Data

Measure LV GEO MB JM MO
Accuracy 526.8 (1) 5295 (2) 529.8 (4) 529.5 (3) 529.9 (5)
Bias 0.127 (5) 0.113(3) 0.080 (2) 0.067 (1) 0.120 (4)
Trend 0.0940 (1) 0.1490 (2) 0.1644 (5) 0.1643 (4) 0.1511 (3)
Variability 1.85 (2) 1.78 (1) 2.76 (4) 2.80 (5) 1.87 (3)
Goodness-of-fit 0.045 (1) 0.107 (4) 0.104 (2) 0.111 (5) 0.105 (3)
Overall rank 1 2 3 4 5

TABLE 7.9 FC Model Comparisons for B1.message Data

Measure GP BMP NHPP BMB YSS
Accuracy 99.87 (1) 104.12 (3) 103.63(2) 104.80 (4) 118.03 (5)
Goodness-of-fit 42.91 (1) 50.09 (2) 55.42 (4) 50.29 (3) 60.38 (5)
Degree of freedom 16 19 19 19 12
Overall rank 1 2 3 4 5

of the measure for each criterion is listed in parentheses. Overall ranks
are provided in the last row. We can see for Bl.message data, LV per-
forms the best among the TBF models, while among the FC models, the
GP model performs the best.

Tables 7.10 and 7.11 list, for Bl.message data, the estimated times
between failure, failure rates, and the factor of reliability growth for
the TBF and FC models, respectively. To capture the growth of reliabil-
ity from each model’s viewpoint, we define a reliability growth factor
(RGF) to be

RGF = .ﬁ.m.':ll tlfne between fal%ures (for TBF models) (7.100)
initial time between failures

= initial fa'ulure rate (for FC models except the YSS model)
final failure rate

(7.106)
TABLE 7.10 Time (Messages) Between Failures and Reliability Growth
Estimated by TBF Models
Measure GEO JM LV MB MO Average
Initial TBF 798 896 817 909 823 849
Final TBF 3277 4213 3790 4047 3269 3719

RGF 4.11 4.70 4.64 4.45 3.97 4.37

Software Reliability Measurement Experience 287

TABLE 7.11 Failure Rates (Per Day) and Reliability Growth
Estimated by FC Models

Measure BMB BMP GP NHPP Average
Initial failure rate 3.34 3.38 2.92 3.30 3.24
Final failure rate 0.65 0.64 0.46 0.66 0.60
RGF 5.16 5.31 6.29 5.02 5.45

In other words, RGF is the same as the failure intensity improvement
factor discussed in Example 7.1. Note that RGF is not defined for the
YSS model.

The overall comparison of the five Bellcore data sets is summarized
in Table 7.12 for the TBF models, and in Table 7.13 for the FC models.
From these two tables we can see that for the Bellcore project data, LV
is the best TBF model. For the FC type models, the GP model is the
best one.

Table 7.14 summarizes the overall indication of level of data conver-
gence and reliability growth for each data set, across all TBF models.
Table 7.15 presents an analogous summary for the FC models. The sec-
ond column in these tables, first convergence point, represents the
number of data points upon which at least one model converges,
divided by the total number of data points. Its percentage ratio is given
in parentheses. The third column, common convergence point, is given

TABLE 7.12 Overall Model Comparisons
of TBF Models

Model GEO JM LV MB MO
Bl.calendar (5) (3) (1) (2) (4
Bl.staff (5) (3) (1 (2) (4)
Bl.all_test (b) (1) (1) (3) (4)
Bl.uniq_test (5) (D (2) (3) (4)
Bl.message (2) (3) (1) (3) (5)
Sum of rank 44 33 25 36 47
Total rank {4) (2) (1) (3 (5)

TABLE 7.13 Overall Model Comparisons of FC Models

Model BMB BMP GP NHPP YSS
Bl.calendar {4) (2) (3) (1) (4)
Bl.staff {3) (3 1 (5) (1)
Bl.all_test 4) (3) (1 (5) (1)
Bl.uniq test (4) (3) (@B (5) (2)
Bl.message (4) (2) (1) 3 (5)
Sum of rank 19 13 7 19 13

Total rank (4) (2) (1) (4) (2)

288 Practices and Experiences

by the number of points at which all models converge divided by the
total number of points. The percentage ratio is also in parentheses. A

high ratio indicates the parameter estimation did not converge until

very late. This would happen when the data set is very noisy.

From Tables 7.14 and 7.15, we can make following observations:

. When a reliability model is applied to a data set, it usually requires
some failure observations in the estimation process for the model to
get convergence. On the average, TBF models take at least 27 per-
cent of the data to get initial convergence, while FC models require
only 6 percent of the data. However, even if a model can converge
very early, we still recommend that you use at least 30 observations
(failures for TBF models or intervals for FC models) or 30 percent of
the total data points for parameter estimation in the model applica-
tion.

. It usually takes quite a few data points before all the models con-
verge, particularly for TBF models. In some cases a TBF model
would not converge until a large amount (say, 86 percent) of the fail-
ure data are observed.

. Not only do FC models converge earlier than TBF models, but they
normally have a higher RGF than TBF models. In general, the data
sets with an earlier converging point would have a larger RGF.

. The B1 project tracks reliability growth well during testing, using
either calendar time, staff time, or test-related time (test cases exe-

TABLE 7.14 Overall RGF of TBF Models for Each Data Set

Project data First convergence point Common convergence point RGF
Bl.calendar 31/150 (20.6%) 102/150 (68.0%) 5.10
Bl.staff 34/150 (22.7%) 130/150 (86.7%) 3.57
Bl.all_test 34/150 (22.7%) 130/150 (86.7%} 3.46
Bl.uniq_test 77/150 (51.3%) 130/150 (86.7%) 4.20
Bl.message 32/150 (21.3%) 90/150 (60.0%) 4.37
Average (27.7%) (77.6%) 4.14
TABLE 7.15 Overall RGF of FC Models for Each Data Set

Project data First convergence point Common convergence point RGF
Bl.calendar 5/85 (5.9%) 33/85 (38.8%) 6.52
B1.staff 5/85 (5.9%) 55/85 (64.7%) 4.67
Bl.all_test 4/68 (5.9%) 44/68 (64.7%) 4.35
Bl.uniq_test 4/68 (5.9%) 44/68 (64.7%) 5.81
Bl.message 5/71 (7.0%) 14/71 (19.7%) 5.45
Average (6.1%) (50.5%) 5.36

Software Reliability Measurement Experience 289

cuted, messages sent by the system). This consistency indicates that
this particular release has a well-controlled testing procedure and a
smoothly conducted testing activity, which is confirmed when evalu-
ating the software engineering process of the project.

7.5 Linear Combination of Model Results

Our other finding is that linear combinations of model results, even in
their simplest format, appear to provide more accurate predictions
than the individual models themselves [Lyu91c]. Basically, we adopt
the following strategy in forming combination models:

1. Identify a basic set of models (the component models). If you can
characterize the testing environment for the development effort,
select models whose assumptions are closest to the actual testing
practices.

2. Select models whose predictive biases tend to cancel each other.
As previously described, models can have optimistic or pessimistic
biases.

3. Separately apply each component model to the data.

4. Apply certain criteria to weight the selected component models (e.g.,
changes in the prequential likelihood) and form a combination
model for the final predictions. Weights can be either static or
dynamically determined.

In general, this approach is expressed as a mixed distribution,
£@ =3 o) A (7.11)
i=1

where n represents the number of models, /7(¢) is the predictive proba-
bility density function of the jth component model, given that i — 1
observations of failure data have been made. Note that

Z 0;(t) =1 for all £’s
J
The linear combination model tends to preserve the features inher-
ited from its component models. Also, because each component model
performs reliability calculations independently, the combination model
remains fairly simple. The component models are plugged into the
combination model only at the last stage for final predictions.
Selecting appropriate component models is, of course, important
to the success of the combination model. The parameter-estimation

290 Practices and Experiences

method you select to implement the component models may, to a cer-
tain extent, affect the combination model’s prediction validity. We feel
that the Goel-Okumoto (GO), Musa-Okumoto (MO), and Littlewood-
Verrall (LV) models are the best candidates for our linear combination
models. We selected them because in our investigations, we found that
their predictions were valid [Lyu92c]. Other practitioners have also
found that they perform well, and they are widely used [AIAA93].
Another reason is that they represent different model categories. GO
represents the exponential-shaped NHPP model; MO represents the
logarithmic-shaped NHPP model; and LV represents the inverse-poly-
nomial-shaped Bayesian model. Finally, at least with the data set we
analyzed, the biases of these models tend to cancel out. GO tends to be
optimistic, LV tends to be pessimistic, and MO might go either way.

We experiment with three types of combinations. The goal of each is
to reduce the risk of relying on a specific model, which may produce
grossly inaccurate predictions, while retaining much of the simplicity
of using the component models. These combinations are:

1. Statically weighted combinations

2. Dynamically weighted combinations in which weights are deter-
mined by comparing and ranking model results

3. Dynamically weighted combinations in which weights are deter-
mined by changes in model references.

7.5.1 Statically weighted linear
combinations

This type of model is the simplest combination to form. Each compo-
nent model has a constant weighting which remains the same through-
out the modeling process. The main statically weighted combination is
the equally weighted linear combination (ELC) model, which is formed
by the arithmetic average of all the component models’ predictions,
namely,

1 1 1
ELC = 3GO+ 3MO+§LV

This model follows a strategy similar to that of a Delphi survey, in
which authorities working independently are asked for an opinion on a
subject, and an average of the results is taken.

7.5.2 Weight determination based on
ranking model results

Combination models may produce more accurate results if the weights
are dynamically assigned rather than remaining statie throughout the

Software Reliability Measurement Experience 291

modeling process. One way of dynamically assigning weights is based
on simply ranking component model results. If a combination model
contains n components, choose a set of n values that can be assigned to
the components based on a ranking of model results. One of the combi-
nations is the median-weighted linear combination (MLC) model,
formed by the following: for each failure, the component models would
be run, and the results of the models would then be compared. The
models predicting the highest and lowest times to the next failure
would then be given weights of 0 in the combination, while the predic-
tion in the middle would be given a weight of 1.

The other combination of this type is the unequally weighted linear
combination (ULC) model. This model is similar to MLC except that
optimistic and pessimistic predictions contribute to the final predic-
tion, The prediction is not determined solely by the median value. Here
we use weightings similar to those in the Program Evaluation and
Review Technique:

1 4 1
60+EM+6P

where O represents an optimistic prediction, P a pessimistic predic-
tion, and M the median prediction.

7.5.3 Weight determination based on
changes in prequential likelihood

The dynamically weighted linear combination (DLC) model is the one
in which weights are both dynamically determined and assigned. The
basis for determining and assigning weights is the changes in model
preferences over a small number of observations.

In the DLC model, we assume that the applicability of any individ-
ual model to the project data may change as testing progresses. There-
fore, the component models’ weights will change according to changes
in a model’s applicability. Here, we use changes in prequential likeli-
hood—a measure that denotes a model’s accumulated accuracy—to
assign weights to the component models, which could be taken over a
few or many time frames. As a baseline, we formed the simplest DLC
model by choosing an observation window of one time frame before
each prediction as the reference in assigning weights.

7.5.4 Modeling resuits

In order to determine the validity of the linear combination modeling
scheme, we use six models selected in Sec. 7.3.3 as a reference group to
compare with the experimental group of linear combination models.

292 Practices and Experiences

Modeling results for this comparison came from three sets of pub-
lished data in [Musa79]. These data sets are also listed as SYS1, SYS2,
and SYS3 in the Data Disk. Table 7.16 shows the result of SYS3 data
application.

In Table 7.16, numbers in each row represent the computed measure
under each criterion, with ranks in parentheses corresponding to the
models in columns. The last row, “Overall rank,” was determined by
equally treating all the four criteria. Note that the “starting data” indi-
cates when the model predictions began; previous data points were
used for parameter estimations. This starting point was chosen such
that a small but reasonable set of data points could be used for the
parameter estimations.

It is observed from this table that the proposed linear combination
models performed relatively well compared with the other six models.
Model application to other data sets in [Musa79] also showed similar
results.

7.5.5 Overall project results

Tables 7.17 and 7.18 list the performance comparisons for the three
data sets from [Musa79] and the five data sets from JPL (J1 through
J5). The overall comparison is done by using all four measures in Table
7.17, or by using the prequential likelihood measure (the accuracy cri-
terion) alone in Table 7.18, since it is judged to be the most important
one. In general, we consider a model as being satisfactory if and only if
it is ranked 4 or better out of the 10 models for a particular project. To
extend this idea, we define a handicap value, which is calculated by
subtracting 4 (the par value) from the rank of a model for each data set
before its ranks are summed up in the overall evaluation (or subtract
32 from the “Sum of rank” row in Tables 7.17 and 7.18). A negative
handicap value represents satisfactory overall performance for the
eight data sets.

We can observe several important points from these summary tables:

1. There are two sets of models under investigation here: the set of
single models, and the set of combination models. In general, the set of
combination models perform better than the set of single models. The
acceptable models (those with a negative handicap), when considering
all four measuring criteria (Table 7.17), are exactly the four linear com-
bination models. When considering the accuracy criterion alone (Table
7.18), the three acceptable models, DLC, ELC, ULC, also belong to the
combination model set. By evaluating the handicap value, we also note
that the combination models usually beat the other single models with
a significant margin.

(D (@) (€ 2] (9) (6) (6) () (8 (9) HUEBL [[BI8A0
(€) ¥) 9 (L) @ 0D (1) Q) ® (6)

T06°€ EL0Y 961¥ Yooy YIL'E 6009 9¢¥'e 880'F% 60%°S ¥8E°S Liqerres
(T 2 © (@) (8) 9 (119) (@) (6) (L)

¢9%0°0 08%0°0 ¥LV00 L9¥70°0 06900 09070 0vL0°0 L8¥0°0 £990°0 €690°0 pusadL],
(9) (M (€ F) (6)) (oD (1) (9) (®)

6%90°0 98G0°0 ¥650°0 0790°0 S¥80°0 6380°0 ¥660°0 9840°0 T9L0°0 GE8O'0 Selg
() () (@) (@) (6) (8) (Y (¥) (L) 2]

1°608- T'I18- 8018~ 80T18- Lg18- €118 EFI8- I'TI8- G118- L'T18- Aoeamooy

01d OTIN il DTH AT W1 na ON 1013 Nf SINSBIN

(09—®rep Bunue)s ‘syurod eiRp £07) € 108 Ble(]

OW (¥} ‘0713 (¥) “0In (€) ‘01N (2) “01a (1) :siepo papuawwiosay

€SAS 198 eleq Jo} suosiedwo) [9pow 91°L 318Vl

293

(T) #) (€) (@)) (L} (01) (9) (6) (8) Huer (20,
€G- L+ 0 G- Lt L1+ 9+ 6+ ve+ 81+ desrpuey
6 6¢ (45 0e 6¢ 6% 89 184 9g 0s Jued jo umg
(D (@ (L) (8) (6) (@ (0T) (@) (9 (@) sr
(1) (9) F) (€) (9) (9) (@) (9) (9) (9 ¥r
(D) (8) () (€ (@) (9) (01} ® (9) (9) er
(D (8) (€) (@) ¥ (@ (01) (6) L (9) ar
(M (9) ¥) (&) (@) (6) (8) (9) L) (oD 185
(1) (¥) (@) (@) (6) (8) (oD 2] (L)) ESAS
@ (€) ¥)) T L (om) (6) (L) CSAS
() (€) (¥) (@ (L) (9) 8 (@) (6) (01) ISAS
1a DTN I OTH AT N1 na ON 019 Nr [PPOTAL
2INSBIN A0BINDOY Y] uis() BIe(Yo J0j Furuey] [9poIy Jo Lrewwng
ainseajy Aoeinsoy oy} Aq suosuedwon |9po [[e49AQ 817/ 314Vl
(D (¥) (€ (D (9 oD W (9) (6) (8) Jued rejo],
L= - (A L= 8+ get 16+ 0T+ get GGt deorpuey
ge 1€ 0e 1514 oF G9 eg (a4 LS ¥4 AUBL JO Wng
9 (e) (L) (8) (01 (€) (6) (T (9 (D ar
(€) (%) (9 (M (01) (6) (1) (8) (9) (9) 144
(9 ¥ (D (1) (1) on (¥ (9 (9) (8) er
(@) (®) (€ ()) (6) (9 (0T) L) (G) or
(1) (@) ¥) (@) (@) (6) (L) (9) (L) (v Ir
(D) (@) (€) 2 9 (6) (8)) (8) (9) €SAS
(@) (@) (9 ¥) (1) (8) (L) (9) (oD (6) GSAS
(9) (€) (@ ¥) (9) (8) (9 (M (6) (0D 184S
O1d TN 01N OTd AT W1 na Ol 013) r [PPOIN
BLIDILL) 00y [TV Aq BIB(] Yoy J0] SUUEY [PPOIN JO ATewwng
ela1u) ino4 |jy Buisn suosuedwo) [apo [le4sA0 2172 31GVL

294

Software Reliability Measurement Experience 295

2. By weighting or averaging the predictions from the three well-
known component models, GO, MO, and LV, the combinational models
appear to be less sensitive to potential data noise than their component
models and other single models. This is reflected in the investigated
data sets which include both execution-time-based data and calendar-
time-based data. Moreover, when we examine all project data for the
evaluation criteria, we can see that the combination models could
sometimes outperform all their component models, but they never per-
form worse than the worst component model. _

3. The DLC and ELC models perform rather consistently. Most other
models seem to perform well for a few data sets but poorly for other
data sets, and the fluctuation in performance is significant. By pre-
serving good properties from the three well-known models with equal
weightings, the ELC model achieves a good overall performance, as
expected. On the other hand, since the DLC model is allowed to dynam-
ically change its weightings according to the outcome of the accuracy
measure, it is not surprising to see it consistently produce the best
accuracy measure for almost every data set. This consistency suggests
that, if you use whatever accuracy measures you deem the most impor-
tant as the weighting criterion in forming the DLC model, you will get
the best results.

7.5.6 Extensions and alternatives

You can extend or alter our basic approach in the following ways:

1. Extend the DLC model by increasing the size of the observation win-
dow from one time frame to N time frames. The DLC model consis-
tently produces the best accuracy measure, but with only one
observation window, it might fail to note a global measurement
trend. Thus, a natural extension is to enlarge the window.

2. Try to apply models other than GO, MO, and LV as component mod-
els. If some models perform well in a particular data set, they should
be the candidate component models to form a combination model.

3. Use more than three models as component models. We believe that
the more component models you apply, the better the prediction.
However, more computations are required, and the returns may
diminish as more models are added.

4. Apply alternative weighting schemes that are based on project cri-
teria and engineering judgments. Our approach is flexible enough
that you can decide how you want to form a combination model.

5. Use the combination models themselves as component models to
form another combination model.

296 Practices and Experiences

6. As the original assumptions behind each model become lost through
the layers of linear combinations, a distribution-free (nonparamet-
ric) modeling technique may emerge.

In our investigation, the most promising approach was to extend the
DLC model. We considered a DLC model with a fixed N window, DLC/F,
and a DLC model with a sliding N window, DLC/S. Figure 7.6 shows
how the two models differ.

In the DLC/F model, the weight assignments for each model are
based on changes in the accuracy measure over the last N observa-
tions. The weight assignment for each model remains fixed for the next
N predictions. At the end of that time, the weights are recomputed
according to the changes in accuracy over the last N observations. To
compute the weight of a component model, you first determine the
amount of change in component model A’s accuracy measure over the
last N observations. You then identify component model B, the compo-
nent model whose accuracy measure changed the most. The unnormal-
ized weight for A is simply the ratio of the change in its accuracy
measure to the change in B’s accuracy measure.

In the DLC/S model, you recompute the weight assignments for each
model at each data point, using changes in the accuracy measure over
the last N observations as the basis for determining each model’s
weight. To compute weights for component models, the procedure is the
same as that jn the DLC/F model.

" "l "2
computation computation computation

W, reference W reference W. ., reference
window window window

Time
[T N N 200 T SN O O O DO] o

Figure 7.6a The DLC model with a fixed observation window.

w. ., reference
i+2

window i+2
-

w. reference

i+l 7, w,
window +1

.

W, reference W,

window .
- l Time
[T I [N TN Y T T A] .

Figure 766 The DLC model with a sliding observation window.

Software Reliability Measurement Experience 297

Figure 7.7 summarizes the accuracy measure of the DLC/F and
DLC/S models, normalized with respect to the number of measured
points in each data set before being summed up for the eight data sets.

As Fig. 7.7 shows, the DLC/S model is generally superior to the
DLC/F model. This result is not surprising, since DLC/S allows the
observing window to advance dynamically as step-by-step prediction
moves ahead. In general, the accuracy of the DL.C/F model deteriorates
when the window becomes larger. The DL.C/S model’s performance, on
the other hand, improves when the window becomes larger, but only
slightly larger. We found that a window size of three to four time
frames is optimal.

Of course, the best window size depends on your development envi-
ronment, testing scheme, and operational profile, but, in general, the
window size should be fewer than five time frames, since the model is
then able to catch fast shifts in model applicability among the compo-
nent models.

The accuracy measure in Fig. 7.7 is the prequential likelihood, but
other accuracy measures, such as the Akaike information criterion—
another criterion to denote how close a prediction is to the actual data
[Khos89]—or mean square error, are also feasible. The main strength
of the DLC models is that they combine component models in a way
that lets the output be fed back for model adjustment.

The fundamental approach of the linear combination models is sim-
ple. However, by applying more complicated procedures, we risk losing
the individual model’s assumptions about the physical process. It then

Accuracy
Measure

41.0 ,m————- DLC/F

40.9

-

40.8 s

-

40.7 ,f
. DLC/S
40.6

40.5

40.4
1 2 3 4 5 6 7 8 9 10
(Window Size)

Figure 7.7 Summary of the DLC/F and DL.C/S models for windows up to 10
time frames.

298 Practices and Experiences

becomes harder to get insight into the process of reliability engineer-
ing. Most reliability models view software as a black box from which to
observe failure data and make predictions. In that context, our com-
bination models do not degrade any properties assumed in current
reliability-modeling practices.

7.5.7 lLong-term prediction capability

Our results have shown that the combination models perform well in
making step-by-step predictions—in which you can adjust the model’s
parameters for each prediction—but we also want to determine how
they perform in making long-term predictions, say, 20 failures ahead.
For this evaluation, we select the ELC and DLC models and compare
them with the GO, MO, and LV component models. Figure 7.8 shows
the prediction curve for each model for the data set J3.

We use the first 152 data points J3, or up to 777 cumulative test
hours as indicated by the dashed line, to estimate each model’s param-
eters. Immediately following this estimation stage is the prediction
stage. For the project J3, these two stages follow the project’s natural
breakdown into two testing stages.

For the DL.C model, we compute model preferences and weights in
the estimation phase, and fix the weight assignments in the prediction
phase. From Fig. 7.8 we can observe that LV’s prediction curve is too

500

400 -

300

]

200

Cumulative failures

152 b —m e — o

100

|
| 0777 !I I | i I
0 0.4 0.8 1.2 1.6 2 24 2.8
Cumulative test hours (thousands)

— Actual -+~ GO -6 MO -A-LV -HBELC —>¢ DLC

Figure 7.8 Long-term predictions for data set J3 from several models.

Software Reliability Measurement Experience 299

pessimistic, and GO’s and MO’s are too optimistic. In fact, all three
curves for the component models are out of the actual project data curve.
ELC and DLC, on the other hand, compensate these extremes and make
rather reasonable long-term predictions.

To show quantitative comparisons of long-term predictions, we use
mean square error instead of prequential likelihood. Prequential like-
lihood is more appropriate for comparing step-by-step predictions,
while the mean square error provides a more widely understood mea-
sure of the distance between actual and predicted values.

Table 7.19 shows the summary of long-term predictions. The value in
each project raw represents the mean square errors for a model applied
to the project data in that raw, and the model ranking is shown in
parentheses. The values under “Sum of mean square errors” and “Sum
of ranks” indicate that the ELC and DLC models generally perform
better than the component models. Even though the component models
make a better prediction than the ELC and DLC models on several
occasions, they also perform significantly worse on others. The ELC
and DLC models, on the other hand, never make the worst long-term
predictions.

7.6 Summary

We have initiated SRE programs in real-world environments for better
specification and tracking of software reliability for different projects.
We lay out the framework of this SRE process, which includes the most
current state of practice in industry. In applying the reliability-objec-
tive-setting method and the software reliability modeling and measure-
ment techniques, we obtain some modeling results that look promising.

TABLE 7.19 Summary of Long-Term Predictions.

Summary of Model Ranking for Long-Term Predictions Using Mean Square Errors

Data Model GO MO Lv ELC DLC
SYS1 2117 (5) 687.4 (4) 567.7 (3) 266.7 (2) 169.7 (1)
SYS2 1455 (5) 1421 (4) 246.1 (1) 930.5 (2) 955.7 (3)
SYS3 480.0 (2) 253.2 (1) 2067 (5) 745.5 (3) 779.8 (4)
J1 1089 (4) 782.9(2) 5283 (5) 130.1 (1) 876.7 (3)
d2 4368 (4) 4370 (5) 539.3 (1) 2171 (3) 1791 (2)
J3 4712 (5) 3073 (3) 4318 (4) 1322 (2) 1141 (1)
J4 3247 (4) 3248 (5) 219.5 (1) 1684 (3) 1354 (2)
Jd5 60.22 (3) 60.12 (1) 104.45 (5) 68.44 (4) 60.15 (2)
Sum of mean

square errors 17528.5 13896.6 13345.0 7317.3 71283
Sum of ranks (32) (25) (25) (20) (18)

Overall rank (5) (4) (3) (2) (1)

300 Practices and Experiences

These results indicate that model performances are dramatically dif-
ferent depending on the context of different projects, and the use of
multiple models is deemed necessary. Moreover, the reliability growth
phenomenon is better demonstrated when the SRE mechanism is put
in place. It is noted that the data collection process is the key to suc-
cessful measurement of software reliability. In particular, failure data
should be scrutinized for better classification of real software failures
against the current release, and more data should be collected auto-
matically for accuracy and reasons of economy. The application of soft-
ware reliability tools also greatly simplifies the tedious job of reliability
measurement and model comparison. Finally, the linear combination
modeling scheme is introduced as a simple technique to increase accu-
racy in software reliability measurement.

In summary, we believe that when the SRE application receives
more attention and wider implementation in industry, more insights
leading to improvement in product quality and software development
process will gradually emerge.

Problems

7.1 Analyze the failure reporting and tracking mechanisms used by a soft-
ware development organization with which you're familiar. Compare the data
collected by these mechanisms with the minimum set of failure data described
in this chapter. Report on the suitability of your failure reporting and tracking
mechanisms for software reliability estimation, and describe any changes that
would result in a more suitable mechanism.

7.2 How has your development organization, or an organization you know, set
reliability requirements? How do the requirements compare to the two exam-
ples given in this chapter (Sec. 7.2.1.1)? Which of the three methods of setting
requirements (Sec. 7.2.1.2) has the organization used, or was another method
used? Why was the method chosen?

7.3 How does your development organization, or the organization you know,
estimate and forecast software reliability? How does the organization choose
the model(s) used? How does the method of selection compare to that presented
in this chapter?

7.4 Using the guidelines given in this chapter, write a plan that your orga-
nization could use to guide them in collecting data for software reliability
measurement.

7.5 Show Eq. (7.4) is the stop-testing rule based on the assumptions in
Example 7.2.

7.6 For the data set J3, suppose we have a system that is integrated in two
stages. Only a portion of the system is tested during the first stage, which lasts

RPN T R AT PR m R A T LR AT 5 T, S S5 s

Software Reliability Measurement Experience 301

14 weeks. After the first stage, the remainder of the code is added to the sys-
tem, at which point it is tested for 26 more weeks. At this point, the curve rep-
resenting the expected number of failures will switch to the one that would
have occurred for a system in its final configuration. The curve, however, is
temporally translated, the amount of translation depending on the number of
failures that were experienced during the first test stage.

The parameters for the first and second stages, using the Goel-Okumoto model,
are as follows:

a b

First stage (weeks 1-14) 317 0.0487787
Second stage (weeks 15-40) 413 0.0461496

a. Plot the mean value function for each stage of integration, using the
model parameters in the table above.

b. Determine the amount of time by which the mean value function dur-
ing the second stage of integration is translated from the mean value
function that would have been observed had the entire system been
in place at the start of testing.

7.7 Given a project data set, the estimate of b is 1/57.6 in Eq. (7.5) for the
applied GO model. The loaded salary for a single tester is $1000 per day, and
there are six full-time testers in the project. Further suppose that the cost of
fixing a fault during testing is $200, and that for fixing a fault in the field is
$2200. It is estimated that a total of 1300 faults exist in the software.

a. Draw the curves similar to Fig. 7.2. Write down the equations for

each curve. |

b. Draw the two curves representing the two sides of Eq. (7.5).

c¢. When should the testing be stopped?

d. Repeat items & and ¢ for 10 testers and 2 testers, respectively.

7.8 Why isn’t RGF defined for the YSS model?

7.9 Comparing with prequential likelihood, what are the advantages and dis-
advantages of using reliability growth factor (RGF) to determine the model
validity during testing?

710 Why do combination models provide better results, on average, than
individual models? Can you think of other methods to increase the prediction
accuracy of models? What limitations do combination models have? Under
what circumstances are these limitations important?

7.11 The linear combination models are applied mainly to one type of data in
this chapter. Is it TBF data type or FC data type? For each data type, discuss
which linear combination models could be formed easily, and which could not.

