Chapter

The Operational Profile

John Musa, Gene Fuoco, Nancy Irving, Diane Kropfl
AT&T Bell Laboratories

Bruce Juhlin
US. West

5.1 Introduction

A software-based product’s reliability depends on just how a customer
will use it [Musa87]. Making a good reliability estimate depends on
testing the product as if it were in the field. The operational profile,
which is a quantitative characterization of how a system will be used,
is thus essential in software reliability engineering (SRE). Operational
profile theory can be applied to hardware as well as software, and even
to human components. Thus it is applicable to complete systems. The
operational profile shows you how to increase productivity and relia-
bility and speed development by allocating development and test
resources to functions on the basis of use. It helps you plan test activi-
ties, generate test cases, and select test runs.

Using an operational profile to guide system testing ensures that if
testing is terminated and the software is shipped because of impera-
tive schedule constraints, the most-used operations will have received
the most testing, and the reliability level will be the maximum that is
practically achievable for the given test time. In guiding regression
testing, it tends to find, among the faults introduced by changes, the
ones that have the most effect on reliability.

An example of the benefits from developing and applying the opera-
tional profile is shown by AT&T’s International Definity® project (a
PBX switching system). This project combined the operational pro-
file with other quality-improvement techniques to reduce customer-
reported problems and maintenance costs by a factor of 10, system-test
interval by a factor of 2, and product-introduction interval by 30 per-

167

168 Technical Foundations

cent [Abra92]. The system experienced no serious service outages in
the first two years of deployment; customer satisfaction improved sig-
nificantly. The marked quality improvement and a strong sales effort
resulted in an increase in sales by a factor of 10.

In a similar quality-improvement program, Hewlett-Packard applied
software reliability engineering and the operational profile to reorga-
nize their system-test process for a multiprocessor operating system.
With automated test and failure recording and using the operational
profile to guide testing, they reduced system-test time and cost by at
least 50 percent.

The cost of developing an operational profile varies. Our experience
indicates that the effort to construct the operational profile for an aver-
age project—about 10 developers, 100,000 source lines, and a develop-
ment interval of 18 months—is about one staff month. Large projects
can cost more, but the increase is clearly less than linear with project
size. International Definity invested two to three staff years in exten-
sive customer study that led to an operational profile. Of course, every
project requires good knowledge of the customer base, so only a portion
of this effort can reasonably be charged to the operational profile. Also,
the work can be written off over several releases, with only minor
updating needed between them.

Experience to date indicates that operational profiles are beneficial
even when very simple and approximate. For example, one project used
an operational profile defined on only five operations. However, defin-
ing operational profiles in the range of 50 to 200 operations has usually
been definitely worth the extra effort.

5.2 Concepts

A profile is simply a set of disjoint (only one can occur at a time) alter-
natives called elements, each with the probability that it will occur. If A
occurs 60 percent of the time and B 40 percent, for example, the profile
1s 4, 0.6 and B, 0.4.

In order to select and define the terms we will use in analyzing a
work process and developing the operational profile for the system that
will implement the activities of the work process, we must recognize
two practical needs.

The first is the need to distinguish between the view of the system
taken in specifying its requirements and the view of the system as it is
built. We will use terms containing the word function at the require-
ments stage and terms containing the word operation when dealing
with the system as it is being built.

The second need arises from the situation that is common to most
work processes. There is a need to talk about tasks that represent the

The Operational Profile 169

smallest divisions of work that can be initiated by external interven-
tion, either human or by a system external to the one being analyzed.
Although work can always be divided into smaller packages, there is no
useful purpose and only greater cost and reliability risk involved in
allowing initiation access to these packages if the same sequence of
work packages will always be followed. We will call these smallest ini-
tiable divisions runs. In a switching system, a run might be a telephone
call. In interactive systems, it might be a command input by a user. In
transaction-based systems, it might be a transaction. In an aircraft-
control system it might be a maneuver.

Runs are associated with input states. The input state is the com-
plete set of input variables of the system, an input variable being any
data elements that exist external to the system and influence it. For
example, externally initiated interrupts, such as interrupts generated
by the system clock, by operator actions, and by other components of
the system outside the program, are input variables. Intermediate data
computed by the program during a run and not existing external to the
program are not input variables. Hence, interrupts generated directly
by a run or interrupts that are determined from other input variables
(for example, overflow and underflow) are not input variables.

Input variables don’t just include the parameters that are explicitly
transmitted. For example, data elements that affect a system may be
unknown to the designers; nevertheless, they are input variables. The
concept of an input variable is logical, not physical. For example, a phys-
ical memory location can be time-shared by different input variables.

Runs that have identical input states are said to belong to the same
run type. Airline-reservation transactions that are exact duplicates
have the same run type. However, reservations made for different peo-
ple, even on the same flight, are different run types. If you test all run
types, you have exhaustively tested the system. You do not need to exe-
cute repeated runs or instances of the same run type.

A function is a set or grouping of run types, as conceived at the
requirements stage. An operation is a set or grouping of run types for
the system as built. One might ask why we should group run types. The
main reason is that practical systems usually have astronomical num-
bers of run types. It is totally impractical to collect usage on run types,
unless you do it only for a very small and important subset. We need a
much smaller number of elements (generally not more than hundreds)
on which we will collect usage data. Functions and operations are
defined and used for that purpose. The functional profile is a profile of
functions; operational profile, of operations. A run (and hence function
or operation) is a logical rather than physical concept. It can extend
over multiple machines (for example, in distributed systems). It can
execute in segments of time rather than continuously.

170 Technical Foundations

It may be helpful at this point to view some of these concepts graph-
ically. The set of all possible input states for a system is called the input
space, as shown in Fig. 5.1. Each input state and hence run type is rep-
resented by a point in this space. An operation is represented by a
domain in the input space. A run type can belong to only one operation.
The domains of different operations do not overlap. A function can’t be
directly represented in the input space because inputs are not defined
until design is complete. However, you could look at a function as
implying a domain in the input space. Such a domain would not be
identical to the domain of an operation unless the function maps
directly one-to-one to the operation.

Execution of runs is represented by selection of points from the input
space. If you repeat the same run type, you are selecting the same point
again.

5.3 Development Procedure

The operational profile is usually developed by some combination of
systems engineers, high-level designers, and test planners, with strong
participation from product planning, marketing professionals, and cus-
tomers.

To determine an operational profile, you look at use from a progres-
sively narrowing perspective—from customer down to operation—
and, at each step, you generate an intermediate profile by specifying

. Input State
(Run Type)

/’

g

Domain
(Operation)

Figure 5.1 Some operational profile concepts.

The Operational Profile 171

the probability that each of the elements in that step will be used. This
procedure represents the best current approach, based on experience
with a variety of projects. We illustrate the procedure by developing,
step by step, a simple operational profile for a private branch ex-
change (PBX). However, the procedure is generally applicable to all
kinds of applications, with just minor tuning.

In many cases, usage information is available or can be estimated,
most easily in terms of rates like transactions per hour. But these data
are not true profiles until you convert them to probabilities by dividing
by the total transactions per hour. Converting to probabilities is help-
ful because you can make a quick completeness check by seeing if the
probabilities add to 1. On the other hand, the raw data are useful to re-
create actual traffic levels in test.

You will need to establish the granularity (number of elements for
which you collect occurrence probabilities) and accuracy {(error in
estimated occurrence probabilities with respect to those actually
experienced in the field) needed for the operational profile. You
should base these decisions on the net economic gain resulting from
the better decisions that result from more fine-grained and accurate
data, minus the extra cost of gathering and analyzing these data
being considered. In many cases, however, you will use informed engi-
neering judgment rather than a formal economic analysis. The engi-
neering judgment will be based on such factors as product complexity,
product maturity, product cost, and schedules. In practice, you must
limit profiles to several hundred (several thousand, at most) ele-
ments, because the cost of developing them increases approximately
In proportion to the number of elements. Reliability measurements
are generally robust with respect to inaccuracies in determining the
operational profile [Musa94].

Is use the only factor you should consider in developing operational
profiles? What about infrequently executed functions whose failure
might lead to disastrous results, such as the function that shuts down
an overheating nuclear reactor? This concern can be handled by con-
sidering criticality, which we cover in Sec. 5.3.3.

Developing an operational profile to guide testing involves as many
as five steps:

® Developing a customer type list
8 Developing a user type list
® Listing system modes

® Developing a functional profile

» Converting the functional profile to an operational profile

172 Technical Foundations

In the first four steps, you progressively break down system use into
more detail. Customer types (large retail stores) break down into user
types (sales clerks and information-system specialists). A single user
type may invoke several system modes (information-system specialists
perform both database cleanup and generate reports). In turn, each
system mode has several functions (the generate-reports mode has sev-
eral types of reports). In the fifth step, functions evolve into operations
as the system is implemented.

Some steps may not be necessary in a particular application. A cus-
tomer list is unnecessary if you have only one customer or if all cus-
tomers use the system the same way. Sometimes you can skip the
functional profile, especially when the requirements are so detailed
they specify how users will execute the system to accomplish their
tasks. At some other times the information you need to develop the
operational profile is not available until the design or even a substan-
tial part of the implementation is complete, so you must develop the
functional profile if you want to have guidance in allocating develop-
ment resources and determining priorities during the design and
implementation phases.

Even if you have all the information you need to develop the opera-
tional profile before design commences, you may prefer to generate the
functional profile first. Because it generally has fewer elements, it is
easier to develop and use for guiding pretest development than an
operational profile. Should you decide to develop the operational profile
directly, you should consider the tasks outlined in the functional-
profile step in combination with those in the operational-profile step.

The procedure can conceivably be iterative. If you have an existing
system, you may determine the current operational profile, then ana-
lyze your current and prospective future customer groups, and then
proceed through the steps to obtain a modified operational profile.

At each step, you must determine the level of detail you need.
Whether you distinguish and treat an item differently at a given step
will depend on the net economic gain for doing so. For example, in devel-
oping a customer list broken down by industry, it may be cost-effective
to distinguish certain important customers with the intention of per-
forming special testing on the product supplied to them. The degree of
detail does not have to be uniform across the system. For example, some
important system modes may require greater levels of detail.

When attaining an average reliability over all of a system’s applica-
tions is acceptable, there may be no need for more than one operational
profile. You must still separately identify different customers, users,
and system modes so that you can weight the contribution each makes
to the operational profile. If it is important to assure a particular relia-
bility for a particular use (even if all reliability objectives are the

The Operational Profile 173

same), then you must determine multiple operational profiles. You may
also need multiple operational profiles if the system will operate with
different hardware configurations. Finally, lab and test resource limits
may force you to divide testing, using different operational profiles.

Sometimes a software product is part of a network of systems. In
that case, it may be useful to develop an operational profile for the
entire network before developing the operational profile for the prod-
uct. This supersystem profile can be very useful to determine which
systems in the network are most important and should receive the
most attention. It is also possible to decompose a system into subsys-
tems and to develop an operational profile for each.

All profiles that are developed should be baselined and placed under
change control, with appropriate traceability requirements.

As far as we now know, the operational profile is independent of
design methodology—its determination will not be affected by an
object-oriented approach, for example. The one exception might be a
case in which functions designed with one methodology map to a con-
siderably different set of operations when designed with another.

5.3.1 Customer type list

A customer is the person, group, or institution that is acquiring the Sys-
tem. A customer type, the key concept here, is a set of customers who
will use the system in the same way. Large pharmacies use a switching
system very much like other large retailers and thus could be grouped
with them, even if they are not in the same market segment. The cus-
tomer type list is the complete set of customer types.

You obtain information on potential customers from marketing data
for related systems, modified by marketing estimates that take into
account the new system’s appeal. The business case developed for a
proposed product usually includes the expected customer base. It is a
valuable source for developing operational profiles, analyzing perfor-
mance, and reviewing requirements.

Example 5.1 As an example, consider a hypothetical PBX that is sold to institu-
tions for internal use and, of course, external connections. Assume there are two
customer types, large retail stores and hospitals.

5.3.2 User type list

A system’s users are not necessarily identical to its customers. A user
is a person, group, or institution that employs, not acquires, the sys-
tem. A user type is a set of users who will employ the system in the
same way. By identifying different user types, you can divide the task
of developing the operational profile among different analysts, each an

174 Technical Foundations

expert on their user type. The user type list is the set of user types.
Sometimes the users are customers of your customers; sometimes they
are internal to your customer’s institution. In any case, different users
may employ the system differently. The differences may be the result of
job roles—an entry clerk will view an insurance company’s claim-
processing system differently than an actuary.

You derive the user type list from the customer type list by refine-
ment: looking at each customer type and determining which user types
exist. If you find similar user types among different customer types,
you should combine them.

Example 5.1 (cont.) In our example, user types in each customer type include
telecommunications users (people making calls and sending data), attendants
(internal operators who answer the main number), a system administrator (who
manages the system and adds, deletes, and relocates users), and maintenance
personnel (who test the system periodically and diagnose and correct problems).

Each of these user types employs the system differently.

5.3.3 System mode list

A system mode is a set of functions or operations that you group for
convenience in analyzing execution behavior. A system can switch
among modes so that only one is in effect at a time, or it can allow sev-
eral modes to exist simultaneously, sharing the same resources.

For each system mode, you must determine an operational (and per-
haps functional) profile. Thus multiple system modes means multiple
operational and perhaps functional profiles. The same function or oper-
ation can occur in different system modes.

There are no technical limits on how many system modes you can
establish. You must simply balance the effort and cost to determine and
test their associated operational profiles against the value of more spe-
cialized information and organizational convenience they provide.

Some bases for characterizing system modes, with examples, are

m Relatedness of functions/operations to larger task. System admin-
istration, data entry, customer representative queries, transaction
processing, report generation.

® Significant environmental conditions. Overload versus normal
traffic; initialization (start-up or reboot for failure recovery) versus
continuous operation (includes warm start after an interruption);
system location; time.

® Operational architectural structure. Online retail sales mode ver-
sus after-hours billing mode.

The Operational Profile 175

m Criticality. Shutdown mode for nuclear power plant in trouble.

m Customer or user. Customer group or user group requiring special
functions/operations.

m User experience. Novice versus expert mode.

When a system has different priorities for its tasks, it is particularly
important that system modes be defined for both normal traffic and
heavy traffic conditions, because their operational profiles will differ.
For example, when you have a normal load of feature-oriented tasks,
more low-priority tasks such as audits and housekeeping operations
will execute. Occurrence probabilities of such low-priority operations
may be zero under heavy traffic conditions. _

Defining different system modes is a convenient way of accommo-
dating changes in the operational profile as users become more experi-
enced. In practice, you can capture the variations in experience with
two extremes, novice and expert, mixed in different proportions.

Some systems control the operations they will accept on the basis of
environmental variables, such as traffic level and system-capability sta-
tus, in order to reject noncritical, nonfunctioning operations and dedi-
cate capacity to more critical ones. If a system must function in these
conditions, each of these situations should be established as a system
mode and tested with the guidance of separate operational profiles.

It is most convenient to group critical operations into one or more sys-
tem modes, where each system mode incorporates operations of the
same criticality. Critical system modes will then receive accelerated or
increased testing. The factor of acceleration or increase is usually
selected to yield enough execution time for the critical functions to
assure achieving a desired level of failure intensity with acceptable con-
fidence. Failure intensities measured in accelerated testing can be
transformed to the values they would have had without the acceleration.
The case study in Sec. 5.8 deals with critical but infrequent operations.

To measure criticality, consider value added (increased revenue or
reduced cost) by an operation or the severity of the effect when it fails.
Effects include risk to human life, cost, or reduction in capability. Cost
consists of direct and indirect (damage to reputation) revenue loss and
the cost of failure workaround, resolution, and recovery. In some cases,
an operation can fail in different ways, with different severities. We use
the average of the severities, weighted by relative probability, as the
operation’s criticality.

In considering financial effect, old operations can be more critical
than new operations because their failure disrupts existing capabili-
ties that users rely on. At least part of this effect may be captured by

176 Technical Foundations

higher occurrence probabilities for these operations. On the other
hand, new operations may be critical to the success of a new product,
yvet may not have a very high estimated occurrence probability. You
may have to assign them a high criticality to reflect their importance.

It is common to use four criticality categories, each separated from
the next most critical by one order of magnitude of effect. You must
define a failure intensity objective for each criticality category and all
must be met to ensure satisfactory operation.

The margin for error in reliability estimates is almost always
smaller for the most critical category. So the effects of environmental
input variables, such as traffic fluctuations and entry errors, will often
be material for the critical category; testing for operations in that cate-
gory must cover them.

Example 5.1 (cont.) The sample PBX has five system modes:

n Telecommunications business use
Telecommunications personal use
Attendant use

= Administration

= Maintenance

The last three system modes represent user types. They are disjoint in that they
do not share functions or operations. The first two modes share most functions or
operations and could be combined. However, both the functional and operational
profiles for the two modes are expected to be very different. Hence we will sepa-
rate these modes so that all modes may be viewed as disjoint. Note that we are
separating the modes only to ease the job of analyzing them. It does not imply
that different modes can’t execute simultaneously.

5.3.4 Functional profile

The next step is to break each system mode down into the functions it
needs—creating a function list—and determine each function’s occur-
rence probability.

Functions, as noted, are defined from the user’s perspective; they do
not necessarily consider architectural or design factors. They are estab-
lished during the requirements phase and are closely related with
requirements. In general, developing a functional profile is considered
part of the job of developing the requirements. The functional profile is
used in the management of the architecture and design phases and in
the design of the architecture itself. The functional profile is baselined
and placed under change control, with appropriate traceability require-
ments, just as the requirements are.

Because you determine the functional profile before design begins, it
can help guide the allocation of resources during design, coding, unit
test, and possibly subsystem test. Of course, to allocate resources and

The Operational Profile 177

set priorities, you must consider other factors as well, such as risk and
developer expertise.

5.3.4.1 Number of functions. A functional profile does not have a set
number of functions, but it typically involves between 20 and several
hundred. The number generally increases with project size, the num-
ber of system modes, the number of major environmental conditions,
and function breadth—the extent to which a function accommodates
task variations.

Functions should be defined such that each represents a substan-
tially different task, in the sense that we are likely to assign a different
priority and allocate different resources to the development of, or
design a different architecture for, that part of the system that sup-
ports that task. The task can be substantially different either as a
result of work accomplished (most common) or the environment
encountered. Examples of different environments might be different
equipment or different traffic levels (normal and overload). You are
likely to need to define different functions if tasks differ considerably
in criticality; the run types you group in a function should have approx-
imately the same criticality, because they will be treated as if they did.

5.3.4.2 Explicit versus implicit. Functional, operational, functional sce-
nario, and operational scenario profiles can all be expressed in two
forms, explicit and implicit, although it is usually easiest to express the
latter two profiles in implicit form. Explicit and implicit refer to differ-
ent ways of specifying functions and operations and hence selecting
them for execution. At this point you must choose between an explicit
or implicit operational profile or some combination of the two because
that determines if you should develop an explicit or implicit functional
profile.

In order to distinguish the two forms, we first need to define what we
mean by “key input variable.” We will, for brevity, give the definition in
terms of operations, but it is equally applicable to functions. A key
input variable is an input variable that is common to the input states
of two or more operations, and whose value is needed to differentiate
among some of these operations. In many cases, the values of a key
input variable that differentiate operations are actually ranges, which
are called levels. The name of the operation is a key input variable. A
parameter may be a key input variable if two or more operations have
the same name and the value of the parameter is the only way of dis-
tinguishing between them.

A profile is explicit if each element is designated by simultaneously
specifying the values of all the key input variables necessary to identify
it. A profile is implicit if it is expressed in terms of sequences of subpro-

178 Technical Foundations

files, each subprofile representing the possible values of one key input
variable and their conditional probabilities of occurrence, given the val-
ues specified for the previous key input variables in the sequence.

Suppose you have two key input variables, C and D, each with three
values. For simplicity, assume that the variables are independent (if
not, the subprofiles become more complex since all the preconditions
must be stated). We can define nine operations based on the values of
these key input variables. Example implicit and explicit operational
profiles for these operations are given in Table 5.1.

An implicit profile is most conveniently expressed as a directed
graph or a tree with the nodes representing key input variables and
the branches, their values, and the associated conditional probabilities.
For example, Fig. 5.2 shows sample “call trees” used by International
Definity. It represents an implicit operational profile. Instead of select-
ing test cases from a complete list of all possible paths with associated
probabilities (explicit profile), you select from each set of branch alter-
nates with their associated branch probabilities. An explicit profile can
always be determined from an implicit profile by tracing all paths
through the directed graph or tree, multiplying the conditional proba-
bilities of the branches together. Note how a test call is generated by
pairing the call trees for a calling and a receiving party.

The chief advantage of the implicit profile is that it usually requires
you to specify fewer elements—as few as the sum of the number of lev-
els of the key input variables, depending on the amount of indepen-

TABLE 5.1 Sample Implicit Operational Profile

Subprofile C Subprofile D
Key input Key input
variable Occurrence variable Occurrence
value probability value probability
Cl1 0.6 Di 0.7
C2 0.3 D2 0.2
C3 0.1 D3 0.1
Sample Explicit Functional Profile
Key input variable values Occurrence probability
Cl1D1 0.42
C2D1 0.21
CiD2 0.12
C3D1 0.07
C1D3 0.06
c2D2 0.06
C2D3 0.03
C3D2 0.02

C3D3 0.01

The Operational Profile 179

b.noans

intine

manager intout abbrev ans hold call

manager intout abbrev ans hold call —3> officewrk Intinc ans talk
A manager places an internal call 10 an office worker using
abbreviated dialing. The call is answered and the two parties
talk. While talking, the manager places that call on hold to
place an "intermediate” call to another parry.

Figure 5.2 Sample call trees.

dence among these variables. Using an explicit profile, the number of
elements you must specify can be as high as the product of the number
of levels of the key input variables. The implicit profile can then be
used in cases where the number of elements of an explicit profile would
be too large. Alternatively, use of the implicit profile may give you finer
granularity in measuring usage for the same effort you would use for
an explicit profile,

The implicit approach is suited to transaction-based systems, in
which processing depends primarily on transaction attributes that
have known occurrence probabilities. A system to generate personal-
ized direct mail, for example, depends on customer attributes such as
location, income, and home ownership.

180 Technical Foundations

An implicit profile is particularly easy to construct when the key
input variables that characterize a function or operation tend to present
themselves sequentially in the description of the task that is being
accomplished, such as in the call trees of Fig. 5.2.

5.3.4.3 Initial function list. The initial function list focuses on features,
which are functional capabilities of interest and value to users. It con-
sists of one list if you are developing an explicit profile, and one list for
each key input variable if you are developing an implicit profile. Sys-
tem requirements are usually the best source of information on fea-
tures. If you have trouble identifying the function, it is often because
the requirements are incomplete or fuzzy. User input is vital in creat-
ing the initial function list. Only those who have practical experience
with the existing work process can uncover problems with a proposed
process. For military projects, part of the request for proposal may con-
tain a “Design Reference Mission Profile” which, in turn, may contain
descriptions of system modes, functions, and tasks performed and envi-
ronmental factors. The mission profile serves as a good basis for devel-
oping a functional profile.

You can use a prototype as a second verifying source, but you must
use 1t with care, because often a prototype implements only some func-
tions. The most recent version of the product can also serve as a valu-
able check, but of course it lacks the new functions planned for the next
version. Sometimes there is a draft user manual, written to enhance
communication with users, that you can check, but it will probably
emphasize functions activated by commands, not functions activated
by events or data.

Example 5.1 (cont.) In the PBX example, we will generate an explicit profile for
the administration system mode functions. The initial function list has four ele-
ments because the system-administration mode has four principal functions:
adding a new telephone to the exchange, removing a telephone, relocating a tele-
phone or changing the service grade provided, and updating the online directory.

5.3.4.4 Environmental variables. Now you should identify the environ-
mental input variables and their values or value ranges that will
require separate development efforts, such as substantial new mod-
ules. Environmental variables describe the conditions that affect the
way the program runs (the control paths it takes and the data it
accesses), but do not relate directly to features. Hardware configura-
tion and traffic load are examples of environmental variables. Probably
the best approach is to have several experienced designers brainstorm
a list of environmental variables that might cause the program to
respond in different ways, and then decide which of these would likely
have a major effect on the program.

The Operaiional Profile 181

Example 5.1 (cont.) In the PBX example, telephone type is an environmental
variable that has a major effect on processing. Although telephone type can have
several values, here only analog (A) and digital (D) telephones have substantially
different effects on processing. So there are two levels for the environmental
input variable, A and D.

When environmental variables and their values are associated with
their occurrence probabilities, you have an environmental profile. The
configuration profile used by DEFINITY (Sec. 5.7.3) is an example of
an environmental profile.

5.3.4.5 Final functionlist. Before you create the final function list, you
should examine dependencies among the key environmental and fea-
ture variables. If one variable is totally or almost totally dependent on
another, you can eliminate it from the final function list. If one variable
1s partially dependent on another, you must list all the possible combi-
nations of the levels of both variables, along with all the independent
variables. You will have one final function list for an explicit profile. For
an implicit profile, the number of function lists will equal the number
of feature and environmental key input variables.

The number of functions in the final function list is the product of the
number of functions in the initial list and the number of environmen-
tal variable values, minus the combinations of initial functions and
environmental variable values that do not occur.

Example 5.1 (cont.) The final function list for the PBX, shown in Table 5.2, is
developed from the initial function list enumerated above and the telephone type
environmental variable. It has seven elements: the three initial functions with
two envireonmental variable values, plus the initial function “online-directory
updating,” which is not affected by telephone type.

5.3.4.6 Occurrence probabilities. The best source of data to determine
occurrence probabilities is usage measurements taken on the latest
release, a similar system, or the manual function that is being auto-
mated. Usage measurements are often available in system logs, which

TABLE 5.2 Final Function List

Function Environmental variable
Relocation/change A
D
Addition A
D
Removal A
D

Online-directory updating

182 Technical Foundations

are usually machine-readable. Note that these measurements are of
operations, not functions, so they must be combined (usually by simple
addition) when a function maps to more than one operation.

Occurrence probabilities computed with these data must be adjusted
to account for new functions and environments and expected changes
due to other factors. Most systems are a mixture of previously released
functions, for which you may have measurements, plus new functions,
for which you must estimate use. Although estimates are less accurate
than measures, the total proportion of new functions is usually small,
perhaps 5 to 20 percent, so the functional profile’s overall accuracy
should be good.
~ In the rare event that a system is completely new and the functions
have never been executed before, even by a similar system or manually,
the functional profile could be very inaccurate. However, it is still the
best picture of customer use you have and so is valuable.

The process of predicting use alone, perhaps as part of a market
study, is extremely important because the interaction with the cus-
tomer that it requires highlights the functions’ relative value. It may
be that some functions should be dropped and others emphasized,
resulting in a more competitive product. Reducing the number of little-
used functions increases reliability, speeds delivery, and lowers cost.

Example 5.1 (cont.) In the sample PBX, there are 80 telephone additions, 70
removals, and 800 relocations or changes per month. Online-directory updating
represents 5 percent of the total use in the system-administration mode.

We will assume that the occurrence probability for the system-administration
mode is 0.02. Thus the overall occurrence probability for each of these functions,
without consideration of environmental factors, is the product of their occurrence
probability and the system-administration mode’s occurrence probability in the
overall system. Table 5.3 shows the resulting segment or part of the initial func-
tional profile.

To take into account environmental factors, assume that 80 percent of the tele-
phones are analog and 20 percent are digital. The environmental profile is shown
in Table 5.4.

Also assume that the occurrence probabilities of the first three functions and
telephone type are independent. To determine the final functional profile, you

TABLE 5.3 Sample Initial Functional Profile Segment

System-administration- Overall

mode occurrence occurrence

Function probability probability
Relocation/change 0.80 0.0160
Addition 0.08 0.0016
Removal 0.07 0.0014

Online-directory updating 0.05 0.0010

LY T R i G R W o L S b

The Operational Profile 183

TABLE 5.4 Sample Environmental Profile

Telephone type Occurrence probability

Analog (A) 0.8
Digital (D) 0.2

multiply the values of the environmental profile by the values of the initial
functional profile to obtain the final functional profile segment for the system-
administration mode in Table 5.5.

5.3.4.7 Functional and operational profiles with correlated elements. It is
desirable to define functions and operations such that their proba-
bilities of selection are independent of previous functions/operations
selected. Then you only need to determine occurrence probabilities for
the functions/operations in your list. The foregoing implies that if you
have a sequence of functions/operations that are highly correlated, you
should try to bunch them into one function/operation.

You can assume that functions/operations with little correlation are
independent, but you must recognize the fact of your approximation.
The risk here is that independent random selection will distort the true
occurrence probabilities to some extent. Positively correlated sequences
will occur less frequently than they do in reality, increasing the risk
that failures occurring in them may be missed. Negatively correlated
sequences will occur more frequently than they do in reality, wasting
test and debugging resources by overemphasizing failures associated
with them.

5.3.5 Operational profile

The functional profile is a user-oriented profile of functions, not the
operations that actually implement them. But it is operations, not func-
tions, that you test. An operation represents a task being accomplished

TABLE 5.5 Sample Final Functional Profile Segment

Environment Overall
Function (telephone type) occurrence probability

Relocation/change A 0.0128
D 0.0032

Addition A 0.00128

D 0.00032

Removal A 0.00112

D 0.00028

Online-directory
updating 0.00100

184 Technical Foundations

by the system, sometimes in a particular environment, as viewed by the
people who will run the system (also as viewed by testers, who try to put
themselves in this position). To allocate testing effort, select tests, and
determine the order in which tests should be run, the operational pro-
file must be available when you start test planning.

Functions evolve into operations as the operational architecture of
the system is developed. The operational architecture is the way the
user will employ operations to accomplish functions. There is often
some, but rarely complete, correlation between the operational archi-
tecture and the system architecture, which determines how modules
and subsystems combine into the system.

A function may evolve into one or more operations, or a set of functions
may be restructured into a different set (and different number) of oper-
ations. Thus the mapping from functions to operations is not necessarily
straightforward. For example, an administrative function in a switching
system might be to relocate a telephone. This single function may be
implemented by two operations, removal and installation, because these
tasks may be assigned to different work groups. Generally, there are
more operations than functions, and operations tend to be more refined.
An operation is usually more differentiated than a function.

The principal steps in determining the operational profile are to list
the operations and determine the occurrence probabilities.

5.3.5.1 Listing operations. You use the functional profile to develop
the list of operations, mapping functions to operations by following the
operational architecture of the system (the way the operations combine
to accomplish the functions). Since functions differ from one another by
virtue of implementing substantially different tasks, operations will
generally be distinguished from one another by substantially different
processing. Different operations will usually execute substantially dif-
ferent code paths. Thus the definition of operation can be affected by
program structure. You will usually want to select at least one test case
for each operation, as each has a substantial risk of experiencing a fail-
ure that is not experienced by other operations. As with functions,
operations may differ as the result of work accomplished or environ-
ment encountered.

If possible, it is desirable to define functions such that functions and
operations will map one-to-one. This will greatly simplify deriving the
operational profile from the functional profile. It requires, concurrent
with requirements development, consideration of architectural factors,
design factors, and practical constraints on the execution time of oper-
ations. If you are developing an operational profile for an existing sys-
tem, there will be a natural tendency for functions and operations to be
similar.

The Operational Profile 185

Creating and examining a list of those events that initiate program
execution (such as commands or transactions) may help you create the
operations list. If the events have parameters, consider the effects of
different parameter values. If a value of a parameter causes signifi-
cantly different processing to occur, you may want to define a new oper-
ation. If there are N significantly different kinds of processing
associated with an event as a result of different parameter values, then
the original function associated with the event should be replaced by N
operations. In creating the list, you must also consider environmental
variables.

The definition of a run should imply an execution time that is short
enough so that sufficient executions exist during:

1. Field operation to permit satisfactory accuracy in characterizing
usage

2. Test to permit satisfactory accuracy in reproducing usage

Also, the run should be short enough so that the input state needed to
characterize its interaction with the environment is not excessively
long. For example, a complete flight of a space vehicle or aircraft might
be defined as a run, but the execution time would be too long to meet the
constraints just noted. You might then define the runs such that their
time durations correspond to the time of a flight maneuver for the vehi-
cle. Examples of grouping of such runs into operations might be “turn,”
“climb” (including dive), and “steady flight.” These operations are prob-
ably not correlated with each other. However, the input states and hence
runs are because the vehicle’s position and velocity can change only a
limited amount during the time of a maneuver. This must be handled in
test by selecting a sequence of runs (input states) within the sequence
of operations chosen that recognizes the limitations.

Avoid excessive interaction between operations. When sequences of
tasks occur such that substantial amounts of data must be passed
between them, consider defining the entire sequence as a run. If the
system is reinitialized from time to time, it is a good idea to define runs
so that they do not cross reinitialization boundaries.

Now you need to verify that the list of operations is as complete as
you can reasonably make it. First, you develop a list of input variables
and their ranges of values that is practically complete. A “practically
complete” list identifies all input variables except those that take on
one value with very high probability. You are ignoring and thus won’t
be testing the alternate values. This is acceptable because they occur so
rarely that they have little effect on reliability even if they fail. The
degree to which you can do this decreases for systems requiring higher
reliability.

186 Technical Foundations

You then create a representation of the input states, also making it
practically complete. Because the identification process will never be
perfect, you should employ other strategies, such as reducing the num-
ber of input states and using indirect input variables, described later,
to ensure that you handle hidden input variables properly. The amount
of effort you put into this should be based on reliability requirements,
the cost of the extra effort, and any information you have on the prob-
ability that these interactions will occur.

5.3.5.2 Reducing number of operations. If developing the operational
profile is burdensome because the operations list is too long, you essen-
tially have three options in redefining it (we are not discussing test
selection here, which will be covered in Sec. 5.4):

m» Reduce the number of run types.
m Increase the number of run types grouped per operation.

» Ignore the remaining set of run types expected to have total occur-
rence probability appreciably less than the failure intensity objective
of the system.

Reducing the number of run types has the added benefits of reducing
the testing effort and perhaps design and implementation costs. Prac-
tically speaking, you can reduce the number of run types either by
reducing the number of input variables or the number of values for
each input variable. In general, the number of input variables is more
likely to influence program control flow and failure behavior than the
number of values, so you should give this more attention. Some ways to
reduce the number of input variables are:

® Reduce functionality.

Reduce the number of possible hardware configurations.

Restrict the environment the program must operate in.

Reduce the number of types of faults (hardware, human, software)
the system must tolerate.

Reduce unnecessary interaction between successive runs.

All these approaches have costs, in addition to the costs of analysis
and redesign. The first four, which change the system’s features, may
involve customer objections, less flexibility, less robustness, or reduced
reliability, respectively. The disadvantage associated with reducing
operations may be more apparent than real. It may be possible to build
systems with the same functionality but fewer operations by apply-
ing the reduced-operation software concept [Musa9la], analogous to

The Operational Profile 187

reduced-instruction-set computing. With this approach, you do not
implement operations that occur rarely. Instead, they are accomplished
by executing sequences of other operations or combining other opera-
tions with manual intervention. To decide which operations should not
be implemented, look at the economic trade-off between reduced devel-
opment cost and potentially higher operating costs.

The fifth option, reducing unnecessary (not required for functional
reasons) interaction between successive runs, is highly desirable. It
requires only changes in design or operational procedures, not negotia-
tion with customers. Reducing interaction not only simplifies test plan-
ning, but substantially reduces the risk of failure from unforeseen
causes. You must recognize, however, that the extent to which you can
do this may be limited. And there is usually some cost in greater exe-
cution time.

Some ways to reduce unnecessary interaction are as follows:

® Design the control program to limit the input variables that applica-
tion programs can access at any one time (information hiding).

® Reinitialize variables between runs. Because it may be difficult to
determine with high confidence which input variables are influenc-
ing runs, it may be simplest to reinitialize all of them between runs.
If the resulting overhead is excessive, reinitialize periodically, which
reduces overhead but allows more interaction.

® Use synchronous (time-triggered) instead of asynchronous (event-
triggered) design. Synchronous design lets you better control the
input variables that are in play at any time. However, it may add
overhead; it requires extra measurement and planning to prevent
functions from being aborted when deadlines are missed; and it may
be a less natural fit with the problem being solved, resulting in a less
compact design.

Reducing interactions has a higher risk than the other approaches to
reducing input space. It is more complex and hence more error-prone,
so “sneak” interactions may remain. Also, we know less about how to
best exploit reduced interactions to reduce testing.

The second option to reducing the number of operations, increasing
the number of run types grouped per operation, involves increasing the
difference in occurrence probabilities among run types required to estab-
lish separate operations. Operations that do not meet the higher differ-
entiation standard are merged, provided they share the same input
variables. If the number of randomly selected tests in the merged opera-
tion equals the sum of the number of tests for its components, the risk of
missing a failure is not substantially changed, providing the failure
probability of a run type in each of the components is approximately the

188 Technical Foundations

same [Haml90]. Greater grouping does not reduce the amount of testing
required; it just decreases the amount of effort required to develop the
operational profile. There is an extra cost for analysis, however.

The run types you group should have approximately the same criti-
cality and probability of occurrence, because you will give them the
same priority in test and test them to the same degree of intensity. If
they also share the same input variables and execute the same code
path, the job of test selection (see Sec. 5.4) will be simplified, but this
condition is not essential. Consider an airline reservation system. We
will group all the single-leg flight reservations, since their run types
share the input variables of passenger name, flight number, originat-
ing city, terminating city, and so on. A two-leg reservation, on the other
hand, is a different operation with a different set of key input vari-
ables, which include the second flight number and the connecting city.

If you have different operations with the same input variable sets,
you should consider merging them unless they have substantially dif-
ferent criticalities or occurrence probabilities. In the latter case, main-
taining them separately provides the basis for nonuniform testing, that
is, testing the more frequently occurring operation more intensely.

The reduction in operations may even be on a temporary basis. You
may develop an operational profile with a moderate number of ele-
ments for the first version of a software product, refining it for later
versions only if you discover in the field that the reliability predictions
from test are in error.

The third option, excluding the remaining set of run types expected
to have total occurrence probability appreciably less than the failure
intensity objective of the system, can happen automatically if the num-
ber of test cases is limited and they are selected in accordance with the
occurrence probability of the operations. Let the sum of the occurrence
probabilities of the excluded run types equal pz. Assume the failure
intensity at the start of test is A,; at the end, Az. Assuming that faults
initially are distributed uniformly with respect to operations, then
operations contribute to the failure intensity in proportion to their
occurrence probability. The excluded operations will contribute pgh, to
the failure intensity at the start of test. This number will be the same
or less at the end, assuming that no faults are spawned that could
cause any excluded operation to fail. Because this contribution will not
be measured, Ar will be low by, at most, this amount. Let € be the max-
imum acceptable error in measuring failure intensity. Then, setting
€ equal to pgA,, you obtain the allowable value of

€
PE=K

The Operational Profile 189

Suppose the failure intensity objective is 10 failures per 1000 CPU
hours. It might be reasonable to set € equal to one failure per 1000 CPU
hours. If A, = 10° failures per 1000 CPU hours, then py = 107%. This
means that once the total occurrence probabilities of the operations
you are testing reaches 1 — 107, you can ignore the rest. The higher the
failure intensity objective (the lower the reliability), the more opera-
tions you can exclude. Obviously, as criticality increases, the degree to
which functions can be excluded diminishes.

The set of operations should include all operations of high criticality,
even if they have low use. The effect of not including operations of low
criticality and low use will be negligible unless reliability requirements
are very high. To increase the likelihood that all high-criticality opera-
tions are included, you should focus on tasks whose unsatisfactory
completion would have a severe effect and carefully consider all the
environmental conditions in which they may be executed. Postmortems
of serious failures in previous or related systems often suggest some of
these situations.

5.3.5.3 Occurrence probabilities. Since different system modes have
different operational profiles but may share common operations, you
may have to determine multiple occurrence probabilities for the same
operation.

In some cases, there may be field data already existing on the fre-
quency of events the system must respond to. You should expend some
effort searching for such data, because it may provide the most cost-
effective approach to determining occurrence probabilities. This is
especially true if the alternative is building special measurement and
recording tools.

There are two general ways to determine occurrence probabilities for
operations:

a Count the occurrence of operations in the field.

m Rely on estimates derived by refining the functional profile.

The first is more accurate, but obviously can be done only if a previous
release exists. When adding new operations to an existing system, you
must supplement use records with estimates. You can also view a sys-
tem modification as adding a new operational profile to an old one. The
operational profile for the old system can be measured; for the new
operations, estimated. The two parts are joined by weighting each one’s
occurrence probabilities by the proportion of total system usage that
part represents.

190 Technical Foundations

It may take some effort to develop recording software, but you may
be able to develop a generic recording routine that requires only an
interface to each application. The recording software must instrument
the system so that it extracts sufficient data about input variables to
identify the operations being executed. If operations are independent
and do not depend on the history of preceding operations, you need only
to count the execution of each operation. If they are not independent,
yvou must record the sequence of operations. You can later process the
sequence to determine conditional probabilities. An operational profile
can be recorded in either explicit or implicit form.

The recording process usually adds some overhead to the application.
As long as this overhead is not excessive, it may be feasible to collect
data from the entire user community. However, if the overhead is large,
you will probably have to employ a user survey instead of recording. In
sampling users, the same guidelines and statistical theory used for
polling and market surveys apply; a sample of 30 or even fewer users
may suffice to generate an operational profile with acceptable accuracy.

If the costs of obtaining occurrence probabilities are an issue, you
may make measurements of moderate granularity and accuracy for the
first version of a software product, refining them for later versions only
if you discover in the field that the reliability predictions from test are
in error.

If you will be using usage data for testing only, it is acceptable to
directly drive testing by recording complete input states in the field.
You need not determine the operational profile or create test cases.
This saves time and effort, but these savings will be reduced by the
extent to which you add new operations. For the new operations, you
must estimate occurrence probabilities and develop test cases.

In order to estimate by refining the functional profile, determine the
function to operation mapping. Then allocate the function occurrence
probabilities to operations. In doing this, you may need to obtain occur-
rence probabilities of environmental variables whose values distin-
guish different operations. Sometimes the occurrence probabilities of
certain key input variables can be found by simulating the operation of
associated systems that determine them. For example, the operational
profile of a surveillance system will depend on the frequencies of cer-
tain conditions arising in the systems being monitored.

The estimation effort is usually best done by an experienced systems
engineer who has a thorough understanding of the businesses and the
needs of the expected users, and how they will likely take advantage of
the new functions. It is vital that experienced users review these esti-
mates. Often, new functions implement procedures that had been per-
formed manually or by other systems, so there may be some data
available to improve the accuracy of the estimates.

The Operational Profile 191

It often helps to create an interaction matrix of key input variables
plotted against other key input variables. This matrix reveals combi-
nations of key input variables that do not occur or that interact. The
remaining areas of the matrix represent regions where you can assume
key input variables are independent and estimate the occurrence prob-
ability as the product of individual key input variable probabilities.

Let’s examine two common types of systems, command-driven and
data-driven (also called transaction-based).

Example 5.2 Command-driven system The PBX is a command-driven system.
In implementing the features of the system-administration mode, assume that
this command set was developed:

relocate <old location> <new location>

add -$ <service grade> <location>
remove <location>
update

The designers decided to handle the function “change of service grade” by remov-
ing the old service and adding a new one. As you consider the parameters, you
note that location does not affect the nature of the processing. However, the ser-
vice grade does because the features provided are substantially different for
staff, secretaries, and managers. So you refine the add command into three oper-
ations and obtain the operations list:

relocate <old Tocation> <new Tocation>

add -s staff <locaticn>

add -5 secretary <location>
add -5 manager <locations>
remove <location>

update

All these commands, except update, account for 0.019 of the occurrence probabil-
ity; update accounts for 0.001. Suppose that the expected 80 additions of service
per month break down into 70 staff, 5 secretaries, 5 managers. There will be 780
relocations and 20 changes of service grade each month, the latter representing
promotions to manager. There will be 70 removals proper and 20 removals cre-
ated as the result of change of service grade, yielding a total of 90 removals. The
part of the operational profile for the system-administration mode is shown in
Table 5.6.

TABLE 5.6 Operational-Profile Segment Based on Features

Occurrence

Command Transactions per month probability
relocate 780 0.0153
remove 90 0.0017
add -s staff 70 0.0014
update 0.0010
add -s manager 25 0.0005

add -s secretary 5 0.0001

192 Technical Foundations

You proceed in this fashion until you have accounted for all the ways
the system can be employed. Now you must consider the possible
expansion of the operation list to account for environmental variables
that could change the processing (and thus result in different failure
behavior). There will usually be environmental variables that affect
the processing sufficiently to require testing based on some of their
values that you must now consider, even though they were not suffi-
ciently major to be considered in the development of the functional
profile. For simplicity, assume that the environmental variables may
interact with feature variables in determining occurrence probabili-
ties. For example, certain features may be executed at constant oceur-
rence rates but as traffic increases, their occurrence probabilities
decrease.

Example 5.2 (cont.) In our sample system, the environmental variable is tele-
phone type: the system must handle both analog and digital telephones. The
operational profile in Table 5.6 will thus expand under this environmental vari-
able into 11 operations {online-directory update is not affected by telephone
type). Let’s exclude directory update and consider the part for analog telephones
A, which will have occurrence probabilities that are 80 percent of those for all
configurations.

Assume that system load is such an environmental variable. If system-adminis-
tration functions are performed when the system is in an overload condition
because of heavy communication traffic, processing may be affected (administra-
tive requests might be queued, for example). Assume that this occurs 0.1 percent
of the time.

To generate the segment of the operational profile we are considering, first mul-
tiply all values in Table 5.6 by 0.8 to give the occurrence probabilities for analog
telephones. Then multiply by 0.999 to obtain the occurrence probabilities for nor-
mal load, or by 0.001 to obtain the occurrence probabilities for overload. Table 5.7
is the new operational profile segment.

TABLE 5.7 Operational Profile Segment Based on Features
and Environment

Occurrence probability

Command Environment (x107°9)
relocate Normal load 12,228.00
remove Normal load 1,359.00
add -s staff Normal load 1,119.00
add -s manager Normal load 400.00
add -s secretary Normal load 79.90
relocate Overload 12.24
remove Overload 1.36
add -s staff Overload 1.12
add -s manager Overload 0.40

add -s secretary Overload 0.08

The Operational Profile 193

Some operations in Table 5.7 occur very infrequently. You should
seriously question if it is really necessary to test all of them. Consider
eliminating the “add -s secretary under overload conditions.”

Example 5.3 Data-driven system Financial and billing systems are commonly
data-driven. Suppose a telephone billing system was designed as two subsys-
tems. The sort subsystem receives call transactions and sorts them by billing
period and account number, grouping all the items for one account for the current
billing period. The account-processing subsystem processes the charge entries for
each account for the current billing period and generates bills.

The reliability you want to evaluate is the probability of generating a correct bill.
This invelves determining the reliability of each subsystem over the time required
to process the bill or the entries associated with the bill, and then multiplying the
reliabilities. You must determine an operational profile for each subsystem.

Because this design was not anticipated when the functional profile was devel-
oped, the relationship between the functional profile and the two operational pro-
files is complex. For example, typical functions may have been bill processing, bill
correction, and the identification of delinquent customers. The bill-processing
function relates to operations in both subsystems, but the other two functions
relate only to the account-processing subsystem.

The first subsystem, the sort subsystem, will have relatively few operations and
a simple operational profile. The operation for processing correct charge items
has an occurrence probability greater than 0.99; other operations handle missing
data, data with recognizable errors, and so on. You should be able to estimate
occurrence probabilities from past data on the frequency and type of errors.

The second subsystem, the account-processing subsystem, has an operational
profile that relates to account attributes. Its operations are classified by service
(residential or business), use of a discount calling plan (non, national, or interna-
tional), and payment status (paid or delinquent), resulting in 12 operations.

Assume that the service classification is 80 percent residential and 20 percent
business. A national discount calling plan is used by 20 percent of subscribers;
international, 5 percent. Only 1 percent of accounts are delinquent. Table 5.8
shows the set of operations and their associated probabilities.

TABLE 5.8 Operational Profile Account-Processing Subsystem
of Billing System

Occurrence

Operation probability
Residential, no calling plan, paid 0.5940
Residential, national calling plan, paid 0.1584
Business, no calling plan, paid 0.1485
Business, national calling plan, paid 0.0396
Residential, international calling plan, paid 0.0396
Business, international calling plan, paid 0.0099
Residential, no calling plan, delinquent 0.0060
Residential, national calling plan, delinquent 0.0016
Business, no calling plan, delinquent 0.0015
Business, national calling plan, delinquent 0.0004
Residential, international calling plan, delinquent 0.0004

Business, international calling plan, delinquent 0.0001

194 Technical Foundations

If transaction use is described in terms of transaction rates, you
obtain the occurrence probabilities by dividing the individual transac-
tion rates by the total transaction rate and multiplying this by the prob-
ability of transaction occurrence (with respect to other operations). If all
the operations are transactions, the last step is not necessary.

5.4 Test Selection

The operational profile is used to select operations to execute in test in
accordance with their occurrence probabilities. Testing driven by an
operational profile is very efficient because it identifies failures (and
hence the faults causing them), on average, in the order of how often
they occur. This approach rapidly increases reliability—reduces failure
intensity—per unit of execution time because the failures that occur
most frequently are caused by the faulty operations used most fre-
quently. Users will also detect failures in the order of their frequency if
they have not already been found in test.

Since an operation represents a group of run types, the coarse grain
selection of the operation must be followed by the fine grain selection
of a run type. Although selection of the operation can be based on usage
(and criticality), the fine grain selection must be very simple and easy
to implement because of the large number of elements in the popula-
tion from which you are selecting. Of course, you also want it to be effi-
cient in the sense of requiring the smallest possible number of tests to
assure a specified reliability at the required confidence level.

Random selection of run types within an operation is a common
strategy; it is probably best when you have little information that
might affect the distribution of failing run types within an operation.
An example of pertinent information would be a processing difference
between groups of run types, where it is known that the code associ-
ated with one processing alternative is considerably more complex.

However, when some information is available, it is useful to profit
from it by dividing the operation into run categories. A run category is
a group of run types that represent part of an operation. The informa-
tion that might affect the distribution of failing run types is used to
attempt to select run categories or sets of run types that are homoge-
neous. Run categories are homogeneous if any one run type represents
the entire set in the sense that all have the same failure behavior. Thus
if a test of one of them fails, all will fail. Similarly, a successful execu-
tion of one run type means the entire homogeneous set will execute
successfully. Clearly, identification of homogeneous sets of run types
will reduce the amount of testing required for a specified level of relia-
bility. In practice, it is very difficult to identify homogeneous sets with
certainty; hence we define a run category as being near homogeneous.

The Operational Profile 195

You should establish run categories such that they have approxi-
mately equal occurrence probabilities. This is because selection of run
categories from operations is done on a uniform basis, usage informa-
tion not being available at this level.

To define run categories that approach homogeneity, look for run
types that at least share the same input variables and execute the
same code path. Try to find ranges of values for each input variable
over which essentially the same processing occurs.

Although you could in theory select only one run type from a run cat-
egory, it is probably better to pick two or more and do it randomly to
counter the risk that homogeneity is often not achieved. Thus, the
sequence of selections that occurs when using run categories is opera-
tion, run category, run type.

Selection should be with replacement for operations, run categories
and run types. Replacement means that, after selection, an item (for
example, operation or run type) is returned to the list from which it
was chosen so that it is not excluded from reselection. One might argue
that replacement for run types wastes test resources because of the
possibility of duplication. However, the number of run types is so large
that the probability of this happening is infinitesimal.

Selection could be performed without replacement, in which an ele-
ment can be chosen only once. This is unwise for operations because
they can be associated with multiple faults. There is a high risk that
different run types within an operation may show different behavior.

5.4.1 Selecting operations

With an explicit operational profile, you select operations directly in
accordance with their occurrence probabilities. With an implicit opera-
tional profile, you select operations by choosing the level of each key
input variable in accordance with its occurrence probability, which
implicitly selects the operation at the conjunction of these values.

If different profiles (system modes) occur at different times in the
field, you should conduct separate tests. However, if they occur simul-
taneously, testing should be concurrent, because system modes run-
ning simultaneously can interact. The execution time allocated to each
system mode should be proportional to its occurrence probability. Con-
current testing in effect combines multiple operational profiles into a
single one.

If different versions of the software product are supplied to different
customers, they may differ primarily in system-mode profiles. If inter-
action among system modes is nonexistent or small, you can test each
system mode independently. Failure intensities for the different cus-
tomers can be obtained by weighting the system-mode failure intensi-

196 Technical Foundations

ties by the occurrence probabilities. The result is substantial savings in
test time. You may also want to test several operational profiles that
represent the variation in use that can occur among different system
installations to determine the resulting variation in reliability.

If possible, you should select operations randomly to prevent some
unrealized bias from entering into the testing process. Data corruption
often causes such a bias. Data corruption increases with execution time
since the last reinitialization, so if one operation is always executed
early and another always late, your tests may miss significant failure
behavior.

It is wise to randomly select as many key input variables as possi-
ble. Random selection is feasible for operations with key input vari-
ables that are not difficult to change. However, some key input
variables can be very difficult and expensive to change, such as one
that represents a hardware configuration. In this case, you must select
some key input variables deterministically, because changing these
variables during system test must be scheduled. Carefully consider
the bias that might result from those you select deterministically and
try to counter it. For example, reinitialize the system at random times
to avoid data-corruption bias.

5.4.2 Regression test

Regression testing can be a substantial portion of the overall test ef-
fort. Regression tests are run after changes have been made to uncover
spawned faults. Spawned faults are faults introduced while removing
other faults. Because changes are frequently grouped and introduced
periodically, regression testing is also usually periodic. A week is a com-
mon interval, although intervals can be as short as a day or as long as
a month,

Some testers say regression testing should focus on operations that
contain the changed code. This view makes sense only if you are sure
the possible effects of the changes are isolated to those operations or if
system reliability requirements are low so that cross-effects to other
operations do not matter. However, in most cases you cannot rely on
isolation, and potential cross-effects can cause unacceptable deteriora-
tion in system reliability. So all operations should be considered when
planning a regression test. However, a change generally results in a
smaller probability of failure than a new program, so it isn’t really nec-
essary to retest every operation after every change.

It is inefficient to cover operations of unequal occurrence frequency
with equal regression testing; hence, operations should be selected in
accordance with the operational profile. Now the possibility exists of

U U PP

The Operational Profile 197

integrating regression testing with regular system testing. You can
achieve substantial savings in test resources and time by making your
tests do double duty.

5.5 Special Issues

As we used the operational profile on several projects, we encountered
some special situations for which solutions had to be researched. We
address the most important of these cases here.

5.5.1 Indirect input variables

Sometimes the relationship among observable task and environmental
variables and input states is not clearly discernible, at least not with-
out an expensive effort. In this case, you can establish and employ indi-
rect input variables to control test selection. An indirect input variable
is believed to affect processing, but is not used by the program directly.
In many cases, you will be interested in establishing indirect key input
variables.

Consider traffic load. It is neither practical nor enlightening to deter-
mine which input-variable values are caused by heavy traffic and
directly affect processing. It is better to actually generate a heavy traf-
fic load and observe the results. The program accesses no traffic-level
variable, but you can consider the traffic level generated as an indirect
input variable. You can select levels of these indirect input variables
randomly, in accordance with estimated occurrence probabilities.

Indirect input variables are particularly useful for handling the
effects of data corruption. Data corruption is the accumulated degra-
dation in data with execution time that results from anomalies in
intermediate variables that do not represent failures. Some of these
data are in reality input variables for other operations, but the inter-
action is often not known. In this case, you can define an indirect input
variable called soak time in terms of hours of execution and plan to test
several different values of this variable. You may implicitly select the
values by performing a soak test, in which you continuously increase
soak time up to a limit, with operations randomly chosen in accordance
with the operational profile in this interval. In either case, you should
include a soak time slightly less than the reinitialization interval you
expect to use in the field.

5.5.2 Updating the operational profile

An operational profile can change during the life of a product, espe-
cially when new features are regularly made available through new

198 Technical Foundations

releases. Each new release will necessitate modifying the operational
profile. Because it is best to base the modified operational profile on
measured data, a regular operational-profile measurement program is
recommended.

In the long run, the simplest way to do this is to build the measure-
ment capability into the system. This involves counting and recording
the number of runs of each run type. You can combine this measure-
ment system with a failure-detection and -recording function or other
performance-measurement system. The most economic and reliable
way to collect data is through periodic reporting over telecommunica-
tion channels to a central location. If this is not feasible, you can collect
data on a removable medium that is mailed periodically to a processing
center.

Some designers may be concerned about performance degradation
caused by the recording function. For the amount of data needed and
the length of the runs involved, performance degradation is unlikely,
but recording excessive amounts of data could cause a problem. If per-
formance does become a problem, you can sample a set of sites or a set
of time periods, as long as you are careful to sample randomly. Built-in
recording may not happen until suppliers and customers learn
through experience to appreciate its value. In this case, the best
approach is to take measurements at a randomly selected sample of
sites. Root-cause failure analysis may also provide data, because it
sometimes leads to uncovering system uses that were not known and
hence not tested.

Generally, operational profiles should be updated when there are
major releases that represent substantial changes in capabilities and
expected use. As a system passes through different versions or releases,
the functional profile usually needs updating less frequently than the
operational profile, because it is used mainly to prioritize tasks and
allocate resources and thus can be less refined.

If new functions are added, their occurrence probabilities must be
estimated. Suppose that the new functions’ usage totals py. If the new
functions do not affect the occurrence probabilities of the old functions
except by adding to the overall set of functions, the old functions’ prob-
abilities are adjusted by multiplying by (1 — py). However, if some old
functions are replaced or otherwise affected, the probabilities are
adjusted individually.

5.5.3 Distributed systems

You can apply operational-profile techniques to distributed or networked
systems if they are engineered, tested, and managed as a whole. This
implies that “operation” refers to a task that involves part or all of the

The Operational Profiie 199

total system, not just one component. There is nothing that restricts the
concept of an operation to a program that executes on a single machine.

All the concepts relating to input space—run, run type, run category,
operation, and function—and failures are logical, in the sense that they
can span a set of software, hardware, and human components. For
example, a run can consist of a series of segments, each executed as a
process by a server, with the servers being implemented on the same or
different machines.

The functional profile can be used to guide resource allocation and
set priorities in development with respect to the entire system. The
operational profile can guide testing of the entire system as a unit.

Delineating run types, run categories, and operations for distributed
and networked systems can be more complex because the set of envi-
ronmental variables can be appreciably larger. Although going from a
centralized to a distributed system does not increase the number of
task variables, it often increases the effective number of environmental
variables, such as traffic load and soak time, because you may have to
specify and measure them with respect to individual machines.

You can counter the foregoing proliferation of environmental vari-
ables by carefully designing both the system and its operating proce-
dures. For example, you can design a system so that all machines have
similar traffic loads (as a percentage of capacity). And you can equalize
soak time by synchronizing reinitializations.

You can, of course, also apply the operational profile to any subsystem
as long as that subsystem has operations that relate directly to users.

5.6 Other Uses

Although it was developed to guide testing, the operational profile can
also guide managerial and engineering decisions throughout the life
cycle, including requirements specification, design, implementation,
and testing. Because it ranks features by how often they will be used,
it suggests development priorities.

A prioritized operational development approach is potentially a very
competitive, customer-oriented way to sequence new-product introduc-
tion: make the most-used features (operations) available very quickly
and provide less-used features in subsequent releases. Development of
a specified release proceeds incrementally by operations. This approach
is different from traditional incremental development approaches,
which proceed incrementally by modules. Since operational develop-
ment is relatively new, experience will be required to identify and
resolve development issues that may arise.

The functional profile improves communication between developer
and customer and within the customer organization by making expres-

200 Technical Foundations

sion of needs more precise. It may highlight types of use not antici-
pated by the developers. It may cause users to think about their needs
in greater detail. For example, when a developer asks which functions
are needed to support maintenance and how often they will be used, it
stimulates users to think about, discuss, and study what the mainte-
nance procedures should be.

The operational profile can also be used in performance analysis. If
you multiply each operation’s occurrence probability by the system’s
overall run or transaction-execution rate, you obtain the run or trans-
action rates for each operation. This information is used for perfor-
mance analysis and performance testing. Among other uses, it can help
determine the number of servers a client-server system requires.

Finally, the operational profile is an educational aid. It organizes
work in a manner that is closely related to user work processes. It can
direct the customer’s training efforts toward the most-used operations.
For user manuals, the operational profile suggests the order in which
material should be presented (most-used first) and the space, time, and
care that should be devoted to preparing and presenting it.

By employing an operational profile for multiple purposes, we lower
its cost per use.

5.7 Application to DEFINITY®

5.7.1 Project description

The Global Business Communications System (GBCS) division of
AT&T provides private branch exchanges (PBXs) to businesses. A PBX
is a telecommunication system for businesses that provides phone ser-
vices within buildings and out into the public telephone network. The
DEFINITY G3 line of PBXs comes in a variety of models that serve the
needs of customers from all areas of industry and in sizes from around
80 lines to tens of thousands.

DEFINITY has a central processor running a program of about one
and a half million lines of source code. In addition, there are as many
as several hundred distributed processors (line, trunk, and other inter-
faces) each running programs ranging from 2000 to 250,000 lines of
source code.

5.7.2 Development process description

In 1989, DEFINITY development processes were reengineered to focus
more on customer satisfaction. During this reengineering process,
research indicated that SRE principles could form the base of a com-
plete product development process that was oriented toward satisfying
customers. The resulting development process is called Customer Sat-
isfaction Based Product Development. Its components include rigorous

The Operational Profile 201

software development techniques (including design teams, code inspec-
tions, and developer testing), an incremental development life-cycle
model, and quality factor assessment (the assessment of customer-
oriented product quality metrics during the development cycle). These
processes are now applied to all DEFINITY releases and other prod-
ucts besides PBXs.

SRE is woven into this development process in the following way:

» Customer satisfiers are determined (reliability is a key quality
requirement),

m Metrics to measure those quality requirements during product
development are defined (various failure-rate metrics are used for
reliability measures).

m Customer usage of the DEFINITY product is documented in detail
(operational profiles are defined).

m Methods for assessing quality (reliability) during development are
devised.

5.7.3 Describing operational profiles

Multiple separate operational profiles are created for the DEFINITY
product, rather than one all encompassing profile. This is because a
single test environment that represents all DEFINITY customers can-
not be effectively, efficiently, or realistically created. Instead, an opera-
tional profile is created for each customer type in the customer profile.

Operational profile definitions start with customer models derived
from marketing, sales, manufacturing, user groups, and other data
sources. These models define typical or generic customers from each of
about 12 key business/industry areas (e.g., banking, universities, facto-
ries). This forms a customer profile. For each customer type, the set of
users in that profile is described. Table 5.9 is part of the user profile for
a bank.

The user percentage and call rate are determined for each user in the
profile. Together, these allow a usage distribution for those users to be
computed. As work was done to define the users for each customer in
the profile, the DEFINITY project recognized that users with similar
usage behaviors could be grouped into a common usage description.
These user descriptions are called generic users.

Each operational profile created has essentially one system mode
called a busy hour. This represents a customer’s busiest hour of usage
across a typical week. More stressful usage modes are studied inde-
pendently via stress tests designed by system test engineers.

Initially, the functional profile was defined to be simple and focus on
only a single basic PBX function—making and/or receiving a phone call

202 Technical Foundations

(though with more than 150 features on a DEFINITY PBX, there’s no
such thing as a simple phone call). This decision was based on the fact
that the vast majority of a PBX’s users were telephone users and that
the main PBX function they employed was making/placing calls. Thus,
the major component of system usage (as measured by transactions,
system hours, or CPU hours), and therefore software usage, was
accounted for by modeling phone calls. Since that time, the project has
subsequently defined other users (e.g., system administrators and
maintenance technicians) and their corresponding functional profiles.

An environmental profile, called a configuration profile, is also
defined. It is a set of configuration descriptions representing those
used by the customers in the customer profile. The descriptions specify
the parameters needed to describe the hardware and software envi-
ronment in which the functional profile takes place. The parameters
include such things as number of PBXs, types of processors used, types
of trunks between PBXs, and number of analog stations.

To describe the operational profiles, a tree-based approach is used.
For each user, a call tree is defined that describes their telephone usage.
The tree-based approach allows for expression of context-dependent
occurrence probabilities (i.e., conditional probabilities). This means that
the probability of a feature’s usage can change depending on when in a
call the feature is used. A set of tools is used to automatically create
complete telephone calls (run types) from the call trees. Figure 5.2
shows an example of two simplified call trees yielding a simple run
type. The tools, using the frequencies defined in the call trees, generate
samples that are proportioned according to customer usage.

This method substantially automates the generation of customer-
oriented test cases and, of course, provides the customer-like testing
(operational-profile-based testing) needed to estimate a system’s relia-

TABLE 5.9 A User Profile

Customer Type = Bank

User Generic User Call User
name user type percentage rate (¢/hr) prob.
Secretary Secretary 20 10 0.379
Attendant Attendant 1 24 0.046
Night-service Attendant 1 8 0.015
Agent Call-center agent 1 15 0.028
Supervisor Call-center supervisor 1 3 0.006
Executive Manager 3 3 0.017
Tellers Worker 15 2 0.057
Office workers Worker 52 4 0.395
Investment
counselors Administrators 6 5 0.057

The Operational Profile 203

bility. An added benefit is greatly enhanced tester productivity since
the vast majority of run types and test cases are automatically pro-
duced by this method.

Call trees are implicit operational profiles—selections are made
directly from the frequency/probability distributions of customers,
users, functions, and operations rather than from a listing of all possi-
ble operations (an explicit approach). Since each customer may have as
many as 20 different users, and each user tree may have hundreds of
branches (complete paths through the trees), the possible number of
run types is extremely large (estimated to be in the 10° range). Conse-
quently, enumerating all run types to create an explicit profile is not
feasible.

5.7.4 Implementing operational profiles

A key to this operational profile implementation is the selection meth-
ods used across the various profiles. To select customers and configura-
tions, this technique selects ones that are both of high probability and
(more) likely to fail. These configuration and customer choices are
made independently since experience has indicated that (nearly) all
combinations exist in the DEFINITY customer base (or are at least
possible).

The customers/configurations selection strategy begins by determin-
istically (not randomly) selecting those with the highest usage proba-
bilities. The selections are then modified by adding or removing
configuration components based on knowledge of the likelihood of fail-
ure of the components. (Though perhaps difficult to quantify, knowl-
edge of product failure behavior is available during the development
process. It includes such things as which code has changed, which cir-
cuit packs are new, which functional interactions exist, what the “tra-
ditional” trouble areas are, and so on.)

This is a good strategy from the test resource perspective: by follow-
ing this strategy, the largest proportion of customers are covered with
the fewest selections. It is also good from the quality-improvement per-
spective since it uses failure- and usage-likelihood information in com-
bination. This will most rapidly improve customer-perceived quality.

Once the customer and configuration are selected (deterministi-
cally), the run types to execute are selected randomly (as explained
earlier) from that customer’s user call trees according to usage proba-
bilities.

The system test organization implements this operational profile
approach by first documenting customer, user, and configuration selec-
tions in the system test environment and strategy planning documents.
These documents guide the creation of individual test plans, one for

204 Technical Foundations

each quality (reliability) assessment done during the development
interval. The test plans consist of configuration information (environ-
ment), usage information (traffic loads and user run types), and other
system-level test cases. Using the information in the test plan, the basic
execution process is to set up the test lab into a customer-like configu-
ration and operate it as a customer would by running traffic and exe-
cuting user run types. Failure data observed from this process are fed
into reliability analysis tools that plot reliability and other quality met-
ric graphs.

5.7.5 Conclusion

As described earlier in this chapter (see Sec. 5.1), initial experience
with SRE-based product development for DEFINITY was quite suc-
cessful (other factors also influenced these results—see [Abra92]). Sub-
sequent applications of these techniques continue to yield extremely
beneficial results both in terms of product quality as well as develop-
ment time and cost. You can find out more about these operational pro-
file techniques in [Juhl92a] and the overall SRE approach in [Juhl92b]
and [Juhl93].

5.8 Application to FASTARSM (FAST
Automated Restoration)

5.8.1 System description

AT&T’s long distance network provides ultrareliable telecommunica-
tions services. The network is composed of fiber light-guide systems
connected by Digital Cross Connect Systems. With the advent of fiber-
optic technology, the capacity of the network has increased along with
the consequences of events such as cable cuts caused by backhoes, train
derailments, and ice storms. Fiber systems are vulnerable to damage
due to cable cuts, and a large cut could easily affect over 100,000 tele-
phone circuits. FASTAR, AT&T’s Fast Automated Restoration Plat-
form, alleviates the impact of fiber cable cuts by reducing the time it
takes to restore service from hours to minutes.

In November 1988, prior to FASTAR, a fiber cable cut in the Newark,
New Jersey, area caused the loss of over 270 DS3 paths. A DS3 path
consists of 672 telephone circuits and is the unit of transmission and
restorability in the AT&T long-distance network. Thus more than
180,000 telephone circuits we affected. It took more than 15 hours to
repair the cable and reestablish service. After FASTAR was deployed,
a cable cut between Kansas City and St. Louis severed over 250 DS3
paths. It took considerably less than the 5-minute restoration objective
to restore service using FASTAR technology.

The Operational Profile 205

Two key systems manage FASTAR restoration capabilities. These are
the Restoration Node Controller and the Central Restoration System.
The Restoration Node Controller is a UNIX®-based system with
instances in more than 200 AT&T digital central offices. It monitors the
Lightguide Terminating Equipment and Digital Cross Connect Systems
for alarm conditions indicating a fiber cut or component equipment fail-
ure. The Central Restoration System, also a UNIX®-based system, con-
trols the overall restoration process. This system utilizes unused
capacity in the AT&T network to dynamically reroute traffic around
failures. Users interact with the Central Restoration System to monitor
restoration progress and handle exception conditions.

Figure 5.3 provides a diagram of the FASTAR architecture. If a cable
between office A and office C is cut, the Restoration Node Controller in
each of these offices detects and reports the failure to the Central
Restoration System. Next, the Central Restoration System computes
optimal DS3 restoration paths between offices A, B, and C and imple-
ments these paths by sending appropriate commands to the Digital
Cross Connect System in each office.

Software validation of the UNIX®-based systems that control the
restoration process was critical to the success of FASTAR. Since
the Restoration Node Controller and Central Restoration System have
the power to rearrange the AT&T network, software defects in these

Central
Restoration
System
Office B
Digital Restoration
Cross-connect [| Node
System Controller
-
Light-guide
Terminating
Equipment
Office A Office C
Restoration Digital Digital Restoration
Node Cross-connect Cross-connect [| Node
Controller System System Controller
Light-guide Light-guide
Terminating
Equipment

Terminating
Equipment

Figure 5.3 FASTAR®M architecture.

206 Technical Foundations

systems could cause severe network service interruptions. As the
development team for FASTAR, we selected software reliability engi-
neering (SRE) to verify that stringent reliability objectives had been
met. (Throughout the remainder of this section, we refers to the FAS-
TAR development team.)

The success of the FASTAR SRE program was based on our focus in
four key areas: understanding customer expectations, deriving the
operational profile, developing the test environment, and executing the
load/stress/stability test program.

5.8.2 FASTAR: SRE implementation

5.8.2.1 Understand customer expectations. The customers for FASTAR
are the AT&T business units that provide business and consumer long
Distance and 800 services and the Network Operations group that
maintains the AT&T network. The job of these AT&T organizations is
to provide a reliable network for the millions of business and residen-
tial consumers who use AT&T telecommunications services every day.
FASTAR helps them meet the demands of these consumers.

These customers demand high levels of quality, reliability, availabil-
ity, and performance. They expect the systems that compose FASTAR
to not only meet performance objectives but also operate continuously
and flawlessly. They want to be absolutely certain that the system has
no defects that could negatively impact long-distance service.

Our goal as the development managers for the Central Restoration
System and the Restoration Node Controller is to ensure that our
organization delivers on our customers’ high demands. Our SRE pro-
gram allows us to do just that. With SRE, we are able to verify FASTAR
operational reliability and assess performance under projected field
operation. To do this, we developed an operational profile.

5.8.2.2 Derive operational profile. As previously noted, an operational
profile characterizes the operating conditions for the system—that 1is,
how the software will be used in the field. We derived the initial version
of the FASTAR operational profile using a computer simulation model
of FASTAR. This first profile focused solely on cable-cut scenarios. We
defined the typical and worst-case cable-cut incidents from simulation
results, and derived the frequency of various cable-cut scenarios from
historical data. Figure 5.4 displays the FASTAR operational profile for
cable-cut scenarios. It describes the probability of small, medium, and
large cable cuts occurring. We estimate that 10 large cable cuts occur in
the AT&T fiber network each year.

As development proceeded, we recognized the need to define a richer
operational profile that described all the system inputs and outputs in

The Operational Profile 207

75%

20%

5%

Small ‘Medium Large
Cable Cut Cable Cut Cable Cut

Figure 54 FASTARS™ operational profile. Probability of small, medium,
and large cable cuts.

order to adequately test the system. We added background events to
the profile. We defined background events as all non-cable-cut activities
that could occur on the system. These included activities such as data-
base provisioning, maintenance operations, network management
operations, and single DS3 path failures caused by component equip-
ment failures. While major cable cuts occur approximately 10 times
during a year, background events occur continuously.

After close examination of the FASTAR operational profile, we
determined that the operating conditions for the Central Restoration
System were quite different than that of the Restoration Node Con-
troller. We viewed the operating scope of the Central Restoration Sys-
tem as the entire AT&T network. For the Restoration Node Controller,
we viewed the operating scope as a single digital central office. In order
to take these important differences into account in our test program,
we decided to define distinct operational profiles for each of the two
systems.

In the operational profile for the Central Restoration System, we
were concerned about the overall FASTAR profile and the impact of
recelving data from over 200 Restoration Node Controllers, maintain-
ing communications to over 200 Digital Cross Connect Systems and
processing commands from 50 simultaneous users. Special attention
was paid to collecting data that described how users actually interacted
with the system. For the Restoration Node Controller, we developed one
operational profile that represented all the offices and focused on the
worst-case load in the largest AT&T digital central offices.

208 Technical Foundations

We derived the operational profile for each of the systems from dis-
cussions with customers and from log data collected from Beta Test
versions of the system. The frequency of event occurrences in the Cen-
tral Restoration System dwarfed that of the Restoration Node Con-
troller. For the Central Restoration System, 10 major cable-cut events
are expected in a year. For the Restoration Node Controller, any single
system can expect to participate in less than one cable-cut event each
year. The difference in background events is even more dramatic. Forty
thousand background events are executed on the Central Restoration
System every day due to the many users who interact with the system.
For the Restoration Node Controller, 500 background events are per-
formed each day. After fully understanding the operating conditions for
the software, our next challenge was to build a test environment to
take advantage of the operational profile.

5.8.2.3 Develop test environment. We began FASTAR testing by
using real network facilities and central office equipment in a labora-
tory. However, this did not allow us to test the field operational profile. It
was not possible or feasible to test the system’s maximum configuration.
We augmented the test lab with a simulated test environment that could
handle all the inputs and outputs identified in the operational profile.

For the Central Restoration System, we developed a Network and
User Simulator (see Fig. 5.5). It can simulate the actions of more than
200 Restoration Node Controllers and Digital Cross Connect Systems
and over 50 simultaneous users. It provides an environment to test the
Central Restoration System with the worst-case cable-cut scenarios that
can occur in the AT&T network in the safety of our lab environment.

For the Restoration Node Controller, we developed an Office Simula-
tor (see Fig. 5.3). It simulates the maximum office configuration. The
Office Simulator supports the simulation of direct connections to
Lightguide Terminating Equipment and Digital Cross Connect Sys-
tems. It provides an environment to test the Restoration Node Con-
troller with worst-case cable-cut events in AT&T’s largest offices in the
safety of our lab.

Both simulation environments were designed with a programmable
interface. This allowed us to develop automated test scripts to drive the
test runs. We wrote automated test scripts in the Network and User
Simulator environment to simulate the operational profile of the Cen-
tral Restoration System. For example, user scripts mirror the opera-
tions of the various users, and alarm scripts simulate the cable-cut
alarms from the Restoration Node Controller. We wrote automated test
scripts in the Office Simulator environment to simulate the operational
profile of the Restoration Node Controller. For instance, alarm scripts
simulate cable-cut alarms from Lightguide Terminating Equipment.

The Operational Profile 209

Network Simulator

Digital
Cross-connect
System

Restoration
Node Central
Controller Restoration

< E———————- | System

i

User
User Simulator ‘
Office Simulator
Light-guide Restoration
Terminating
Equipment ————-- Node
Controller
Digital
Cross-connect
System

Figure 5.5 Simulator test environment.

Once the test environment was developed, we had the tools in place
to execute our load/stress/stability test program.

5.8.2.4 Execute load/stress/stability test program. The purpose of our
load/stress/stability test program was to ensure that the Central
Restoration System and Restoration Node Controller met our cus-
tomer’s stringent reliability objectives for FASTAR. We wanted to be
certain that FASTAR did what it was supposed to do and, more impor-
tant, did not do anything that it was not supposed to do. We orches-
trated load/stress/stability tests by executing each system’s oper-
ational profile in its respective test environment. We found and fixed
defects and reran the tests. Using this process, failures occurred less
frequently and the reliability of FASTAR improved over time.

During our load/stress/stability test program, we tested the Central
Restoration System and Restoration Node Controller under the same
conditions that would be encountered in the field. These tests were per-
formed after the individual commands and operations had been func-
tionally verified. Load tests mirrored the operational profile of the two
systems. Stress tests executed worst-case cable-cut scenarios on each
of the systems. Stability tests verified each system with its operational
profile for a minimum of 100 hours of continuous operations. Often,
stability tests ran for over one month.

210 Technical Foundations

The FASTAR operational profile showed that cable cuts happen very
infrequently. Restoration of cable cuts was certainly the most critical
operation of the system. Since it was not feasible to execute the test
program for a year to simulate the expected 10 cable cuts, we designed
accelerated test runs. In the case of the Restoration Node Controller,
load was accelerated by a factor of 24 during stability tests. This
allowed us to execute an entire day’s activities in one hour. Hence, we
could execute a year’s operational profile in the test environment
within a matter of weeks. For the Central Restoration System, load
was accelerated by a factor of 1.25 during stability tests and by a factor
of 50 during stress tests.

We measured test results for each load/stress/stability test run and
tracked the growth of reliability over time. The metrics we used for
tracking results were DS3 paths correctly reported by the Restoration
Node Controller and DS3 paths correctly rerouted by the Central
Restoration System. When we started obtaining load/stress/stability
test results, 90 percent of DS3 paths were correctly reported and
rerouted. We continued to improve the system, run tests, measure
results, and fix defects. When we were ready to release FASTAR, relia-
bility had grown above the 99 percent mark. Still we continued to
improve the system until our results reached nearly 100 percent.

5.8.3 FASTAR: SRE benefits

SRE was instrumental to the success of FASTAR by ensuring that reli-
ability objectives had been satisfied prior to introducing the system
into the AT&T network. SRE results guided us in making the critical
decision on when to release FASTAR.

The major benefit from SRE was that it gave us the confidence to
deploy the system. In fact, we believe that without SRE we would have
not been able to release FASTAR, because we had no other way to be
certain that the system would not have a defect that could seriously
impair the operation of the AT&T network. With the results we
obtained from SRE, we were able to decide when the system was ready
to be released, and we were confident that FASTAR would dramati-
cally improve network operations. Our SRE prediction has proven to be
accurate. FASTAR handles single DS3 restorations on a daily basis
and major cable cuts throughout the year.

5.9 Application to the Power Quality
Resource System (PQRS)

5.9.1 Project description

In recent years, AT&T has placed increased emphasis on the role of AC
and DC power systems and other network infrastructure elements

The Operational Profile 211

with respect to network reliability. While normally maintaining a low
profile among the more exciting, high-visibility technologies in use
today, power and infrastructure systems must be in place, engineered
correctly, and maintained appropriately to ensure reliable operations
of the network elements they support.

In mid-1992, AT&T’s Network Services Division, which operates the
core network, deployed a new internal application to support network
operations and engineering of power and infrastructure systems. The
Power Quality Resource System (PQRS) maintains an inventory of the
major units of AC and DC power systems and infrastructure elements,
including building environmentals such as chillers. In addition, PQRS
contains algorithms to calculate fuel and battery reserve time. PQRS
provides the capability to calculate the number of hours the office can
run on auxiliary power generated by its standby engines and by bat-
tery backup.

A typical use of PQRS involves support of the demand (or reactive)
maintenance process. In the event of a power failure alarm, for exam-
ple, AT&T’s surveillance and alarm center personnel will determine
the appropriate response, given a number of factors including battery
reserve time, fuel reserve, or availability of a portable engine, and so
on—information extracted from PQRS upon demand.

The project team applied state-of-the-art methods and tools in the
development of PQRS. In the preliminary planning stages for the proj-
ect, a decision was made to apply SRE—in particular, operational pro-
file testing.

5.9.2 Developing the operational profile

5.9.2.1 Initial functional profile derived from DFDs. The PQRS require-
ments team used dataflow diagrams (DFDs) and entity relationship
diagrams (ERDs) to model the application’s functions and stored data.
The level 0 DFD is used to identify the major processes and functions
of the system. The level 0 diagram is the DFD directly beneath the con-
text diagram in a leveled set of DFDs, and it represents the highest-
level view of the major functions within the system and the major
interfaces between those functions [Your89]. The initial functional pro-
file was derived from PQRS’s level 0 DFD.

At this early point in the development cycle, the team estimated
transaction volume in terms of broad ranges and used the information
as input to the formulation of the hardware and software architecture
of the system.

5.9.2.2 Final functional profile. The project team used a process known
as architecture discovery to understand the user’s expectations, to
identify the problem to be solved, and to determine if a solution (par-

212 Technical Foundations

tial/whole) already exists. As the software architecture solution began
to be defined, logical groupings of transactions emerged. The transac-
tion classes were groups of transactions which were roughly equivalent
in terms of CPU utilization, software architecture elements applied,
user think time, and performance/response time.

The architecture team turned over a list of 21 transaction classes to
the requirements team to develop estimates of daily system-usage vol-
umes (best and worst case) by user group for the first and fourth years
of operation. The requirements team pulled in a subject matter expert
from the user community to help produce the estimates.

The architecture team used the functional profile to finalize the
resource budgets and system configuration. The team also established
a plan to instrument the system so that field data could be collected to
assess the system’s performance, to identify usage trends, and to vali-
date/update the estimates that were used for the performance model
and for the operational profile.

5.9.2.3 Operational profile. Over time, PQRS’s project-specific defini-
tion of operational profile has evolved to the following: listing of each
transaction, mapping of each transaction to an operation, execution fre-
quency of each operation, and usage characteristics (time of day, number
of users). The definition does not include environmental and customer-
type variables, as they are not factors for this internal product.

About 3 months prior to system test, members of the project team
met to finalize the operational profile. By that point, the application
itself was well understood. With much discussion and lively inter-
change, 56 individual transactions were identified and mapped to 12
operations. The rationale for aggregating the transactions followed the
logic of the architecture phase: that roughly equivalent transactions
could be grouped based on CPU utilization and software architecture
elements involved. Further, due to the difficulty (and inherent inaccu-
racy) in estimating transaction volumes at the lowest level (add bat-
tery record, view battery record, modify battery record, etc.), the team
agreed that the aggregate approach was appropriate for this data-
intensive application.

PQRS’s heaviest users (in terms of numbers of transactions they
were expected to generate) work regular office hours, and most are in
the eastern time zone. The project team settled on three system modes
for the initial operational profile: off hours, prime-time peak, and
prime-time nonpeak. Experience with the production system has vali-
dated these assumptions.

With a total number of transactions expected during an average
business day and considering the predominant daytime usage, it was
easy to estimate the off-hours volume by class. To segregate the re-

The Operational Profile 213

mainder between peak and nonpeak hours, the team approximated
prime-time peak as 50 percent higher than prime-time nonpeak.

5.9.2.4 Updating the operational profile. With the instrumentation pro-
vided in PQRS’s software to log transaction volumes at the lowest
level, including their performance, it has been simple for the project
team to update the operational profile for each new release. Following
the initial operational profile testing of release 1.0, the team has fur-
ther condensed the number of operations. Every transaction is mapped
to one of seven basic operations. For each new release, the seven basic
operations are updated to include functionality delivered in the previ-
ous release, and the new functionality is isolated in three separate,
additional operations to ensure thorough test coverage of the new
capabilities, but in proportion to their expected usage.

PQRS’s logs are shipped regularly from the production site to the
development machine. Numbers of login sessions and transactions are
tracked by class, by user, and by hour of the day. The data are also ana-
lyzed for transaction mix and volumes during network emergencies
such as Hurricane Andrew.

5.9.3 Testing

The primary objective of the project team in testing in accordance with
the operational profile was to certify PQRS’s software quality from the
users’ viewpoint. The team expected to identify software failures occur-
ring as a result of combinations of transactions or due to hours of con-
tinuous operation, failures not observable through traditional functional
testing.

5.9.3.1 Tools. A high degree of automation has always been an
assumption with respect to operational profile testing for both test gen-
eration and test execution. The test team developed a test executive
that controls generation of test scripts and executes them based on the
operational profile. Every hour, a scheduled job begins executing, and it
performs the following:

1. Determine system mode for the next hour and number of users who
will log in.
2. Determine number of transactions by class that will be executed; ran-

domly select individual transactions within the class to be executed;
generate test cases in real time based on a set of fixed, valid data.

3. Randomly map test cases to users and determine a random minute
within the hour for the start of each user session.

4. Create an execution script for each user.

214 Technical Foundations

During each hour, the test executive provides overall control for execu-
tion of the scripts and monitoring mechanisms.

5.9.3.2 Varying occurrence probabilities. Due to the simplicity of the
design of the test executive, the test team has been able to vary the
occurrence probabilities and transaction volumes by class. Since the
operational profile is only an estimate at best, the team has found it
useful to vary it a bit to reflect the production environment, i.e., every
day in the field will not be an average day. This has resulted in the
detection of at least one failure that may not have been detected in
other phases of testing. This follows from the expectation that reliabil-
ity will change when the environment changes [Musa87].

With such a data-intensive product, and each new release delivering
additional inventory capability (i.e., new screens and tables), the team
has at times intentionally increased the rate of inventory transactions
significantly above the norm to evaluate the results. And due to heavy
usage of PQRS’s reporting capabilities during network emergencies,
the test team has also varied the mix of transactions to simulate non-
average field conditions.

5.9.3.3 Extension to performance and stress testing. Because PQRS
was instrumented to track transactions and performance, performance
testing is not a separate testing discipline for the project. During the
intervals when the operational profile is being executed, the system
logs are monitored closely for anomalies in performance.

The simplicity of the design of the operational profile test executive
has also made it extensible to stress testing. Transaction volumes, trans-
action mix, and numbers of users are systematically intensified and the
logs examined for evidence of failures and to evaluate performance.

5.9.4 Conclusion

Development of the operational profile was an extension of work al-
ready performed for understanding the customers’ requirements. With
the inclusion of application measurements and logging, it has been a
relatively simple matter to keep the profile updated for each release.

The benefits realized from testing in accordance with the operational
profile include detection of several software faults not observed (and
likely not observable) during traditional functional testing. It has cer-
tified the quality of the delivered product.

The investment made in automation continues to pay back, in its
ability to run load testing continuously for two weeks without inter-
vention and in its extensibility to stress testing and application for
regression testing.

The Operational Profile 215

5.10 Summary

At AT&T, software reliability engineering, which includes the opera-
tional profile, was approved as a “best current practice” (see Chap. 6) in
1991. To qualify as a best current practice, a technique must have sub-
stantial project application with a documented, favorable benefit-to-
cost ratio, support by world-class technology, and mechanisms for
technology transfer (courses, reference material, jump starts and con-
sulting, tools) in place. It must pass probing reviews by two committees
of senior software managers [Ever93].

AT&T has used SRE and the operational profile to ensure the suc-
cess of many projects, including such critical ones as DEFINITY, FAS-
TAR, and PQRS. In one large software-development organization, it is
being fully integrated into the development process. AT&T and other
companies (for example, Hewlett-Packard) have found that application
of the operational profile yields substantial savings in test costs and
hence total project cost. You can expect to save even more if you use the
operational profile to guide other development phases as well.

Problems

5.1 What simplifications should be made in the procedures for developing an
operational profile for a software-based product for internal use in a company?

5.2 When can you go directly to an operational profile without creating a
functional profile?

5.3 Can different customer groups have the same user groups?
5.4 Systems in heavy traffic conditions often will not allow the execution of
low-priority operations such as maintenance and backup. How do you handle

the effect on the operational profile?

5.5 Is it acceptable to merge a number of noncritical, rarely occurring opera-
tions into one operation?

5.6 What is a common failing in creating the function list?

5.7 Can an operational profile be developed for operations that span multiple
machines?

5.8 What is reduced-operation software?

5.9 Agsume you are the development manager on a software project for an
airplane flight control system. How would you implement an SRE program for

216 Technical Foundations

this software development effort? Include the major steps you would under-
take to ensure the success of this program.

5.10 Discuss the advantages and disadvantages of aggregating individual
transactions in the formulation of the operational profile.

5.11 Discuss the benefits of instrumenting your application to record field
data.

Part

Practices and Experiences

—— e~ - - - .

