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4.1 Introduction

The previous chapter gives a comprehensive summary of many soft-
ware reliability models that have appeared in the literature. Un-
fortunately, no single model has emerged that can be universally
recommended to a potential user. In fact, the accuracy of the reliability
measures arising from the models tends to vary quite dramatically:
some models sometimes give good results, some models often perform
inadequately, but no model can be trusted to be accurate in all circum-
stances. Worse than this, it does not seem possible to identify a priori
those data sets for which a particular model will be appropriate
[Abde86b].

This unsatisfactory position has undoubtedly been the major factor
in the poor take-up of these techniques. Users who have experienced
poor results adopt a once-bitten-twice-shy approach, and are unwilling
to try new techniques. It is with some trepidation that we claim that
the approach presented in this chapter has largely eliminated these
difficulties. It might be as well, therefore, before giving some details of
the techniques and examples of their use, to declare our credo. We
believe that it is now possible in most cases to obtain reasonably accu-
rate reliability measures for software and to have reasonable confi-
dence that this is the case in a particular situation, as long as the
reliability levels required are relatively modest. The italicized caveats
here are important, because there are some limitations to what can
currently be achieved, but they should not be so restrictive as to deter
you from attempting to measure and predict software reliability in
industrial contexts.
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We begin by recalling briefly the nature of the software reliability
problem. In the form in which it has been most studied, this is a prob-
lem of dynamic assessment and prediction of reliability in the presence
of the reliability growth which stems from fault removal. A program is
executing in a test (or real) operating environment, and attempts are
made to fix faults when these are found as a result of the observation
of software failures. There is therefore reliability growth, at least in the
long term, although there may be local reversals as a result of poor
fixes causing the introduction of new faults. The reliability growth
models utilize the data collected here, usually in the form of successive
execution times between failures (or, sometimes, numbers of failures in
successive fixed time intervals; see Chap. 1 for details), to estimate the
current reliability and predict the future development of the growth in
reliability.

It is important to realize that all questions of practical interest
involve prediction. Thus, even if we want to know the current reliabil-
ity at a particular point in this process, we are asking a question about
the future: in this case about the random variable, T, representing the
time to the next failure. However we care to express our questions con-
cerning the current reliability—as a rate of occurrence of failures, as a
probability of surviving a specified mission time without failure, as a
mean time to next failure, or in any other convenient way—we are
attempting to predict the future. Longer-term prediction might involve
attempting to estimate the (distribution of) time needed to achieve
some target reliability, or the reliability that might be expected to be
achieved after a certain duration of further testing.

The important point here is that when we ask, rather informally,
whether a model is giving accurate reliability measures, we are really
asking whether it is predicting accurately. This is something that is
sometimes overlooked even in the technical literature; there are sev-
eral examples of authors “validating” a model by showing that it can
accurately explain past failure behavior and claiming thereby that it is
“accurate.” It is a simple matter to demonstrate that such ability to
accurately capture the past does not necessarily imply an ability to
predict accurately. The point is nicely expressed in a quotation of Niels
Bohr, one of the greatest physicists of the 20th century: “Prediction is
difficult, especially of the future.”

4.2 Examples of Model Disagreement
and Inaccuracy

4.2.1 Simple short-term predictions

Perhaps the simplest prediction arises when we ask what is the current
reliability of a system. This will be a statement about the distribution
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of the time to the next failure and it could be expressed in several ways,
as discussed earlier: the current mean or median time to next failure
(MTTF), the hazard rate function of the distribution, or the reliability
function.

It is as well to start rather informally with some examples that show
how seriously the models can disagree in the answers they give to this
most simple of all questions: namely, how reliable is the system now?
We shall first show this disagreement between models, and then show
how some of the results are also clearly objectively wrong.

Figure 4.1 shows plots of the successive current median times to next
failure for a set of data, SYS1 from [Musa79], as calculated by some of
the popular models: Jelinski-Moranda (JM) [Jeli72], Littlewood (LM)
[Litt81], and Littlewood-Verrall (LV) [Litt73]. Thus, in this plot at stage
J the predicted median of T is calculated for each model based upon all
the data that has been observed prior to this stage, i.e., interfailure
times, ¢y, £5, . . ., t;_1. We chose medians here for no particular reason
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Figure 4.1 Successive one-step-ahead median predictions from models JM, LM, and LV
of the time to next failure, T}, plotted against j for j = 36, . . . , 136, for data set SYS1.
Notice the disagreement in these median predictions in the later part of the data.
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other than convenience—the conclusions we draw will apply to other
measures such as MTTF or hazard rate.

In the early stages of the plot there is reasonably close agreement
between the three different models in how they predict the medians.
This agreement disappears after about stage 85, when the medians
begin to disagree. The first point to make, then, is that for this data the
different models are giving quite markedly different numerical predic-
tions in this very simple case of one-step-ahead median prediction. The
fact of disagreement does not, of course, mean that all the predictions
on this plot are inaccurate; on the contrary, it may be the case that one
of the models is approximately correct and the other two are wrong (or
even that some more complex reversals of fortune among the models
are occurring as the data vector grows larger).

We can conduct quite crude investigations to examine this question
of absolute accuracy. Figure 4.2 shows the actual data superimposed
upon the median predictions of Fig. 4.1. At each stage j we can thus
compare the three median predictions of 7; with the actual observed
time to failure ¢,. A very crude test of a certain type of accuracy would
be to count the proportion of times the predicted median exceeded the
later-observed time to failure. For accurate median predictions this
proportion should be about one-half, and any significant departure
from this would be evidence of some kind of bias in that sequence of
predictions. If we look at the median predictions for JM, m/™, we
can see that from about j = 90 the proportion of times m,;/” > ¢; is about
0.8. This suggests that the later predictions arising from the JM
model are too large—i.e., in some sense the results from this model
are too optimistic for this data set. Applying the same test to the LV
predictions, there is evidence that the medians are too pessimistic.
The LM model, on the other hand, passes this test quite well, with
mM > t; about 57 percent of the time between stage 90 and the end of
the data set.

Figure 4.3 shows a similar analysis using eight different models, JM,
LM, and LV, as before, and Goel-Okumoto (GO) [Goel79], Musa-
Okumoto (MO} [Musa84], Duane (DU) [Crow77, Duan64], Littlewood
nonhomogeneous Poisson process (LNHPP) [Mill86], and Keiller-
Littlewood (KL) [Keil83] models, on the data set SS3 from [Musa79],
with once again the actual interfailure times superimposed. Again
there is great disagreement between the eight different models, but,
interestingly, they fall into two different groups of six and two models,
respectively, with quite close agreement within each group. You might
naively hope that the group of six models that agree with one another
might be closer to the truth than the other pair. In fact, a comparison
(as above) between the plots and the observed data shows that none of
the eight models is getting close to the truth. The group of six are
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grossly optimistic in their median predictions, with a very high propor-
tion of median predictions exceeding the later-observed times between
failures; the other pair are grossly pessimistic.

4.2.2 Longer-term predictions

If these results were not discouraging enough, the problems of pre-
diction inaccuracy become even more serious when we consider
further-ahead prediction. In Fig. 4.4 we return to the SYS1 data
to show median predictions 20 steps ahead, i.e., using only the data
1, o . .., ;5 to predict T;. The performance of the JM model is
extremely poor, with occasional excursions to infinity where it
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Figure 4.2 Observed times between failures, t;, and successive one-step-ahead median
predictions (as in Fig. 4.1) from models JM, LM, and LV of the time to next failure, T},
plotted against j for j = 36, . . . , 136, for data set SYS1. Comparison of the median pre-
dictions at each stage with the actual times between failures indicates the bias in
these predictions; those from the JM model are too optimistic and those from the LV
model too pessimistic, whereas those from the LM model would appear to be, on aver-
age, unbiased.
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“believes” that the program under investigation will never fail again!
This result can arise here because an intermediate parameter in this
model is the number of remaining faults, which can be estimated to
be zero. Clearly, the behavior shown by JM in this figure is very far
from the truth. For example, each time the software is declared per-
fect it in fact disgraces itself by promptly failing again! Worse, the
model does not even agree with the results that it produces itself
when more data (the intervening 20 data points) are available
(see Fig. 4.1).
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Figure 4.3 Observed times between failures, t;, and successive one-step-ahead median
predictions from eight models of the time to next failure, T}, plotted against j for j =
66, . . ., 278, for data set SS3. These median predictions fall into two distinct groups, and
the disagreement in the predictions for these two groups is great throughout the data
set. The median test indicates that the predictions from LV and KL are grossly pes-
simistic, while the remaining median predictions are grossly optimistic.
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The LV model performs better in this simple example of longer-term
prediction. In Fig. 4.4 we show the 20-step-ahead median predictions
with, for purposes of comparison, the one-step-ahead predictions of
the same medians made at a later stage—these latter are the same as
those shown earlier in Fig. 4.1. While we know from our earlier analy-
sis that these are somewhat pessimistic, at least this model is exhibit-
ing a reasonable self-consistency inasmuch as the predictions made
earlier on a smaller data set are in good agreement with those made
later. The JM model cannot even satisfy this minimal condition.

The results here are worrisome partly because they concern a very
simple longer-term prediction. If we wished to predict much further
into the future or to make more complex predictions of a different
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Figure 4.4 Successive 20-step-ahead median predictions from the JM model and suc-
cessive one-step-ahead (as in Fig. 4.1) and 20-step-ahead median predictions from the
LV medel, of T, plotted against j for j = 36, . . ., 136, for data set SYS1. The 20-step-
ahead predictions from the JM are far too optimistic (compare with the times between
failures in Fig. 4.2) and are much more optimistic than the one-step-ahead predictions
from the same model (compare with Fig. 4.1). For LV, the one-step-ahead and 20-step-
ahead median predictions are only marginally different.
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nature (for example, predicting the time at which a prespecified relia-
bility target will be reached), then it would be rash to assume that even
good performance on some easier predictive task would allow us to con-
clude that other predictions would also be accurate. In fact, this obser-
vation can be made more generally: the fact that a model can give
accurate predictions of one type for a particular data source does not
allow us to conclude that predictions of a different type will also be
accurate, even on the same data.

4.2.3 Model accuracy varies from data
source to data source

Even in the results that we have shown already, which only concern
two data sets, it is clear that the accuracy of some of the models varies
considerably. For example, on the SYS1 data, the median predictions
for the LM model pass the simple test of being in some sense “unbi-
ased”—about 50 percent of the predicted medians exceed the later-
observed times to failure, as should be the case—but on the SS3 data
the same model gives grossly optimistic predictions.

The results of the more detailed analysis on the SYS1 and SS3 data
sets in Sec. 4.3 will reveal even more serious differences between the
behavior of a model on different data sources. In all the analyses that
we have carried out over many data sets, we have found that the accu-
racy of the different models varies greatly from one data set to another
[Abde86b].

It is certainly true that some models seem to be able to produce accu-
rate predictions more consistently than others. The JM model, for
example, appears to be fairly consistently inaccurate, and there are
reasons for this in its unreasonable assumption that there are a finite
number of faults contributing to the overall unreliability and that these
are all equal in their effect. But even other, more plausible, models can-
not be guaranteed to produce accurate results.

The conclusion seems to be that, even for a model which has given
good results on a number of previous data sets, it would be unwise sim-
ply to assume that it will give good results on a novel data source.

4.2.4 Why we cannot select
the best model a priori

Faced with this impasse—that models cannot be trusted to give accu-
rate answers on all data sources—we might try to identify those char-
acteristics of data sources that allow particular models to be accurate.

Unfortunately this does not seem to be possible. There is clearly
great variation from one program to another: in the problem being
solved, in the development practices, in the architecture, in the opera-
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tional environment. No one has succeeded in identifying a priori those
characteristics of a program that will ensure that a particular model
can be trusted to produce accurate reliability predictions. In fact, this
1s not surprising, since the models involve rather crude assumptions
about what may be a quite complex underlying failure process. There
are many things that might impact upon the properties of the failure
process that are simply ignored by the models. Examples include the
nature of the operational environment, the internal fault-handling pro-
cedure (e.g., whether the software is fault-tolerant), etc. Such factors
represent a source of uncontrolled variability in the properties of the
failure process that is not treated by any of the models. In the absence
of specific ways of taking account of such factors, we can expect the
models to vary in their performance as the factors vary from one data
source to another.

4.2.5 Discussion: a possible way forward

The results here are presented only to show that great disagreement
between model predictions can and does exist and that we can show
objectively that some very simple predictions can be extremely poor.
It is worrisome that a model sometimes cannot even make one-step-
ahead median predictions accurately, particularly if a potential user
wishes to use the model for much more ambitious purposes. In fact,
there is a sense in which results like this are only the tip of the ice-
berg. Models ean go wrong in many different ways which might not be
detected by the crude techniques used above. Even if a model were to
pass our simple one-step-ahead median test, for example, this would
not be a reason to trust its ability to produce accurate one-step-ahead
predictions of a different nature—hazard rates, say, or reliability
functions.

These observations show how important it is to devise more general
ways 1 which the predictive accuracy of these models can be evalu-
ated. We have shown that it is not possible to trust a particular model
to give accurate results all the time or to select a model a priori that
will give accurate results for a hitherto unseen data set. We therefore
seem to have no alternative but to try to evaluate each model’s predic-
tive accuracy upon each new data set that is analyzed. The principle
will be the same as the one that has been illustrated by the simple
examples above: we must compare a prediction with the actual obser-
vation (when this is later made), and recursively build up a sequence
of such prediction/observation comparisons. From this sequence we
should be able to gain information about the accuracy of past predic-
tions, and so make decisions about the current prediction (i.e., which
model to trust, if any).
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4.3 Methods of Analyzing
Predictive Accuracy

4.3.1 Basic ideas: recursive comparison of
predictions with eventual outcomes

Consider again, for simplicity, the simplest prediction problem of all:
that of estimating the current reliability. Let us assume that we have
observed the successive times between failures #,, t5, . . ., f;_;, and we
want to predict the next time to failure T;. We shall do this by using one
of the models to obtain an estimate, F’j(t), of the true (but unknown) dis-
tribution function F(¢) = P(T; < t). Notice that if we knew the true dis-
tribution function then we could calculate any of the measures of
current reliability, ¢;, mean or median time to next failure or the rate of
occurrence of failures (ROCOF), and so on, that may be appropriate for
a particular application.

We now start the program running again, and wait until it next fails;
this allows us to observe a realization ¢; of the random variable 7. We
shall repeat this operation of prediction and observation for some range
of values of j. In this way we can generate a sequence, q;,j =5, . . . , 1, 82y,
of one-step-ahead predictions of interest. Table 4.1 shows an example
of some times between failures and two prediction sequences, which we
shall use to illustrate some of the techniques described in this chapter.

There are a number of ways suggested in the literature in which the
accuracy of such a sequence of point predictions may be investigated.
For example, the variability [Abde86b] may be examined,

i

Variabilitylg;j =s, ..., = > |14=L
Jj=s+1 d;-1
TABLE 4.1 Time Between Failures Data, t,5, 3, . . . , ,; and Two Sequences, A and B,

of Rate Predictions, 1 and Af, of T, j=12,...,20

For illustrative purposes we shall assume that each prediction of T, is based on previous data

t, ..., Iy, and that the predictive distributions are exponential, with the predicted rates shown,
for example, F;(1) = 1 — e i and £(t) = A,e -*. Predictions of mean time to failure MTTF;= 1/A; and
median ify; = In(2)lﬁ., for these two prediction sequences are also shown.

j t; s MTTF:  m# Az MTTF? B
12 105 0.010 100 69 0.0028 357 248
13 137 0.0077 130 90 0.023 43 30
14 125 0.0048 208 144 0.0071 141 98
15 161 0.0044 9225 156 0.0020 500 347
16 162 0.0031 323 234 0.018 56 39
17 153 0.0029 345 239 0.0021 476 330
18 179 0.0028 357 248 0.0022 455 315
19 201 0.0017 603 418 0.0070 143 99

20 220 0.0013 769 533 0.0010 1000 693
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This measure will detect whether a sequence of predictions is unduly
noisy. Returning to our example earlier where we counted the propor-
tion of the actual ¢, exceeded by their predicted medians, 77, and asked
if this proportion were very different from %, it is clear that a sequence
of predictions may pass this test, but still be very inaccurate. In other
words, the predictions may on average be good but the individual
median predictions may still be inaccurate. Using the above variabil-
ity measure we might compare sequences of predictions from different
models and reject one in favor of another on the basis that the predic-
tions from the latter are more smooth, indicated by a smaller value of
this variability measure. The obvious shortfall of such a measure is
that reality may itself be noisy, and so we should not necessarily favor
a predictor with a smaller variability measure.

It is clear that what we really need to examine, in order to assess
the accuracy of a sequence of predictions, is the departure between
the predictions and the truth. We would say, informally, that a model
was giving good results if what we observed tended to be in close
agreement with what we had earlier predicted. The approach we shall
describe is based upon formal ways of comparing prediction with
observation.

Of course, our problem would be easier if we could observe the true
Fj(?) so as to compare it with the prediction, F(t). Since this is not pos-
sible, we must somehow use the ¢;, which is all the information that we
have. Clearly this is not a simple problem, and it is compounded by its
being nonstationary: we are interested in the accuracy of a sequence of
different distributions, for each of which we see only one observation.
However, it is possible to think of simple comparisons we can make
such as the crude median test we discussed earlier. Other ways of com-
paring point predictions with observations are suggested in the litera-
ture. For example, in [Musa87], the relative error is used,

Relative error = Att)—n

n

Here, n failures have been observed by the total elapsed time 1, and
fi(t,), the expected total number of failures by time 1, is a prediction
made at an earlier time, 7(t < 1,), say. Plots of the relative error for dif-
ferent values of © and for different values of 1, may be examined, and
these plots indicate the nature of the inaccuracy in the predictions of
the expected number of failures, i.e., whether they are optimistic or
pessimistic. They may also be used to compare two predictions or pre-
diction systems, since the smaller the relative error the more accurate
the predictions. Examination of the relative error, however, does not
provide an absolute measure of accuracy of a single prediction system
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since tests to decide whether the error is significantly large do not
exist.

A number of measures for which there are significance tests have
been proposed. For example, the Braun statistic [Abde86b] may be
used to see how accurate MTTF predictions are for those models for
which the MTTF exists.

> ;- MITF)?
Braun statistic(MTTF;;j =s,..., il =" 8 1)
- i—s—
> (¢t
j=s

This statistic may also be calculated when the available data is failure-
count data [Abde86a] as opposed to time-between-failures data. This is
where the observations are numbers of failures, n;, within successive
time intervals, x,, k=1, ..., r, say.

Z (n, — N [V )? Xr

Braun statisticlE[N,]: k =s, ..., r} =
Z (n, — 1) a3
k=s

Another statistic which can be used to investigate the accuracy of
predictions of the expected number of failures within successive time
intervals is the y? statistic,

¥? statistic{E[N,]; & =s, . . _ Z ( (ny —E[J\]fk])z)

Unfortunately the analyses of the accuracy of point predictions such
as those described above, regardless of whether they provide absolute
measures of accuracy or merely comparative measures of one predic-
tion system versus another, do not tell us a great deal. Even if a series
of point predictions was found to be accurate based on these various
criteria we would only acquire confidence in these point predictions.
This would not tell us whether other reliability measures were accu-
rate. What we really need is to be able to detect any kind of departure
between prediction, F}(t), and truth, F;(¢). We shall proceed with a dis-
cussion of various techniques which can be used to assess the accuracy
of predictive distributions, F(t), by comparing them with the (later)
observed times between failures, ¢, Although the discussion of these
techniques in this chapter is limited to time-between-failures data,
extensions to failure-count data exist.
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4.3.2 The prequential likelihood ratio (PLR)

The first technique we consider is a very general means of comparing
sequences of predictions for accuracy. It will show (at least asymptoti-
cally) which of a pair of predictions is most accurate in a very general
sense. It does not, however, provide direct evidence of absolute accuracy.

An intuitive and informal explanation of the prequential likelihood
ratio approach is shown in Fig. 4.5, where there are two ways, A and B,
of making a prediction at stage j. Here we see the true distribution (in
fact the probability density function, pdf, f(¢) = F/(¢)) of the next time
to failure, T}, together with estimates of this (i.e., predictions, f 4(¢) and
f 5(¢)) coming from two different models, A and B. In practice, of course,
we shall not be able to see the true distribution, which is unknown. If
we could see it, as here, we might be able to decide readily which is the
best of the two predictions: clearly, here A is better than B.

After making these two predictions, which are based only upon the
data we have seen prior to stage j, we wait and eventually see the next
failure occur after a time ¢;. Since this is a realization of a random vari-
able whose distribution is the true one, we would expect £ to lie in the
main body of this true distribution, as it does here: that is, it is more
likely to occur where f;(¢) is larger. If we evaluate the two predictive
pdf’s at this value of ¢, there will be a tendency for fj‘(tj) to be larger
than /2(¢;). This is because the A pdf tends to have more large values
close to the large values of the true distribution than does the B pdf. In
fact, this is what we mean when we say informally that “the A predic-
tions are closer to the truth than the B predictions”—that the value of
the A pdf tends to be everywhere closer to that of the true pdf than is
the value of the B pdf.

Figure 4.6 True predictive pdf, f;(¢), of the next time to failure, T, together with esti-
mates of this pdf, /* (t)) and /7 (¢)), from two models, A and B. A is clearly a better pre-
dictor of the truth than is B.
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_ Thus if the predictions from A are more accurate than those from B,
F4@)f B(t) will tend to be larger than 1. The PLR is merely a running
product of such terms over many successive predictions:
J=i pa

fi)
PLR48 = L
E s f .? (tj)

and this should tend to increase with i if the A predictions are better
than the B predictions. Conversely, superiority of B over A will be indi-
cated if this product shows a decreasing trend.

You should note that, even if A is performing consistently more accu-
rately than B, we cannot guarantee that f j,-“(tj)/f B(t;) will always be
greater than 1. Thus, typically in a case where A is better than B, we
would expect the plot of PLR#? (or, more usually for convenience, the
log of this) to exhibit overall increase, but with some local random fluc-
tuations. We are looking for consistent upward or downward trend in
the PLR*# as we make successive predictions.

Table 4.2 shows how to do this PLR analysis for the simple predic-
tors, A and B, mentioned earlier in Sec. 4.3.1. The corresponding plot of
the log(PLR“?) for model A versus model B is shown in Fig. 4.6. The
fairly steady upward slope in this plot indicates that prediction
sequence A is generally better than B over the range of predictions
examined, although toward the end of this range, performance between
the two prediction sequences would seem to be leveling out.

We are usually interested in comparing the accuracy of more than
two sequences of predictions. To do this we select one, quite arbitrar-
ily, as a reference and conduct pairwise comparisons of all others
against this, as above. As an example, in Fig. 4.7 we show a PLR anal-
ysis of the SS3 data. Recall that, in Sec. 4.2.1, we saw an analysis of
the one-step-ahead median predictions for this data, and established
via a simple informal analysis that none of these models could be
trusted to give accurate medians for this data. Nevertheless, six of

TABLE 4.2 f4(t) and f8(t) (f(t) = X,e ") for Prediction Sequences A and B Shown in
Table 4.1, Together with the log(PLR /%) = 3}, log (f/(t)/f{(t)) Evaluated for Prediction
Sequence A versus Prediction Sequence B.

J t; fae) FE@) log (FA)fE(t)) log(PLR%%)
12 105 0.00350 0.00209 0.516 0.516

13 137 0.00268 0.000985 1.00 1.52

14 125 0.00263 0.00292 —0.105 1.41

15 161 0.00236 0.00145 (.487 1.90

16 162 0.00187 0.000975 0.651 2.55

17 153 0.00186 0.00152 0.202 2.75

18 179 0.00170 0.00148 0.139 2.89

19 201 0.00121 0.00171 -0.346 2.54

20 220 0.000977 0.000803 0.196 2.74
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Figure 4.6 Log(PLR) plot for the prediction sequences shown in Table 4.1, that is,
log(PLR*®) versus i for prediction sequence A versus prediction sequence B as cal-
culated in Table 4.2. The increase in the slope of this plot indicates that prediction
sequence A is generally better than prediction sequence B.

the models gave median predictions that were in close agreement,
and 1t might be thought that these would at least be more accurate
than the other two. In fact this is not the case, and on the contrary the
other two models (KL and LV) perform very much better on the PLR
criterion.

In the figure, the DU model has been chosen as the reference model,
so that all comparisons are pairwise with respect to this. It can be seen
that for the LV and KL models the PLR plots against DU exhibit a
clear upward trend (notice that the plots are of the log of PLR here),
indicating their superiority over DU. The plots of the other models are
similar to one another, exhibiting neither upward or downward trend
and thus no superiority over DU. The evidence here, then, is that the
six models that were in agreement on the earlier median plots are
shown by the PLR analysis to be giving general one-step-ahead predic-
tions that are of similar accuracy, and that this accuracy is much less
than that given by LV and KL, which are themselves similar to one
another in their accuracy.
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Figure 4.7 Log(PLR) plots for one-step-ahead predictions of T, i = 66, . . ., 278, from
eight models with the DU model chosen as the reference model against which to com-
pare, for data set SS3. These plots indicate that, within the two groups of models
which were previously identified as giving similar median predictions, there is indeed
similar accuracy in the predictions and that the LV and KL groups are giving much
more accurate predictions than the remaining six models.

The justification we have given here for the PLR is informal and
intuitive. There is, however, a more formal asymptotic theory. If, as
i — oo, the PLR#Z above tends to infinity, it can be shown that “we
shall be . . . justified in regarding B as discredited, in favor of A...”
[Dawi84]. If the ratio tends to neither infinity nor zero, then we cannot
make a choice between A and B and they will deliver indistinguishable
predictions. These results are completely general and concern circum-
stances (admittedly asymptotic) where we can be sure that A is a “com-
pletely better” predictor than B. In other words, they relate to any
predictions, however expressed.
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4.3.3 The u-plot

The PLR is a completely general technique for making comparisons of
the accuracy of different competing predictions. It does not, however,

allow us to say whether any of the predictions are objectively accurate.

Our first general technique for detecting systematic objective differ-
ences between predicted and observed failure behavior is called the
u-plot, and it is based on a generalization of the simple median check
described above.

The purpose of the u-plot is to determine whether the predictions,
F, ), are on average close to the true distributions, F; '(t). It can be
shown that, if the random variable 7} truly had the dlstrlbutlon Fn—
in other words, if the prediction and the truth were Ldentzcal——then the
random variable U; = #(T}) will be uniformly distributed on (0,1). This
1s called the probability integral transform in statistics [DeGr86] If we
were to observe the realization ¢ of 7, and calculate u;=F(t), the num-
ber u; will be a realization of a unlform random varlable When we do
this for a sequence of predictions, we get a sequence {z;}, which should
look like a random sample from a uniform dlstrlbutlon Any departure
from such uniformity will indicate some kind of deviation between the
sequence of predictions, {F;(¢)}, and the truth {F;(t)}. Table 4.3 shows
{u;} sequences for the simple predictors A and B mentioned earlier.

One way of looking for departure from uniformity is by plotting the
sample distribution function of the {u;} sequence. This is a step function
constructed as follows: for a sequence of predictions F(¢), j =s, ,ion
the interval (0,1), place the points u,, u,, 1, . . . , u; (each of these is a num-
ber between 0 and 1); then from left to right plot an increasing step func-
tion, with each step of height Y/, _,, 4, at each u on the abscissa, as shown
in Fig. 4.8. The range of the resulting monotonically i Increasing function
is (0,1), and we call it the u-plot. Figure 4.9 shows the u- plots based on
the {u;} sequences shown in Table 4.3 for the two predictors A and B.

TABLE 4.3 wufand u? (u,=F (t;) =1 — e “*/) for Prediction Sequences A and B Shown
in Table 4.1

J 4 ujf‘ ud uf ud

12 105 0.650 0.249 0.255 0.197
13 137 0.652 0.289 0.957 0.255
14 125 0.451 0.358 0.588 0.275
15 161 0.518 0.394 0.275 0.275
16 162 0.395 0.395 0.946 0.326
17 153 0.358 . 0451 0.275 0.588
18 179 0.394 0.518 0.326 0.755
19 201 0.289 0.650 0.755 0.946
20 220 0.249 0.652 0.197 0.957

A B . . .
u; and u;, are these same u sequences reordered in ascending order of magnitude.




136 Technical Foundations

If the {u;} sequence were truly uniform, this plot should be close to
the line of unit slope. Any serious departure of the plot from this line is
indicative of nonuniformity, and thus of a certain type of inaccuracy in
the predictions. A common way of testing whether the departure is sig-
nificant is via the Kolmogorov-Smirnov (KS) distance, which is the
maximum vertical deviation between the plot and the line of unit slope
(see, for example, Fig. 4.9) [DeGr86]; there are readily available tables
for this. However, a formal test is often unnecessary: for many of the
examples in this chapter it is clear merely from an informal perusal of
the plots that the predictions are poor.

Figure 4.10 shows a u-plot analysis of predictions from the previous
eight models on the SS3 data. Remember that the informal median
analysis showed that none of the eight could be trusted. Recall that the
group of six models was very optimistic (i.e., the models were underes-
timating the chance of the next failure occurring before ¢), while the
other two were pessimistic, although PLR analysis showed that these
latter two were in fact less inaccurate than the six. From Fig. 4.10 we
can now see the reason for these results: all the models have extremely
bad u-plots, with KS distances so large that they are well beyond the
values that are tabulated. However, while very bad, the LV and KL pair
have KS distances that are smaller (and so, less bad) than those of the
other six—which confirms the PLR analysis.

What is so striking about Fig. 4.10 is that there is such a marked dif-
ference in shape in the two groups of plots. In fact, informal inspections
of u-plots can tell us quite a lot about the nature of the prediction
errors. The number v; is the estimate we would have made, before the
event, of the probability that the next failure will occur before ¢;, the

H /
line of unit slope /

L {i-1) —>
@ - i

p— fu
te ncaon
s / i's +2

1

Figure 4.8 How to draw the u-

plot, for predictions of T, ..., T:.
0 Here, {1y, tisen, - - -, Uil are the
0 i original set of u’s {u,, e, v, . .., u;}
b reordered in ascending order of
<+ magnitude.

¢ u{.r+l) >
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time when it actually does eventually occur. In the case of consistently
too optimistic predictions, this number would therefore tend to be
smaller than it would be if the predictions were accurate. That means
the u;s will tend to bunch too far to the left in the (0,1) interval, and the
resulting u-plot will tend to be above the line of unit slope. A similar
argument shows that a u-plot which is entirely below the line of unit
slope indicates that the predictions are too pessimistic. In Fig. 4.10 the
plots for LV and KL are almost everywhere below the line of unit slope,
indicating that these predictions are objectively too pessimistic; simi-
larly the other six are generally too optimistic. It is sometimes even
possible to explain u-plot shapes in terms of inaccuracies more general
than simple optimism and pessimism. In Fig. 4.10, for example, there
is evidence that the optimism/pessimism argument is a slight oversim-
plification. Thus, the six models which are generally optimistic seem to
be pessimistic for predictions associated with the right-hand tail of the

1.0 —_—

05 e i

0.249tf

0.0 —_— .
0.0 0.5 1.0

A 0.249 (insignificant at 20% level)
------------ B 0.246 (insignificant at 20% level)

Figure 4.9 wu-plots as calculated in Table 4.3 for prediction
sequences A and B in Table 4.1. These plots are step func-
tions with step size 1/10. The KS distances, indicated on the
plots by the arrows, are 0.249 for prediction sequence A,
and 0.246 for prediction sequence B, and these values are
statistically insignificant at the 20 percent level, indicating
that neither prediction sequence is significantly biased.
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distribution of time to next failure (i.e., predictions associated with
high reliability) as evidenced by the plots’ crossing of the line of unit
slope on the right. The LV and KL predictions, on the other hand, can
be seen to be pessimistic in general, but slightly optimistic for predic-
tions of high and low reliability.

Figure 4.11 shows a u-plot analysis of the JM, LM, and LV models on
the SYS1 data. The plot for JM is everywhere above the line of unit slope,
and its KS distance is highly statistically significant. This confirms that
the predictions from this model are too optimistic, as we suspected from
the earlier simple median analysis. Similarly, LV is too pessimistic, but
less dramatically so. The plot of LM is not statistically significant: it thus
passes this test, but may, of course, be deficient in some other way.

1.0 - \ . . , . —

05 - _.'" -

0.0 0.5 1.0

S ¥ 0.294 (significant at 1% level)
----------- Go 0.293 (significant at 1% level)
—-——--— MO 0.290 (significant at 1% level)
—— DU 0,287 (significant at 1% level)
SR Y | 0.294 (significant at 1% level)
——  INHPP  0.293 (significant at 1% level)
v 0.230 (significant at 1% level)
----------- KL 0.216 (significant at 1% level)

Figure 4.10 u-plots and KS distances and significance levels
for predictions of T}, i = 66, . . ., 278, from eight models for
data set SS3. The departure of these plots from the line of
unit slope indicates that predictions from all eight models
are significantly inaccurate for this data set, with LV and
KL giving generally pessimistic predictions and the remain-
ing six models giving generally optimistic predictions.
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These results for SYS1 and SS3 confirm and explain the earlier
results dealing with the medians alone. But it must be emphasized
that the u-plot approach is much more general than the analysis we
conducted earlier; it relates to the whole shape of the predictive distri-
bution rather than merely to one point (the median) on this distribu-
tion. The u-plot can be thought of as detecting a systematic difference
between the predictions and the truth. This is very similar to the
notion of bias in statistics: there we use the data to calculate an esti-
mator of a population parameter, and this estimator is called unbiased
if its average value is equal to the (unknown) parameter. Of course, our
case 1s more complex since at each stage we wish to estimate a fune-
tion, rather than merely a number; furthermore, we can only detect
prediction error over a sequence of different predictions because of the
inherent nonstationarity of the problem.

1.0 . . : . ,

0.5 { 4

0.0 0.5 1.0

IM 0.181 (significant at 1% level)
| 0.103 (insignificant at 20% level)
Ly 0.148 (2%-5%)

Figure 411 u-plots and KS distances and significance lev-
els, for predictions of T}, i = 36, . . ., 136, from the JM, LM,
and LV models for data set SYS1. These plots indicate that
the JM model is giving significantly optimistic predictions,
the LV model is giving significantly pessimistic predictions,
and the LM predictions have, on average, no significant
bias. (Note that 2%-5% means that the u-plot for the LM
model is significant at the 5 percent level and insignificant
at the 2 percent level.)
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An iInteresting special case arises when the prediction errors are
completely stationary, i.e., the nature of the error is the same at all
stages. There will then be a constant (functional) relationship between
F(t) and F((t), and the u-plot is an estimate of this functional relation-
ship. It turns out, in fact, that there is often approximate stationarity
of errors of this kind. We shall show later in Sec. 4.4 that in such cases
it is possible to recalibrate the model—essentially allowing it to “learn”
from past mistakes—and obtain more accurate predictions.

4.3.4 The y-plot

The u-plot treats one type of departure of the predictors from reality—
namely, a kind of reasonably consistent bias. There are other depar-
tures from reality which cannot be detected by the u-plot. For example,
in one of our investigations we found a data set for which a particular
prediction system had the property of optimism in the early predic-
tions and pessimism in the later predictions. These deviations were
averaged out in the u-plot, in which the temporal ordering of the u/s
disappears, so that a small KS distance was observed. It is necessary,
then, to examine the u/’s for trend.

There is no obvious standard statistical test for this situation. One
way to proceed is as follows, and has the advantage that it results in a
plot that is visually similar, and is interpreted similarly, to the u-plot.
Remember that the u; sequence should look like a sequence of inde-
pendent, identically distributed uniform random variables on (0,1).
Since the range, (0,1), remains constant, any trend will be difficult to
detect in the u; sequence, which will look very regular. If, however, we
make the transformation x; = -In(1 - u;), we produce a sequence of
numbers that should look like realizations of independent, identically
distributed unit exponential random variables. That is, the sequence
should look like the realization of the successive interevent times of a
homogeneous Poisson process; any trend in the u/’s will show itselfas a
nonconstant rate for this process. There are many tests for trend in a
Poisson process. We begin, as in [Cox66], by normalizing the whole
transformed sequence onto (0,1). That is, for a sequence of predictions
from stage s through stage i, we define

k
2%
J=5 )

wherek =s,...,1-1

A step function with steps of size /; _,, ) at the points v, ¥s.1, . . ., ¥i-1
is drawn from the left on the interval (0,1), exactly as in the case of the
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u-plot. Table 4.4 and Fig. 4.12 show how to construct the y-plot for the
two predictors, A and B, considered earlier.

Figure 4.13 shows an example using the same range of predictions as
before from the same eight models on the SS3 data. Again, the results
divide into the same two groups of six and two models, respectively. The
six models have highly significant KS distances, so there is evidence
that there is trend in the errors being made in the predictions; the
results from LV and KL, the other two models, are not statistically sig-
nificant. This means that the LV and KL predictions, while clearly
shown to be in error by our previous analyses, are producing errors
that are in some sense stationary. In a case like this, when the error
being made remains constant, there arises the possibility of estimating
its nature and using this to correct for the error in future predictions
(on the assumption that its nature will continue unchanged into the
future). This idea will form the basis of our recalibration technique
described below.

4.3.5 Discussion: the likely nature
of prediction errors, and how we can
detect inaccuracy

With the techniques described above we have the beginnings of a frame-
work for making decisions about which model to use within a particular
context, and whether the predictions should be trusted to be accurate. It
is important to emphasize the differences between, on the one hand, the
PLR approach and, on the other, devices such as the u-plot and y-plot.
PLR will only tell us about relative performance among competing mod-
els, but it will do this in the most general way possible, with the under-
lying theory [Dawi84] providing an assurance that all deficiencies have
been taken into account. The u-plot and y-plot, on the other hand, give
us some absolute information, but only about certain specific ways in
which predictions can differ from the truth.

TABLE 4.4 x4, yf, x{ and y7, x, = —In(1 - u)) and y, = 5%_,, x,/52,, X, for Prediction
Sequences A and B shown in Table 4.1.

J tj £} ) 7 y;

12 105 1.05 0.191 0.294 0.297
13 137 1.06 0.382 3.15 0.347
14 125 0.600 0.491 0.887 0.437
15 161 0.730 0.624 0.322 0.469
16 162 0.503 0.714 2.92 0.764
17 153 0.443 0.795 0.322 0.796
18 179 0.501 0.886 0.395 0.836
19 201 0.341 0.948 1.41 0.978

20 220 0.286 1.00 0.219 1.00
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What this means is that, if we want to ask which of a set of alternative
models should be preferred in the analysis of a particular set of data, we
should use the PLR. When this gives dramatic evidence of an increasing
trend for a pairwise comparison, then we should strongly believe that
one model is giving more accurate results than the other. For example,
Fig. 4.7 indicates that LV is clearly superior to DU for the SS3 data.
However, even when a particular model is clearly superior to others for
a particular set of data, it is not necessarily the case that it is giving
accurate results: in the case of the SS3 data, according to the u-plots in
Fig. 4.10, all models were giving results which were inaccurate.

It is important, therefore, after picking out the one (or more) model
that performs best on the PLR, to investigate further via u-plot and
y-plot analysis. A good u-plot (accompanied by a good y-plot) will tell us
that a particular type of consistent bias is absent in the predictions (the
good y-plot being needed to ensure that the errors in prediction are at
least approximately stationary, so that the u-plot result can be trusted).

1.0 . , , . ]
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05 L 0.201 J/ |

0.0 s ; n 1 A L " "
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A 0.291 (insignificant at 20% level)
------------ B 0.320 (insignificant at 20% level)

Figure 4.12 y-plots as calculated in Table 4.4 for prediction
sequences A and B in Table 4.1. These plots are step func-
tions with step size 1/9. The KS distances, again marked by
the arrows, indicate that both prediction sequences A and B
are capturing the trend in the failure data.
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Of course, predictions can be In error in ways other than the bias
that the u-plot detects. Consider the analogy of estimating a popula-
tion parameter from a random sample in statistics. Even if we have an
estimator that is unbiased we may still prefer on other grounds to use
a biased one. For example, the unbiased estimator may have a large
variance, so that although its expected value is equal to the unknown
parameter, any particular calculated value of the estimator may be
very far from this. This is the difference between what happens on
average and what happens at a particular instance. Similar argu-
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IM 0.157 (significant at 1% level)
- G0 0.155 (significant at 1% level)
---------- MO 0.180 (significant at 1% level)
DU 0.205 (significant at 1% level)
e LM 0.158 (significant at 1% level)
~—— LNHPP 0.186 (significant at 1% level)

v 0.044 (insignificant at 20% level)
----------- XL 0.084 (insignificant at 20% level)

Figure 4.13 y-plots and KS distances and significance lev-
els for predictions of T}, i = 66, . . ., 278, from eight models
for data set SS3. The y-plots for LV and KL show no signif-
icant departure from the line of unit slope, indicating that
the prediction errors, which we know to be present from the
u-plots in Fig. 4.10, are stationary, while for the remaining
six models, significant departure in the y-plots is shown,
indicating that for these models the prediction errors are
not stationary.
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ments apply to a good u-plot, which also tells us something about aver-
age behavior, but which can mask large inaccuracies on particular
predictions. The analogy with variance in our case is a kind of unwar-
ranted noisiness in a sequence of predictions, e.g., predictions that are
randoinly alternatively too optimistic and too pessimistic, but whose
average is close to the truth. Such predictions might exhibit a good
u-plot, but any individual prediction could be very inaccurate and
hence useless.

It has not been possible to find a way of testing for this kind of inap-
propriate noisiness in predictions. The problem is that we are consid-
ering a much more complicated problem than the simple statistical
estimation of a constant parameter from a random sample—in our
case we know that what we are estimating is nonstationary. Indeed, it
is precisely the nonstationarity (the reliability growth) that is of inter-
est to us. It may be the case, then, that this nonstationarity is of a com-
plex form. In particular, there may be genuine reversals of fortune
within a general picture of average reliability growth: there may be
bad fixes among the good ones. In other words, apparently invalid
noisiness in a sequence of prediction may simply be reflecting the true
behavior of the reliability. The difficult trick is to distinguish noisiness
that is merely an artifact of the prediction technique from such real
noisiness.

Although there is no direct method of detecting unwarranted noisi-
ness in predictions, this may not be a serious problem. In the first
place, it seems unlikely that the evolution of the true reliability will be
very noisy in practice. Second, we can get some indirect evidence of
inappropriate noisiness from the PLR analysis, since this is sensitive
to all departures from predictive accuracy. For example, if a model
appeared to differ from others in analysis of a particular data set only
in its noisiness, and its PLR was inferior to others, it would be reason-
able to infer that its noisiness was the cause of this poor performance
and was therefore unwarranted.

In the next section, where we show how it is possible in some cases
to remove the bias errors that are detected by the u-plot, we shall see
that the nonstationarity in the prediction errors indicated by a poor
y-plot does not in fact appear to be a problem in many cases.

Our own experience, then, is that the PLR and the u-plot alone can
be quite powerful tools in deciding whether particular competing pre-
dictions should be trusted to be accurate. Certainly their use cannot
guarantee that there are no subtle departures between predicted and
actual failure behavior, but we believe that the most important and
most likely problems are bias and roise, and that these are usually
handled adequately. In Sec. 4.5 we shall work through some examples
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completely to show how all the different facets of our analytical
approach fit together; before that, we complete our description of these
new techniques by introducing the idea of recalibration.

4.4 Recalibration

4.4.1 The u-plot as a means
of detecting bias

We now need to describe carefully what we mean by the notion of bias
that has so far been discussed quite informally. One way of expressing
the notion of prediction error more formally is to say that at stage i
there is some function G; which relates the predicted to the true distri-
bution of the time-to-next-failure random variable, i.e., Fi(t) = G,[F(¢)].
Such a function, if we knew it, would tell us everything there is to know
about the error in the predictions being made at a particular stage. In
particular, if we knew G, we could recover the true distribution, Fi(z),
from the inaccurate prediction, Fi(¢). In practice, of course, we do not
know this function.

However, if we say that a model is merely biased in its predictions,
then we are asserting not only that there is a difference between what
1s predicted and the underlying truth, but that this relationship is con-
stant so that the sequence G; is (approximately) stationary, i.e., G; = G,
say, for all i. In such a case, when there is only a single G function for
the whole sequence of predictions, we might try to estimate it and thus
provide a means of recalibrating future inaccurate predictions to pro-
duce better ones.

The point here is that there is always an unknown function that will
transform the predicted distribution into the true distribution, but it
is only sometimes the case that this function is approximately the
same for all ;. When this occurs, we have the opportunity of estimating
this error function from the earlier predictions we have made by com-
paring these with the observed outcomes. In fact, it can be shown that
the u-plot based upon these earlier predictions is a suitable estimator
of G [Broc90].

You might reasonably ask whether the condition of stationary
errors described above ever applies in real life. In fact such complete
stationarity does seem rather implausible. However, as we shall show,
this appears not to be critical for our recalibration technique to
provide predictions with improved accuracy. And of course, it is not
necessary to trust such an approach to be effective, since any recali-
brated predictions can be evaluated for accuracy just like any other
set of predictions.




146 Technical Foundations

1 joined up
step-function G; \ ﬂ

Pu
£ T L, V/
i . -
line of unit slope \/
u :
2)
< _’ Figure 4.14 The joined-up step
%1 : function, G, of the u-plot of pre-
step-function : 1 dictions of T, ..., T:_;. Again,
P i~s+1 {uw, ueivs .., ue-ni are the

original set of u’s, {u,, u,.q, ...,
u; 1}, reordered in ascending
order of magnitude. In factitis a

: smoothed version of this step
0 : function, G;*, which we shall be

- 1 . . . .
0 p o 1 using to re_cahbrate prgd;ctmns,
e i and not simply the joined-up
<+ step function, as shown here.
< Hsa1) >

4.4.2 The recalibration technique

The steps of the recalibration procedure are as follows:

1. Obtain the u-plot, say G¥ based upon the raw' predictions, F(¢), . . . ,
F,' _1(#), that have been made before stage i* (see Fig. 4.14). This can
be thought of as an estimate of the function G which is assumed to
represent the (approximately) constant relationship between predic-
tion and truth.

2. Obtain Fy(#), the raw prediction at stage i.
3. Calculate the recalibrated prediction, F;*(¢) = G*[F.(¢)] (see Fig. 4.14).

4. Repeat this at each stage i. In this way a sequence of recalibrated
predictions will result.

The most important point to note about this procedure is that it is
truly predictive, inasmuch as only the past is used to predict the
future. This means that it is not necessary to believe a priori that the
recalibrated predictions will be better than the raw ones, since the var-
ious techniques for comparing and analyzing predictive accuracy can

' We use raw here to indicate the predictions before recalibration has taken place.
Although we usually think of these predictions as coming directly from a reliability
model, this is not obligatory; it is possible, for example, that the initial raw prediction
sequence is itself the result of recalibration.

* For technical reasons, which do not detract from the general explanation given here,
it is desirable for G;* to be a smoothed version of the joined-up step-function u-plot, G;,
shown in Fig. 4.14; a spline-smoothed version, see [Broc90], has been used in the exam-
ples that foliow.

e ————e e e e e+
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be used. In particular, the PLR will tell us whether recalibration has
produced better results than a simple use of the raw model.

This is a particularly important point in view of the apparently
strong assumption of stationarity of errors that underlies the recali-
bration idea. However, we can obtain some idea of whether there is
nonstationarity here by examination of the y-plot. In fact, and quite
surprisingly, it turns out that even in those cases where the y-plot gives
evidence of nonstationarity the recalibration procedure can be shown to
give significantly improved accuracy over the raw model. We shall see
this in the following examples.

4.4.3 Examples of the power
of recalibration

We have already seen that when we apply any of our eight models to
the SS3 data, we obtain results that are extremely inaccurate. The
u-plots (see Fig. 4.10) are highly statistically significant in all cases.
Analysis of the y-plots (see Fig. 4.13) shows that for LV and KL these
errors might be stationary, and thus these models are possible candi-
dates for recalibration; the other six have highly significant y-plots and
would not at first be thought able to benefit from recalibration. In fact
we have applied the recalibration procedure to all eight models and
Figs. 4.15 to 4.17 show the results.

Figure 4.15 shows the plots of recalibrated medians, i.e., the medians
of the recalibrated versions of the successive predictive distributions.*
Comparing this with the plots of the medians from the raw models
(Fig. 4.3), we can see that the eight models are now producing median
predictions that are in much closer agreement. In fact, the six models
that were shown in the earlier u-plots (Fig. 4.10) to be grossly opti-
mistic in their predictions now have much smaller predicted medians;
similarly, LV and KL, which were grossly pessimistic, now have larger
predicted medians. This might indicate that there is some objective
sense in which the recalibrated predictions really are better than the
raw ones, and in fact this is shown to be the case in the wu-plots of
the recalibrated predictions (Fig. 4.16). In comparison with the raw
u-plots, the improvement is dramatic in all eight cases, as shown by the
KS distances, but this is obvious even from a cursory glance.

What is surprising is that the improvement is so marked in the cases
of those six models for which the y-plots tell us that the errors are not
stationary. Since stationarity of the underlying sequence of errors is
needed to justify the assumption that a single G function can be used

* An S appended to a model name is used to denote the recalibrated version of the
model, so JMS is the recalibrated version of the JM model, and so on.
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for the recalibration, this is very surprising. We can, however, confirm
that there has been objective improvement in all eight sets of predic-
tions by examining Fig. 4.17, which shows plots of the PLR, comparing
for each model the recalibrated predictions with the raw predictions. In
fact these plots show that there has been greater improvement for the
six models than for LV and KL.—but of course it must be remembered
that there was more room for improvement in these cases, as shown in
the original PLR plots of Fig. 4.7.

In fact, in other analyses we have carried out [Broc87] we have found
that in general it does not seem to be necessary to pass the y-plot test in
order for recalibration to be effective. In any case, since we have the gen-
eral procedures of the previous section for analyzing the accuracy of any
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Figure 4.15 Successive median predictions from eight recalibrated models, of the time to
next failure, T}, i = 66, . . . , 278, for data set SS3. Notice how much closer in agreement
these recalibrated predictions are when compared with the corresponding raw predic-
tions in Fig. 4.3.
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Figure 4.16 u-plots and KS distances and significance lev-
els for predictions of T}, i = 66, . . . , 278, from eight recali-
brated models for data set SS3. These plots are now much
closer to the line of unit slope than where the u-plots for
the corresponding raw predictions (see Fig. 4.10), and the
departure is now statistically insignificant, indicating that
recalibration has removed bias in the raw predictions.

sequence of predictions, it is not really necessary to know beforehand
whether suitable conditions for recalibration exist—we can merely check
after the event to see whether there has been an overall improvement.

Recalibration looks like a powerful general technique for improving
on the predictive accuracy of any* software reliability growth model.
Indeed, it may have applications in other areas of forecasting.

* In this chapter, recalibration is applied only to continuous-time models, but it should
be noted that it is also possible to apply recalibration to discrete-time models [Wrig88;
Wrig93], where the observations and predictions to be made relate to the number of fail-
ures observed in the next period of time.
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Figure 4.17 Log{PLR) plots for the recalibrated predictions versus the corresponding
raw predictions of T, 1 = 66, . . ., 278, for data set SS3. These plots indicate that the
recalibrated predictions are much more accurate than the raw predictions; the least
improvement is shown for LV and KL, but from Fig. 4.7 it can be seen that these mod-
els were initially better than the others and so there was less room for improvement.

4.5 A Worked Example

We have seen in previous sections of this chapter how the different
techniques for analyzing predictive accuracy and for recalibrating pre-
dictions work on some data sets, SYS1 and SS3. We now present
another worked example in which the techniques are used in the way
in which we recommend they be used in practice.

Our new data set, CSR1, was collected from a single-user worksta-
tion at the Centre for Software Reliability (CSR), and represents some
397 user-perceived events: genuine software failures, together with
events arising, for example, from usability problems and inadequate
documentation. Figure 4.18 shows the data, and Fig. 4.19 shows a suc-



S

Techniques for Prediction Analysis and Recalibration 151

cession of median predictions from the same eight models used previ-
ously. There are two striking things to note here: first, there is little evi-
dence of reliability growth until about halfway through the data set;
and second, there is again quite marked disagreement between the dif-
ferent models when this growth does start. The u-plot of Fig. 4.20
shows that all models are performing very badly, since all the KS dis-
tances are highly significant. More to the point, there are great differ-
ences in the nature of the prediction errors being made. Thus JM, GO,
LM, and LNHPP are too optimistic (the plot is almost everywhere
above the line of unit slope) while LV and KL are pessimistic (the plot
is below the line of unit slope). MO and DU, on the other hand, have a
pronounced S-shaped u-plot, intersecting the line of unit slope at about
(0.5,0.5). This indicates that their medians are quite accurate, but that -
estimates of other points on the distribution of time to next failure will
be inaccurate: estimates of probabilities of small times to failure will
be too optimistic, those of large times will be too pessimistic.
The PLR analysis in Fig. 4.21 shows that KL is performing best over-

all, with LV second. The relatively poor performance of the other mod-
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Figure 418 Data set CSR1 shown as the cumulative number of failures, i, versus the
total elapsed hands-on time measured in minutes, 1, =277 ¢, i =1,..., 397. This
data, collected from a single-user workstation at CSR, represents some 397 user-
perceived failure events.
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Figure 4.19 Successive median predictions from eight raw models, of T, plotted
against i for i = 66, . . . , 397 for data set CSR1. Notice how these median predictions
are in close agreement in the first half of the data set where there is little evidence of
reliability growth, but that they diverge, and increase, in the second half,

els is partly due to bias, as shown by the u-plots, and in some cases by
their being too noisy (see the great fluctuations in the medians, for
example, in Fig. 4.19). Once again, none of the raw predictions can be
trusted according to the u-plot analysis, and these models are thus can-
didates for recalibration. Figure 4.22 shows the effect of this upon the
median predictions: there has been some change in the medians from
those obtained from the raw models, and it is in the right direction in
view of the original u-plot indications of pessimism or optimism. The
u-plot of the recalibrated predictions (Fig. 4.23) confirms that there has
indeed been an improvement in comparison with Fig. 4.20. However,
only KLS has a plot that does not significantly differ from the line of
unit slope (although MOS, DUS, LNHPPS, and LVS are only just sig-
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e M 0.208 (significant at 1% level)
----------- ely] 0.200 (significant at 1% level)
e MO 0.129 (significant at 1% level)

DU 0.197 (significant at 1% level)
—rermmeeme LM 0.174 (significant at 1% level)
- LNHPP 0.172 (significant at 1% level)
v 0.213 (significant at 1% level)
--------- KL 0.196 (significant at 1% level)

Figure 4.20 u-plots and KS distances and significance lev-
els for predictions of T}, i = 66, ..., 397 from eight raw
models for data set CSR1. These plots indicate that all
these predictions are significantly inaccurate for this data
set, with some (e.g., JM and GO) being grossly optimistic
and some (e.g., LV and KL} being grossly pessimistic,
while others (e.g., MO) have more complicated departures
of prediction from the truth than simple optimism or
pessimism.

nificant at the 5 percent level). Notice that, in the case of MOS and
DUS, while the u-plots have improved a great deal, there is little
change in the medians (Fig. 4.19 and 4.22). This is expected, since the
raw medians are quite accurate; however, other points on the raw pre-
dictive distributions are not accurate, and these will have been
improved by the recalibration. Figure 4.24 shows a steady increase in
all PLR plots and confirms that, in all cases, the recalibrated predic-
tions are superior to the raw ones. The greatest improvement arising
from recalibration is in DU, but this is largely because this model was
so bad originally (see Fig. 4.21).
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Figure 4.25 shows that after recalibration the best predictions are
coming from DUS, with KLS and LVS next best. Thus in this case a
user who wished to make further predictions on this data set would be
advised to use the recalibrated DU model, bearing in mind, though,
that this predictive analysis should be repeated at future stages in case
there should be a reversal in fortunes between the various raw and
recalibrated predictions from the different models. It is notable that
here the recalibration has turned the worst-performing model, DU, into
the best, DUS.

In the analysis of this data set we have deliberately taken no
account of the fact that there seems to be little evidence of reliability
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Figure 4.21 Log(PLR) plots for predictions of T},i =66, . . . , 397, from eight raw mod-
els comparing against DU for data set CSR1. This suggests that there are big differ-
ences in accuracy between these eight models and that LV and KL are generally
giving the best predictions, and DU is generally giving the worst.
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growth until quite late—rather, we have blindly applied the models
and the recalibration procedure as would a naive user. Clearly, it
would be a trivial matter to carry out some simple preprocessing of the
data to detect the early stationarity (for example, applying simple
tests for trend). In the event that there is no growth indicated in the
early part on the data, it would be sensible to exclude this data and
apply the growth models only to the later stages where growth is
present.

For a similar analysis considering only failures that are kZnown to be
due to software faults in CSR1 data set, see Prob. 4.7.
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Figure 4.22 Successive median predictions from eight recalibrated models of T}, plot-
ted against i fori = 66, . . ., 397 for data set CSR1. Comparing with the raw medians
in Fig. 4.19, it can be seen that these are in closer agreement than before, but that they
still diverge in the second half of the data set.
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creerrereies M8 0.110 (significant at 1% level)
- oS 0.107 (significant at 1% level)
e MO8 0.078 {2%-5%)
pus 0.075 (2%—-5%)
e IMS 0,083 {1%-2%)
LNHPPS 0.081 (2%-5%)
Lvd 0.080 (2%-5%)
smeresnneee K18 0.055 (insignificant at 20% level)

Figure 4.23 u-plots and KS distances and significance lev-
els for predictions of 7}, i = 66, . . ., 397 from eight recali-
brated models for data set CSR1. Notice how these have
improved when compared with the raw u-plots in Fig. 4.20,
indicating that the bias in the raw predictions has been
reduced by recalibration.

4.6 Discussion

4.6.1 Summary of the good news:
where we are now

In this chapter we hope we have convinced you of two things.

First, there are serious problems that need to be addressed concern-
ing the accuracy of reliability growth models. There is no universally
acceptable model that can be trusted to give accurate results in all cir-
cumstances; users should not trust claims to the contrary. Worse, we
cannot identify a priori for a particular data source the model or mod-
els, if any, that will give accurate results; we simply do not understand
which factors influence model accuracy.
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Figure 424 Log(PLR) plots for the recalibrated predictions versus the corresponding
raw predictions of T}, i = 66, . . . , 397 for data set CSR1. These plots indicate that the

recalibrated predictions are more accurate than the raw; the most dramatic improve-
ment is shown for DU, but from Fig. 4,21 it can be seen that this model was most in
need of improvement in the first place.

Second, and more hopefully, there are techniques which can rescue
us from this apparent impasse; they allow the accuracy of the actual
predictions being obtained on a particular data source to be analyzed.
One of these techniques for analyzing the accuracy of predictions also
brings with it a bonus: it is possible to use it to assess the errors in past
predictions made by any raw model and hence to recalibrate future
raw predictions in order to eliminate such errors. With this new
approach to software reliability prediction, we believe that users will
normally be able to obtain reliability measures and predictions in
which they can have confidence, and that this confidence will be justi-
fied. In those situations where it is not possible to obtain accurate




158 Technical Foundations

results from any of the models, even with recalibration, users will get a
warning that this is the case.

It must be admitted that the ways of examining the accuracy of pre-
dictions that we have described are nontrivial, and users may find them
at first quite unfamiliar. This is not surprising, since traditional statis-
tical methods have tended to neglect the problem of prediction in favor
of estimation. It is only recently that techniques such as PLR analysis
have become available. However, the use of the techniques is really
quite straightforward, normally involving nothing more than the sim-
ple graphical analysis we have seen in the examples. Further, these new
measures are implemented in some of the current software reliability
tools (SRMP, SMERF'S, and CASRE) which are discussed in App. A.
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Figure 4.25 Log(PLR) plots for predictions of T}, i = 66, ..., 397 from eight recali-
brated models comparing against DUS for data set CSR1. This suggests that the best
recalibrated predictions are coming from DUS, which we know from Fig. 4.21 was the
worst before recalibration, with KLS and LVS next best.
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4.6.2 Limitations of present techniques

One major limitation of the techniques for prediction evaluation and
recalibration described in this chapter relates to the earlier discussion
in Sec. 4.2.2 on long-term predictions. It was noted that prediction
errors are likely to be different depending on the nature of the predic-
tions being made and, in particular, that the nature of the error in one-
step-ahead predictions is likely to be different than for longer-term
predictions, for example, as we have seen, 20 steps ahead. For simplic-
ity, the techniques described here have concentrated upon one-step-
ahead predictions only. There are clearly practical restrictions when we
try to extend these techniques to predictions further than one step
ahead. Theoretically, an extension to n-steps-ahead predictions is fairly
obvious; we could make many such predictions, and then evaluate their
accuracy by comparison with the corresponding observations when
they are finally later observed. The practical limitation of course lies
with the value of n. The larger the value of n, the less likely it is that
we will ever have enough data to make many such observations and
thus to conduct such an analysis of accuracy, or to recalibrate such pre-
dictions. This problem becomes even worse when we consider predic-
tions such as estimating how long it will take to achieve a target
reliability.

Although these problems due to sparseness of data apply to a greater
extent to the topics of evaluation and recalibration discussed in this
chapter, they also apply to software reliability modeling in general. A
major limitation of the whole software reliability growth approach is
that it is really only practicable for those situations in which rather
modest reliability levels are involved. If we require ultrahigh reliabil-
ity, and need to evaluate a particular system in order to have confi-
dence that such a target reliability has in fact been achieved, these
techniques will not be sufficient. The problem, of course, lies not in a
deficiency in the reliability growth approach itself, but in the fact that
the amounts of data needed are prohibitively large. It has been shown
in [Litt93] that the length of time needed for a reliability growth model
to acquire the evidence that a particular target mean time to failure
has been achieved will be many times that target. Worse, this multi-
plier tends to become larger for a higher target reliability—there is a
law of diminishing returns operating in software reliability growth.
This kind of result seems to occur whatever model we use and what-
ever the nature of the reliability measure adopted, and effectively pre-
cludes these kinds of techniques from providing evidence that a system
has achieved ultrahigh reliability.

Another serious restriction to the usefulness of all these techniques
lies in their need for the inputs to be selected in the same way during
the collection of data as it will be in the period to which the predictions
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relate. Thus, if we wish to predict the reliability of a program in its
operational environment, we need to base our predictions upon failure
data collected when the software was operating in such an environ-
ment (or good simulated approximation of it). In this sense, the models
(and recalibration) work by a sophisticated form of extrapolation, and
we can expect the results to be accurate only if past and future are sim-
ilar. For some applications, constructing a test environment that is a
realistic replica of an operational one is not too difficult, but it must be
admitted that sometimes this is a difficult task. On the other hand it
could be said that some reasonable approximation to the intended
operational profile should be considered to be part of the specified
requirements for a system, rather than this just being limited to the
functional requirements. There is a sense in which it could be said that
not knowing the expected operational profile is like not having com-
pletely specified the requirements of the real-world problem to which
the software is intended to be the solution.

Furthermore, the notion of a single operational environment can be
too restrictive. Some programs go out into the world and are used in
different ways by many users. These users will then often experience
different reliabilities for the same program. Of course, we could con-
struct many different test environments to try to reproduce the differ-
ent types of operational use, but this would be expensive. Ideally, we
would like to be able to take the failure data from a (nonrepresenta-
tive) test environment and use this together with information about
the operational environment to predict operational reliability. Chapter
5 discusses operational profile techniques in detail.

4.6.3 Possible avenues
for improvement of methods

It has been our experience from using the techniques for evaluating
predictive accuracy and recalibration that with the many current mod-
els it is usually possible to obtain trustworthy results from one of
them—either before or after recalibration. It has also been our experi-
ence that having more sophisticated models does not necessarily lead
to predictions (either before or after recalibration) which are more
robust or applicable over a wider range of data sets than those with
simpler assumptions. Unless there are pressing reasons to the con-
trary, we believe that research would be better conducted in areas
other than model building.

Having said that, some of the present models and the analysis tech-
niques could benefit from further work. For example, it is hard to pre-
dict far into the future with some models, and exact results are not
available. Similarly, as discussed in the previous section, there has not
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been much work on the analysis of the accuracy of such predictions.
Depending upon their precise nature, such predictions may require us
to develop more advanced versions of the analysis techniques de-
scribed here.

In addition to this there are other possible ways in which these
methods for improving raw predictions can themselves be improved.
For example, as we observed earlier with the CSR1 data in Sec. 4.5,
there are some data sets for which, even though recalibration gives
dramatic improvement over the raw predictions, there is still room for
further improvement. In these cases it is apparent that the recali-
brated predictions are still biased because there is nonstationarity in
the raw prediction errors. There are several possible methods which
could be investigated in such cases. We could apply the recalibration
method again to those recalibrated prediction sequences which are still
biased. Alternatively, in the presence of nonstationary raw prediction
errors it is reasonable to assume that the most recent prediction errors
reflect more accurately the current prediction error than those further
into the past; it would thus seem sensible to use only these most recent
predictions in recalibrating the current prediction. This, in turn, natu-
rally leads us to the possibility of investigating methods which for-
mally test for changes in the prediction errors so that we can decide
which of the past raw predictions to use in recalibrating the current
prediction. Investigations so far indicate that applying recalibration
using only very recent predictions tends to eliminate bias successfully
(i.e., good u-plots result) but sometimes this decrease in bias is out-
weighed by an increase in noise in the resulting recalibrated predic-
tions, and so there is a trade-off to be made here. An alternative to the
search for an optimum window of predictions in such cases (i.e., a
window which results in bias reduction that is not outweighed by
increased noise) might be to investigate the possibility of direct meth-
ods for the elimination of noise—i.e., smoothing techniques.

A related subject is the investigation of other techniques for improv-
ing raw reliability predictions, such as the combining techniques which
are considered in Chap. 7. Here any group of predictors (raw or recali-
brated) may be combined to form a new predictor. Like recalibration,
the new predictors generated from these combination techniques are
genuinely predictive (being based only on past data) and so the analy-
sis techniques discussed in this chapter can be used to assess the ben-
efit gained from combination. Various combination techniques have
been investigated and the most promising seem to be those where the
combination depends on past predictive performance of the initial pre-
dictors; for example, where the combined predictor is a combination
with more weight given to those initial predictors which have per-
formed the best in the (recent) past. Investigation so far indicates that

AN
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the main benefit of these combination techniques is that they result in
a new predictor comparable with the best of the initial predictors. The
main advantage of these techniques is that the result is automatic
selection of a best predictor for a particular data set. This is important,
since one major criticism of reliability modeling is that the user of such
techniques needs to be reasonably expert. There is much further work
to be done in this area: for example, trying more sophisticated combi-
nation methods, testing for appropriate past intervals of predictions on
which to base combination at each prediction stage, and so on.

The problem outlined in the previous section of predicting the relia-
bility of a program in a different operational environment from the one
in which the failure data has been collected is an important one that
might benefit from research. There has been some work on this prob-
lem [Cheu80, Litt79b], based on a structural decomposition of the soft-
ware, where the operational profile of a program is characterized by
the Markovian exchanges of control between its modules. The idea here
is that the reliability estimation for the modules could be performed
once and for all in a testing environment, using the reliability growth
models, and then the reliability of the overall program could be pre-
dicted for any new operational environment merely by estimating the
parameters of the Markov process for the new environment. This latter
task should be much easier than the reliability estimation. There
seems to be no experience of using these ideas, however, and it might
be questioned whether some of the modeling assumptions are realistic.

A criticism that is often made of the reliability growth models is that
they give their answers far too late—what is needed, it is stated, is a
means of estimating and predicting the reliability of a system at a
much earlier stage in its development so that corrective action can be
made if necessary. We are skeptical about being able to make genuine
predictions of final system reliability at an early stage, but it may be
possible to identify attributes of the early development process that
will indicate potential future problems.

A more promising approach might be to try to identify some
attributes of process and product that can be used with the later failure
data in order to obtain more accurate models. There has been consider-
able interest in the statistical literature over recent years in stochastic
models with such explanatory variables; the problem in this case seems
to be that of identifying variables with genuine explanatory power.

4.6.4 Best advice to potential users

The first and most important advice we would give if you are setting
out to measure and predict software reliability is: be skeptical. There is
no model that can be relied upon to be accurate under all circum-
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stances (although there do seem to be some models that are inaccurate
on most data sources). Nor can we identify a priori those circumstances
where a particular model is appropriate and will give accurate results.

In the face of these difficulties, we believe that there is no alternative
but to adopt the eclectic approach that we have described here. Many
models should be used simultaneously, and their output compared with
the actual failure times using the techniques we have described. The
result in most cases will be that reliability predictions will be identified
that are trustworthy with respect to certain important types of possi-
ble error, and this trustworthiness will be demonstrated. The latter
point is particularly important—with our approach there is no need to
appeal to dubious arguments such as model plausibility, or past good
performance on other data sets.

Finally, we have a bonus in our recalibration technique, which seems
to work in a high proportion of cases, giving results that are better than
those of the corresponding raw models. Experience of applying this
recalibration technique has shown that it often gives dramatic im-
provement over the raw predictions, and only in rare circumstances
will marginally worse predictions result.* Once again, as a user you do
not need to, and should not, érust our claims for the efficacy of this tech-
nique—rather you should treat it as another source of competing pre-
dictions that need to be analyzed for accuracy on your data, using the
methods we have described, just as with any other predictions.

Although the techniques we have described depend upon rather
novel and subtle statistical methods, we think that their actual use
and interpretation from the graphical presentations are comparatively
straightforward. This is aided by the use of some of the software relia-
bility tools which are discussed in App. A. Our advice if you are con-
templating measuring and predicting software reliability is to go
ahead and try our approach. Most times you will get results you can
trust. In those rare cases where none of the raw or recalibrated models
work, our techniques will give you a warning.

4.7 Summary

The techniques we have described here are important because they
largely resolve a basic dilemma of software reliability modeling: a user
is now faced with a plethora of models, but no one of them can be rec-

* This sometimes occurs when the raw model predictions are already unbiased and so
there is no room for further improvement. In such circumstances the recalibrated and
raw predictions are approximately the same, although recalibration may add some noise
to the predictions.
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ommended for universal use. Indeed it is our belief that the relatively
poor take-up of software reliability modeling techniques has been a
result of certain models being sold as universal panaceas. Users rightly
adopt an attitude of “once bitten, twice shy” when they see these mod-
els occasionally giving ludicrous results.

We think that the techniques we have developed provide a means to
overcome these difficulties and that it is now possible to measure and
predict software reliability for the relatively modest levels that are
needed in the vast majority of applications. Most important, the tech-
niques provide a means whereby the user can be confident that the
results are sufficiently accurate for the particular program under
examination. There is thus no need to subscribe to dubious claims
about the inherent plausibility of a particular model in order to have
some assurance that the reliability figures can be trusted.

One of the analysis techniques described in this chapter also brings
with it a bonus: it allows us to assess the nature of the inaccuracy of
past predictions and to recalibrate future predictions in order to
improve predictive accuracy. The examples we chose for this chapter
are ones in which the raw models perform rather badly. We did this
deliberately to show the power of the recalibration technique, but it is
often the case that some individual raw models will perform reason-
ably well even before recalibration. From a user’s point of view, how-
ever, this 1s immaterial. The recalibration procedure is easy to use and
is genuinely predictive, so it should be applied as a matter of course;
then it is easy to use the analytical methods to find which of the many
different (raw and recalibrated) versions is performing best for the
data of interest.

Problems

4.1 a. Give two reasons why techniques for analyzing the results of apply-
ing software reliability models are needed for use with each new data
set to which they are applied.

b. State the main objective of practical interest of these techniques.
c. Briefly describe the general approach to predicting reliability that we
are advocating in this chapter.

4.2 Explain what is meant when we say that a sequence of reliability predic-
tions is

a. Optimistic

b. Pessimistic

¢. Consistently biased

d. Noisy (compared with the truth)

4.3 Discuss all the relative advantages and disadvantages of the following
techniques for analyzing predictive accuracy:
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a. The variability as defined in Sec. 4.3.1.

b. Techniques which compare sequences of point predictions of the time
between failures T} with the (later observed) time between failures t..

¢. Prequential likelihood ratio

d. The u-plot

e. The y-plot

4.4 Consider the following two prediction systems. Assume that the time to
next failure, T}, is exponentially distributed with failure rate

n

j-1
> b

r=j-n

Xﬁ =

and that for prediction sequence A, n = 1, and prediction sequence B, n = 20.

In the presence of data for which each time between failures is exponentially
distributed and which exhibits reliability growth, discuss what you think the
nature of the errors would be in the two prediction sequences suggested here.
Describe how these errors are likely to be shown in the u- and y-plots and the
prequential likelihood ratio.

4.5 Briefly describe the recalibration technique. Under what circumstances
would you expect this technique to eliminate inaccuracies in a sequence of raw
model predictions?

4.6 Briefly discuss some limitations of the techniques for analyzing accuracy
and the recalibration technique, as described in this chapter.

4.7 Data set CSR2 is a subset of CSR1 where only failures that are known to
be due to software faults are considered. Perform an analysis on CSR2 similar
to the one applied to CSR1 in Sec. 4.5.

4.8 Data set CSR3 is another subset of the data previously analyzed in this
chapter (CSR1), but this time failures related only to Pascal programming are
included. Tables 4.5, 4.6, and 4.7 (in the Data Disk) show raw and recalibrated
one-step-ahead predictions of T}, i = 66, ..., 104 that result from applying
three models, JM, DU, and KL.

a. Draw plots of the raw median predictions against the prediction
stage i for these three models. Discuss these plots.

b. Draw the u-plots, and calculate the KS distances, for the three raw
prediction sequences. From Table 4.8, in the Data Disk, say which of
these plots is significantly far from the line of unit slope according to
these KS distances. Based on these u-plots only, state which model is
giving the most accurate raw predictions and which is giving the
least accurate predictions. Comment on what the shape of the u-plots
for the models which are giving inaccurate predictions tells us about
the nature of the raw prediction errors in each case.
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C.

Choosing the raw DU model as the reference against which to com-
pare, draw the log(PLR) plot, as shown in the previous examples for
these raw prediction sequences (i.e., JM versus DU and KL versus
DU). According to this PLR analysis, which raw model is the most
accurate, and which is the least accurate? Does this analysis confirm
the previous u-plot analysis?

4.9 For the data set CSR3 and the predictions in Tables 4.5, 4.6 and 4.7:

a.

Draw the median plot (again against i) for the three sequences of
recalibrated predictions. Comment on these plots in comparison with
the equivalent raw median plots.

Draw the u-plots, and calculate the KS distances, for the three recal-
ibrated prediction sequences. As before, from Table 4.8, say which of
these plots is significantly far from the line of unit slope according to
these KS distances. Comment on these plots in comparison with the
equivalent raw u-plots. Discuss whether recalibration has effectively
eliminated bias initially present in the raw prediction sequences.
Choosing the DUS model as the reference against which to compare,
draw the log(PLR) plot as shown in the previous examples for these
recalibrated prediction sequences (i.e., JMS versus DUS and KLS
versus DUS). According to this PLR analysis, which recalibrated pre-
diction sequence is the most accurate, and which is the least accu-
rate? What does a comparison of this PLR analysis with the
equivalent PLR analysis for the raw models suggest?

Draw log(PLR) plots for the recalibrated versus the raw prediction
sequences (i.e., JMS versus JM, DUS versus DU, and KLS versus
KI1.). Discuss whether these plots show that recalibration has made
the predictions more accurate. According to these plots, which model
shows the most improvement via recalibration, and which shows the
least?

4.10 According to the analyses and plots in Probs. 8 and 9, which of the six pre-
dictions shown in Tables 4.5, 4.6, and 4.7 would you choose to use for the next
one-step-ahead prediction (i.e., of Ty for the data set in CSR3)? Discuss why.



