Chapter

17

Neural Networks for Software
Reliability Engineering

Nachimuthu Karunanithi
Bellcore

Yashwant K. Malaiya
Colorado State University

17.1 Introduction

Artificial neural networks (or simply neural networks) are a computa-
tional metaphor inspired by studies of the brain and nervous systems
in biological organisms. They are highly idealized mathematical mod-
els of the essence of our present understanding of how simple nervous
systems work. Neural networks operate on the principle of learning
from examples; no model is specified a priori. Neural networks are
likened to nonparametric models in the statistical literature. Recent
development in neural networks has shown that they can be applied in
a variety of problem domains. For example, neural networks are used
to solve complex nonlinear function approximation problems, difficult
linearly inseparable pattern classification problems, speech recogni-
tion and control problems, and complex time-series modeling problems.
Though the neural network technology has been applied in various
fields, its utility in software engineering has not been completely
explored.

The purpose of this chapter is to introduce how this newly emerging
technology can be used in software reliability engineering applications.
In particular, we demonstrate the utility of neural networks models for
solving two problems in the area of software reliability engineering. In
the first example, we illustrate how a neural network can be used as a
general reliability growth model. We validate the utility of this general
model by learning to predict the cumulative faults for several software

699

700 Emerging Techniques

projects. Our results suggest that neural network models can provide a
better predictive accuracy than some of the analytic models. In the sec-
ond example, we illustrate how a neural network can be used as a clas-
sifier to identify fault-prone (or change-prone) software modules from
their static complexity metrics. We demonstrate the applicability of
this approach using metrics data from a Medical Imaging System soft-
ware. OQur results suggest that the neural network classifier may pro-
vide an edge over simple classifiers in certain categories.

17.2 Neural Networks

Neural networks are computational systems based on mathematical
idealization of our present understanding of biological nervous sys-
tems. However, the present neural network models do not take into
consideration all scientific knowledge about biological nervous sys-
tems; rather they model only a few rudimentary characteristics that
can be expressed in simple mathematical equations. In general, neural
networks can be characterized in terms of the following three entities
[Karu92d]:

m Models of neurons, i.e., characteristics of the processing unit

® Models of interconnection structure, i.e., the topology of the architec-
ture and the strength of the connections that encode the knowledge

u Alearning algorithm, i.e., the steps involved in adjusting connection
weights

The neural network research community has introduced a variety of
models for these entities. Consequently, there exists a variety of neural
network models and learning algorithms. We review here some of the
relevant neural network models and their characteristics.

17.2.1 Processing unit

There exist many mathematical idealizations for the processing unit
(or artificial neuron). A typical processing unit is described in terms of:
(1) a distinct set of fan-in connections, which specifies a set of weighted
connections through which the unit receives input either from other
units in the network or the external world; (2) a distinct set of fan-out
connections, which specifies a set of weighted connections through
which the unit sends its output either to other units in the network or
to the external world; (3) a fan-in function, which integrates inputs to
produce a net input to the processing unit; and (4) an activation func-
tton, which acts on the current net input to produce an output. A typi-
cal processing unit is illustrated in Fig. 17.1.

Neural Networks for Software Reliability Engineering 701

Fan-ih Connections
X1
le)

Fan-out Connection
(Output)

Activation
function

Fan-in
function

Figure 17.1 A typical processing unit,

Fan-in function. The purpose of the fan-in function is to integrate
inputs received from other units or the external world, and then pro-
duce a net input to the processing unit. One of the most widely used
fan-in functions is the dot-product function. Assume that w;; is the fan-
in weight vector of unit j from unit i, sum, is the net input to the unit,
and x; is the input from unit i, 1 <i < n. Then the dot-product function
is expressed as

n
Sumj = Zwijxi - Gj (171)
i=1
where —6; represents the threshold, which is usually created by an
adjustable weight from a special unit called bias unit whose output is
always 1.
Activation function. The purpose of the activation function is to
produce an activation value qg; for the unit j from the net input sum,.
The general form of an activation function is expressed as

a; = F(sum,) (17.2)

The activation function can be linear or nonlinear. However, neural
network models often employ a nonlinear activation function. There
are several nonlinear functions that can be used in a neural network.
We give a brief overview of some of the commonly used functions here.

The simplest function is the linear threshold function. The output
response of the linear threshold function is defined as

0 if sum, <0
F(sum;) = { C-sum; if0<sum;<L (17.3)
1 if sum,; > L

where C > 0 is the slope constant and L, the threshold. Figure 17.2a
depicts a linear threshold function with L = 1.

Another simplest nonlinear function is the hard-limiting threshold
function. The hard-limiting threshold function is given by

1 if sum; = 0
174
0 otherwise ()

F(sum,) = {

702 Emerging Techniques

QOutput
0 —
sum
(b)
1 1
Output /F
0 _ 0 —

sum sum

(c) (d)

Figure 17.2 QOutput of typical activation functions.

The output behavior of this function is given in Fig. 17.25.
The most widely used nonlinear activation function is the logistic
function. The logistic function is defined as

F(sum)) = 1/(1 + e—=»/'T) (17.5)

where T is the so-called temperature coefficient, which controls the
slope of the sigmoidal characteristics. The inverse of T is usually
known as the gain factor of the activation function. The response of a
sigmoid function is shown in Fig. 17.2¢c. One of the interesting features
of the logistic function is that it produces a continuous output. A pro-
cessing unit that incorporates a logistic activation function is often
referred to as sigmoidal unit. The output of the sigmoidal unit is
bounded between 0.0 and 1.0.

Another widely used nonlinear activation function is the gaussian
function. A gaussian function with unit normalization is defined as

F (sum;) = ¢sumi/o)?) (17.6)

where ¢ is a parameter which can be used to control the width of the
bell-shaped response curve. The output of a typical gaussian function is
illustrated in Fig. 17.2d.

17.2.2 Architecture

We can characterize the architecture of a neural network in terms of
two attributes: (1) number of layers in the network and (2) the type of
network topology used.

Neural Networks for Software Reliability Engineering 703

Number of layers. The units that act as an interface between the
external input and the network constitute the input layer. Typically,
the input layer is not involved in any useful computation; rather, each
unit in the input layer acts as a distribution point for the external
inputs. The units that output the network’s response to the external
world constitute the output layer. The layers that do not have direct
communication with the external world are called hidden layers. The
number of layers in a network may vary from a lower limit of two (one
input and one output layer) to any higher positive integer. In the neu-
ral network literature, some authors do not consider the input units as
a layer. Thus, a network is often called a single-layer network if it does
not have a hidden layer. On the other hand, networks with one or more
hidden layers are called multilayer networks. Hidden layers of a multi-
layer network allow the network to develop its own internal repre-
sentation of the problem. Each hidden layer produces an internal
representation from the input it receives. The number of hidden units
in a hidden layer represents the dimensionality of the internal repre-
sentation space. Thus, by controlling the number of hidden units in a
hidden layer, we can expand or shrink the internal representation of a
problem.

Type of connectivity. Based on the connectivity and the direction in
which links propagate activation values, we can classify a multilayer
network into one of two well-known classes of models: feed-forward net-
works and recurrent networks.

If a network employs only forward-feeding connections then it is called
a feed-forward network. A feed-forward network can be either single
layer or multilayer. Historically, a single-layer network with a hard-
limiting threshold output is known as a perceptron. However, a single-
layer network with sigmoidal unit is also commonly referred to as a per-
ceptron. Perceptrons have limited applicability because they are capable
of solving only linearly separable classification problems. Multilayer net-
works, on the other hand, are highly suited for problems that require
nonlinear function mappings and linearly inseparable classification
boundaries. A three-layer feed-forward network is shown in Fig. 17.3a.
This feed-forward network has one unit each in the input and output
layers, and three (hidden) units in the hidden layer. An additional unit,
called the bias unit, is always used to supply threshold values (using
adjustable links) to all hidden and output units in the network. For sim-
plicity we have not included the bias unit in Fig. 17.3a. For a given prob-
lem, the number of units required for the input and the output layers are
dictated by the dimensionality of the problem space. For example, if a
problem has two independent variables and a dependent variable, then
the network will have two input units and one output unit. However, for
a given problem, both the number of hidden layers needed in the net-

704 Emerging Techniques

work and the number of units needed within each hidden layer of the
network are dictated by its complexity and size.

In addition to feed-forward connections, we can also use recurrent
connections to feed the previous time-step output values (i.e., the states
of the units corresponding to the previous input pattern or the time
step) of units either to the units in preceding layer(s) or back to the
units themselves. Multilayer networks that employ feedback connec-
tions are referred to as recurrent networks. Based on how recurrent con-
nections are established, we can classify a recurrent network into one of
three categories: (1) simple recurrent networks proposed by Elman
[Elma90], (2) semirecurrent networks proposed by Jordan [Jord86], and
(3) fully recurrent networks [Will89]. In a fully recurrent network every
unit receives input from all other the units in the network. In the sim-
ple recurrent network (or Elman network), the recurrent connections
originate from the hidden units. In a standard semirecurrent network
(also known as Jordan network) there is one-to-one feedback from the
output units to “state units,” and all these feedback links have a fixed

'weight of 1.0. Apart from the output feedback, each state unit receives
self-feedback through a learnable link. Thus, the activation of a state
unit is a function of the output of the network as well as its own activa-
tion at the previous time step. The state units, like the input units, prop-
agate their activations in the forward direction to all the hidden units.
For illustration, we show a modified Jordan-style recurrent network
without self-feedback links of the state units in Figure 17.3b. Qur expe-
rience shows that both feed-forward networks and the modified Jordan-
style recurrent network are useful in software reliability engineering

applications.
-~~~ . _ Feedback
Output layer ~. connection
\\
AY
\
1.0 ¢
O O O O |
/ Hidden layer \f
Input layer
Dummy input
unit

(a) (b)

Figure 17.3 (a) A standard feed-forward network and (b) a modified Jordan network.

Neural Networks for Software Reliability Engineering 705

17.2.3 Learning algorithms

To solve a problem using a neural network, the network must first be
taught solutions using a set of typical instances of input-output pairs
known as the training set. The procedure by which the network is
taught is known as the learning algorithm. During the training (or
learning) phase, the strength of the interconnection links of the net-
work are adjusted to reduce the residual error resulting from the train-
ing set. A variety of algorithms exist for training multilayer networks.
Among them, the back-propagation algorithm is the most widely used.
The back-propagation algorithm was proposed independently by sev-
eral researchers [Werb74, Park82, Rume86]. In the mid-eighties,
Rumelhart, Hinton, and Willhlams [Rume86] popularized the back-
propagation algorithm by training multilayer networks to solve sev-
eral interesting problems. Thus, the back-propagation algorithm has
become one of the main driving forces behind the recent surge both in
multilayer neural networks research and development of several vari-
ants of multilayer neural network training algorithms. A brief review
of the back-propagation algorithm can be a valuable first step toward
understanding other training algorithms and neural network models.
Hence, we provide an overview of the back-propagation algorithm in
the next section.

17.2.4 Back-propagation learning algorithm

The back-propagation learning algorithm is a class of supervised learn-
ing* algorithms in which the network weights are iteratively adapted
using errors propagated back from the output layer. For the purpose of
illustration, let us consider a simple three-layer feed-forward network
constructed using sigmoidal units and trace how the back-propagation
algorithm works.

Algorithm. (1) To start with, initialize the network weights with a
set of random values. This step is called the initialization phase. Typi-
cally, a set of random values drawn from a small interval (for example,
between —1.0 and 1.0) is used. However, one can also initialize the net-
work weights with a set of values from a known distribution. (2) Next,
in the weight adjustment phase, adjust the network weights incremen-
tally over several iterations. In each iteration, adjust the weights in
the direction of steepest decreasing gradient of the error surface (i.e.,
the surface formed by the sum of the square of the error between the
desired output and the actual output for all patterns in the training

* A training algorithm is “supervised learning” if it requires actual outputs for each
input pattern in the training set.

706 Emerging Techniques

set). This iterative adjustment continues until either a minimum is
reached in which the error is less than a prespecified tolerance limit, or
until a set number of iterations has been reached. During each itera-
tion, the sum of squared errors is calculated as follows:
| P oM
Emg > Z(yj’—oj’)z (17.7)
p=1j-1
where y” is the desired output for the input vector in,, o is the actual
output of the network, M is the number of output units, and P is the
number of patterns in the training set. This error is propagated back
through the network to adjust weights using a gradient descent proce-
dure. The gradient descent procedure changes the weights by an
amount proportional to the partial derivative of the error with respect
to each weight w;;. Thus, the change in the weight of a link from unit ;
to unit j at the #th iteration is given by

Awij(t):n‘Sj'ini+(l'Awij(t“1) (178)

where 7, a proportionality constant called the learning rate, o, the
momentum term, Aw, (¢ — 1), weight change during the previous itera-
tion, in;, the output activation of the unit i, and 3;, partial derivative of
the error with respect to the net input (sum;) to the unit j. The error
derivative §; for the jth unit in the output layer is given by

Sj:Oj(l —Oj)(yj"'Oj) (17.9)
and for the k£th unit in the hidden layer is given by
M
Sk:hk(l_hk)Z(Sj'wkj) (1710)
j=1

where A, 1s 1its activation.

Though the back-propagation algorithm can be used to train any
multilayer network, one must be aware of several practical issues that
could affect its efficiency. Since the back-propagation algorithm is a
gradient descent optimization procedure, it is vulnerable to the prob-
lem of premature convergence. Premature convergence occurs when-
ever the algorithm gets stuck in a local minimum and the value of E is
still higher than the allowed tolerance limit. Though several solutions
have been proposed to improve/avoid premature convergence of the
back-propagation algorithm [Jaco88], none of the solutions have been
proved to work consistently across all error surfaces.

The second issue is specifying an optimum network architecture for a
given problem. A network architecture is considered optimum if it has
the minimum number of hidden units (and hence the minimum number

Neural Networks for Software Reliability Engineering 707

of interconnection links) with which it can successfully learn the train-
ing set. If the network architecture is too small, then it may not be able
to learn the entire training set. On the other hand, if the network archi-
tecture is too large, it may have too many degrees of freedom (weight or
parameters) to learn the training set. Thus, if the network has too many
weights, then it will memorize the training set rather than generalize
it. Furthermore, an inappropriate network may consume an unreason-
able amount of simulation resources. The back-propagation algorithm is
applied to train the network with the assumption that the architecture
of the network is specified either ahead of time by the user, or experi-
mentally determined by trial and error. In the trial-and-error approach,
the user may waste time experimenting with different architectures to
find an appropriate architecture.

To address the limitations of the standard back-propagation algo-
rithm, Scott Fahlman and colleagues [Fahl90] developed an efficient
constructive training algorithm known as cascade-correlation learning
architecture for feed-forward networks. We demonstrate the use of neu-
ral networks for software reliability applications using this algorithm.
To understand how this algorithm works, we provide an overview of
the algorithm in the following section.

17.2.5 Cascade-correlation
learning architecture

The cascade-correlation algorithm combines two important ideas in its
learning method: the cascade architecture, to add hidden units one at a
time, and a learning algorithm (typically, Fahlman’s “quickpropa-
gation” [Fahl88]) to create, train, and install new hidden units. The
cascade-correlation algorithm in effect grows a neural network. In the
first stage of learning, the cascade-correlation uses no hidden units;
this means that initially the net applies a simple perceptron-type net-
work to learn as many training patterns as possible. When the algo-
rithm can no longer reduce the error, a potential candidate hidden unit,
which is separately optimized to maximize the correlation between its
outputs and the residual error of the network over the entire training
set, is added. When hidden units are trained, the weights connecting
the output units are kept unchanged. After the hidden unit is con-
nected to the output, training updates all the weights that directly go
to the output layer. Once installed, each hidden unit becomes a new
hidden layer in the network, and its incoming weights remain frozen
for the rest of the training period. When subsequent hidden units are
added, the outputs of the previously added hidden units become as
additional inputs to the new hidden unit. This dynamic expansion of
network architecture continues until the problem is solved.

708 Emerging Techniques

The cascade-correlation algorithm consists of the following steps.

1. Initialize the network. Create a network architecture consisting of
only input and output layers. Establish links from the input layer to
the output layer and initialize them with random values.

2. Train output layer. Adjust weights feeding the output units. If the
learning is complete (i.e., the error is below a preset limit) then stop;
else if the error has not been reduced significantly for a certain num-
ber of consecutive epochs, or the maximum number of epochs
allowed has been reached, then go to the next step.

3. Initialize a candidate unit. Create and initialize a candidate unit
with random weights from all input units and all preexisting hidden
units.

4. Train the candidate unit. Adjust candidate unit’s weight to maxi-
mize the correlation between activation, v,, of the candidate unit ¢
and the residual error ¢; at each output unit ;.

a. Compute correlation. The correlation is computed in terms of
covariance,

M P
cor,=> | > WE-V)e? ~E) | (17.11)

J
where V = Zi:l v’/Pand E; = Zf::l el /P
b. Update candidate unit’s weights using gradient ascent to maxi-
mize cor,,

dcor, (17.12)

.l’l

chi ="
awci
c. If the correlation at the current epoch is not significantly better
than the previous epoch, then go to step 5; otherwise go back to
step 4.a.

5. Install the candidate unit. Install the candidate unit as a hidden
unit by establishing weights to output units and initializing them
with the negative of the correlation values. Now freeze the incoming
weights of the candidate unit and go to step 2.

The cascade-correlation learning algorithm has many advantages
over the standard back-propagation algorithm. Three of the major
advantages are: (1) the user need not specify the architecture; rather it
is evolved automatically; (2) its learning speed is one or two orders of
magnitude faster than the standard back-propagation algorithm; and
(3) it is highly consistent in converging during training. Because of
these advantages and our experience with the back-propagation algo-

Neural Networks for Software Reliability Engineering 709

rithm, we use the cascade-correlation algorithm for all example
demonstrations in this chapter.

17.3 Application of Neural Networks
for Software Reliability

The problem of developing reliable software at a low cost still remains as
an open challenge. To develop a reliable software system, we must
address several issues. These include specifications for reliable software,
reliable development methodologies, testing methods for reliability, reli-
ability growth prediction modeling, and accurate estimation of reliabil-
ity. Two of the problem areas in which the neural network is applicable
are developing a general-purpose reliability growth model, and identify-
ing change/fault-prone software modules early during the development
cycle. This section reviews some of the limitations of the traditional mod-
eling approaches used to solve these problems and argues that we can
try the neural network approach as an alternative.

17.3.1 Dynamic reliability growth modeling

In current software-reliability research, one of the concerns is how to
develop general prediction models. Existing models typically rely on a
priori assumptions about the nature of failures and the probability of
individual failures occurring. Furthermore, these models, referred to as
parametric models, attempt to capture in two or three explicit parame-
ters all the assumptions made about the software development process
and environment. Because all of these assumptions must be made
before the project begins, and because many projects are unique, the
best that one can hope for is statistical techniques that predict failure
on the basis of failure data from similar project histories. Though there
1s evidence to suggest that certain analytic models are better suited to
certain types of software projects than other models, the issue of find-
ing a common model for all possible software projects is yet to be
solved.

Selection of a particular model is very important in software relia-
bility growth prediction because both the release date and the resource
allocation decision can be affected by the accuracy of predictions. Sev-
eral solutions have been proposed to address the issue of model selec-
tion. For example, in Chap. 4 we suggest two alternatives: (1) try
several software reliability growth models and select the one that gives
highest confidence and (2) use a recalibration method to compensate
for the bias of a model. The second alternative can be used either alone
or in combination with the first solution. Alternatively, in Chap. 7 we
propose a linear (or a weighted linear) combination of prediction

710 Emerging Techniques

results from models with opposite bias. Li and Malaiya [Li93] show
that an adaptive prediction combined with preprocessing can enhance
the predictive capability of the analytic models. All these solutions can
broadly be termed postprocessing methods. Nevertheless, the issue of
generalization of prediction models still remains open. An alternate
approach is to use an adaptive model-building system that can develop
its own model of the failure process from the actual characteristics of
the given data set. In this chapter we demonstrate that such a general-
purpose reliability growth model can be developed using the neural
network approach.

17.3.2 Identifying fault-prone modules

Another concern in software reliability engineering is to identify poten-
tially fault-/change-prone modules early during the development cycle.
This concern is motivated by the developers’ need to improve the over-
all reliability of the product by allocating more test efforts to poten-
tially troublesome modules. Intrinsic complexity of the program texts,
measured in terms of static complexity metrics, is often used as an
indicator of troublesomeness of program modules. By controlling the
complexity of software program modules during development, we can
produce software systems that are easier to maintain and enhance
(because simple modules are easier to understand). As seen in Chap.
12, static complexity metrics are measured from the passive program
texts early during the development cycle and can be used as valuable
indicators for allocating resources in future development efforts.

Several statistical regression and classification models have been
suggested to predict the fault-proneness of software modules [Craw85,
Shen85, Rodr87, Muns92, Lyu95b]. However, existing statistical models
make simple assumptions that are often violated in practical measures.
Furthermore, there are numerous metrics that are either redundant or
that have some linear (or nonlinear) dependence among other metrics.
High redundancy in the metric space and multiply-related metric
dimensions may often result in unreliable predictive models. In this
chapter, we demonstrate that neural networks can also be used as a
classifier for identifying fault-prone software modules.

17.4 Software Reliability Growth Modeling

In this section we illustrate how neural networks can be used for pre-
dicting software reliability growth process. As pointed out earlier, the
predictive capability of a neural network can be affected by which neu-
ral network model is used to model the failure data, how the input and
output variables are represented to it, the order in which the input and

Neural Networks for Software Reliability Engineering 711

output values are presented during training, and the complexity of the
network. We address these issues in this section, and empirically show
that neural networks can give accurate predictions across different
software projects. Furthermore, we also perform an analysis to show
that neural networks are capable of adapting their complexity to
match the complexity of the training data set.

To illustrate how neural networks can be used as a prediction sys-
tem, the following definitions are introduced [Karu9l, Karu92a,
Karu92b].

Definition 1
Sequential prediction: Given a sequence of inputs ({(i,,...,i,)e I)and a
corresponding sequence of outputs ((64,..., 0,) € O) up to the present

time ¢ and an input (i,,; € I) belonging to a future instant ¢ + d, predict
the output (0;,, € O).

For d =1 the prediction is called the next-step prediction (or short-term
prediction) and for d = n(>2) consecutive intervals it is known as the
n-step-ahead prediction (or long-term prediction). A special case of
long-term prediction is end-point prediction, which involves predicting
an output for some future fixed point in time. In end-point prediction,
the prediction horizon becomes shorter as the fixed point of interest is
approached.

We can represent a neural network as a mapping AN : I — O where I
i1s an n dimensional input space and O is the corresponding M dimen-
sional output space. Generally this mapping is accomplished using a
multilayer network. The training procedure is a mapping operation 7
I, — O, where (I;,, O,) ={(i, 0) | i € I and 0 € O} is a subset of & input-
output pairs sampled from the actual problem space (I, O). The func-
tion 7 represents an instance of A\ that has learned to compute (or
approximate) the actual mapping of the problem.

Definition 2

Neural network mapping: Sequential prediction can be formulated as a
neural network mapping

fP: ((It, Ot)> tit+a') =0 4 d

in which (I,, O,) represents a sequence of ¢ consecutive samples used for
training and o, ,, the predicted output corresponding to a future input i, . ;.

Definition 3

Neural network software reliability growth model: Software reliability
growth prediction can be expressed in terms of a neural network map-
ping as

PAT Fy)strin = Hesn

712 Emerging Techniques

where T, is a sequence of cumulative execution time (¢y, . . .,), F is the
corresponding observed accumulated failures (py, ..., u,) up to the
present time ¢, used to train the network, ¢, ., = {; + A is the cumulative
execution time at the end of a future test session £ +h and p, ., is the pre-
diction of the network.

In the above definition A = Ek +kh+ . A; represents the camulative execu-

tion time of & consecutive future test sessions. Note that each test ses-
sion A; can be either a fixed duration or a random interval.

17.4.1 Training regimes

A neural network’s predictive ability can be affected by what it learns
and in which sequence it learns. The notion of a training regime is
introduced to distinguish the order in which data are presented during
training. Two training regimes can be used in software reliability pre-
diction: generalization training and prediction training. Figure 17.4
illustrates these training regimes.

Generalization training is the standard way of training feed-forward
networks. During training, each input i, at time ¢ is associated with the
corresponding output o,. Thus the network learns to model the actual
functionality between the independent and the dependent variables.

Prediction training, on the other hand, is an approach often
employed in training recurrent networks. Under this training, the
value of the input variable i, at time ¢ is associated with the actual
value of the output variable at time ¢ + 1. Here the network learns to
predict outputs anticipated at the next time step.

If we combine these two training regimes with the feed-forward net-
work (FFN) and the modified Jordan network (JN), we get four neural
network prediction models. Let us denote these models as FFN-gener-
alization, FFN-prediction, JN-generalization and JN-prediction.

17.4.2 Data representation issue

The issue of data representation is concerned with the format used to
represent the input-output variables of the problem to the neural net-

9) %42 %na
Output E E E Output /I?)éjl
Input Input i, 6
By iy SO Fn-2

time - - -> time - - - >
(a) (1))

Figure 17.4 Two network-training regimes: (a) generalization training and (b) pre-
diction training.

Neural Networks for Software Reliability Engineering 713

work. If a sigmoidal unit is used as the output unit, then its output
response will be bounded between 0.0 and 1.0. Since the output variable
of the software reliability growth model may vary over a large numeri-
cal value, it is necessary to scale the output variable to a range that con-
forms within the operational range of the output units. A simple
representation is to use a direct scaling, which scales cumulative faults
from 0.0 to 1.0. On the other hand, the input variables, in theory, need
not be scaled to this range because the weights feeding the hidden units
from the input layer can scale them appropriately. But, for practical rea-
sons, it is a reasonable heuristic to scale also the input variables to an
appropriate range. For the purpose of our illustration, we scaled both
cumulative faults and cumulative execution time from 0.1 to 0.9
because our experience shows that (1) the network is less accurate in
discriminating inputs whose scaled values are close to the boundary
values 1.0 or 0.0, and (2) the sigmoidal unit’s error derivative, which
affects the rate of weight adaptation during training, becomes inconse-
quential when its output is close to 1.0 or 0.0. To scale the data, however,
it is necessary to guess the appropriate maximum values for both the
cumulative faults and the cumulative execution time [Karu92c].

17.4.3 A prediction experiment

To illustrate the predictive accuracy of neural network models, five
well-known analytic software reliability growth models and failure his-
tory data sets from several different software projects were considered.
These models include the exponential model proposed by Moranda
[Mora75b], the logarithmic model proposed by Musa and Okumoto
[Musa87], the delayed S-shaped model proposed by Yamada et al.
[Yama83], the inverse-polynomial model proposed by Littlewood and
Verrall [Litt74], and the power model proposed by Crow [Crow74]. All
these models have two parameters and are nonhomogeneous Poisson
process except for the inverse-polynomial model. Details of these mod-
els appear in Chap. 3.

The data sets used for illustration were collected from several differ-
ent software systems, including 14 data sets (see the Data Disk). These
data sets represent the observed failure history of those systems. Each
data point within a set consists of two observations: the cumulative
execution time and the corresponding accumulated number of defects
disclosed.

17.4.3.1 Measures for evaluating predictability. In order to compare the
predictive accuracy of different models, we have to use some meaning-
ful quantitative measures. The software reliability research commu-
nity uses a variety of metrics for comparison of models. We review
three distinct approaches that are very common in software reliability

714 Emerging Techniques

research [Mala90a, Mala90b] and point out which one is relevant for
our comparison.

Let the data be grouped into n points (¢, D;),i =1 to n, where D, is the
cumulative number of defects found at time ¢;, and ¢; is the accumulated
execution time (i.e., the time spent for testing the software) in disclos-
ing D; defects. Let ; be the projected number of defects at time ¢; by a
model.

1. Goodness-of-fit. In this approach, first a curve corresponding to a
selected model is fitted to all the data points {¢;, W}, i=0,1,...,n;
then the deviation between the observed and the fitted values is
evaluated by using the chi-square test or Kolmogorov-Smirnov test.

2. Next-step predictability. In this approach a partial data set corre-
sponding to, say, {¢, D},i=1,...,({ —1)is used to predict the value
of 1, (cumulative number of defects after /th test interval). The pre-
dicted and the observed values of cumulative defects are then com-
pared.

3. Variable-term predictability. In actual practice, the need to predict
the behavior at a distant future of the test phase using present fail-
ure history is very important. This approach, used by Musa et al.
[Musa87], makes projections of the final value of p, using a partial
data set {¢;, Di},i =0, ..., [, where [l <n. The percentage prediction
error in these projections can then be plotted against time.

A two-component predictability measure consisting of average error
(AE) and average bias (AB) was used by Malaiya et al. [Mala90a,
Mala92] to compare predictive capabilities of parametric models at dif-
ferent fault-density ranges. These measures are as follows. For a spe-
cific model m, let u” be the projected total number of the defects to be
detected at a future time ¢;, where j =i + d. Using the projected value at
each point i, we can calculate the model’s prediction error (u7; — D)D),
i = 1 to n — 1. Then predictability measures for a given data set s are
given by

1 o own-D;
AE? = —— —_—
n- i§1| D;

J

| (17.13)

1 "l Mrirji_Dj
ABT = —_— 17.14
n-1 lg‘l D; ()

Two extreme prediction horizons of interest are:j =i +d =i + 1, the
next-step prediction, and j =i +d = n, the end-point prediction. AE 1s a
measure of how well a model predicts throughout the test phase, and

Neural Networks for Software Reliability Engineering 715

AB is the general bias of the model. AB can be either positive or nega-
tive depending on whether the model is prone to overestimation or
underestimation. Note that the above AE measure can be used to com-
pare the predictive accuracy of models within a single data set only.
However, what we need is a normalized AE measure (normalized
within each data set) with which competing models can be ranked
across different software projects.

Let m m,,, be the competing model that has the maximum average
error measure for the data set s. Let AE? == be its average error mea-
sure. Then the normalized AE measure is given by

AE™

NAE™ = AR

Thus NAE = 1.0 when m = m,, (i.e, for the model which has the high-

est prediction error) and 0.0 < NAE™ < 1.0 for m # m ... Note that more

than one model may have the same value if their AE" values are equal.

Let vy, be the weighting (importance) factor of a data set s. Now an
overall rank metric of the model m can be calculated as

ND
R,=> v, NAE? (17.16)

s=1

(17.15)

where ND is the number of data sets used in comparing models. If we
give equal weight to all data sets, then the above rank metric reduces
to a simple sum

ND

R,=> NAE" (17.17)

s=1
We can apply these metrics for both end-point predictions and next-
step predictions. '

17.4.3.2 Prediction results. We trained neural networks with the exe-
cution time as the input and the observed fault count as the target out-
put. The training ensemble at time ¢; consists of the complete failure
history of the system since #;., (i.e., since the beginning of testing). Any
prediction of a neural network without proper training is equivalent to
the network making a random guess. So we took care to see that
the neural network was trained with at least some initial portion of the
failure history. In all the experiments, we set the minimum size of
the training set so it would contain at least the first three observed
data points. We then increased the training set in steps of one point
from this minimum set to all but the last point in the data set. At the
end of each training, the network was fed with future inputs to mea-
sure its prediction of the total number of defects.

716 Emerging Techniques

Table 17.1 summarizes the predictive accuracy of models in terms of
the rank metric R,, defined earlier. This metric provides simple sum-
mary statistics. In order to find their relative accuracies, we also calcu-
lated the average and the standard deviation of R,,. The R,, values for
end-point predictions of neural networks are well below the overall
average of 6.10. This suggests that neural networks are better suited
for end-point predictions than are analytic models. Jordan nets have
R, values 2.09 and 2.23, which are one standard deviation below that
of the overall average of 6.10. The results suggest that the Jordan net
models are better at end-point predictions than are all other models.
One reason the Jordan nets exhibit such a low end-point prediction
error may be that they are able to capture the correlation among points
that are in the immediate past. In comparison, the analytic models
have R,, values that are well above the average. This suggests that
analytic models are either too pessimistic or too optimistic. Numbers in
the “Rank” column represent the rank of these models based on their
overall prediction accuracy.

Note that, except for the JN-prediction model, all models seem to
have almost similar next-step prediction accuracy. This observation is
further supported by the fact that all other models have R,, values that
are bounded between one standard deviation above and below the
average. The JN-prediction model has R,, = 8.00, which is one standard
deviation below the overall average of 9.82, and suggests that this
model has better next-step predictive accuracy than the other models
compared.

In order to check whether the above observations have statistical
significance, we performed further analysis using the analysis of vari-
ance (ANOVA) approach. In this approach we viewed the AE measures
as outcomes of randomized block experiments in which the projects (or

TABLE 17.1 Summary of Normalized AE Measure

End-point predictions Next-step predictions

Moedel R, Rank R, Rank
FFN-generalization 2.86 4 11.79 9
FFN-prediction 2.64 3 10.09 7
JN-generalization 2.09 1 9.81 5
JN-prediction 2.23 2 8.00 1
Logarithmic 6.29 5 8.78 2
Inverse polynomial 7.60 6 9.54 4
Exponential 8.20 7 8.96 3
Power 11.39 8 11.43 8
Delayed S-shape 11.59 9 9.95 6
Average 6.10 9.82

Std 3.85 1.21

Neural Networks for Software Reliability Engineering 717

data sets) were randomly selected and software reliability growth pre-
diction models as “treatments” applied to each of the projects. Note that
this approach accounts for the data set peculiarities that could affect
performance of these competing models.

The overall average of AE values (i.e., the average of AE measures
over all 14 data sets) are shown in Table 17.2. These values represent
the predictive accuracy of models across different projects. The result-
ing F-statistics for projects and models are highly significant at the 1
percent level, and show that models have significantly different pre-
dictive accuracy. Since the models have significant F-statistics, we can
use the least significant difference (LSD) procedure to differentiate
among them in terms of their overall AE measure. Under LSD, two
competing models are considered significantly different if their means
in Table 17.2 differ by an amount equal to or greater than the valué
given by the LSD procedure. On the other hand, if the difference is less
than the value given by the LLSD procedure, then we can interpret that
two models have similar predictive accuracy across all projects. Thus if
a model X has an AE which is significantly lower than that of another
model Y, then we can interpret, using > to denote significantly better,
that {X] > {Y}. '

The resulting LSD for the end-point prediction is 4.52 (T, 104 = 1.98).
Thus, based on the averages in Table 17.2 we can conclude that {FFN-
generalization, FFN-prediction, JN-generalization, JN-prediction} >
{logarithmic, inv. polynomial, exponential} > {power, delayed S-shape}.
Thus our analysis suggests that the neural network models are signif-
icantly better than analytic models in predicting end points.

The corresponding LSD value for the next-step prediction is 1.39
(T54 104 = 1.98). Based on this LSD value and the overall average of AE
in Table 17.2, we can interpret that {JN-prediction, logarithmic, expo-
nential} > {FFN-generalization, power}. Since the remaining four mod-
els do not show any significant difference in the next-step prediction
accuracy, we can conclude that neither of these two competing
approaches (neural network models versus analytic models) taken

TABLE 17.2 Overall Average of AE Measure

Model End-point predictions Next-step predictions
FFN-generalization 6.67 6.62
FFN-prediction 6.12 5.38
JN-generalization 4.75 5.47
JN-prediction 4.94 446
Logarithmic 14.23 5.04
Inverse polynomial 17.93 5.64
Exponential 18.45 5.19
Power 26.42 7.44

Delayed S-shape 25.61 5.80

718 Emerging Techniques

alone have a distinct advantage. However, it should be noted that the
JN-prediction model has a higher next-step prediction accuracy than
all other models.

Since we used two different network architectures, we performed an
additional ANOVA analysis to find out whether there is any significant
difference among neural network models. The resulting LSD values
(with a critical value of T' = 2.02} are 1.16 for end-point predictions and
1.11 for next-step predictions, respectively. The LSD of 1.16 and the
overall averages in Table 17.2 suggest that the Jordan network models
are significantly better end-point predictors than the feed-forward net-
work models. Furthermore, based on the LSD value of 1.11 for next-
step predictions we conclude that the JN-prediction model is a better
next-step predictor than the other neural network models. Thus, the
Jordan network models are better predictors than the feed-forward
network models.

In summary, our statistical analyses show that (1) on the average,
neural networks models have better end-point prediction accuracy
than analytic models, and (2) the type of neural network architecture
can influence the predictive accuracy.

17.4.4 Analysis of neural network models

So far we have seen how we can use neural networks constructed using
the cascade-correlation algorithm to accurately predict cumulative
faults. As pointed out earlier, the number of hidden units added to the
final network by the cascade-correlation algorithm may vary as the
size and the complexity of the training set are changed. This is espe-
cially true in our reliability growth modeling problem because the
number of points in the training set increased according to the time
horizon that we took into consideration. Also, the number of hidden
units varied from one data set to another because of their inherent
peculiarity. Thus, most of the time the networks were constructed with
zero, one, or two hidden units and occasionally with three or four hid-
den units. Thus, the models developed by the neural network approach
are more complex than most analytic models that have two or three
parameters.

17.5 Ildentification of Fault-Prone
Software Modules

In this section, we demonstrate how neural networks can be used as a
pattern classifier to identify fault-prone software modules early during
the development cycle. There are two reasons for this demonstration:
(1) to show that neural network classifiers can be developed as a com-

Neural Networks for Software Reliability Engineering 719

plement to existing statistical classifiers and (2) to demonstrate that
classifiers can be developed without the usual assumptions about the
input metrics. The idea of using a neural network for classifying fault-
prone software modules was first demonstrated by Koshgoftaar et al.
[Kosh93c], using a multilayer network trained using a standard back-
propagation algorithm. Here, we expand and evaluate the neural
network approach using a perceptron network and a multilayer feed-
forward network developed using a modified cascade-correlation algo-
rithm [Karu93b, Karu93c]. We also address other issues such as
selection of proper training samples and representation of software
metrics.

17.5.1 Identification of fault-prone modules
using software metrics

We can relate static complexity measures of program texts with faults
found (or program changes made) during testing using two broad mod-
eling approaches. In the estimative approach, regressions models are
used to predict the actual number of faults that will be disclosed during
testing [Craw85, Shen85, Khos90, Muns92, Lyu95b]. Regression models
assume that the metrics that constitute the input variables are inde-
pendent and identically distributed normals. However, most practical
measures often violate the normality assumption. This in turn results
in poor fit of the regression models and inconsistent predictions.

In the classification approach, software modules are categorized into
two or more fault-prone classes. A special case of the classification
appros ch is to categorize software modules into either low-fault (simple)
or high-fault (complex) classes. The main rationale behind the two-class
classification approach is that s¢ctware managers are more often inter-
ested in getting an approximate classification from this type of model
than an accurate prediction of the residual faults. Existing two-class
categorization models are based on the linear discriminant principle
[Rodr87, Muns92]. Linear discriminant models assume that the metrics
are orthogonal and that they follow a normal distribution. However, it is
often true that some of the real metrics are variants of an existing met-
ric, and they tend to exhibit strong collinearity among themselves. We
can reduce multicollinearity among metrics using either principal com-
ponent analysis or some other dimensionality reduction techniques.
However, the reduced metrics may not explain all the variability if the
original metrics have nonlinear relationship.

17.5.2 Data set used

The metrics data used in this section were obtained from [Lind89] for
Medical Imaging System software. As described in Sec. 12.4.2, the com-

720 Emerging Techniques

plete system consists of approximately 4500 modules amounting to
about 400,000 lines of code written in Pascal, FORTRAN, and PL/M
assembly language. From this set, a random sample of 390 high-level
language routines was selected for the analysis. For each module in the
sample, program changes were recorded as an indication of software
fault. The number of changes in the program modules varied from zero
to 98. In addition to changes, 11 software complexity metrics were
extracted from each module. These metrics include [Lind89]: (1) total
number of lines (code, comments, and declarations inclusive); (2) num-
ber of executable lines (comments and declarations excluded); (3) total
number of characters; (4) number of comments; (5) number of comment
characters; (6) number of code characters; (7) Halstead’s length mea-
sure, which counts the total number of operators and operands; (8) Hal-
stead’s estimated length measure (calculated from an equation derived
using the number of unique operands and operators); (9) Jensen’s esti-
mated length measure (calculated using the number of unique
operands and operators); (10) McCabe’s cyclomatic complexity (counts
the number of paths through the code); and (11) Belady’s bandwidth
measure (computes the average nesting level of instructions).

For the purpose of our classification study, these metrics represent 11
input (both real and integer) variables of the classifier. We consider a
software module as a low-fault-prone module (category I) if there is zero
or one change and as a high-fault-prone module (category II) if there are
10 or more changes. We consider the remaining modules to be a
medium-fault category. For the purpose of this study we consider only
the low- and high-fault-prone modules. Our extreme categorization and
deliberate discarding of program modules is similar to the approach
used in other studies [Rodr87, Muns92]. After discarding medium-fault-
prone modules, there are 203 modules left in the data set. Of 203 mod-
ules, 114 modules belong to the low-fault-prone category while the
remaining 89 modules belong to the high-fault-prone category.

17.5.3 Classifiers compared

We demonstrate the utility of both statistical and neural network clas-
sifiers. We consider different classifiers because it could be useful in
evaluating their relative merits and limitations. We use a simple
gaussian classifier from the traditional statistical family, and both a
perceptron and a multilayer feed-forward network from the neural net-
work family. The perceptron classifier represents the simplest model of
the neural network family, while the feed-forward network is a typical
realization of a complex nonlinear classifier. Since we are interested in
assigning modules into two extreme categories, we can use two output
units in our neural nets corresponding to these categories. Thus, a

Neural Networks for Software Reliability Engineering 721

given arbitrary vector X is assigned to category I if the value of the out-
put unit 1 is greater than the output of unit 2, and to category II oth-
erwise.

17.5.3.1 A perceptron classifier. A perceptron with a hard-limiting
threshold can be considered as a realization of a simple nonparametric
linear discriminant classifier. If we use a sigmoidal unit, then the con-
tinuous valued output of the perceptron can be interpreted as a likeli-
hood or probability with which inputs are assigned to different classes.
To train a perceptron network we can use back-propagation or quick-
propagation procedures, or a simple optimization procedure. We chose
the quick-propagation procedure, which is part of the cascade-correla-
tion algorithm, as our training algorithm. In almost all our experi-
ments, the perceptron learned about only 75 to 80 percent of the
training set. This implies that the rest of the training samples may not
be linearly separable.

17.5.3.2 A multilayer network classifier. To evaluate whether a multi-
layer network can perform better than the other two classifiers, we
repeated the same set of experiments using feed-forward networks
constructed using the cascade-correlation algorithm [Fahl190]. Our ini-
tial results suggested that the multilayer networks constructed by the
cascade-correlation algorithm are not capable of producing a better
classification accuracy than the other two classifiers. An analysis at
the end of the training suggested that the resulting networks have too
many free variables (i.e., due to too many hidden units). A further anal-
ysis of the rate of decrease in the residual error versus the number of
hidden units added to the networks revealed that the cascade-correla-
tion algorithm is capable of adding more hidden units to learn individ-
ual training patterns at the later stages of the training phase than in
the earlier stages. This happens if the training set contains patterns
that are interspersed across different decision regions, or what might
be called border patterns [Ahme89]. Such an unrestricted growth of the
network can be a disadvantage in certain applications. The larger the
size of the network the less likely that the network will be able to gen-
eralize. Thus it is necessary to constrain the growth of the network
during training.

17.5.3.3 Minimal network growth using cross-validation. One standard
approach used in statistical model fitting is to incorporate a cross-
validation during parameter estimation. (See Stone [Ston74] and Efron
[Efro79] for the basic theory and details.) The idea of using cross-
validation to construct minimal networks has been extended to neural
networks by several researchers within the context of the standard

722 Emerging Technigues

back-propagation algorithms [Morg89, Weig90]. Here, we demonstrate
the utility of cross-validation within the context of the cascade-correla-
tion algorithm. The modified cascade-correlation algorithm incorpo-
rates the cross-validation check during the output layer training phase
to constrain the growth of the size of the network. The specific method
that we employ is to divide each training set S into two sets: (1) a train-
ing set, used both to add hidden units and to determine weights and (2)
a cross-validation set, which is used to decide when to stop the algo-
rithm. To stop the network construction, the performance on the cross-
validation set is monitored during the output training phase. We stop
training as soon as the residual error of the cross-validation set stops
decreasing from the residual error at the end of the previous output
layer training phase. Another issue that needs to be addressed in using
cross-validation is selecting an appropriate cross-validation set. As a
rule of thumb, for each training set of size S, we randomly pick one-
third for cross-validation and the remaining two-thirds for training. The
resulting network learned about 95 percent of the training patterns. As
shown in Sec. 17.5.7, the cross-validated construction considerably
improves the classification performance of the networks on the test set.

17.5.3.4 A minimum distance classifier. In order to compare neural net-
work classifiers with statistical linear discriminant classifiers we also
implemented a simple minimum distance based a two-class gaussian
classifier of the form [Nils90]:

IX-C A(X-C)X-C))” (17.35)

where C,, 1 = 1, 2 represent the prototype points for categories I and II,
X is an 11-dimensional-metrics vector, and ¢ is the transpose operator.
The prototype points C, and C, are calculated from the training set
based on the normality assumption. In this approach a given arbitrary
input vector X is placed in category I if | X - C,| < |X - C;| and in cat-
egory II otherwise.

17.5.4 Data representation

All raw component metrics had distributions that are asymmetric with
a positive skew (i.e., long tail to the right), and they had different
numerical ranges. Note that asymmetric distributions do not conform
to the normality assumption of a typical gaussian classifier. First, we
transformed each metric using a natural logarithmic base to remove
the extreme asymmetry of the original distribution of the individual
metric. Next, we divided each metric by its standard deviation of the
training set to mask the influence of the individual component metric

e B S e

Neural Networks for Software Reliability Engineering 723

on the distance score, These transformations considerably improved
the performance of the gaussian classifier. To be consistent in our com-
parison, we used the same (log) transformation and scaling of inputs
for other classifiers.

17.5.5 Training data selection

We had two objectives in selecting training data: (1) to evaluate how
well a neural network classifier will perform across different-sized
training sets and (2) to select the training data that are as unbiased as
possible. The first objective was motivated by the need to evaluate
whether a neural network classifier can be used early in the software
development cycle. Thus, the classification experiments were con-
ducted using training sets of increasing size S = 4, %, %, %, %, %o fraction
of 203 samples belonging to categories I and II. The remaining (1 - S)
fraction of the samples was used for testing the classifiers. In order to
avoid bias in the training data, we randomly selected 10 different
training samples for each fraction S. This resulted in 60 (that is, 6 x 10)
different training and test sets.

17.5.6 Experimental approach

Since a neural network’s performance can be affected by the weight
vector used to initialize the network, we repeated the training experi-
ment 25 times with different initial weight vectors for each training
set. This resulted in a total of 250 training trials for each value of S.
The results reported here for the neural network classifiers represent
a summary of statistics for 250 experiments. The performance of the
classifiers is reported in terms of classification errors. There are two
types of classification errors that a classifier can make: a type I error
occurs when the classifier identifies a low-fault-prone (category I)
module as a high-fault-prone (category II) module; a type II error is
produced when a high-fault-prone module is identified as a low-fault-
prone module. From a software manager’s point of view, these classifi-
cation errors will have different implications. Type I misclassification
will result in waste of test resources (because modules that are less
fault-prone may be tested longer than what is normally required). On
the other hand, type II misclassification will result in releasing prod-
ucts that are of inferior quality. From reliability point of view, a type 11
error 1s a more serious error than a type I error.

17.5.7 Resulis

First, we provide a comparison between the multilayer networks
developed with and without cross-validation. Table 17.3 compares the

724 Emerging Techniques

complexity and the performance of the multilayer networks devel-
oped with and without cross-validation. Columns 2 through 7 repre-
sent the size and the performance of the networks developed by the
cascade-correlation without cross-validation. The remaining six
columns correspond to the networks constructed with cross-valida-
tion. Hidden unit statistics for the networks suggest that the growth
of the network can be considerably constrained by adding cross-vali-
dation during the output layer training. With cross-validation, the
rate of growth of the network is not severely affected by the increase
in the size of the training set. Networks without cross-validation, on
the other hand, may grow linearly depending on the size and the
nature of the classification boundary of the training set. The corre-
sponding error statistics for both the type I and type II errors suggest
that an improvement in classification accuracy can be achieved by
cross-validating the size of the networks. Another side benefit with
cross-validation is that the training time of the cascade-correlation
algorithm can be reduced significantly (because the algorithm adds
only a few hidden units).

Next, we compare the classification accuracy of classifiers in terms of
type I and type Il errors. Table 17.4 illustrates the comparative results
for type I error. The first three columns in Table 17.4 represents the
size of the training set in terms of S as a percentage of all patterns, the
size of the training set in terms of number of patterns and the size of
the test set, respectively. Column 4 represents the number of test pat-
terns belonging to category I. The remaining six columns represent the
type I error for the three classifiers in terms of percentage mean error
and standard deviation. The percentages of errors were obtained by
dividing the number of misclassifications by the total number of test
patterns belonging to category I. These results show that the gaussian
and the perceptron classifiers may provide better classification than
multilayer networks at the early stages of the software development
cycle. However, the difference in performance of the gaussian classifier
is not consistent across all values of S. For example, the gaussian clas-

TABLE 17.3 A Comparison of Nets With and Without Cross-Validation

Without cross-validation With cross-validation

T;I;T;lilzneg Hidden units Type I error Type Il error Hidden units Type I error Type II error

S (%) Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
25 5.1 1.5 2464 7.2 16.38 6.4 1.9 1.3 20.19 5.4 12.11 4.7
33 6.2 1.8 20.24 8.4 17.27 5.5 2.2 1.0 18.24 5.5 12.40 4.1
50 7.4 1.8 18.30 7.4 18.65 6.4 2.0 0.9 17.41 5.6 15.04 5.2
67 9.7 1.7 1578 6.5 18.05 T1 2.7 1.1 14.32 5.8 14.08 5.5
75 10.4 1.8 14.54 7.6 16.85 7.3 2.7 1.3 13.27 7.0 13.84 54
90 11.2 1.6 10.33 7.2 17.73 83 2.9 1.2 9.77 9.4 15.47 51

Neural Networks for Software Reliability Engineering 725

sifier did not improve its accuracy when S = 90%. The neural network
classifiers, on the other hand, seem to improve their performance with
an increase in the size of the training set. Among neural networks, the
perceptron classifier seems to do better classifications than a multi-
layer net.

Table 17.5 illustrates the comparative results for type II errors.
Column 4 represents the number of category Il patterns in the test
set. The remaining six columns represent the error statistics for type
IT errors. The mean values of the error statistics suggest that a mul-
tilayer network classifier, on the average, may provide a better classi-
fication of category Il modules than the other two classifiers. This is
an important result from the reliability perspective. Furthermore,
the difference in performance between the multilayer network and
the other two classifiers is consistent across all training sets. Unlike
in category I classification, both the neural networks and the gaus-
sian classifiers seem not to improve their classification accuracy as
the training set size is increased. This may partly be attributed to the
fact that the number of test inputs for category II is lower than for
category 1.

In summary, the multilayer neural network classifiers may provide
better classification of category II modules than other classifiers, and
the perceptron (or the gaussian) classifier may be a useful candidate
for classifying category I modules.

TABLE 17.4 A Summary of Type | Error

No. of patterns Test patterns Error statistics
Training Test Category I _ Gauss1_a_r1 Pel_r_ceptron Multilayer nets
S set set (%) Mean Std. Mean Std. Mean Std.
25 50 153 86 13.16 4.7 16.17 5.5 20.19 5.4
33 66 137 77 11.44 4.0 11.74 3.9 18.24 5.5
50 101 102 57 12.45 3.2 11.58 3.2 17.41 56
67 136 67 37 9.46 4.1 10.14 3.9 14.32 5.8
75 152 51 28 8.57 5.4 9.15 5.8 13.27 7.0
90 182 21 12 14.17 7.9 4.03 4.3 9.77 9.4
TABLE 17.5 A Summary of Type Il Error
No. of patterns Test patterns Error statistics
Training Test Category II GaUSSJEEIE i Perceptron Multilayer nets
S set set (%) Mean Std. Mean Std. Mean Std.
25 50 153 67 15.61 4.2 15.98 7.8 12.11 4.7
33 66 137 60 15.46 4.6 15.78 6.6 12.40 4.1
50 101 102 45 16.01 5.1 16.97 6.8 15.04 5.2
67 136 67 30 16.00 54 16.11 7.6 14.08 5.5
75 152 51 23 17.39 5.8 18.39 6.3 13.84 54
90 182 21 9 21.11 6.3 19.11 5.6 15.47 5.1

726 Emerging Techniques

17.6 Summary

We demonstrated the applicability of neural networks for modeling
software reliability growth and to classify error-prone software mod-
ules. In both applications, the neural network offers an alternative to
conventional analytic models that are obtained using empirical meth-
ods or developed using some a priori assumptions.

Though we have demonstrated the application of neural nets in the
context of two problems related to software reliability engineering,
their applicability need not be restricted to only. these problems in
software reliability engineering. With the availability of public-
domain and commercial neural network software, the neural network
approach may be used as a tool in other software engineering prob-
lems, such as identification of software reuse components, document
understanding, test-case generation, and partitioning of test cases.

Problems

17.1 Obtain the public domain cascade-correlation algorithm simulator from
the following Internet ftp address.

pt.cs.cmu.edu (128.2.254.155), login: anonymous, password: your
address, and directory: /afs/cs/project/connect/code/supported

Get the shell archive file “cascor-v1.2.shar” or the latest version. Familiarize
yourself with the simulator by running the example XOR problem (File name:
xor.data) that comes with the simulator. Also observe how the training and
test data are represented, how the initial network is specified, the important
parameters of the simulator, and how various parameters are set.

17.2 Obtain the data set Data2 in the Data Disk, scale it, and construct a
training set for the generalization training regime (refer to Fig. 17.4) with the
entire data set. Train a neural network using the cascade-correlation simula-
tor and answer the following.

a. How many hidden units did the simulator add to successfully train

the network?
b. What is the number of weights in the network?
c. What are the values of the final weight vector?

(Hint: To scale the data, first separate the cumulative execution time and
cumulative faults, and then scale them between 0.1 and 0.9 such that the high-
est value corresponds to 0.9 while the lowest value corresponds to 0.1.)

17.3 For the trained network in Prob. 17.2, use the training set as the test set
and record the network outputs. Rescale the recorded outputs back to the orig-
inal scale and plot a fitness curve with execution time on the x axis and cumu-
lative faults on the y axis. Now plot a similar curve with the original data.
Visually observe the deviation between these two curves.

Neural Networks for Software Reliability Engineering 727

17.4 For the data set Data2 in Prob. 17.2, construct a training set for the pre-
diction training regime (refer to Fig. 17.4 for details). Repeat the experiments
of Probs. 17.2 and 17.3 with this training set.

17.5 In Prob. 17.3, a feed-forward neural network was trained using Data2.
In this exercise, use the same procedure, data set, and the steps outlined below
to test the next-step prediction accuracy of the FFN-generalization model.
First, construct a training set with the first three pairs of Data2. The corre-
sponding test set will contain one input representing the execution time of the
fourth observation. After training the network, test the network by feeding the
fourth execution time as input. Record the network output. Next, construct
another training set by including the fourth pair of the data into the previous
training set. The corresponding test will consist of the fifth observation of the
execution time. Again train and test a network. Repeat this step by incremen-
tally adding all but the last observation to the training set. Thus, there will be
n — 3 predicted values (where n is the number of points in Data2). Finally, eval-
uate the predictive accuracy of the network using:

a. A graph similar to the one in Prob. 17.3.

b. The average error (AE) and the average bias (AB).

17.6 Repeat the steps used in Prob. 17.5 and evaluate the end-point predic-
tion accuracy of the FFN-generalization model using Data2. Note that the
training set will have to be expanded as in Prob. 17.5, while the test set will
always contain the last observation of the data set.

17.7 Consider the data set Data2 and evaluate the predictive accuracy of the
JN-generalization model. Note that the training set for the JN-generalization
model has to be changed to accommodate an additional input corresponding to
the output of the network from the previous time step (i.e., the previous input).
A special case of training the JN-generalization model, known as teacher forced
training, is to use the actual output from the data set rather than the output of
the network corresponding to the previous time step. Thus, each point in the
training set will consist of two inputs, corresponding to the current execution
time and the cumulative fault of the previous time step, and an output for the
current cumulative fault. Evaluate both the next-step and the end-point pre-
diction accuracies.

17.8 Repeat the steps used in Prob. 17.6 and evaluate the JN-prediction
model using the data set Data2.

17.9 Collect software complexity metrics data from a project in your organi-
zation and the associated failure history.

17.10 Use the data set obtained in Prob. 17.9 and conduct a two-class classi-
fication experiment as performed in Sec. 17.5.

728 Emerging Techniques

17.11 Use the data set obtained in Prob. 17.9 and conduct a three-class clas-
sification experiment by including the medium-fault category that we have
omitted in Sec. 17.5. Observe the following:

a. Classification accuracy of the network

b. Increase/decrease in complexity of the network

17.12 Multilayer neural network models solve problems by creating an inter-
nal representation of the input variables. It is a useful exercise to analyze their
internal representations and understand how such internal representations
can be related to external inputs. For example, in our application involving
identification of fault-prone software modules, it was not obvious what type of
associations the neural network classifier created among the input metrics.
Provide an analysis of the internal representation of the neural network in
terms of

a. Its association with inputs metrics

b. The final weight vector of the network

c. Its association with the output categories

17.13 We used neural network models to associate static complexity metrics
with the number of faults (and hence fault-prone categories). Instead, develop
models to associate

a. Software complexity metrics to maintenance metrics

b. Design metrics with quality and maintainability objectives

