Chapter

15

Software System Analysis Using
Fault Trees

Joanne Bechta Dugan
University of Virginia

15.1 Introduction

This chapter will introduce you to the use of fault trees for the analysis
of software systems. Fault trees provide a graphical and logical frame-
work for analyzing the failure modes of systems. Their use helps the
analyst to assess the impact of software failures on an overall system,
or to prove that certain failure modes cannot occur (or occur with neg-
ligible probability). Fault tree models provide a conceptually simple
modeling framework that can be used to compare different design
alternatives or architectures for fault tolerance.

After introducing the fault tree modeling technique, we briefly dis-
cuss both qualitative and quantitative analysis techniques. We then
describe two uses of fault trees as a design aid for software systems.
Fault tree models can help the designer to efficiently combine off-line
and on-line tests to prevent or detect software failures. Software safety
validation uses software fault trees to qualitatively examine safety-
critical software on a fine-grain (statement-by-statement) basis. On a
coarser scale, fault trees can be used to qualitatively and quantita-
tively analyze fault-tolerant software systems. We consider both a
qualitative and quantitative analysis of software-fault-tolerant sys-
tems, with respect to both reliability and safety. The need for parame-
ter values for the software part of the models provides a case study for
parameter estimation from experimental data.

15.2 Fault Tree Modeling

A fault tree model is a graphical representation of logical relationships
between events (usually failure events). Fault trees were first devel-

615

616 Emerging Techniques

oped in the 1960s to facilitate analysis of the Minuteman missile sys-
tem, and have been supported by a rich body of research since their
inception. Initially, a fault tree was defined as a tree (in the graph the-
oretic sense), but as fault tree analysis techniques evolved, more gen-
eral connections were permitted. In the current usage, fault tree nodes
(gates and basic events) can have more than one parent node, and thus
a fault tree is no longer a tree.

Fault tree models have long been used for the qualitative and quan-
titative analysis of the failure modes of critical systems. A fault tree
provides a mathematical and graphical representation of the combina-
tions of events that can lead to system failure. The construction of a
fault tree model can provide insight into the system by illuminating
potential weaknesses with respect to reliability or safety. A fault tree
can help with the diagnosis of failure symptoms by illustrating which
combinations of events could lead to the observed failure symptoms.
The quantitative analysis of a fault tree is used to determine the prob-
ability of system failure, given the probability of occurrence for failure
events.

The construction of a fault tree, if performed manually, provides a
systematic method for analyzing and documenting the potential causes
of system failure. The analyst begins with the failure scenario being
considered, and decomposes the failure symptom into its possible
causes. Each possible cause is then investigated and further refined
until the basic causes of the failure are understood. From a system
design perspective, the fault tree analysis provides a logical framework
for understanding the ways in which a system can fail, which is often
as important as understanding how a system can succeed.

A fault tree consists of the undesired top event (system or subsystem
failure) linked to more basic events by logic gates. The top event is
resolved into its constituent causes, connected by AND, OR, and M-out-
of-N logic gates, which are then further resolved until basic events are
identified. The basic events represent basic causes for the failure, and
represent the limit of resolution of the fault tree. Fault trees do not
generally use the NOT gate, because the inclusion of inversion may
lead to a noncoherent fault tree [Henl82], which complicates analysis.
It is quite rare to have need for complementation in a fault tree, so this
limitation is acceptable for the analysis of practical systems.

As an example, consider the fault tree shown in Fig. 15.1, which pro-
vides a simple analysis of a washing machine that overflows. The cause
of the overflow can be attributed to one of two causes: either the shut-
off valve is stuck open, or the machine stayed in “fill” mode too long.
The first cause, failure of the shutoff valve, is not considered further, as
it is considered a basic event. When the washing machine is filling,
either of two events can cause the filling to stop. First, there is a timer,

Software System Analysis Using Fault Trees 617

which prevents the machine from filling indefinitely. This timer was
designed into the system to help avoid a flood in case of a leak in the
tub. Second, there is a sensor which determines when the tub is full.
Both the timer and the sensor must fail for the machine to be unable to
stop filling.

15.2.1 Cutset generation

Analysis of a fault tree begins with an enumeration of the minimal cut-
sets, the minimal sets of component failures which cause system fail-
ure. A cutset is a set of basic events whose occurrence causes the top
event, system failure. A minimal cutset is a cutset with no redundant
elements; that is, if any event is removed from a minimal cutset then it
ceases to be a cutset.

A top-down algorithm for determining the cutsets of a fault tree
starts at the top event of the tree and constructs the set of cutsets by
considering the gates at each lower level. A set of cutsets is expanded
at each lower level of the tree until the set of basic events is reached. If
the gate being considered is an AND gate, then all the inputs must
occur to enable the gate, so a gate is replaced at the lower level by a
listing of all its inputs. If the gate being considered is an OR gate, then
the cutset being built is split into several cutsets, one containing each
input to the OR gate.

Figure 15.2 shows an example fault tree whose cutset generation is
shown in Fig. 15.3. The undesired top event occurs when either
subevents G2 or G3 occur, which are themselves AND combinations of

Washing Machine Overflows

\

fill mode too long

valve
stuck open

full
sensor
failed

timeout
control
failed

Figure 15.1 A simple fault tree
model.

618 Emerging Techniques

other subevents or basic events. There are five basic events in the fault
tree, labeled Al through A5, which are all statistically independent.
One basic event, A4, can contribute to system failure along two paths.

The top-down algorithm starts with the top gate, G1. Since G1 is an
OR gate, it is replaced in the expansion by its inputs, G2 and G3. G3 is
an AND gate, and is replaced in the expansion by the basic events {A4,
AB), a cutset for this tree. G2 is expanded into {G4, G5}, since both must
occur to activate it. Expanding the G4 term splits the set into two, since
it is a two-input OR gate: {A1l, G5} and {A2, G5}. Finally, the expansion
of G5 splits both sets in two, yielding {Al, A3}, {Al, A4}, {A2, A3}, and
{A2, A4}, as the remaining minimal cutsets for the tree.

If a gate being expanded is a k-out-of-n gate, then its expansion is a
combination of the OR and AND expansions. The k-out-of-n gate is
expanded into the (}) combinations of input events that can cause the
gate to occur. For example, consider a cutset with a gate Gx that is a
3-out-of-4 gate, with inputs I1, I2, I3, and I4. Gate Gx gets split into
four cutsets, replacing Gx with the four possibilities for selecting three
of the inputs, namely, {11, I2, I3}, {I1, I3, I4}, {I1, 12, I4}, and {12, I3, I4).

When using such an algorithm for generating cutsets, some reduc-
tion might be necessary. If a cutset contains the same basic event more

\

/\
()

/ Figure 152 An example fault
tree.
DOIOND
{A1,A3}

G3 ——>(A4 A5
—— (A4,A5) {A1,G5) —/; (A1,A4}
T g2 ——= (G4,G8) —

{A2,G5} i {A2,A3}

{A2,A4}

D
\@

Figure 15.3 Cutset generation for a fault tree.

Software System Analysis Using Fault Trees 619

than once, then the redundant entries can be eliminated. If one cutset
is a subset of another, the latter can be removed from further consider-
ation, since it is not a minimal cutset. For example, the set of cutsets
{ {Al1, A2, A1, A3}, {A3, A4}, [A2, A3, A4} } can be reduced to { {A1, A2,
A3}, {A3, A4} }.

15.2.2 Fault tree analysis

Qualitative analysis of the fault tree usually consists of studying the
minimal cutsets; for example, to determine if any single points of fail-
ure exist. A single point of failure is any component whose failure (by
itself) can cause system failure. Single points of failure are identified
by cutsets with only a single element. For the example fault tree of Fig.
15.2, all cutsets had cardinality two, so there are no single points of
failure. Cutsets can help to identify system hazards which might lead
to unsafe or failure states so that appropriate preventive measures can
be taken or reactive measures planned. If the top event corresponds to
an unsafe condition (rather than system failure), the cutsets can help
determine which combinations of events lead to the unsafe condition,
and can thus help to identify the need for interlocks. Vulnerabilities
resulting from particular component failures can be identified by con-
sidering cutsets which contain the component of interest. For the
example system, once A4 fails, the system is vulnerable to a failure of
either Al, A2, or A5.

Quantitative analysis is used to determine the probability of occur-
rence of the top event, given the (estimated or measured) probability of
occurrence for the basic events. The probability of occurrence for the
top event of the tree can be determined from the set of minimal cutsets.
The set of cutsets represents all the ways in which the system will fail,
and so the probability of system failure is simply the probability that
all of the basic events in one or more cutsets will occur.

P{system failure} = P{| JC}} (15.1)

where C; are the minimal cutsets for the system. Since the cutsets are
not generally disjoint, the probability of the union is not equal to the
sum of the probability of the individual cutsets. If the individual prob-
abilities of the cutsets are simply added together, probability of system
failure would be overestimated because the intersection of the events
would be counted more than once.

Several methods exist for the evaluation of Eq. (15.1) [Henl82,
Shoo90], the simplest of which is termed inclusionfexclusion. The
inclusion-exclusion method is a generalization of the rule for calcu-
lating the probability of the union of two events:

620 Emerging Techniques

PlA U B} = P{A) + P(B) — P{A N B} (15.2)
and is given by
pllJcy=> pPlcy
i=1 i=1

- > PIC;NCY

i<y

+ z PiC; N C, M Cy (15.3)

That is, the sum of the probabilities of the cutsets taken one at a time,
minus the sum of the probabilities of the intersection of the cutsets
taken two at a time, plus the sum of the probabilities of the intersection
of cutsets taken three at a time, ete.

Equation (15.3) calculates the probability of system failure exactly.
As each successive summation term is calculated and added to the run-
ning sum, the result alternatively overestimates (if the term is added)
or underestimates (if the term is subtracted) the desired probability.
Thus, bounds on the probability of system failure can be determined by
using only a portion of the terms in Eq. (15.3).

Consider the example fault tree shown in Fig. 15.2, whose cutsets are

C,={A, A}
C,=1{4,, A4}
Cs=1{A;, A4}
C,=1{Ay, Asl
Cs=1{A4,, A4l

Assuming that the probability of occurrence for each of the basic
events is

Software System Analysis Using Fault Trees 621

P{A} =P,4;=0.05
P{A,} =P4;=0.10
Pl{A;} =P,3=0.15
PlA) =Py =0.20
PlAs} =Py =0.25

then the probability of occurrence for each of the cutsets is

P{C]_} =PA4 XPA5 =005
P(C,} =0.0075

The sum of the probabilities for the singular cutsets, 0.1025, is an
upper bound on the unreliability of the system.

0 € unreliability < 0.1025

The second term of Eq. (15.3) is the sum of the probability of occurrence
for all the possible combinations of two cutsets; for the current exam-
ple this is 0.015175. Subtracting this from the first term yields a lower
bound on the unreliability of the system, 0.087325:

0.087325 < unreliability < 0.1025

Adding the third term, 0.0020875, the sum of the probabilities for all
possible combinations of three cutsets yields a better upper bound:

0.087325 < unreliability < 0.0894125

Subtracting the fourth term, 0.0003, the sum of the probabilities for all
the possible combinations of four cutsets yields a tighter lower bound:

0.0891125 < unreliability < 0.0894125

If we are interested in three decimal places of accuracy, the expansion
can stop here, with a known unreliability of 0.089. Adding the final
term, the probability that all five cutsets will occur (0.0000375) results
in the exact unreliability:

unreliability = 0.08915

622 Emerging Techniques

15.3 FaultTrees as a Design Aid
for Software Systems ’

Although fault trees have traditionally been used to analyze hardware
systems, they can provide a useful qualitative design aid for software
systems as well [Hech86]. When designing robust software, fault trees
can help the designer determine a good set of on-line reasonableness
checks and off-line validation tests to cover a class of potential faults. In
some sense, a fault tree analysis of a software system is complementary
to a formal design review. A formal design review helps to ensure that a
software system does what it should do. A fault tree analysis helps to
ensure that a software system does not do what it should not do.

For each major function that a software system is expected to per-
form, there is an associated list of potential failures. For each potential
failure with appreciable consequences, a fault tree model depicting the
possible causes of the failure can be developed. In analyzing a software
system, possible causes can include combinations of software faults,
inputs, and operating modes. As in the analysis of a mechanical or hard-
ware system, the undesired event is decomposed into its constituent
causes, which become the basic events of the fault tree. In the analysis
of hardware systems, the basic events are usually associated with phys-
ical component failures. In a software system, the basic events repre-
sent software modules which might produce an incorrect result or
accept an invalid input. Or a basic event can represent the incorrect set-
ting of an initialization parameter by a user or a buffer overflow.

A fault tree for a mechanical system is used to gain an understanding
of how unavoidable events (component failures) can impact the system.
If a system is determined to be particularly vulnerable to a certain fail-
ure mode, then the design is altered so as to reduce this vulnerability.
Design alternatives might include choosing a more reliable substitute
component, shielding the component from fault-inducing situations or
environments, and enhancing redundancy.

How then are fault tree models applicable to software systems? A
software component does not experience physical wearout or age
degradation like a hardware component does. However, the sheer size
and complexity of software systems currently being designed virtually
guarantees that sometime in the lifetime of the system a software fail-
ure will occur. A fault tree analysis can help uncover the vulnerabilities
of the system to particular classes of software failures, and can guide
the designer in choosing preventive or protective measures. The basic
events of a software fault tree analysis can be software modules which
are decomposed to the point where they are either exhaustively
testable or reliable failure detection and recovery mechanisms can be
written. If a module is small enough to be exhaustively testable, then
after testing, the analyst can be reasonably assured that a software

Software System Analysis Using Fault Trees 623

failure in that module will not ocecur. If, on the other hand, exhaustive
testing is infeasible, it may be reasonable to define a detection and
recovery routine to handle the potential failure.

The logical structure of the fault tree helps to determine where such
tests or routines are best placed [Hech86]. If an undesired event in a
fault tree is the output of an OR gate, then each input to the OR gate
must be covered by exhaustive testing or detection/recovery routines in
order to prevent the undesired outcome. If, however, the undesired
event is the output from an AND gate, then the protection of one of the
inputs will prevent the undesired event. At lower levels of the tree,
testing and/or exception handling can be used to prevent intermediate
events which ultimately can lead to the undesired top event. Testing or
exception handling close to the top event in a fault tree has the great-
est impact, and can sometimes provide a low-cost solution to satisfy the
reliability requirements of less critical applications.

Consider again the fault tree shown in Fig. 15.2. Suppose that the
basic events in the fault tree represent software modules whose failures
combine to cause system failure as depicted by the fault tree. Module A4
inputs to the AND gate labeled G3; if module A4 does not fail, then the
output of gate G3 will not occur. So, we can protect the system from one
of its two major failure modes (labeled G2 and G3) by exhaustively test-
ing module A4. But, even though we have protected G3, the output
event for gate G2 could still occur. Since gate G2 is an AND gate also, its
occurrence can be prevented by exhaustively testing A3 (in addition to
A4). Alternatively, one could provide a detection and recovery routine
for the gates G2 or G4. The system can be protected from software fail-
ure by exhaustively testing only two of the five modules, or by testing
one and providing a single point of detection and recovery. Of course, the
particulars of the software system dictate whether exhaustive tésting of
a module is feasible, or whether it is reasonable to insert an exception
handler at the point represented by a gate in the fault tree.

The fault tree model depicting the failure modes in a software sys-
tem explicitly enumerates the failure modes being considered, as well
as those being ignored or overlooked. A later analysis of the system
might well ask whether some particular failure mode was considered;
the fault tree model can provide the answer. If the mode has been con-
sidered, it will appear in the fault tree; if not, it will be absent.

15.4 Safety Validation Using Fault Trees

In the previous section, we saw that the manual construction of a fault
tree model can help a designer or analyst understand the potential fail-
ure modes of a software system, and it provides a logical structure for
the placement of exception tests. In this section we will see how the for-

624 Emerging Techniques

mal structure of the fault tree can provide the basis for automated
tools to aid in safety validation.

Coinputer systems are often used to monitor or control a critical sys-
tem where failure can have life-threatening or other severe conse-
quences. Safety analysis of a critical system begins by identifying and
classifying a set of hazards within the context of the operational envi-
ronment. A hazard is a set of conditions (a state) that can lead to an
accident, given certain environmental conditions, and can be classi-
fied as critical or catastrophic, depending on the potential outcome
[Leve86, Leve9lal. A critical hazard is one that can lead to severe
injury, severe occupational illness, or major system damage. A cata-

strophic hazard is one that can lead to death or system loss.

Once a set of critical or catastrophic system hazards is identified,
fault tree analysis is used to identify the combinations of events which
can lead to each hazard. The root of the fault tree is the hazard, and the
causes of the hazard are resolved to the point where the critical soft-
ware interfaces are identified. The critical behavior of the software
(usually involving output values or missing or untimely outputs) is
then analyzed using software fault trees [Leve86, Leve91a]. The goal of
software fault tree analysis is to either find paths through the code
from particular inputs to the hazardous outputs, or prove that such
paths do not exist.

Software fault tree analysis uses failure templates for program
structures to generate a fault tree model of the software. In each tem-
plate, it is assumed that the execution of the statement causes the crit-
ical event, and the statement result is broken down into its constituent
causes. This is similar to the approach used in formal axiomatic verifi-
cation, where the weakest preconditions necessary to satisfy the given
postconditions are derived. In fact, software fault tree analysis is a
graphical application of axiomatic verification where the postcondi-
tions describe the hazardous conditions rather than the correctness
conditions [Leve91lal. If the fault tree analysis leads to a contradiction
(a false weakest precondition), then the analysis on this branch can be
halted. If the fault tree analysis leads back to an input statement with-
out reaching a contradiction, then the code must be redesigned to avoid
the hazard.

Figures 15.4 and 15.5 [Leve9la] show example templates for the
Assignment and If-Then-Else statements. The assignment statement
fault tree shows that an assignment statement can fail because of an
unsafe value or because of unsuccessful execution. The If-Then-Else
statement can fail because of the condition evaluation, the “If” part or
the “Then” part of the statement. The body of the Else and Then parts
of the statements are replaced by the templates associated with the
statement body.

Software System Analysis Using Fault Trees 625

Assignment

causes failure

A

i Exception
Change in P Operand Figure 156.4 Template for as-
value causes causes evaluation signment statement
failure failure causes failure

If-Then-Else

causes failure

Else part Condition Then part
causes evaluation causes
failure causes failur failure
Else body Condition false Then body | | Condition true

before If causes failure before If

causes failure

Figure 15,5 Template for If-Then-Else statement.

Consider the simple example of a program segment shown in Fig.
15.6, and suppose that the system fails if x > 14. The software fault tree
model for this program segment is shown in Fig. 15.7. The software
fault tree can be derived automatically from the program segment
[Frie93], and can then be analyzed and reduced by the (human) ana-
lyst. Each of the “Then” and “Else” parts of the statement reduce to an
AND condition. The software fault tree then reduces to that shown in
Fig. 15.8. Each of the conditions at the lowest level of the fault tree in
Fig. 15.8 can be further decomposed until either a contradiction is
reached (which then proves that the hazard cannot occur) or until it is
determined that a software repair is needed.

While software fault tree analysis has been applied to relatively
small, industrial software at a reasonable cost, the practicality of its use
has not been demonstrated on large-scale software [Leve91a]. However,

626

K y<6
then x :=
else
begin
g :=

X

end

Figure 156 A simple example program state-

zZ+ v

3
(y+1) *q;

Emerging Techniques

ment used for software fault tree analysis.

If-Then-Else

causes x > 14

!

Else part Then part
causes causes
x>14 x>14
xi=(+l)¥3 || ¥ >=6 Xi=z+y y< 6
causes x > 14 before If causes x > 14 before If
Figure 15.7 Software fault tree for program segment.
If-Then-Else
causes x > 14
.
before If Z—K
z>9 y< 6
before If before If

Figure 15.8 Reduced software fault tree for program segment.

Software System Analysis Using Fault Trees 627

since the software fault tree analysis is limited to identified hazards, if
the error containment and isolation are satisfactory, only a small per-
centage of the code may need to be analyzed in detail. Also, the fault tree
analysis can be stopped before reaching a contradiction if a run-time
assertions or exception conditions are included in the code. The software
fault tree provides the necessary information regarding content and
placement of effective run-time assertions. Because run-time assertions
are expensive, the guidance provided by software fault trees is useful
from a practical consideration.

15.5 Analysis of Fault-Tolerant Software
Systems

In addition to the detailed analysis of single-version critical software,
fault tree models are useful for analyzing the failure modes associated
with fault-tolerant software applications. Software fault trees for
safety verification operate at a very fine granularity, considering each
internal statement of the code. System analysis of fault-tolerant soft-
ware, on the other hand, considers fault activation scenarios as basic
events, and analyzes system-level failures. We will present fault tree
models of three popular architectures for tolerating software faults:
distributed recovery blocks, N-version programming, and N self-check-
ing programming.

Figure 15.9 shows the hardware and error confinement areas
[Lapr90] associated with the three architectures being considered. The
systems are defined by the number of software variants, the number of
hardware replications, and the decision algorithm. The hardware error
confinement area (HECA) is the lightly shaded region; the software
error confinement area (SECA) is the darkly shaded region. The HECA
or SECA covers the region of the system affected by faults in that com-
ponent. For example, the HECA covers the software component since
the software component will fail if that hardware experiences a fault.

We make the following assumptions for this analysis.

Secondary (V2)

(a) (b) G

Figure 156.9 Structure of (a) distributed recovery block (DRB); (b) N-version programming
(NVP); (¢) N self-checking programming (NSCP).

628 Emerging Technigques i

Task computation. The computation being performed is a task (or
set of tasks) which is repeated periodically. A set of sensor inputs is
gathered and analyzed and a set of actuations are produced. Each
repetition of a task is independent. The goal of the analysis is the
probability that a task will succeed in producing an acceptable out-
put, despite the possibility of hardware or software faults. More
interesting task computation processes could be considered using
techniques described in [Lapr92] and [Wei91]. We do not address
timing or performance issues in this model. See [Tai93] for a per-
formability analysis of fault-tolerant software techniques.

Software failure probability. Software faults exist in the code
despite rigorous testing. A fault may be activated by some random
input, thus producing an erroneous result. Each instantiation of a
task receives a different set of inputs which are independent. Thus, a
software task has a fixed probability of failure when executed, and
each iteration is assumed to be statistically independent. Since we
do not assign a failure rate to the software, we do not consider relia-
bility growth models.

Coincident software failures in different versions. If two different
software versions fail on the same input, they will produce either sim-
ilar or different results. In this work, we use the Arlat/Kanoun/Laprie
[Arla90] model for software failures and assume that similar erro-
neous results are caused by related software faults, and that different
erroneous results that are simultaneously activated are caused by
unrelated (called independent in their terminology) software faults.
There is one difference between our model and that of Arlat/
Kanoun/Laprie: our model assumes that related and unrelated soft-
ware faults are statistically independent, while their’s assumes that
related and unrelated faults are mutually exclusive. Further, this
treatment of unrelated and related faults differs considerably from
models for correlated failures [Eckh85, Litt89, Nico90], in which
unrelated and related software failures are not differentiated. Rather,
software faults are considered to be statistically correlated and mod-
els for correlation are considered and proposed. A more detailed com-
parison of the two approaches is given in [Duga94al.

Transient hardware faults. A transient hardware fault is assumed
to upset the software running on the processor and to produce an
erroneous result that is indistinguishable from an input-activated
software error. We assume that the lifetime of transient hardware
faults is short compared to the length of a task computation, and
thus we assign a fixed probability to the occurrence of a transient
hardware fault during a single computation. Permanent hardware
faults are considered separately, in Sec. 15.7.

Software System Analysis Using Fault Trees 629

Fault tree models will be used to describe the combinations of failure
events (hardware and software) which can combiné to produce an
unacceptable output. This analysis will ignore failures of the common
platform services (communication network, operating system, device
drivers, etc.) and will concentrate on the fault tolerance of the applica-
tion software instead.

Each of the fault tree models will use the following notation for basic
events,

V# (where # is an integer between 1 and 4) For (up to) four versions of
software, the input for a single computation activates an unrelated
fault.

D An independent fault in the decider (acceptance test, majority

voter, comparator, adjudicator).

RV#i# (where each # is an integer between 1 and 4) The input for a single
computation activates a related fault between two versions. A
related fault is one that occurs in two different versions, causing
both to prodice the same erroneous result.

RALL A related fault affects all versions as well as the decider, caused by
imperfect specifications.

H# (where # is an integer between 1 and 4) A hardware fault affects
the task computation.

15.5.1 Fault tree model for recovery
block system

There are at least two different ways to combine hardware redundancy
with the recovery block approach to software fault tolerance. In
[Lapr90a], the RB/1/1 architecture duplicates the recovery block on two
hardware components. Both hardware components execute the same
variant, and hardware faults are detected by a comparison of the
acceptance test and computation results. The distributed recovery
block (DRB) advocated by Kim and Welch [Kim89] executes different
alternates on the different hardware components in order to improve
performance in case an error is detected. In the DRB system, one pro-
cessor executes the primary alternate, while the other executes the sec-
ondary. If an error is detected in the primary results, the results from
the secondary are immediately available. The fault tree model of both
systems 1s identical.

The fault tree model of DRB is shown in Fig. 15.10. A single task
computation will produce unacceptable results if one of three events
occur. First, if both the primary and secondary fail on the same input
because of two unrelated faults or a single related fault. Second, if both
hardware components experience faults, then the computations being
hosted will be upset and be unable to produce correct results. Third, if

630 Emerging Techniques

the decider fails to either detect unacceptable results or to accept cor-
rect results, then the computation fails.

The fault tree model provides a compact format for describing the
effects of both software and hardware faults. Even without generating
the cutsets for the DRB system, one can easily visualize the effects of a
decider failure or a related fault between the versions. There are five
minimal cutsets for the DRB system. Three of these cutsets have a sin-
gle element, those being RV, RALL, and D, as a related fault and a
decider fault are single points of failure. The other two cutsets have
two members, one for both versions failing, one for both hardware hosts
failing. The probability that an unacceptable result is produced during
a single task iteration is given by

Pry + QrvPp + QrvPrari@p + QrvQrart Qo Py’ + Pv*QrvQrarQp(1 — P i)
(15.4)

where Py is the probability that event X occurs, and Qx =1 — Py.

15.5.2 Fault tree model for N-version
programming system

The example NVP system consists of three identical hardware compo-
nents, each running a distinct software version. It is a direct mapping
of the NVP method onto hardware. If any of the hardware components
experiences a fault, it causes the software version running on that

‘ DRB UNRELIABLE ‘

Q
|]
SOFTWARE FAILS | | HARDWARE FAILS
[
| ACCEPTANCE TESTFAILS | a @
| PRIMARY FAILS i SECONDARY FAILS 5
@ ‘ V12 f

Figure 15.10 Reliability model of DRB.

Software System Analysis Using Fault Trees 631

hardware to produce inaccurate results. If all of the other hardware
and software modules are functioning properly, the system will still
produce a correct result, since two out of the three versions, a majority,
are correct. If two software or hardware components have faults, the
system will fail, since there will be only one correct result. The system
will also fail if at least one hardware component and one software com-
ponent fail, but only if the faulty hardware does not host the faulty
software version.

Figure 15.11 shows the fault tree model of NVP. With three software
versions running on three separate processors, several different fail-
ure scenarios must be considered, including coincident unrelated
faults as well as related software faults, and combinations of hard-
ware and software faults. A single task iteration can fail from several
causes: first, if two of the three versions activate unrelated faults, or if
any related fault between two versions is activated; second, if the
input activates a fault which affects all three versions or a fault in the
decider; third, if two of the three processors experience faults during
the same task; finally, if a hardware host fails and one of the software
components on another host also fails (via an unrelated or related
fault).

The NVP fault tree has 20 minimal cutsets, of which 5 have a single
member (RV12, RV13, RV23, RALL, and D). The remaining cutsets
enumerate the 15 ways in which software and/or hardware compo-
nents combine to fail two of the three versions. The solution of the NVP
fault tree model is given by

‘ NVP UNRELIABLE ‘

-

Dﬁ

'HARDWARE FAILLS J\ m

Tid

Figure 15.11 Reliability model of NVP.

632 Emerging Techniques

Ppy +

QrvPry +

Qrv’Pry +

Qrv’Pp +

Qrv’PrariQp +

Py*Qri’Qrarr@p +

PQvQrv’QrarrQp +

PyQvQr*QrarrQp +

QvPvQrv’ Qrart@pPr*@u(1 — Py) +

Qrv’QrarsQpPr*Qu(1 — Py)X1 - Py*) +

QvPvQrv’@rari@pPr*@u(1 — Py) + (15.5)

QRr*QrarQpPu*Qu(1 — Py)(1 - P +

QvPvQrv’@rarQpPr*@u(1 — Py) +

Qrv’*QrarLQ@pPr*Qu(1 — Py)(1 — Py*) +

QvPvQvQr' QrarrQ@pPr@u(1 — Pu) +

Qv Pv@rv’QrartQpPuQu(l — Py) +

PyQvQrv’ QrarrQpQu’Pr(l — Py) +
VPyQrv’ QrarQ@oQu Py +

PyvQvQr*QrariQ@uQu"Pu(l ~ Py) +

QvPy Qv Qrv’QrarLQoQr"Pr

15.5.3 Fault tree model for N self-checking
programming system

The example NSCP architecture is comprised of four software versions
and four hardware components, each grouped in two pairs, essentially
dividing the system into two halves. The hardware pairs operate in hot

Software System Analysis Using Fault Trees 633

NSCP UNRELIABLE

S 1 SEEeme

5606 Coad

Figure 15.12 Reliability model of NSCP.

standby redundancy with each hardware component supporting one
software version. The version pairs form self-checking software compo-
nents. A self-checking software component consists of either two ver-
sions and a comparison algorithm or a version and an acceptance test.
In this case, error detection is done by comparison. The four software
versions are executed and the results of V1 and V2 are compared
against each other, as are the results of V3 and V4. If either pair of
results do not match, they are discarded and only the remaining two
are used. If the results do match, the results of the two pairs are then
compared. A hardware fault causes the software version running on it
to produce incorrect results, as would a fault in the software version
itself. This results in a discrepancy in the output of the two versions,
causing that pair to be ignored.

The fault tree model of the NSCP system (Fig. 15.12) shows that the
system is vulnerable to related faults, whether they involve versions in
the same error confinement area or not. (To allow later comparison
with the NVP and DRB systems, we have ignored the possibility of a
related fault affecting three versions.) There are 24 cutsets for the
NSCP system. Six singleton cutsets enumerate the related faults
affecting two versions, and two singleton cutsets reflect the single
points of failure in the decider and in a related fault affecting all ver-
sions (RALL). There are also 16 cutsets with two elements, enumerat-
ing all combinations of version and/or hardware failures affecting one
version in each error confinement area. The solution of the model is
given by

634 Emerging Techniques

Pry +

QrvPrv +

Qrv’Pry +

Qrv’Prv +

Qrv'Pryv +

Qrv’Pry +

@rv°Prars +

Qrv°PpQrar +

PvQrv*@pQrarL +

Py’ QvQrv’QpQrars +
PyvQv'Qrv*QpQrar P +
PyQv'Qrv°QpQrarrQuPr +
QvPv*Qrv*QpQrar + (15.6)
Py*QvQrv*QpQrari(1 — Py) +
Py@Qv*Qrv’QpQrars Pu(1 - Py) +
Py@Qv'Q@r’QpQrars@uPr(1 — Py) +
Qv’PyQrv*QpQparrPr +
QvPvQrv°QpQrarr Pu(1 — Py)* +

Qv Qrv’@p@rar Pr’(1 - Py)* +

Qv Qr* QpQrarL Pr*Qu(1 — Py)* +
Qv’PyQrv/"QpQrarrQuPr +
QvPvQrv*QpQrarL Pu(1 ~ Py)*(1 - Py) +
Qv’Qrv*QpQrarr Pr*(1 — Pv)*(1 - Py) +
@V’ Qrv’QpQrarr Pr*Qu(1 — Py)*(1 — Py)

Software System Analysis Using Fault Trees 635

15.6 Quantitative Analysis of Fault-Tolerant
Software

The qualitative analysis of the fault-tolerant software systems
described in the previous section was useful for understanding system
structure and behavior. However, it is difficult to compare the systems
unless the probabilities associated with the basic events are known.
The fact that one system has more cutsets (or even more singleton cut-
sets) does not necessarily mean that it is less reliable. A quantitative
assessment of the probability of failure using a common set of assump-
tions and parameter values provides a clearer comparison.

15.6.1 Methodology for parameter
estimation from experimental data

Given the probability of occurrence for the basic events, the determi-
nation of the probability of system failure is relatively straightforward,
using well-known methods [Henl82, Shoo90]. The estimation of param-
eters provides a more difficult problem. The estimation of failure prob-
abilities for hardware components has been considered for a number of
years, and reasonable estimates exist for generic components (such as
a processor). However, the estimation of software version failure prob-
ability is less accessible, and the estimation of the probability of related
faults is more difficult still. In this section we will describe the method-
ology for estimating model parameter values from experimental data,
followed by a case study using a set of experimental data.

Several experiments in multiversion programming have been per-
formed, as described in Chap. 14. Among other measures, most experi-
ments provide some estimate of the number of times different versions
fail coincidentally. For example, the NASA Langley Research Center
study involving 20 programs from four universities [Eckh91] provides
a table listing how many instances of coincident failures were detected.
The Knight-Leveson study of 28 versions [Knig86] provides an esti-
mated probability of coincident failures. The Lyu-He study [Lyu93a]
considered three- and five-version configurations formed from 12 dif-
ferent versions. These sets of experimental data can be used to esti-
mate the probabilities for the basic events in a fault tree model of a
fault tolerant software system.

Coincident failures in different versions can arise from two distinct
causes. First, two (or more) versions may both experience unrelated
faults that are activated by the same input. If two programs fail inde-
pendently, there is always a finite probability that they will fail coinci-
dentally, else the programs would not be independent. A coincident
failure does not necessarily imply that a related fault has been acti-

636 Emerging Techniques

vated. Second, the input may activate a fault that is related between
the two versions. In order to estimate the probabilities of unrelated and
related faults, we will determine the (theoretical) probability of failure
by unrelated faults. To the extent that the observed frequency of coin-
cident faults exceeds this value, we will attribute the excess to related
faults.

The experimental data are necessarily coarse. As it is infeasible to
exhaustively test a single version; it is more difficult to exhaustively
observe every possible instance of coincident failures in multiple ver-
sions. The sampling techniques used to gather the experimental data
provide an estimate of the probabilities of coincident failures rather
than the exact value. Considering the coarseness of the experimental
data, we will limit ourselves to the estimation of three parameter val-
ues: Py, the probability of an unrelated fault in a single version; Py, the
probability of a related fault between two versions; and Pgy;, the prob-
ability of a related fault in all versions. To attempt to estimate more
(for example, the probability of a related fault that affects exactly three
versions or exactly four versions) seems unreasonable. Notice that we
will assume that the versions are all statistically identical, and we do
not attempt to estimate different probabilities of failure for each indi-
vidual version or for each individual case of two simultaneous versions.

The following notation will be used throughout the remainder of this
section.

N The number of different versions involved in the experiment

Py The estimated probability (for each version) that an unrelated fault
is activated in a single version

Pry The estimated probability (for each pair of versions) that a related
fault affects two versions

Ppar;, The estimated probability that a related fault affects all versions
F; The observed frequency that i of the N versions fail coincidentally

The first parameter that we estimate is Py, the probability that a sin-
gle version fails unrelated. The estimate for Py comes from considering
Fy (the observed frequency of no failures in the N versions) and F; (the
observed frequency of exactly one failure in the N versions). When con-
sidering N different versions processing the same input, the probabil-
ity that there are no failures is set equal to the observed frequency of
no failures.

Fo = (1 - PV)N(l - PRV)(éV)(l - PRALL) (15-7)

Then, considering the case where only a single failure occurs, we
observe that a single failure can occur in any of the N programs, which
implies that a related fault does not occur (else more than one version

ST 1 £ e s e

Software System Analysis Using Fault Trees 637

would be affected). This is then set equal to the observed frequency of a
single failure of the N versions.

Fi=N1 —Pv)(N_l)Pv(l—PRv)(év)(l — Prars) (15.8)
Dividing Eq. (15.7) by Eq. (15.8) yields an estimate for Py.

F

Py = NF, + F,

(15.9)

Estimating the probability of a related fault between two versions,
Pgy, is more involved, but follows the same basic procedure. First, con-
sider the case where exactly two versions are observed to fail coinci-
dentally. This event can be caused by one of three events:

m The simultaneous activation of two unrelated faults

m The activation of a related fault between two versions

m Both (the activation of two unrelated and a related fault between the
two versions)

The probabilities of each of these events will be determined separately.
The probability that unrelated faults are simultaneously activated in
two versions (and no related faults are activated) is

(Q’)Pa(l — P91 - Py)(1 - Prass) (15.10)

The probability that a single related fault (and no unrelated fault) is
activated is given by

(Q’) (1 = PPyl ~ Py ® 91 - Ppasy) (15.11)

Finally, the probability that both an unrelated fault and two related
faults are simultaneously activated is given by

(sz) P}Pry(1 - P -2(1 - Pe)® (1 - Payyy) (15.12)

Because the three events are disjoint, we can sum their probabilities
and set the sum equal to F,, the observed frequency of two coincident
errors.

Fy= (sz) (P% + Py — PEPry)(1 - Py -2(1 = Pry) P21 = Prazy)
(15.13)

638 Emerging Techniques

Dividing Eq. (15.13) by Eq. (15.8) and performing some algebraic
manipulations yields an estimate for Pgy which depends on the experi-
mental data and the previously derived estimate for Py.

2F,Py(1 - Py) — (N — DF Py’
2F,PA1 - Py) + (N - D)F,(1 - P3)

Ppy= (15.14)

The estimate for Pgay;, is more involved, as there are many ways in
which all versions can fail. There may be a related fault between all
versions that is activated by the input, or all versions might simulta-
neously fail from a combination of unrelated and related faults. Con-
sider the case where there are three versions. In addition to the
possibility of a single fault affecting all three versions, all three ver-
sions could experience a simultaneous activation of unrelated faults, or
one of three combinations of an unrelated and related fault affecting
different versions may be activated. The fault tree in Fig. 15.13 illus-
trates the combinations of events that can cause all three versions to
fail coincidentally. A simple methodology for estimating Pga.;, could use
the previously determined estimates for Py and Pry and repeated
guessing for Pgaz. in the solution of the fault tree in Fig. 15.13, until the
fault tree solution for the probability of simultaneous errors approxi-
mates the observed frequency of all versions failing simultaneously.

The fault tree model for three versions can easily be generalized to
the case where there are N versions. The top event of the fault tree is
an OR gate with two inputs, an AND gate showing all versions failing,
and a basic event, representing a related fault that affects all versions

| ALL 3 VERSIONS FAIL |

used to estimate Pgy for a

@ @ Figure 15.13 Fault tree model
@ @ 3-version system.

Software System Analysis Using Fault Trees 639

simultaneously. The AND gate has N inputs, one for each version. Each
of the N inputs to the AND gate is itself an OR gate with N inputs, all
basic events. Each OR gate has one input representing an unrelated
fault in the version, and N - 1 inputs representing related faults with
each other possible version.

As an example parameter calculation, consider an experimental data
set from an early implementation of a three-version system [Chen78,
Hech86]. From a sample set of seven versions, twelve different three-
version configurations were constructed. Each three-version configura-
tion was subjected to 32 test cases, with the results as tabulated in
Table 15.1. For this data set, we can estimate Py = 0.0109.

F,

Py=—1
VT 8F,+ F,

=0.075

The estimate for Pgy is then

_ 2szv(1_PV)—(2)F1P‘2/
T 2F.Py(1 - Py) + (2)F,(1 - P2)

Pgy =1.185x 10

The fault tree shown in Fig. 15.13 is used to estimate Pga;z = 9.7 x 1075,

15.6.2 A case study in parameter
estimation

In this section we will use the data from the Lyu-He study [Lyu93a] to
determine parameter values for models of three example fault-tolerant
software systems (Fig. 15.9). The systems being considered are DRB
(distributed recovery block, Fig. 15.10), NVP (N-version programming,
three versions, Fig. 15.11), and NSCP (N self-checking programming,
Fig. 15.12).

For the Lyu-He data, two levels of granularity were used to define
software execution errors and coincident errors: by case or by frame.
The first level was defined based on test cases (1000 in total). If a ver-
sion failed at any time in a test case, it was considered failed for the

TABLE 15.1 Experimental Results from
Three-Version Programming

Number of Number of Observed

failures test cases frequency
0 290 F,=0.755
1 71 F,=0.185
2 18 F,=0.047
3 5 F;=0.013

640 Emerging Techniques

whole case. If two or more versions failed in the same test case (no mat-
ter at the same time or not), they were said to have coincident errors
for that test case. The second level of granularity was defined based on
execution time frames (5,280,920 in total). Errors were counted only at
the time frame upon which they manifested themselves, and coincident
errors were defined to be the multiple program versions failing at the
same time frame in the same test case (with or without the same vari-
ables and values).

The 12 programs accepted in the Lyu-He experiment were config-
ured in pairs, whose putputs were compared for each test case. Table
15.2 shows the number of times that 0, 1, and 2 errors were observed in
the two-version configurations. The data from Table 15.2 yield an esti-
mate of Py = 0.095 for the probability of activation of an unrelated fault
in a two-version configuration, and an estimate of Pgy = 0.0167 for the
probability of a related fault for the by-case data. The by-frame data in
Table 15.2 produces Py = 0.000026 and Py, = 1.3 x 1077 as estimates.

Next, the 12 versions were configured in sets of three programs.
Table 15.3 shows the number of times that 0, 1, 2, and 3 errors were
observed in the three-version configurations. The data from Table 15.3
yield an estimate of Py = 0.0958 for the probability of activation of an
unrelated fault in a three-version configuration. Table 15.4 campares
the probability of activation of 1, 2, and 38 faults as predicted by a
model, assuming independence between versions, with the observed
values. The observed frequency of two simultaneous errors is lower
than predicted by the independent model; thus there is no support in
the data for related faults affecting two versions, and Pgy is estimated
to be zero. The observed frequency of three simultaneous errors is
higher than predicted by the independent model, so we derive an esti-
mate for Pz, based on the Pry = 0 assumption.

Using the assumption that Pgy = 0, the probability that three simul-
taneous errors are activated is given by '

F3 =Py + Pparr — Pv*Prars (15.15)

yielding an estimate of Pgy;; = 0.0003 for the by-case data.

TABLE 15.2 Error Characteristics for Two-Version Configurations

By case By frame
Category Number of cases Frequency = Number of cases Fréquency
Fy (no errors) 53,150 0.8053 348,522,546 0.99994786
F, (single error) 11,160 0.1691 18,128 0.00005201
F, (two
coincident) 1,690 0.0256 46 0.00000013

Total 66,000 1.0000 348,540,720 1.00000000

Software System Analysis Using Fault Trees 641

TABLE 15.3 Error Characteristics for Three-Version Configurations

By case By frame
Category Number of cases Frequency = Number of cases Frequency
F, (no errors) 163,370 0.7426 1,161,707,015 0.99991790
F, (single error) 51,930 0.2360 94,835 0.00008163
F2 (tWO
coincident) 4,440 0.0202 550 0.00000047
F, (three
coincident) 260 0.0012 0 0.00000000
Total 220,000 1.0000 1,161,802,400 1.00000000

TABLE 15.4 Comparison of independent Model with Observed Data
for Three Versions, By Case

No. errors activated Independent model Observed frequency

0 0.7393 0.7426
1 0.2350 0.2360
2 0.0249 0.0202
3 0.0009 0.0012

The by-frame data in Table 15.3 produces Py = 0.000027 as an esti-
mate. For this by-frame data, when the failure probabilities that are
predicted by the independent model are compared to the actual data
(Table 15.5), the observed frequency of two errors is two orders of mag-
nitude higher than the predicted probability. There were no cases for
which all three programs produced erroneous results. Thus, we will
estimate Pgy;;, = 0 and derive an estimate for Py, = 1.57 x 107,

The same 12 programs which passed the acceptance testing phase of
the software development process were analyzed in combinations of
four programs; the results are shown in Table 15.6. The by-case data
from Table 15.6 yields an estimate of Py = 0.106 for the probability of
activation of an unrelated fault in a four-version configuration. Table
15.7 compares the probability of activation of 1, 2, 3, and 4 faults as
predicted by a model, assuming independence between versions, with
the observed values. The observed frequency of two simultaneous

TABLE 15.5 Comparison of Independent Model with Observed Data
for Three Versions, By Frame

No. errors activated Independent model Observed frequeney

0 0.999919 0.999918
1 0.000081 0.0000816
2 2x10° 5x107
3 2x 10 0.0

642 Emerging Technigues

errors is lower than predicted by the independent model, while the
observed frequency of three simultaneous errors is higher than pre-
dicted. For this set of data we will assume that Ppy = 0. The observed
frequency of four simultaneous failures is also lower than predicted by
the independent model, so we will also assume that Py, = 0. The by-
frame data in Table 15.6 produces Py = 0.000026 and Pgy;;, = 1.3 x 1077
as estimates.

15.6.3 Comparative analysis of three
software-fault-tolerant systems

Table 15.8 summarizes the parameters estimated from the Lyu-He
data. The parameter values for the three systems were applied to the
fault tree models shown in Fig. 15.14, using both the by-case and by-
frame data. The fault tree models in Figure 15.14 represent systems
that use simple comparison of results for error detection, and thus do
not directly relate to the DRB, NVP, and NSCP models. The predicted
failure probability using the derived parameters in the fault tree mod-
els agrees quite well with the observed data, as listed in Table 15.8. The
observed failure frequency for the four-version configuration is difficult
to estimate because of the possibility of a 2-2 split vote. The data for

TABLE 15.6 Error Characteristics for Four-Version Configurations

By case By frame
Category Number of cases Frequency Number of cases Frequency
Fy (no errors) 322010 0.65052 2,613,781,410 0.99989519
F, (single error) 152900 0.30889 271,920 0.00010402
F; (two
coincident) 16350 0.03303 2,070 0.00000079
F, (three
coincident) 3700 0.00747 0 0.00000000
F, (four
coincident) 40 0.00008 0 0.00000000
Total 495000 1.00000 2,614,055,400 1.00000000

TABLE 15.7 Comparison of Independent Model with Observed Data
for Four Versions, By Case

No. errors activated Independent model Observed frequency

0 0.63878 0.65052
1 0.30296 0.30889
2 0.05388 0.03303
3 0.00426 0.00747
4 0.00013 0.00008

Software System Analysis Using Fault Trees 643

the occurrences of such a split are not available. Thus the observed fail-
ure frequency in Table 15.8 is a lower bound (it is the sum of the
observed cases of three or four coincident failures). If the data on a 22
split were available, then the probability of a 2-2 split would be added
to the observed frequency values listed in Table 8. For the by-frame
data, for example, if 5 percent of the two-coincident failures produced
similar wrong results, then the model and the observed data would
agree quite well.

TABLE 15.8 Summary of Parameter Values Derived
from Lyu-He Data

2-version model 3-version model 4-version model
By-Case Data
Py =0.095 Py =0.0958 Py, =0.106
PRV=0.0167 PRV=0 PRV=O
PRALL = 00003 PRALL =0
Predicted failure probability (from the model)
0.0265 0.0262 0.0044
Observed failure probability (from the data)
0.0256 0.0214 0.0078
By-Frame Data
P, =0.000026 Py =0.000027 Py =0.000026
PRV= 1.3x 107 PRV =1.57x107 PRV= 1.3 x 107
Prazr=0 Prar =0
Predicted failure probability (from the model)
1.31x 107 4.73 x 107 7.8x 107
Observed failure probability (from the data)
1.32 x 1077 4.73 x 1077 0
Lz VERSION FAILURE l [3-VERSION FAILURE | 4-VERSION FAILURE_ |

VER&ION FAILS ‘
RELATED FAULT .

[

/@ o0 & @

Figure 15.14 Fault tree models for two-, three-, and four-version systems.

644 Emerging Techniques

These parameters are derived from a single experimental imple-
mentation and so may not be generally applicable. Similar analysis of
other experimental data will help to establish a set of reasonable
parameters that can be used in models that are developed during the
design phase of a fault-tolerant system.

The first observation that we can make from Table 15.8 is that
there is good agreement between the model and the experimental
data. Second, we note that for the by-case data the individual ver-
sions were not highly reliable (failure probabilities on the order of
0.1) and yet the fault-tolerant software systems achieved respectable
levels of reliability.

The difference in reliability between the by-case and by-frame data is
striking. The increased reliability associated with the by-frame data
suggests a strong advantage associated with frequent error-checking,
since forward-error recovery may be possible. A more complete analysis
would also reveal any disadvantages, and would allow a useful trade-off
analysis. For example, more frequent comparisons could introduce more
overhead for synchronization and message passing, which might jeop-
ardize a hard deadline.

A more complete analysis of the fault-tolerant systems for a single
task computation includes the effects of both hardware faults and
decider failures and is shown in Table 15.9. For the hardware faults, we
assume a fairly typical failure rate of 10* per hour. In the by-case sce-
nario, a typical test case contained 5280 time frames, each time frame
being 50 ms, so a typical computation executed for 264 seconds. Assum-
ing that hardware faults occur at a rate (107/3600) per second, we see
that the probability that a hardware fault occurs during a typical test
case is

1 — ¢107/3600 x 264 seconds _ 7 333 5 1()-6 (15.16)

We conservatively assume that a hardware fault that occurs anywhere
during the execution of a task disrupts the entire computation running
on the host. For the by-frame data, the probability that a hardware
fault occurs during a time frame is

1 — 10773600 x 0.05 seconds _] 4 x 107 (15.17)

If we further assume that the lifetime of a hardware fault is 1 second,
then it can affect as many as 20 time frames. We thus take the proba-
bility of a hardware fault to be 20 times the value calculated in Eq.
(15.17), or 2.8 x 107%

Since no decider failures were observed during the experimental
implementation, it is difficult to estimate this probability. The decider
used for the recovery block system is an acceptance test, and for this

Software System Analysis Using Fault Trees 645

application is likely to be significantly more complex than the com-
parator used for the NVP and NSCP systems. For the sake of compari-
son, for the by-case data we will assume that the comparator used in
the NVP and NSCP systems has a failure probability of only 0.0001
and that the acceptance test used for the DRB system has a failure
probability of 0.001. For the by-frame data, the decider is considered to
be extremely reliable, with a failure probability of 107 for all three sys-
tems. If the decider were any less reliable, then its failure probability
would dominate the system analysis, and the results would be far less
interesting.

15.7 System-Level Analysis of Hardware
and Software System

Computer systems that are used for critical applications are designed
to tolerate both hardware and software faults by executing multiple
software versions on redundant hardware and by actively reconfigur-
ing the system in response to a permanent failure of a hardware com-
ponent. In the previous section, the impact of hardware failures was
limited to the analysis of a single task; a more complete analysis con-
siders the dynamic reconfiguration of the system configuration in
response to hard permanent faults.

Sophisticated techniques exist for the separate analysis of fault-
tolerant hardware [Geis90, John88] and software [Lapr84, Scot87,

TABLE 15.9 Comparison of Base Case with More General Case
RB model NVP model NSCP model

By-case data

Probability of decider failure used for system analysis

0.001 0.0001 0.0001
Predicted failure probability (perfect decider, no HW faults)

0.0256 0.0261 0.0403
Predicted failure probability (imperfect decider, HW faults)

0.0266 0.0262 0.0404

By-frame data

Probability of decider failure used for system analysis
1x 107 1x 107 1x107

Predicted failure probability (perfect decider, no HW faults)
1x 107 2.07x10° 1.23x 105

Predicted failure probability (imperfect decider, HW faults)
1.1x10° 2.17x 10 1.24 x 1075

646 Emerging Techniques

Shin84), and a few authors have considered their combined analysis
(Lapr84, Star87, Lapr92b]. We will combine the fault tree analysis of a
single repetitive task with a Markov model representing the evolution
of the hardware configuration as permanent faults occur. The fault tree
model captures the effects of software bugs and transient hardware
faults which can affect a single task computation, while the Markov
model describes how the system on which the software is running can
change with time.

A reliability model of an integrated fault-tolerant system must
include at least three different factors: computation errors, system
structure, and coverage modeling. The fault tree models for the fault-
tolerant software systems which we have already considered will
describe the computation error process. In these fault tree models, we
have deliberately remained vague as to the hardware faults being con-
sidered. Here, let us be more precise. In the computation error model, we
consider only transient hardware faults that affect the computation but
cause no permanent hardware damage. A transient hardware fault is
assumed to upset the software running on the processor and produce an
erroneous result that is indistinguishable from an input-activated soft-
ware error. Permanent hardware faults, which require automatic system
reconfiguration, are included in the Markov model of system structure.

The longer-term system behavior is affected by permanent faults
and component repair, which require system reconfiguration to a dif-
ferent mode of operation. The system structure is modeled by a Markov
chain, where the Markov states and transitions model the long-term
behavior of the system as hardware and software components are
reconfigured in and out of the system. Each state in the Markov chain
represents a particular configuration of hardware and software compo-
nents and thus a different level of redundancy.

The short-term behavior of the computation process and the long-
term behavior of the system structure are combined as follows. For
each state in the Markov chain, there is a different combination of
hardware transients and software faults that can cause a computation
error. The fault tree model solution produces, for each state i in the
Markov model, the probability ¢; that an output error occurs during a
single task computation while the state is in state ;. The Markov model
solution produces P{t), the probability that the system is in state i at
time ¢. These two measures are combined to produce @(t), the probabil-
ity that an unacceptable result is produced at time ¢:

QW) = > q:P()
i=1

The models of the three systems being analyzed (DRB, NVP, and
NSCP; see Fig. 15.9) will consist of two fault trees and one Markov

Software System Analysis Using Fault Trees 647

model. Since each of the systems can tolerate one permanent hardware
fault, there are two operational states in the Markov chain. The initial
state in each of the Markov chains represents the full operational
structure, and an intermediate state represents the system structure
after successful automatic reconfiguration to handle a single perma-
nent hardware fault. (For the sake of simplifying the comparisons, we
assume that the systems are not repairable. Repair can easily be con-
sidered in the Markov model of the system structure.) There is a single
failure state which is reached when the second permanent hardware
fault is activated or when a coverage failure occurs.

A coverage failure occurs when the system is unable to detect and
recover from the activation of a permanent hardware fault. The proba-
bility that the system can correctly detect, isolate, and reconfigure in
response to a permanent hardware fault is the parameter ¢ in the
Markov models. If the fault is not covered, then a coverage failure is
said to occur, which leads to immediate system failure. The coverage
parameter (c) can be determined from a coverage model that considers
such effects as physical fault behavior, error and fault detection, and
recovery and reconfiguration mechanisms. Coverage modeling 1is
described in more detail in [Duga89a, Duga93al.

The safety models for the three systems are similar to the reliability
models in that they consist of a Markov model and two associated fault
trees. The major difference between a reliability and safety analysis is
in the definition of failure. In the reliability models, any unacceptable
result (whether or not it is detected) is considered a failure. In a safety
model, a detected error is assumed to be handled by the system in a
fail-safe manner, so an unsafe result occurs only if an undetected error
is produced.

In the Markov part of the safety models, two failure states are
defined. The fail-safe state is reached when the second covered perma-
nent hardware fault is activated. The fail-unsafe state is reached when
any uncovered hardware fault occurs. The system is considered safe
when in the absorbing fail-safe state. This illustrates a key difference
between a reliability analysis and a safety analysis. A system which 1s
shut down safely (and thus is not operational) is inherently safe,
although it is certainly not reliable.

15.7.1 System reliability and safety model
for DRB '

The Markov model for the long-term behavior of the DRB system is
shown in Fig. 15.15. The Markov model details the initial state config-
uration, where the recovery block structure is executed on redundant
hardware, and the reconfigured state, after the activation of a perma-
nent hardware fault. There are two processors available in the initial

648 Emerging Techniques

state. On one processor, the primary is executed first and the sec-
ondary remains idle until needed, while the other processor executes
the secondary software module first. The idle software component is
shaded.

In the initial configuration of the DRB system, there are two active
processors, which can fail independently at rate A. If the system can
properly respond to the failure of one of the processors (with probabil-
ity ¢), then the system is reconfigured to a single processor; thus the
rate 2Ac from the initial state to the intermediate state and the rate
2M(1 — ¢) for an uncovered failure. When a single processor remains, the
system survives until that processor fails.

The fault tree model for the computation process associated with the
initial state was analyzed previously (see Fig. 15.10). The fault tree
model for the computation process in the reconfiguration state is
derived from that for the initial state and is shown in Fig. 15.16. In the
reconfiguration state, a single recovery block structure executes on the
single remaining processor.

The safety model of DRB, shown in Fig. 15.17, shows that an accep-
tance test failure is the only software cause of an unsafe result. As long
as the acceptance test does not accept an incorrect result, then a safe
output is assumed to be produced. The hardware redundancy does not
increase the safety of the system, as the system is vulnerable to the
acceptance test in both states. The hardware redundancy can actually
decrease the safety of the system, since the system is perfectly safe
when in the fail-safe state, and the hardware redundancy delays
absorption into this state.

15.7.2 System reliability and safety model
for NVP

The Markov model for the long-term behavior of the NVP system is
shown in Fig. 15.18. In the initial state there are three active processors,

Primary (V1)

SR TSR STTRTY

27 (1-¢) A

Figure 15.15 Markov reliability model of DRB.

Software System Analysis Using Fault Trees 649

DRB UNRELIABLE

|
SOFTWARE FAILS |

| ACCEPTANCE TEST FAILS

EPRIMARY FAILS | | SECONDARY FAILS |

Figure 15.16 Fault tree model of computation process in DRB reconfiguration state.

so the transition rate to the reconfiguration state is 3Ac and the transi-
tion rate to the failure state caused by an uncovered failure is 3A(1 —¢).
We assume that the system is reconfigured to simplex mode after the
first permanent hardware fault. (See [Doyl95] for a discussion of the
TMR-simplex reconfiguration scheme). In the reconfigured state, an
unreliable result is caused by either a hardware-transient or a software-

L rimary vy |

Markov model

of system structure

RB UNSAFE

Computation error model

Computation error model for intermediate state

for initial state
@ after successful reconfiguration
(same model for both states)

Figure 15.17 Safety model of DRB.

650 Emerging Techniques

fault activation, as shown in the fault tree of Fig. 15.19. The system fails
when the single remaining processor fails; thus the transition rate A
from the reconfiguration state to the failure state.

The NVP safety model (Fig. 15.20) shows that the safety of the NVP
system is vulnerable to related faults as well as decider faults. In the
Markov model, we assume that the reconfigured state uses two ver-
sions (rather than one, as was assumed for the reliability model) so as
to increase the opportunity for comparisons between alternatives and
thus increase error detectability.

15.7.3 System reliability and safety model
for NSCP

The Markov model for the long-term behavior of the NSCP system is
shown in Fig. 15.21, while the fault tree model for the reconfiguration
state is shown in Fig. 15.22,

The NSCP safety model (Fig. 15.23) shows the same vulnerability of
the NSCP system to related faults. When the system is fully opera-
tional, all two-way related faults will be detected by the self-checking
arrangements, leaving the system vulnerable only to a decider fault,
and a fault affecting all versions similarly. After reconfiguration, a
related fault affecting both remaining versions could also produce an
undetected error.

A
FAILURE STATE

Figure 15.18 Markov reliability model of NVP.

NVP UNRELIABLE

Figure 15.19 Fault tree model
of computation process in NVP
reconfiguration state.

Software System Analysis Using Fault Trees 651

15.7.4 A case study in system-level
analysis

This section contains a quantitative analysis of the system-level relia-
bility and safety models for the DRB, NVP, and NSCP systems. The soft-
ware parameter values used in this study are those derived earlier from
the Lyu-He data. Typical permanent failure rates for processors range
in the 10°® per hour range, with transients perhaps an order of magni-
tude larger. Thus we will use A, = 107 per hour for the Markov model.
The fault and error recovery process is captured in the coverage param-
eters used in the Markov chain [Duga89a]. We assume a commonly used
value for the coverage parameter in the Markov model, ¢ = 0.999.

Markov model

of system structure

| 2)¢

Computation errcr model

for initial state

[NVP UNSAFE I

Computation error model

for intermediate state

g b after successful reconfiguration

Figure 15.20 Safety model of NVP.

652 Emerging Techniques

2 A

(FAILURE STATE)

Figure 15.21 Markov reliability model of NSCP.

NSCP UNRELIABLE

()

|

= |

Figure 15.22 Fault tree model of computation process in NSCP reconfiguration state.

Figure 15.24 compares the predicted reliability of the three systems.
Under both the by-case and by-frame scenarios, the recovery block sys-
tem is most able to produce a correct result, followed by NVP. NSCP is
the least reliable of the three. Of course, these comparisons are depen-
dent on the experimental data used and assumptions made. More
experimental data and analysis are needed to enable a more conclusive
comparison.

Figure 15.25 gives a closer look at the comparisons between the NVP
and DRB systems during the first 200 hours. The by-case data show a
crossover point where NVP is initially more reliable but is later less
reliable than DRB. Using the by-frame data, there is no crossover
point, but the estimates are so small that the differences may not be

statistically significant.

Software System Analysis Using Fault Trees 653

Figure 15.26 compares the predicted safety of the three systems.
Under the by-case scenario, NSCP is the most likely to produce a safe
result, and DRB is an order of magnitude less safe than NVP or NSCP.
This difference is caused by the difference in assumed failure probabil-
ity associated with the decider. Interestingly, the opposite ordering
results from the by-frame data. Using the by-frame data to parameter-
ize the models, DRB is predicted to be the safest, while NSCP is the
least safe. The reversal of ordering between the by-case and by-frame
parameterizations is caused by the relationship between the probabil-
ities of related failure and decider failure. The by-case data parameter
values resulted in related fault probabilities that were generally lower
than the decider failure probabilities, while the by-frame data resulted
in related fault probabilities that were relatively high. In the safety
models, since there were fewer events that lead to an unsafe result,
this relationship between related faults and decider faults becomes
significant.

Markov model

of system structure

2rc

<

| NSCP UNSAFE]

Computation error model @
for initial state

| NSCP_UNSAFE]

Computation error model

for intermediate state
@ after successful reconfiguration

Figure 15.23 Safety model of NSCP.

654 Emerging Techniques

Probability of Unacceptable Result

Probability of Unacceptable Result

0.05 T T T T

DRB —-—
NVP ——
0.045 - NsCP B P S

0.04 £~

0.035

0.03

P S e . Wi A

+
$

0.025

0.02

0.015

0.01

T

0.005

0 1 I 1]
0 200 400 600 800
time (hours)

1000

0.00045 T T T T

0.0004 DRB o
NVP
NSCP =

0.00035 |- e

T
™.

0.0003

0.00025 &

T

e
0.0002 Py
0.00015 x

0.0001

5e-05

\

0 200 400 600 800
: time (hours)

Figure 15.24 Predicted reliability, by-case data (top) and by-frame data (bottom).

1000

Probability of Unacceptable Result

Probabilty of Unacceptable Result

0.0266

0.02655

0.0265

0.02645

0.0264

0.02635

0.0263

0.02625

0.0262

0.02615
0

1.4e-05

1.2e-05

1e-05

8e-06

6e-06

4e-06

2e-06

Software System Analysis Using Fault Trees

655

I

DRB —«—
NVP

50

100
time (hours)

150

200

DRB o
NVP ——

1

100
time (hours)

1560

Figure 15.25 Predicted reliability, by-case data (top) and by-frame data (bottom).

200

Probability of Unsafe Result

Probability of Unsafe Result

656

0.0011
0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003

0.0002

0.0001 &

4e-05

3.5e-05

3e-05

2.5e-05

2e-05

1.5e-05

1e-05

5e-06

Emerging Technigues

T T . :
i DRB —-— 4
NVP —+—
NSCP -g-
e —F —t Aa—k*:
T T O e = .~ S~ S -E+--v-~——£;k/-fa— |
0 200 400 600 800 1000
time (hours)
DRB —-— T T T /kJ
NVP —+— =
NSCP & P
] /J'Z _

400

time (hours)

600

800

Figure 15.26 Predicted safety, by-case data (top) and by-frame data (bottom).

1000

Software System Analysis Using Fault Trees 657

A more complete comparative analysis of these three systems,
including a sensitivity analysis and an assessment of the impact of the
decider failure probability, appear in [Duga95]. A major disadvantage
associated with fault trees is the exponential solution time, but fault
trees share this disadvantage with every other comparable modeling
technique. Approaches to this problem include the development of good
approximate solution techniques [Duga89b] and the recent use of
binary decision diagrams (BDD) for quantitative analysis [Coud93,
Rauz93]. A second disadvantage associated with fault tree modeling is
the inability to model sequence-dependent failures. Fault trees are a
combinatorial model (as are reliability block diagrams) that represent
combinations of events which lead to system failure. As such, combina-
torial models cannot capture information concerning the order in
which failures have occurred. As an approach to this problem, a
dynamic fault tree has been defined, which used a Markov chain for
solution [Duga92].

15.8 Summary

Fault tree models, which have traditionally been used for the analysis
of hardware systems, are well suited to the analysis of software. Fault
trees can serve as a design aid to help determine the effective use of on-
line and off-line testing. Software safety validation is aided by the use
of software fault trees, where the code is analyzed on a statement-by-
statement basis. At the systems level, where a software program or a
processor are each considered as basic components, fault trees combine
well with Markov models to predict overall system reliability and
safety. Such system models may be parameterized using experimental
data if field experience is insufficient.

The advantages associated with the use of fault trees are the graph-
ical and mathematical foundations, which give rise to good qualitative
and quantitative solution methods. Since fault trees are applicable to
many different systems, they can provide a common framework for
comparative analysis.

Problems

15.1 What are the minimal cutsets for the fault tree in Fig. 15.1? What is the
probability of occurrence of the top event in the tree, given the probabilities of
occurrence for the basic events: P..ve, Primeout, aNd Pau?

15.2 For the fault tree shown in Fig. 15.2, suppose that we know that event
A4 has already occurred. Given this information, what is now the set of mini-
mal cutsets, and what is the probability of occurrence for the top event in the
tree? (Define P,; to be the probability of occurrence for the basic event A;).

658 Emerging Techniques

15.3 For Probs. 15.3 to 15.5, consider the system
@ @ shown in Fig, 15.27. The circles in the figure repre-
sent processing nodes and the lines represent bidi-
rectional links between the nodes. The nodes
labeled N1, N2, N3, and N4 are active nodes, while
node S is a spare node. Active and spare nodes have

the same probability of failure py, while links fail

@ @ with probability p,.

Assume that links do not fail, and that the system
is operational as long as four operational nodes
can communicate. A failed node disables the
attached nodes. Draw the fault tree model for the system and list the minimal
cutsets.

Figure 15.27

15.4 For the fault tree derived in Prob. 15.3, suppose that the probability
of node failure is py = 0.05. What is the probability that four nodes are
connected?

15.5 Assume that both the nodes and links can fail. When a node fails, it can
still relay messages on unfailed links. So the system fails when two of the five
nodes either fail or are disconnected from the rest of the network. Draw a fault
tree model for the system.

15.6 Figure 15.8 showed part of a fault tree used for safety validation. Nor-
mally, we would continue expanding each of the cases. Suppose instead that we
try to detect a potential hazard on the fly, and take some corrective or preven-
tive action. Suppose during run time that we could detect whether y > 0 and
whether z > 0 at any point in the program. How would that help?

15.7 Consider the consensus recovery block (CRB) [Scot87] described in
Chap. 14. Determine a fault tree model to analyze the reliability of CRB (simi-
lar to the fault tree models derived in Sec. 15.5).

15.8 Develop a fault tree model for reliability and safety analysis of a two-
version NVP system.

15.9 Develop a fault tree model for reliability and safety analysis of a three-
version DRB system.

15.10 Develop a fault tree model for reliability and safety analysis of a four-
version NVP system.

15.11 Consider an experimental implementation of a multiversion program-
ming system that resulted in 27 versions [Knig86]. Testing with more than a
million test cases revealed the failure behavior shown in Table 15.10. If a 2-ver-
sion system that used comparison matching were formed by randomly select-
ing 2 of the 27 versions, what would be the expected reliability of the software

— e .

Software System Analysis Using Fault Trees 659

TABLE 15,10

Number of Observed
failed versions frequency

0.983539
0.15206e-1
0.551e-3
0.343e-3
0.242¢-3
0.73e-4
0.32¢-4
0.12e-4
0.2e-5
More than 8 0

O =TI(H T W=D

system? (Assume that the system fails if it is unable to produce a correct result.
Thus a mismatch results in a failure.)

15.12 For the same system described in Prob. 15.7, what would be the
expected safety of a similarly constructed two-version system? (The system
fails when an incorrect result is delivered.)

