Part

3

Emerging Techniques

Chapter

12

Software Metrics for Reliability
Assessment

John C. Munson
University of Idaho

Taghi M. Khoshgoftaar
Florida Atlantic University

12.1 Introduction

Software development is a complicated process in which software
faults are inserted in code by mistakes on the part of program develop-
ers. For the purpose of software reliability engineering, it is important
to understand this fault insertion phenomenon. The pattern of the
faults has been shown to be related to measurable attributes of the
software. Consider the case of a large software system. Typically, this
system will contain many subunits or modules. Each of the modules
may be characterized in terms of a set of attribute measures. It would
be quite useful to be able to construct predictive models for software
faults based on these attribute values.

Among various software attributes, we focus on complexity metrics.
This is based on the observation that software complexity has a direct
impact on its quality. Some programs are easy to understand, easy to
modify, and account for little of the expense in the development of the
software systems of which they are components. Other programs seem
almost beyond comprehension, even to their authors. These programs
are nearly impossible to modify without inserting multiple faults, and
they account for much of the expense in the development of the soft-
ware systems of which they are components. Between these extremes
lies a range of programs of intermediate complexity. Many program
attributes, considered together, account for this observed variability. A
large set of interrelated software complexity metrics quantify these
static program complexity attributes. The size of this set, and the inter-

493

494 Emerging Techniques

relationships among its elements, cause difficulties in understanding
software complexity.

We also note that the initial reliability of a software system is largely
determined during program design. One distinct aspect of the software
design process that lends itself to measurement is the decomposition of
the functionality of a system into modules and the subsequent interac-
tion of the modules under a given set of inputs to the software. The reli-
ability of a software system may be characterized in terms of the
individual software modules that make up the system, as well as their
executions. The likelihood that a component will fail is directly related
to the complexity of that module. If it is very complex the fault proba-
bility is also high. Furthermore, a typical large software system might
consist of many hundreds of distinct software modules. When the soft-
ware is executing any one of many possible functionalities, only a small
subset of the code is actually executing. The reliability of a software
system, then, is a function of software modules that are actually exe-
cuting and the fault density of these modules. In order to model the
reliability of a software system, we must be able to characterize the
dynamic characteristics of the software.

For each possible design outcome in a software design effort there
will be a set of expected execution profiles, one for each of the antici-
pated program functionalities. The reliability of the system can be
thought of in terms of the exposure of the program to complex modules
while the program is running. This complexity will vary in relation to
the execution profiles induced by the operating environment of the pro-
gram. At the design stage, quantitative measures correlated to fault-
proneness and product failure provide a means to begin to exert
statistical process control techniques on the design itself as an ongoing
quality-control activity. Rather than merely documenting the increas-
ing operational complexity of a software product and therefore its
decreasing reliability, you can also monitor the operational complexity
of successive design adaptations during the maintenance phase. This
effort can ensure that subsequent design revisions do not increase
operational complexity and, especially, do not increase the variance
among individual module’s functional complexity.

In this chapter we describe the software metrics that can be obtained
early in the life cycle for software reliability assessment. In particular,
we introduce the measure of complexity attributes to predict the qual-
ity of software. We first present the techniques that reduce a large set
of interrelated complexity metrics, respectively, to a smaller set of
orthogonal metrics, and to a single metric. We then describe a method
for quantifying execution profiles. Furthermore, we combine the con-
cepts of static complexity and execution profile to produce dynamic
complexity metrics, that is, metrics that quantify the complexity of

Software Metrics for Reliability Assessment 495

software systems as they operate in a given environment. Finally, the
usage of software complexity metrics in software reliability models is
presented.

12.2 Static Program Complexity

Our ultimate objective in the software measurement process is to be
able to characterize the quality of a software system in terms of some
measurable software attributes. These software quality attributes
might include such domains as the number of embedded faults in the
software or the number of changes made to the software over its useful
life. The problem with software quality attributes is that these
attributes are known only at the end of the useful life of the software.
It is a moot point whether or not a system has a low or a high fault den-
sity after the software has been taken out of service at the end of its
career. In order to understand the quality of software, we need to exam-
ine different complexity metrics.

12.2.1 Software metrics

We have, over a period of time, observed a relationship between mea-
sures of software complexity and measures of software quality
[Khos90]. An example of this would be the direct relationship and high
correlation between the lines of code (LOC) metric and software faults
[Khos92a]. There are many software complexity metrics. A number of
these metrics are highly correlated with measures of quality such as
fault count or change count. Measures of software complexity can be
used as good predictors of software quality: for example, complex soft-
ware modules are those likely to have a high fault count. Further, if a
complex module is executed, it has a much higher likelihood of failing
than a module that is not so complex. The important fact here is that
measures of software complexity can be obtained very early in the soft-
ware life cycle. Some may be obtained by measuring the source code,
such as LOC. Some may be obtained from the high-level design, such as
measures relating to the flow of program control. Some measures may
even be taken on the software specifications themselves. Thus we can
use software complexity measures as leading indicators of measures of
software quality.

Since most of the existing metrics have common elements and are
linear combinations of these common elements, it seems reasonable to
investigate the structure of the underlying common factors or compo-
nents that make up the raw metrics. The technique we have chosen to
use to explore this structure is a procedure called principal components
analysts. Principal components analysis is a decomposition technique

496 Emerging Techniques

that may be used to detect and analyze the relationships among the
software metrics. When confronted with a large number of metrics
measuring a single construct, it may be desirable to represent the set
by some smaller number of variables that convey all, or most, of the
information in the original set. Principal components are linear trans-
formations of a set of random variables that summarize the informa-
tion contained in the variables. The transformations are chosen so that
the first component accounts for the maximal amount of variation of
the measures of any possible linear transform; the second component
accounts for the maximal amount of residual variation; and so on. The
principal components are constructed so that they represent trans-
formed scores on dimensions that are orthogonal [Muns89].

12.2.2 A domain model
of software attributes

Through the use of principal components analysis, it is possible to have
a set of highly related software attributes mapped into a small number
of uncorrelated attribute domains. This solves the problem of multi-
collinearity in subsequent regression analysis [Khos90]. There are
many software metrics in the literature, but principal components
analysis reveals that there are few distinct sources of variation, i.e.,
dimensions, in this set of metrics. It would appear perfectly reasonable
to characterize the measurable attributes of a program with a simple
function of a small number of orthogonal metrics, each of which repre-
sents a distinct software attribute domain. Still, some metrics measure
distinct program attributes. For example, Halstead developed a num-
ber of metrics now known as the software science metrics [Hals77].
Four of these metrics cannot be decomposed into other metrics:

m N, the total number of operators in a program

® N,, the total number of operands in a program

m 1);, the number of unique operators in a program

® 1), the number of unique operands in a program

From these primitive metrics, Halstead composed nonprimitive met-
rics, including

» N=N,+N,, program length

® V=N log; (n; +Mny), program volume

mE=V [N1V2/21;], estimated effort

While these metrics are sensitive to program size, they are not sensi-
tive to program control flow; that is, programs with vastly different

Software Metrics for Reliability Assessment 497

control flow structure can have identical Halstead metric values. Thus,
Halstead’s metrics do not measure complexity due to control flow.

On the other hand, McCabe developed a nonprimitive metric, the cyclo-
matic number, which does measure some aspects of control flow complex-
ity [McCa76]. Given a strongly connected graph G, the cyclomatic
number of G is the number of independent paths in G. This is given by
V(G) =e — n + p, where e is the number of edges, n is the number of nodes,
and p is the number of connected components. McCabe applied this graph
theory by constructing a program control flow graph. In this directed
graph, nodes represent entry points, exit points, segments of sequential
code, or decisions in the program. Edges represent control flow in the pro-
gram. Strong connectivity is satisfied with the addition of an edge from
the exit node to the entry node. McCabe observed that, for a structured
program with single entry and exit constructs, V(G) is equal to the num-
ber of predicates in the program plus one.

While V() is sensitive to program control flow complexity, it is not
necessarily related to program size, that is, programs with vastly differ-
ent counts for operators and operands can have identical cyclomatic
numbers. Thus, Halstead’s metrics and McCabe’s metric measure two
distinct program attributes. Each of these program attributes repre-
sents a source of variation underlying the measured complexity metrics.

12.2.3 Principal components analysis

A statistical technique like principal components analysis may be used
quite effectively to isolate the distinct sources of variation underlying
the set of software complexity metrics describing a software system. A
multivariate data set might, for example, consist of values for each of
m software attribute measures for a set of each of n program modules.
These data can be represented by an n by m matrix. When applying
principal components analysis, you typically seek to account for most of
the variability in the m attributes of this matrix with p < m linear com-
binations of these attributes. Each linear combination represents an
orthogonal source of variation underlying the data set. Let X be the
covariance matrix for the metric data set. Then X is a real symmetric
matrix and, assuming that it has distinct roots, can be decomposed as

E=TAT

where A is a diagonal matrix with the eigenvalues, Aj, Ay, ..., A, On
its diagonal
I A, =trace(Z)
T is an orthogonal matrix where column j is the eigenvector
associated with A
T’ is the transpose of T

x\\

498 Emerging Techniques

The m eigenvectors in T give the coefficients that define m uncorre-
lated linear combinations of the original complexity metrics. These
orthogonal linear combinations are the principal components of Z. The
ratio A;/trace(¥) gives the proportion of complexity metric variance
that is explained by the jth principal component. The first few princi-
pal components typically explain a large proportion of the total vari-
ance. Thus, restricting attention to the first few principal components
can achieve a reduction in dimensionality with an insignificant loss of
explained variance. A stopping rule selects p < m principal components
such that each one contributes significantly to the total explained vari-
ance, and the p selected components collectively account for a large
proportion of this variance. A typical stopping rule selects principal
components with associated eigenvalues greater than one.

The standardized transformation matrix, Tx, is constructed from T to
produce p domain metrics for each of the n programs comprising the
software system. An element ¢;; of Tx gives the coefficient, or weight of
the ith complexity metric, i = 1,2, . .. ,m, for the jth domain metric, j =
1,2, ... ,p. Thus, given z;, the vector of standardized metrics for pro-
gram module 2 = 1,2, ...,n, D, = z,T*x is a new vector of orthogonal
domain metrics for the £th program module. The p domain metric val-
ues for this program module, Dy, Dy, . . . ,D;,, represent variation due
to the p orthogonal complexity domains underlying the complexity data.
The n values for the jth domain metric Dy;,D;;, . . . ,D,; are distributed
with a mean of 0 and variance of 1. Since domain metrics are not
directly observable, they are best interpreted in terms of domain load-
ings, that is, in terms of their correlations with the complexity metrics.

Example 12.1 Consider a sample metric data set consisting of metric values for
N, V, E, and V(G) for the programs comprising a software system. Assume that
principal components analysis of this data set reveals two principal components
having eigenvalues greater than 1. Thus, two complexity domains represent sig-
nificant sources of variation underlying the complexity metrics. Table 12.1 gives
the pattern of domain loadings for these domains along with their associated

TABLE 12.1 Domain Pattern

Metric Domain 1 Domain 2
N 0.98 0.11
v 0.97 0.09
E 0.91 0.13
V(G) 0.12 0.99
Eigenvalue 2.75 1.02
% variance 68.83 25.61
Cumulative

% variance 68.83 94 .44

Software Metrics for Reliability Assessment 499

eigenvalues. The three Halstead metrics correlate strongly with the first domain,
while V(G) correlates strongly with the second domain. This observation leads to
the interpretation that the first domain is related to size complexity, while the
second domain is related to control flow complexity. These two domains account
for, respectively, about 68.8 and 25.6 percent of the variance observed in the met-
ric data. Table 12.2 gives the standardized transformation matrix, T:x.

Consider program module & that has a vector of standardized metrics
z,=[1.284 1.408 0.777 -0.415]

The domain metric values for this program module may be obtained by postmul-
tiplying the standardized metric values by the transformation matrix in Table
12.2 as follows:

0.364 -0.046

d, = [1.284 1.408 0.777 —0.415] 0.361 -0.061
0.334 -0.015

-0.119 1.020

= [1.286 -0.581}

In most linear modeling applications with software metrics, such as
regression analysis and discriminant analysis, the independent vari-
ables, or metrics, are assumed to represent some distinct aspect of vari-
ability not clearly present in other measures. In software development
applications, the independent variables (in this case, the complexity
metrics) are strongly interrelated or demonstrate a high degree of mul-
ticollinearity. In cases like this, it will be almost impossible to establish
the unique contribution of each metric to the model. One distinct result
of multicollinearity in the independent measures is that the regression
models developed using independent variables with a high degree of
multicollinearity have highly unstable regression coefficients. Such
models may be subject to dramatic changes due to additions or dele-
tions of variables or even discrete changes in metric values.

12.2.4 The usage of metrics

Our objective is to build and extend a model for software attributes.
This model will contain a set of orthogonal attribute domains. Once we

TABLE 12.2 Standardized Transformation

Matrix, T.

Metric Domain 1 Domain 2

N 0.364 -0.046 .
1% 0.361 ~0.061 —
E 0.334 -0.015

ViG) -0.119 1.020

500 Emerging Techniques

have such a model in place we would then like to identify and select
from the attribute domain model those attributes that are correlated
with a software quality measure, such as number of faults. Each of the
orthogonal attributes will have an associated metric value that is
uncorrelated with any other attribute metrics. Each of these attributes
may potentially serve to describe some aspect of variability in the
behavior of the software faults in a program module. This further sug-
gests that constructing a composite metric consisting of Halstead’s
metrics and McCabe’s metric can lead to a better fault prediction capa-
bility [Lyu94a].

Some ill-considered attempts have been made to design software sys-
tems reflecting the complexity of the object being designed. The most
notable of these attempts relates to the use of McCabe’s measure of
cyclomatic complexity V(G). Magic values of cyclomatic complexity are
being incorporated into the requirements specifications of some soft-
ware systems. For example, we might choose to specify that no program
module in the software system should have a cyclomatic complexity
greater than an arbitrary value of| say, 15, which is used as a guideline
in the design process.

Potentially catastrophic consequences may be associated with this
univariate design criterion. First, there is little or no empirical evi-
dence to suggest that a module whose cyclomatic complexity is greater
than 15 is materially worse than one whose cyclomatic complexity is
14. Second, and most important, is the fact that if, in the process of
designing a software module, we find that the module has a cyclomatic
complexity greater than 15, the most obvious and common solution to
the problem is to divide the software module into two distinct modules.
Now we will certainly have two modules whose cyclomatic complexity
18 less than 15. The difficulty here is that instead of one program mod-
ule we have created two, or possibly three, in its place. This will
increase the macro complexity of measures related to complexity. In
other words, we have decreased cyclomatic complexity, but we have
increased coupling complexity. The result of this shortsighted decision
may well be that the total system complexity will increase. This in turn
will likely lead to a concomitant increase in total faults.

12.2.5 Relative program complexity _

In order to simplify the structure of software complexity even further
it would be useful if each of the program modules in a software system
could be characterized by a single value representing some cumulative
measure of complexity. The objective in the selection of such a function,
g, 1s that it be related in some linear manner to software faults such
that g(x) = ax + b, where x is some unitary measure of program com-

Software Metrics for Reliability Assessment 501

plexity. The more closely related x is to software faults, the more valu-
able the function g will be in the anticipation of software faults. Previ-
ous research has established that the relative complexity metric p has
properties that would be useful in this regard. The relative complexity
metric, p, is a weighted sum of a set of uncorrelated attribute domain
metrics [Muns90a, Muns90c]. This relative complexity metric repre-
sents each raw metric in proportion to the amount of unique variation
contributed by that metric.

For an analysis concerned with the relative contributions of each
program complexity domain to the complexity of each program, reduc-
tion to domain metrics is sufficient. For these applications, it is possi-
ble to compute the relative complexity metric for each program module
k by forming the weighted sum of the domain metrics as follows: p; =
d A+ where Ax is the vector of eigenvalues associated with the selected
domains, A% is the transpose of this vector, and d, is the vector of
domain metrics for program module £ [Muns90b]. The n values of p are
distributed with a mean of 0 and a variance of

p
Vip)=> A2

J=1

where p is the number of selected domains, and 2; is the eigenvalue
associated with the jth domain. Thus p will take both positive and neg-
ative values. A scaled version of this metric

is more easily interpreted. The scaled metric is distributed with a
mean of 50 and a standard deviation of 10.

Example 12.2 Consider a program module £ having the vector of domain metric
values d; = [1.286 —0.581]. The relative complexity for program module 2 may be
computed by the multiplication of the transpose of a vector containing the eigen-
values from Table 12.1 as follows:

2.753
= [1.286 -0. =2,
pr=[1.286 -0 581]{1‘024] 2.946
The scaled relative complexity is simply,
~__/
(10)(2.946)
Pr= + 50 =60.03

V2.7532 + 1.0242

From this scaled value it is easy to see that the scaled relative complexity of mod-
ule % is roughly one standard deviation (10.03) above the mean relative complex-
ity, 50, for all modules in the total software system.

502 Emerging Techniques

12.2.6 Software evolution

From the standpoint of early reliability prediction, we would like to be
able to use the measurements from past software development efforts
to perform a preliminary assessment of fault density or reliability of
current or active software development projects. In other words, we
would like to have the ability to use a past system to serve as a base-
line for a current development project. In essence, the objective is to
use an existing database as a baseline for subsequent measures in a
software system currently in development. We might choose, for exam-
ple, to take the first build of a real-time control software system that
was developed in the past and use this for a real-time control software
system currently being developed. In this sense, all subsequent soft-
ware measures on new systems will be transformed relative to the
baseline system.

The ability to use information from past development projects in cur-
rent design work is most important. This is due to the fact that many
of the software quality and reliability attributes of a system can be
measured only after the system has been in service for some time. If a
software system under current development is directly comparable to
one that has demonstrated quality and/or reliability problems in the
past, there is evidence to suggest that the design had better be modi-
fied.

The attribute measures presented so far are static measures of the
program. They measure such features of the program as its size and
the complexity of its control structure. If the functionality of a program
was extremely restricted, these static measures might well be suffi-
cient to describe the program entirely. Most modern software systems,
however, have a broad range of functionality. Consider, for example, the
software system for a typical spreadsheet program. The number¢f dis-
tinct functions in such a system and the number of ways that these
functions might be exercised are both very large numbers. In addition
to static measures of program attributes, we must also be concerned
with dynamic measures of programs as well.

In order to describe the complexity of an evolving system at any
point in time, it will be necessary to know which version of each of the
modules was a constituent in the program that failed. Consider a soft-
ware system composed of n modules as follows:

my, Mq, M3, ..., M,

Now, let m/ represent the ith version of the jth module. With this
nomenclature, the first build of the system would be described by the
set of modules:

11 1 1
<mi,m,,my,...,m,>

Software Metrics for Reliability Assessment 503

We can represent this configuration more succinctly simply by record-
ing the superscripts as vectors. Thus a system under development
might look like the following sequence of module version sets:

vi=<1,1,1,1,...,1>
vi=<1,2,2,1,...,1>
Vv=<22231,...,1>

vi=<2,33,2,...,2>

Thus, the ith entry in the vector v* would represent the version num-
ber of the ith module in the nth build of the system.

A natural way to capture the intermediate versions of the software is
to have the system development occur under a configuration manage-
ment system. For a system running under configuration management,
all versions of all modules can be reconstructed from the time the pro-
gram was placed in the system. That is, the precise nature of v" can be
determined from the configuration management system.

The computation of the relative complexity of various releases or
versions of a software system will occur as follows: for an initial build
of a software system described by v?, transformation matrix will map
the raw complexity metrics onto a set of reduced orthogonal domain
metrics. From these, relative complexity values may be computed for
the modules represented by the vector v'. The transformation coeffi-
cient matrix derived from the first build will not change subsequently,
but will serve as a baseline for measuring changes in program com-
plexity.

Associated with the ith program module, m}, at the first build of a
program, there is a corresponding relative complexity value of p.. By
definition, the adjusted relative complexity, p, of the program system at
this first build will be

pt=2, pi=50

As the system progresses through a series of builds, system complexity
will tend to rise [Muns90b]. Thus, the system relative complexity of the

504 Emerging Techniques

nth version of a system may be represented by a nondecreasing func-
tion of module relative complexity as follows:

pﬂ:Z p;"t = 50

where v represents an element from the configuration vector v*
described earlier.

This change in the overall relative complexity of an example system
over time is presented pictorially in Fig. 12.1. It can be seen from this
figure that the relative complexity of a system will rise fairly rapidly
shortly after the first build of the system. It would further appear that
the relative complexity becomes asymptotic to a value of, say, 55. This
is not the case. The system complexity continues to rise, albeit more
slowly, throughout the life of the software system.

12.3 Dynamic Program Complexity

The relative complexity measure, p, of a program is a measure of the
program at rest. When a program is executing, the level of exposure of
its modules depends on the execution environment. Consequently, both
the static complexity of a software system and the system’s operational
environment influence its reliability [Khos93al. The complex programs
comprising a software system often contain a disproportionate number
of faults. However, if in a given environment the complex modules are
rarely exercised, then few of these faults are likely to become expressed
as failures. Different environments will exercise a system’s programs
differently. The dynamic complexity is a measure of the complexity of
the subset of code that is actually executed as a system is performing a

55 1

o
Py
i

32}
N w
1
L]

o]

Relative Complexity
(4]

50 -

49

48

47 —t

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Build #

Figure 12.1 Change to relative complexity over time.

Software Metrics for Reliabhility Assessment 505

given function. A system’s dynamic complexity is high in an environ-
ment that exercises the system’s complex programs with high probabil-
ity. It is likely that one or more potential scenarios induce inordinately
large dynamic complexity. Identifying these scenarios is the first step in
assuring that they receive the testing time that they warrant. This is
evident in the concept of execution profile.

12.3.1 Execution profile

A software system is written to fulfill a set of functional requirements. It
is designed in such a manner that each of these functionalities is
expressed in some code component. In some cases a direct correspon-
dence exists between a particular program module and a particular
functionality. That is, if the program is expressing that functionality, it
will execute exclusively in the module in question. In most cases, how-
ever, there will not be this distinct traceability of functionality to mod-
ules. The functionality will be expressed in many different code modules.

As a program is exercising any one of its many functionalities, it will
apportion its time across one to many program modules. This temporal
distribution of processing time is represented by the concept of the exe-
cution profile. In other words, if we have a program structured into n
distinct modules, the execution profile for a given functionality will be
the proportion of time spent in each program module during the time
that the function was being expressed.

Another way to look at the execution profile is that it represents the
probability p; of execution occurring in module m; at any point in time.
When a software system is running a fixed function there is an execu-
tion profile for the system represented by the probabilities py, po,
Ps, - - - , Pp. For our purposes, p; represents the probability that the ith
module in a set of n modules is in execution at any arbitrary time.

Each functionality will have its own, possibly unique, execution pro-
file. For a set of 10 hypothetical program modules, the execution pro-
files of two functionalities are shown in Fig. 12.2. From this example,
we can see that for program module 6, there is a low probability of find-
ing this module in execution at any time in the duration of the execu-
tion of function 1. For function 2, on the other hand, this same module
shows a relatively high rate of use.

12.3.2 Functional complexity

The functional complexity ¢ of the system running an application with
an execution profile is defined as

6= pip

j=1

506 Emerging Techniques

- Function #1

——L—— Function #2

Probability

Module #

Figure 12.2 Two different execution profiles.

where p; is the relative complexity of the jth program module and p; is
the execution probability of this module. This is simply the expected
value of relative complexity under a particular execution profile. The
execution profile for a program can be expected to change across the set
of program functionalities. In other words, for each functionality, f;,
there is an execution profile represented by the probabilities p.,

Ds, - - -, D, As a consequence, we can observe a functional complexity ¢,
for each function, f; execution, where
n
. i
¢, = Z P; P
j=1

This is distinctly the case during the test phase when the program is
subjected to numerous test suites to exercise differing aspects of its
functionality. The functional complexity of a system will vary greatly
as a result of these different test suites. A bar chart demonstrating the
relationship of execution profile and relative complexity of a program
running a scenario of low functional complexity is shown in Fig. 12.3.
In Fig. 12.4 a high functional complexity test scenario is presented.

Given the relationship between complexity and embedded faults, we
would expect the failure intensity to rise as the functional complexity
increases. If an application is chosen in such a manner that high exe-
cution probabilities are associated with the complex modules, then the
functional complexity will be large and the likelihood of a failure event
during this interval would be relatively high. In Fig. 12.5, the operation
of a hypothetical software system executing various functionalities
across time is presented. From this figure, we would expect the soft-
ware failures to be directly related to those periods when the functional
complexity is high.

[Ee—

Software Metrics for Reliability Assessment 507

0.18 -
0.16 -
0.14 -
0.12 4

0.1 1

0.08 - l:] Execution Profile

0.06 - B Functional Complexity

0.04 -

0.02 4

0
35 42 46 48 49 50 51 52 54 58 65

Module Relative Complexity

Figure 12.3 Low functional complexity.

0.18

0.16

0.14

]

0.12

0.1 1

0.08 - [0 Execution Profile

B Functional Complexity

0.06

0.04 -
0.02

04

Module Relative Complexity

Figure 124 High functional complexity.

12.3.3 Dynamic aspects
of functional complexity

System functional complexity can be determined in two dimensions.
First, the functional complexity will vary in accordance with the func-
tion being executed. It will also vary as a function of the reconstitution
of the software over builds. Thus, the functional complexity for function
f: at the jth build represented by v will be

n .

. J

bi;= Z DLPLF
j=1

It is possible to determine the functional complexity for various exe-
cution profiles at varying stages of software maturity and thus to indi-

508 Emerging Techniques

Functional Complexity

~

o
i
1

=]

o
i
T

4,1
o
1
T

-
o
1
T

4]
o

N
o
1
¥

-
o
L
T

o

5 } I i i 4 1 Il 1 '
Y T ¥ T T T T Y T L]

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Functionality Varying With Time

Figure 12,5 Varying functional complexity.

cate their likely failure intensity. In order to model correctly the relia-
bility of a software system we have to determine the functionality of
the program and how these functions will interact as the program exe-
cutes. The latter information not only directs the formation of test
suites but also provides the information necessary to formulate execu-
tion profiles. The functionalities that imply execution profiles which
cause the functional complexity to increase merit our attention since
these are the conditions that will increase failure rates for a given
design.

Example 12.3 Programs may be seen to differ in terms of the variability of the
system functional complexity. Some software systems will be fairly homogeneous
in terms of their functionalities. There will be very little diversity in the range of
things that the software will do. As a consequence, little variability will be
observed in functional complexity from one application to another. This scenario
is represented graphically in Fig. 12.6 for a sample set of 14 program modules
under four distinct tests of the program. The execution profiles induced by each
of these tests are similar. Thus little variation can be seen in the functional com-
plexity from one test to another. It will be very easy to characterize the functional
complexity of this system from a statistical perspective.

Figure 12.7 shows a very different software system where there is a substantial
difference in functional complexity from one test case to another. It will not be
nearly so easy to characterize the behavior of this program in terms of its func-
tional complexity over varying test scenarios. Great diversity can be identified
from the execution profiles. Some tests will result in high functional complexity
while others will result in low functional complexity. Given the relationship
between software complexity and software faults, some tests will lead to consis-
tent failures while others will not. The most important message here is that a
software system will fail in direct relationship to its functionality. This is a very
predictable and understandable relationship.

Software Metrics for Reliability Assessment 509

70 t

60
)
=
E 50 Test 1
=™
E 40+ R ="y | —_——— Test 2
&)
=30+ Tt Test 3
=
=]
'.,3 20 —-——- Test 4
S 4
=
=

10 4

9 +—r"r—t+ 4+ — i

-] 5] < [Te] w0 M~ > 4] o © &N o <
Module #

Figure 12.6 Low variability in functional complexity.

70 -
» 60
]
e
2 50 Test 1
£
e 40w A /S vy N A | T Test 2
@)
=30+ | Test 3
=
-E 20 1 ——————
< Test 4
=
=
=

-
o
1
=

0 —— Attt
- N O % WO N 0O =~ N ®
T~ - - T

Module #

Figure 12.7 High variability in functional complexity.

12.3.4 Operational complexity

We must now come to terms with the fact that whenever a program exe-
cutes, the changing functionalities will cause it to select only a subset of
possible paths from the set of all possible paths through the control flow
graph representation of the program. As each distinct functionality f; of
a program is expressed, a subset or subgraph of the program and each
of its modules m; will execute. The source code subset of the original pro-
gram represented by the subgraph m; will have a relative subgraph
complexity §;, where &; < p;. This relative subgraph complexity value
will represent the complexity of just the code that was executed, which
clearly cannot be more complex than the original program.

510 Emerging Technidques

The operational complexity o of a system running an application
that generates an execution profile P is

OJ=Z pi&;

The execution profile for a program will change over time as a function of
system inputs. The relative subgraph complexity of a program will also
change over time as a function of the same inputs. For each functionality
f;, there is an operational profile represented by the probabilities

P=<py,ps,.---,p,>

For each functionality, f;, there is also a complexity of module m, on the
jth build represented by &;. For this functionality, the operational com-
plexity of a system may be represented as

o
w;,;=> p,Eyk
k

The complexity, then, of a program will vary in direct relationship to
the particular subgraph selected by each element in the set of pro-
gram functionalities. Each subgraph has its own distinct complexity
attributes.

12.4 Software Complexity
and Software Quality

12.4.1 Overview

A distinct relationship exists between software faults and measurable
program attributes. This information can yield specific guidelines for
the design of reliable software. In particular, software complexity mea-
sures are distinct program attributes that have this property [Khos90].
Generally, if a program module is measured and found to be complex,
then it will have a large number of faults. These faults may be detected
by analytical methods, e.g., code inspections. The faults may also be
identified based on the failures that they induce when the program is
executing. A program may preserve a number of latent faults over its
lifetime in that the particular manner that it is used may never cause
the complex code sequences to execute and thus never expose the
faults. Alternatively, a program may be forced to execute its complex
code segments early in its life cycle and thus fail frequently early on,
followed by reliable service after repair.

Code faults are not inserted by some random process. Faults occur in
direct relationship to the complexity of the programming task. A pro-

Software Metrics for Reliability Assessment 511

grammer is faced with the task of converting a complex requirement into
a complex algorithm in a rich programming language. It is quite reason-
able to expect that the programmer will make mistakes. These mistakes
will express themselves as faults in the program. From a maintenance
perspective, it will be very expensive and time-consuming to find and to
fix these faults. The real problem is to identify design rules that will
restrict code faults from being introduced in the first place.

Typically, a small fraction of the modules comprising a software sys-
tem tend to be complex. For example, [L.eGa90] observed several soft-
ware systems and found that only 4 to 6 percent of the modules were
complex, 32 to 36 percent were simple, and the remaining modules fell
between these extremes. The complex modules will cause great prob-
lems during software development and test. To take early actions that
increase software reliability, software engineers must understand the
relationships between software attributes that are measurable early in
the product life cycle and the software quality characteristics that are
not measurable until late in this cycle. Multivariate analytic tech-
niques are necessary when approaching these relationships statis-
tically, since both software complexity and software quality are
multidimensional concepts. Software quality models exploit the rela-
tionship between static software complexity and software quality met-
rics. Software engineers fit software quality models to data collected
from past projects. With a fitted model, engineers predict the number
of faults that testing and operation will reveal in the modules of a sim-
ilar ongoing project, or identify fault-prone programs of this project
[Bria92, Henr91, Khos92b, Khos93c¢, Khos94a, Lyu95b].

In this section, we consider two multivariate techniques that are
useful in developing software quality models: multiple discriminant
analysis and multiple regression analysis. Multiple discriminant anal-
ysis is an analytic technique used to classify objects into two or more
mutually exclusive and exhaustive groups based upon a set of inde-
pendent variables. The independent variables are p measures of object
attributes. For software quality models, the objects are program mod-
ules and the independent variables are software complexity measures.
The classes are defined a priori based upon some criterion. For exam-
ple, a program module could be classified as high- or low-risk, based
upon the number of changes required to remove faults from the mod-
ule. In this case, some value of change count, say, five, is the criterion.
Thus if the module requires more than five changes to remove faults,
then it is high-risk, otherwise it is low-risk. Discriminant analysis
derives a linear combination of the independent variables that dis-
criminates between the a priori groups such that misclassification
error rates are minimized. Section 12.4.3 applies discriminant analysis
to software quality control.

512 Emerging Techniques

Multiple regression analysis is an analytic technique used to assess
the relationship between a dependent variable and a set of indepen-
dent variables. Again, the independent variables are p measures of
object attributes, software complexity measures for software quality
models. The dependent variable is a measure of some interesting qual-
ity attribute that is believed to vary with some linear combination of
the measurable software attribute. For example, one might suspect
that the number of changes required to remove faults from a module
will vary with the static complexity of this module. Regression analysis
18 concerned with predicting the mean value of the dependent variable
using known values of the independent variables. Section 12.4.4
applies multiple-regression modeling to software quality control.

[Schn92a] noted that metric-based models can give inconsistent
results across development projects due to variations in product
domains and other product characteristics, as well as variations in pro-
cess maturity levels, development environments, and the skill and
experience of people. To minimize the risk in applying quality models,
validated criterion values of metrics obtained from one project are
applied to another project. This procedure is performed at the comple-
tion of one effort and the inception of the other to determine the apt-
ness of a quality model fitted to data from the completed effort for
predicting results of the new effort.

12.4.2 The application and its metrics

Data collected during the development and maintenance of a Medical
Imaging System (MIS) provide for examples in Secs. 12.4.3 and 12.4.4.
MIS is a commercial software system consisting of approximately 4500
routines written in about 400,000 lines of Pascal, FORTRAN, and
PL/M assembly code. MIS development took five years, and the system
has been in commercial use at several hundred sites for three years.
[Lind89] collected the number of changes made to each module due to
faults discovered during system testing and maintenance, as well as 11
software complexity metrics for each of the modules that comprise
MIS. The following list describes the software complexity metrics:

m LOC is the number of lines of code, including comments.
m CL is the number of lines of code, excluding comments.
8 T'Char is the number of characters.

m TComm is the number of comments.

m MChar is the number of comment characters.

m DChar is the number of code characters.

Software Metrics for Reliability Assessment 513

m N =N, +N,is program length, where N, is the total number of oper-
ators and NV, is the total number of operands [Hals77].

m N=n, log, n; + N, loge Nz is an estimated program length, where 1, is
the number of unique operators and mn, is the number of unique
operands.

m Ny = (log; n)! + (log; nu)! is Jensen’s estimator of program length
[Lind89].

m V(G), McCabe’s cyclomatic number, is one more than the number of
decision nodes in the control flow graph [McCa76].

m BW s Belady’s bandwidth metric [Lind89], where BW=1/n 3,1 L; and
L, represents the number of nodes at level i in a nested control flow
graph of n nodes. This metric is indicative of the average level of nest-
ing or width of the control flow graph representation of the program.

The techniques we employ to analyze these data are not limited to this
particular selection of metrics. The process would certainly benefit from
a richer set than was available. Our goal is to demonstrate the model-
ing technique, not to justify the use of any particular selection of met-
rics. Before applying any modeling technique, software engineers must
select a set of metrics that is suitable in their unique environment. The
process of selecting and validating of metrics has been well studied in
the software metrics literature [Muns89, Schn92a, Zuse91, Fent91].

We consider an MIS subset of 390 modules written in Pascal and
FORTRAN for modeling (see MIS.DAT on the Data Disk). These modules
consist of approximately 40,000 lines of code. When applying any mod-
eling technique, an assessment of predictive quality is important.
Data-splitting is a modeling technique that is often applied to test pre-
dictive quality. Applying this technique, one randomly partitions the
data set to produce two data sets. The first data set is used for fitting
the models. The remaining data set, the validating data set, pro-
vides for quantifying the predictive quality of the fitted models. Data-
splitting randomly partitioned the 390 observations of MIS data into
two sets, two-thirds of the observations comprising the fitting data set,
and the remaining one-third comprising the validating data set.

Both multiple-regression modeling and discriminant analysis carry
the assumption that no multicollinearity exists among independent
variables. Violations of this assumption result in unstable models. For
models based upon complexity data, domain metrics typically outper-
form correlated complexity metrics producing models with greater sta-
bility and predictive quality. The principal components analysis
technique discussed in Sec. 12.2.3 will be used to create orthogonal
domain metrics to eliminate potential problems of multicollinearity
among the selected metrics.

}
!

SRR L O R, e R

S

514 Emerging Techniques

The principal components analysis of the MIS-fitting data set pro-
duced two complexity domains. Table 12.3 gives the domain patterns of
these two domains. This table shows the degree of relationship between
each of the complexity metrics and the two domains. Domain 1 is
strongly correlated with all of the metrics except BW. Each of these met-
rics are related to program size. Domain 2 is correlated with BW, a met-
ric related to program control flow. Together, these two domains account
for about 90 percent of the variability seen in the complexity metrics.

Table 12.4 gives the standardized transformation matrix, Tx, for the
domains. This matrix and the vectors of standardized complexity mea-
sures from the fitting and validating data sets yield two domain metric
values for each of the program modules in these data sets. This trans-
formation matrix was produced during the principal components gnal-
ysis of the fitting data set and then used as a baseline transformagion
for the validation data set. These domain metric values and ‘the
changes associated with each module provide data for illustrating the
techniques presented in the following sections.

12.4.3 Multivariate analysis in software
quality control

In the application of multiple discriminant analysis to program risk
classification, the independent variables are p complexity domain met-
rics, and the criterion for class membership is a given value of a soft-
ware quality measure related to program faults [Khos94a, Muns92]. A
model is derived to optimally classify a collection of modules with
known domain metric values and known class memberships. It is

TABLE 12.3 Principal Components Domain Patterns

Domain 1 Domain 2

Metric Size Control
TChar 0.965 0.192
LOC 0.964 0.213
CL 0.941 0.265
DChar 0.932 0.285
Nr 0.917 0.269
N 0.916 0.273
N 0.909 0.306
TComm 0.899 0.107
MChar 0.833 -0.010
ViG) 0.799 0.481
BW 0.145 0.964
Eigenvalues 8.291 1.650
% variance 75.373 15.000

Cumulative % variance 75.373 90.037

Software Metrics for Reliability Assessment 515

TABLE 12.4 Standardized Transformation Matrix

Domain 1 Domain 2
Metric Size Control
TChar 0.136 -0.074
LocC 0.131 -0.053
CL 0.112 0.004
DChar 0.105 0.026
Ne 0.106 0.014
N 0.105 0.019
N 0.095 0.053
TComm 0.147 -0.140
MChar 0.166 -0.238
Vi) 0.025 0.256
BW -0.235 0.912

expected that this model will achieve a low misclassiﬁc%n rate in a
similar software development environment for untested program mod-
ules with known complexity metric values.

A two-class model classifies modules as either high-risk or low-risk
based upon known domain metric values. A module is known to be
high-risk or low-risk after a suitable period of testing and field experi-
ence reveals the number of changes required to remove faults discov-
ered in it, that is, the criterion variable is changes. The criterion divides
the set of modules into two classes, that is, modules having values of
changes greater than some selected number are high-risk, while those
having no more than this number are low-risk. Software engineers
select this criterion variable value based upon the history of similar
projects. An analysis of historical data will reveal the criterion value
that isolates the set of modules that were considered troublesome in
past development experience. The size of this set, and thus the appro-
priate value of the criterion variable, will vary with aspects of the prod-
uct under development and the software development process.

One of several discriminant techniques may be appropriate for a
given analysis. The choice lies with the types of the independent vari-
ables used in the analysis. The independent variables may be all quan-
titative, all qualitative, or a mixture of these two types. Applicable
models in each of these cases use, respectively, linear, discrete, and
logistic discrimination techniques [Dill84]. Since all of the software
complexity metrics in this study are quantitative, we use a linear dis-
criminant model and restrict our discussion to techniques of this type.

In the linear discriminant model that we develop, an observation, x,
is a vector of software complexity metrics. Let x; represent the mean of
two classes, j = 1, 2. Then the generalized squared distance from an
observation to the mean of each class is

Dix)=x-x)"Z'(x-x)

516 Emerging Techniques

where X is the pooled covariance matrix. Thus the posterior probability
of membership of x in class j is

e—1/2D? x)
pix) = o 12D 7

+ e—1/2D§(x)

The model assigns an observation x to the class j having greater poste-
rior probability of membership, that is, the model selects j such that
pX) = max(p(x), po(x)).

We observe two aspects of quality in discriminant models. First, a
model must be successful in classifying program modules having
known complexity data, but unknown fault data. Second, a model must
be able to perform this classification with little uncertainty. The mis-
classification rates of a model measure its success in classifying pro-
gram modules. A model can commit two types of classification errors. A
type 1 error occurs when a low-risk module is classified as high-risk.
This could result in some wasted attention to low-risk modules. A type
2 error occurs when a high-risk module is classified as low-rigk. This
could result in an extension of the scheduled release date as more
effort is required than planned for, or the release of a lower-quality
product. The nature of the impacts of these error types suggests that
the type 2 error rate is more important than the type 1 error rate in
considering the quality of a classification model.

The model assigns a module to one of the two classes based upon
some function of the module’s complexity domain metric data. Modules
with values of this function above some cutoff value fall in one class;
the remaining modules fall in the other class. For some modules the
function value will fall far from the cutoff value that determines class
membership. These modules have a high probability of falling in the
assigned class. For other modules the function value will fall close to
the cutoff value. These modules have a relatively low probability of
falling in the assigned class. For correct classifications, the model prob-
ability of membership in the opposite class is the uncertainty in the
classification.

Example 12.4 We develop a discriminant model for classifying each MIS module
as either high- or low-risk. The domain metric and change data values for the 260
modules in the MIS-fitting data set serve to fit this model. The value of the crite-
rion variable, changes, is one. Modules requiring one or fewer changes to remove
faults are low-risk, those requiring more than one change are high-risk. To mag-
nify the difference between the high- and low-risk modules, we biased the train-
ing data set before training the models [Muns92]. We achieved this by removing
all of the modules with values of changes between 2 and 9. This left 156 modules
in the fitting data set: 126 low-risk modules and 30 high-risk medules.

Application of the fitted model to classify the 130 modules in the MIS testing
data set serves to test the predictive quality of this model. The model classifies

Software Metrics for Reliability Assessment 517

these modules based upon their domain metric values. Since the modules have
known values of changes, the model’s misclassification rates are known for this
data set. Tables 12.5 and 12.6 give the results of the discriminant model for mod-
ules in the upper and lower extremes with regard to those with one or fewer
fault-correcting changes and those with 10 or more fault-correcting changes. The
modules appearing in Table 12.5 belong to the low-risk class. Those appearing in
Table 12.6 belong to the high-risk class. These two tables give the domain metric
values, the relative complexity metric value, the number of changes, and the
model classification for the modules in the testing data set. Tables 12.5 and 12.6
also include the model uncertainty in correct classifications. Table 12.5 shows

TABLE 12.5 Classification Data for Modules with One or Fewer Changes

Program Pred.
number D, D, p’ Changes group Uncertainty

1 -0.63 —~0.59 42.6 0 1 0.04

2 0.48 -1.02 52.7 0 2 —

3 -0.67 -0.26 42.8 ' 1 0.04
4 -0.95 1.27 43.1 /8/ 1 0.33

5 -0.33 0.98 48.6 0 1 0.35
6 -0.37 1.04 48.3 0 1 0.31

7 -0.80 0.52 43.1 0 1 0.07
8 -0.39 —0.08 45.9 0 1 0.06
9 0.05 -0.68 49.2 0 2 —
10 -0.38 —-0.88 44.5 0 1 0.06
11 -0.85 -0.13 41.3 0 1 0.07
12 -0.76 -0.63 41.2 0 1 0.06
13 -1.43 2.75 41.3 0 2 —
14 -0.58 -0.85 42.5 0 1 0.04
15 -0.48 -0.73 43.7 0 1 0.04
16 ~0.18 0.30 48.7 0 1 0.33
17 -0.70 —0.57 41.9 0 1 0.04
18 -0.42 -0.94 43.9 1 1 0.05
19 -0.66 -0.73 42.0 1 1 0.04
20 -0.48 -0.04 45.1 1 1 0.04
21 -0.55 0.17 44.8 1 1 0.04
22 -0.73 1.18 45.0 1 1 0.16
23 0.45 -0.47 53.5 1 2 —
24 -0.28 -0.22 46.7 1 1 0.09
25 -0.39 -0.80 44.5 1 1 0.05
26 -0.59 0.61 45.3 1 1 0.06
27 -0.23 -0.76 46.2 1 1 0.12
28 -0.59 -0.85 42.5 1 1 0.04
29 -0.75 —-0.86 40.9 1 1 0.07
30 -0.85 -0.46 40.7 1 1 0.08
31 -0.41 ~-0.79 44.3 1 1 0.05
32 -0.23 -0.74 46.2 1 1 0.12
33 -0.67 -0.02 43.3 1 1 0.04
34 ~0.23 0.65 48.9 1 1 0.38
35 -0.37 -1.12 44.1 1 1 0.07
36 -0.56 -0.75 42.9 1 1 0.04
37 -0.88 -0.29 40.7 1 1 0.09
38 -0.15 -0.15 48.1 1 1 0.26

T

518 Emerging Techniques

that the model misclassified 4 of the 38 low-risk modules, yielding a type 1 error
rate of about 10 percent. Table 12.6 shows that the model misclassified 4 of the
30 high-risk modules, giving a type 2 error rate of about 13 percent. The average
uncertainty for high- and low-risk classifications is about 11 and 3 percent,
respectively. Overall, this model misclassified about 12 percent of the modules in
this study. This demonstrates an average uncertainty of about 7 percent.

12.4.4 Fault prediction models

In the application of multiple regression modeling to fault prediction,
the independent variables are p complexity domain metrics, and the
dependent variable is a software quality measure related to program
faults [Khos90, Khos93b]. The first step in multiple regression model-
ing is model selection. In this step, one selects a subset of the p
attributes to include in the regression. Several techniques are available
for selecting this subset. These include stepwise regression, forward
selection, backward elimination, the R* criterion, and C, criterion.

TABLE 12.6 Classification Data for Modules with 10 or More Changes

Program Pred.
number D, D, P’ Changes group Uncertainty

101 2.40 1.46 76.4 10 2 0.00
102 -0.27 0.25 47.7 10 1 —

103 112 0.50 61.9 11 2 0.00
104 -0.04 -0.12 49.2 11 2 0.42
105 -0.28 1.01 49.2 11 1 —

106 1.53 -0.85 63.3 11 2 0.00
107 1.36 1.98 67.2 12 2 0.00
108 -0.07 -0.23 48.8 12 1 —

109 1.37 1.78 66.9 12 2 0.00
110 0.38 0.81 55.4 13 2 0.00
111 0.60 2.15 60.1 14 2 0.00
112 -0.20 0.97 49.9 14 2 0.33
113 2.57 -1.32 72.6 15 2 0.00
114 0.34 0.66 54.6 15 2 0.00
115 -0.53 -0.36 44.0 16 1 —

116 1.52 2.13 69.1 16 2 0.00
117 1.58 2.53 70.4 17 2 0.00
118 2.23 3.28 78.3 19 2 0.00
119 1.06 —.28 59.8 20 2 0.00
120 0.25 -1.00 50.5 22 2 0.00
121 0.58 -1.21 53.4 25 2 0.00
122 0.96 0.01 59.4 28 2 0.00
123 3.98 -0.77 87.6 30 2 0.00
124 1.66 1.83 69.9 30 2 0.00
125 1.78 0.18 67.8 34 2 0.00
126 1.34 -0.34 62.5 38 2 0.00
127 2.563 —0.97 72.9 40 2 0.00
128 4.90 2.03 102.1 42 2 0.00
129 1.09 -1.12 58.5 46 2 0.00
130 4.28 0.08 92.2 98 2 0.00

Software Metrics for Reliability Assessment 519

In the stepwise regression analysis procedure, an initial model is
formed by selecting the independent variable with the highest simple
correlation with the dependent variable. In subsequent iterations new
variables are selected for inclusion based on their partial correlation
with variables already in the regression equation. Variables in this
model may be removed from the regression equation when they no
longer contribute significantly to the explained variance. There must
be an a priori level of significance chosen for the inclusion or deletion
of variables from the model. The second stepwise procedure is forward
inclusion. In the case of this procedure, a variable once entered in the
regression equation may not be removed. The third technique, back-
ward elimination, forms a regression equation with all variables and
then systematically eliminates variables, one by one, which do not con-
tribute significantly to the model. For further details concerning model
selection, refer to [Myer90]. '

Stepwise procedures for the selection of variables in a regression
problem should be used with caution. These are useful tools for vari-
able selection only in the circumstances of noncollinearity. We recom-
mend a different set of procedures in the presence of collinearity. Once
collinearity has been identified, a set of new variables, principal com-
ponents, can be formed by using principal components analysis (see
Sec. 12.2.3). These new variables will not be collinear. Then, stepwise
procedures are used to select the factors which are important for pre-
dicting the dependent variable, which in our case will be an enumera-
tion of programming faults.

Traditionally, the R* statistic is used almost exclusively in empirical
studies in software engineering. Some distinct problems are associated
with the use of R2, which is defined as follows:

regression sum of squares

R?=
sum of squares about the mean
Alternatively,
po_ 2T VP
(Y, -Y)?

In that (Y, — Y)* is constant for all regression models, R? can increase
only as independent variables are added to a regression equation,
whether or not they will account for a significant amount of variance in
the dependent variable. It is important to note that the R? statistic
does not assess the quality of future prediction. If a model is suffi-
ciently tailored to fit the noise and other aberrations in the data, then
it is quite possible to develop a model that fits the data well but is
worthless for future prediction. While we are interested in the fact that

520 Emerging Techniques

the model fit the data, our primary focus should be on the ability of the
chosen model to render worthwhile future predictions.

The case for the C, statistic is very different. C, may be deﬁned in
terms of R as follows

(1-R;)n -T)
1-R2

where n represents the number of observations and T represents the
total number of parameters in the complete model. The statistic C, is a
measure of the total squared error in a regression. Thus, a researcher
should choose a model with the smallest value of C,. This statistic is to
be preferred to R* because a penalty is introduced for overfitting the
model with excess independent variables, which bring with them an
additional noise component.

After selecting a model, we must fit it to the observed data. Some
notation becomes helpful here. For N observations, the dependent vari-
able values y; will have corresponding preiicted value, y;, produced by

C,=

- (n-2p)

the model and a residual value €; = y; — y,\representing the difference
between the value predicted by the model and the observed value. For
a model with p independent variables, x;, x2, . . . , x,, the least-squares
estimation technique yields estimated model parameters, B, B1, .. ., B,,
such that, for 1 < <N,

yl=B0+B1xi1+B2xi2+--- +Bpxip and the sum of Z(j}i—yf
i=1
is minimized.
Example 12.5 Applying these concepts to the MIS data, we select a model for
predicting changes for each MIS module given the domain metric values for these
modules. The domain metric and change data values for the 260 observations in
the MIS fitting data set serve to fit this model. The best model revealed by all

model selection methods discussed above includes both domain metrics. The fit-
ted model is given by

Changes =7.15+7.07D, + 1.36D,

The domain metric and change data values for the 130 observations in the MIS
testing data set serve to measure the predictive quality of the fitted model. The
average absolute error of the model on these data is 5.32.

12.4.5 Enhancing predictive models
with increased domain coverage

One aspect of program variability that is not currently represented by
any code metrics in the domain model of program complexity is a mea-
sure of the complexity of data structures in a program. For example,
consider the case of a program to find the average value of a set of real

Software Metrics for Reliability Assessment 521

numbers. This program may be written using only scalar values to
accumulate the developing sum and a count of the numbers processed
so far. On the other hand, the numbers may be copied into an array as
they are read. After all of the numbers have been read, the contents of
the array may be tallied to compute the sum. Clearly, these two pro-
grams will differ as a result of the complexity of the data structures
that they will contain. They will also employ completely different algo-
rithms to compute the sum. Hence, measures of their algorithmic com-
plexity will also be different.

[Muns93] offered a measure of data structure complexity that is
based upon a specification of the complexity of each data structure in
the implementation language. The data structure complexity of a mod-
ule, DS, is evaluated as the sum of the complexities of the data struc-
tures used in a program module.

Central to the idea of validating a new measure is the notion that it
is measuring an attribute of programs not already being measured by
another metric. That is, the new metric must map into a new orthogo-
nal domain not already in the domain model. There must be some
aspect of variability between programs that is attributable to the new
metric that is not present to a large extent in other measures taken on
the program. The utility of the new metric will be assessed by its abil-
ity to contribute new, distinct, and meaningful information to our
understanding of program complexity.

For the present study, our metric analyzer for Ada code was aug-
mented to compute data structure values for Ada source programs.
This analyzer computes 16 complexity metrics for Ada program mod-
ules at the package level. In addition to DS, this analyzer computes a
subset of the metrics defined in Sec. 12.4.2, including N;, N,, 11, 1,
V(G), and BW, along with the metrics defined in the following list:

m Stmts, the number of Ada statements

= Paths, the number of unique paths in the control flow graph
» Cycles, the number of cycles in the control flow graph

» Max—Path, the longest path in the control flow graph

s Path, the average length of a path in the control flow graph
® V(G), McCabe’s cyclomatic complexity

m CO, the number of calls out of a package

s CI, the number of calls into a package

m Global, the number of global data references [Nav187]

= Span the number of levels up the procedure tree that the analyzer
had to go to find the definition of each data item being referenced
divided by the number of references [Nav187]

S

¥
&=
.

-

522 Emerging Techniques

A total of 240 separately compilable Ada units or packages were
measured. First, we were interested in the structure of the underlying
complexity domains without the data structure metric, DS, present.
The domain structure for this analysis is shown in Table 12.7. For the
set of 15 metrics shown, there were four distinct domains. The result-
ing domain structure had four domains in it with a stopping rule for
the analysis that the associated eigenvalues for each new domain be
greater than or equal to 1.

Domain 1 shows a high correlation with Stmts, N,;, N,, and Paths.
These metrics all relate to size or volume of a program. Hence, we will
identify this domain as relating to a size domain in our domain model.
Similarly, domain 2 could be called a control flow domain, domain 3 an
action / reusability domain, and domain 4 a modularity domain.

For the second analysis, the data structures metric, DS, was added to
the set of 15 primitive metrics and the data were reanalyzed. The
domain structure for this second analysis ys/:hown in Table 12.8. In
this case the resulting domain structure had five domains in it, again,
with a stopping rule of 1 for the eigenvalues. The essential domain
structure has been preserved from the first analysis to the second.
That is, with only one exception, the size domain contains the same set
of metrics in both analyses. Similarly, the control flow, action/reusabil-
ity, and modularity domains contain the same sets of metrics in both

TABLE 12.7 Domain Pattern Without Data Structure Metric

Domain2 Domain3

Domainl D — —_— Domain4
E— Control Action/ _—
Metric Size flow reuseability Modularity
N, 0.960 0.202 0.086 0.007
N, 0.951 0.142 0.153 0.026
Stmis 0.893 0.350 0.092 -0.008
Global 0.887 0.278 0.027 -0.050
coO 0.877 0.189 0.029 -0.024
T2 0.644 —-0.042 0.443 0.095
Paths 0.600 0.374 -0.286 -0.126
lldax—Path 0.328 0.906 0.068 -0.007
Path 0.349 0.892 0.069 -0.023
Cycles 0.164 0.772 0.026 -0.045
Band 0.102 0.765 0.372 0.104
M 0.118 0.746 0.480 0.057
Span -0.012 0.199 0.713 -0.162
ViG) 0.319 0.431 0.546 0.077
CI -0.028 0.035 -0.087 0.968
Eigenvalue 5.345 4.026 1.515 1.016
% variance 35.633 26.840 10.100 6.773

Cumulative
% variance 35.633 62.473 72.573 79.347

Software Metrics for Reliability Assessment 523

analyses. A new domain, however, is present in the second analysis
that was not present in the first. This is the new domain containing the
DS metric.

With the set of primitive metrics employed in this study, DS has
served to identify another complexity domain. In this regard, it is
important to note the eigenvalues reported in Tables 12.7 and 12.8.
These eigenvalues represent the relative proportion of variance
accounted for by each of the domains. The larger the eigenvalue the
more variance attributable to each domain. The sum of the eigenvalues
for the domains in each of the tables represents the total variance
accounted for by that domain structure. The four domains displayed in
Table 12.7 account for about 79 percent of the variance explained by
the underlying metrics, while the five domains displayed in Table 12.8
account for about S%ercent of the variance explained by the underly-
ing metrics. Thus, the increase in domain coverage by the addition of
the data structures domain has increased the ability of the domain
model to describe differences among the programs being measured.

12.5 Software Reliability Modeling

Current software reliability modeling approaches are, in some cases,
simply extensions of hardware reliability models. Qur view of complex

TABLE 12.8 Domain Pattern with Data Structure Metric

Domain2 Domain3 Domain4
Domainl ——— Domainb
_— Control Data Action/ _
Metric Size flow structures reuseability Modularity
N, 0.922 0.197 0.111 0.153 -0.003
N, 0.899 0.284 0.195 0.165 0.023
Stmts 0.897 0.119 0.135 0.099 0.006
Global 0.871 0.181 0.425 0.044 0.002
co 0.818 0.141 0.527 0.059 0.006
Mg 0.706 0.295 -0.104 -0.108 -0.067
Paths 0.350 0.894 0.095 0.095 —-0.000
Max—Path 0.372 0.878 0.095 0.099 -0.015
Path 0.131 0.811 0.180 -0.050 -0.075
Cycles 0.087 0.741 0.187 0.437 0.046
Band 0.144 0.730 ~0.013 0.452 0.128
DS 0.117 0.267 0.860 -0.027 -0.034
M 0.353 0.042 0.841 0.144 0.011
Span 0.011 0.116 0.005 0.840 -0.117
WiG) 0.270 0.409 0.146 0.546 0.102
) -0.026 0.013 -0.019 —0.054 0.980
Eigenvalues 4.912 3.841 2.095 1.524 1.017
% variance 30.700 24.006 13.094 9.525 6.356

Cumulative
% variance 30.700 54.706 67.803 77.328 83.684

524 Emerging Techniques

software systems is colored by our experience with complex mechanical
or electronic systems. The dynamic complexity of the software system
will depend on the inputs to the system. The net effect of differing
inputs to the system is that the operational or functional complexity of
the system will change in response to the varying inputs. Given the
association between module complexity and faults, it follows that as
applications change over time intervals, so too will the likelihood of
faults change with respect to time.

12.5.1 Reliability modeling with software
complexity metrics

For the purpose of demonstration, we will now explore how the notions
of relative complexity and functional complexity may be incorporated
into a Bayesian model for reliability measurement. There are good rea-
sons for employing a Bayesian technique in this modeling process. In
this model, successive execution times between failures are indepen-
dent random variables T, Ts, ..., T, ..., where T, is the execution time
of the software system being modeled, from the time of the repair of the
(i — Dst failure to the ith failure. By convention, #; will represent an
observation of the random variable T;. The T’s are assumed to have an
exponential probability density function (pdf) with a parameter A of

f@,M@) = Mi)e* @t t>0 A>0

The parameter A is related to the failure rate of a program. As the pro-
gram progresses through the testing process, traditional hardware
reliability modeling theory would have the failure rate diminish as
fixes are made to the system, i.e.,

A —1)>A@)

In software development applications, we cannot always assume that
the system failure rate will improve as a result of a fix. Sometimes a fix
will introduce faults of its own.

In the Littlewood-Verrall (Bayesian) model (see Sec. 3.6.1), the param-
eter A is assumed to have a pdf of its own. Let the pdf of A(i) be denoted
by g(l, i, a), where o is a parameter or vector of parameters. From the
standpoint of mathematical tractability, the pdf of A(i) is chosen to have
a gamma distribution in two parameters, o and y(i) as follows:

_ y@y@] - e

(0 t>0 A>0

g, i, o)

The parameter, y(i), is essentially a scaling factor and is a monotoni-
cally increasing function of i. This assumption will guarantee the

Software Metrics for Reliability Assessment 525

ordering of the distribution functions in i{. Further, y(i) is not esti-
mated but is completely determined as a measure of a debugger’s
behavior at time i. The main problem here is that we have left the well-
defined realm of mathematics and entered the realm of psychology. We
would like to derive more substantive reliability models than those
based solely on the attitudes or competencies of programmers.

It would seem reasonable that some measure of system complexity
may be used for the ill-defined parameter, y. If, on the one hand, it is
important that y(i) be a monotonically increasing function of i, then
the system relative complexity measure, p’, would meet the monotoni-
cally increasing property as a function of time. Hence,

P (p D) te!
I'(o)

The property that y(i) be a monotonically increasing function of i is an
unnecessary restriction. This property will certainly ensure that the
failure rate is a decreasing function of time. Empirical observations,
however, do not support this view of failure rate. In many cases, we do
observe an increase in failure rate during some time intervals.

Many dynamics operate on a program during the period it is mea-
sured for reliability modeling. As the functional complexity induced by
test scenario on a program increases, so too will its exposure to code
likely to contain faults. The failure rate at any time, i, ought to reflect
which functions the program is executing during this time. Hence, we
feel that the functional complexity ¢; at time i is a much better param-
eter for this model, in which case,

O lg=oit
- (o)

Consequently, two distinct variants in the Bayesian case are observed:
one with relative complexity and one with dynamic complexity. In
these modeling approaches some rather intensive measurements must
be made on the software. It is not sufficient to record the time that the
system failed; it is also necessary to measure the incremental versions
of the systems in terms of their complexity as well as the operational
profiles generated by test scenarios over time.

To complete the discussion of the Bayesian models, we will use the
case where y(i) = ¢,. It can be shown (see Prob. 12.13) that the maxi-
mum likelihood estimate for o, &, is obtained as

g, 1,)= t>0

gl i, o) t>0

526 Emerging Techniques

Subsequently, the estimate for the current reliability of the software
at the present time, n, is given by

. . 0.\
Rty = 1- Fit,) - (.)
As we can see from this functional relationship, the reliability of the
system is directly dependent on the functional complexity induced by
the operational profile of the test scenario during this nth time inter-
val. The greater the functional complexity of the test, the less reliable
will the software appear to be.

12.5.2 The incremental build problem

In the preyious section we have taken a look at how software complex-
ity attributes can be introduced into software reliability models. None
of these approaches reflect the fact that most modern software systems
are developed incrementally. This is yet another aspect of software
development that must be incorporated into our thinking about soft-
ware reliability modeling.

Functionality will be added incrementally to a developing core sys-
tem. At any point in time the system is composed of a fixed set of mod-
ules. The precise status of the system at any particular build i will be
given by the vector v introduced in Sec. 12.2.6. If we examine the con-
tents of this vector, we will see that some modules have received exten-
sive revision. Other modules have not been modified in some time.
Those modules that have received continual changes will be substan-
tially more failure-prone than those modules that have a longer period
of stability. With this consideration in mind, we can observe that the
granularity of the reliability modeling should be at the software mod-
ule level and not on the software system as a whole [Schn92b].

Each program module in a total system is more than likely at a differ-
ent stage of maturity as a system is developed. Most modern software
systems begin with a nucleus of legacy code. This is code that has been
ported from an older application. It has probably been run for some time.
It may also be fairly fault-free. On the other hand, new program modules
will be added to the system representing enhanced functionality of the
software. These new modules will be added to the system over a period
of time. At any particular build, the total system will consist of program
modules at varying levels of maturity and, consequently, reliability.

Let TV be the estimated time to failure of each module m; at the ith
build of the software. The estimated time to failure of the total system,
Tsvs on the ith build may be represented by

A
TSYS -

Software Metrics for Reliability Assessment 527

This means of computing the reliability of a modular software system
has been successfully used in the development of reliability estimates
for the space shuttle onboard flight software system [Schn92b] (see
Sec. 11.7.2).

12.6 Summary

This chapter examines software complexity measurement and soft-
ware quality as these issues relate to software reliability. We describe
the measurement of software attributes for early prediction of software
quality. These attributes are primarily software complexity measures,
which include relativeprogram complexity and dynamic program com-
plexity. Various strategies have been examined to exploit the rela-
tionship between software quality and software complexity. We also
demonstrate how software complexity metrics can be included in soft-
ware reliability models for the enhancement in their reliability predic-
tions, and how reliability estimates for incrementally built systems can
be obtained.

Problems

12.1 Software systems are characteristically different from hardware sys-
tems. From the standpoint of reliability modeling, exactly how does software
differ from hardware?

12.2 System functional complexity is a dynamic measure of complexity. What
is the relationship between the static complexity of a system as measured by
relative complexity and the dynamic complexity of a system as measured by
functional complexity?

12.3 What is the difference between functional complexity and operational
complexity?

12.4 How would measurements be taken on a system to compute operational
complexity?

12.5 How might existing models of software reliability be enhanced to incor-
porate measures of dynamic complexity?

12.6 List all the software metrics that strongly correlate with the second
domain in Table 12.9.

12.7 Given a program module with the following standardized measurements,

N2 = -0.38485
N1 = -0.40943
LOC = -0.41983
ELOC = -0.45814
ETA2 = -0.42401
ETAl = -0.13556

528 Emerging Techniques

TABLE 12.9 Domain Pattern

Rotated factor pattern (varimax rotation method)

‘ Factorl Factor2
N2 0.90650 0.40314
N1 0.90241 0.42068
LOC 0.88923 0.39994
ELOC 0.87983 0.44468
ETA2 0.76635 0.58308
ETA1 0.40602 0.90972
Eigenvalues 3.953055 1.864772
TABLE 12.10 Standardized Transformation
Matrix, T1
Standardized scoring coefficients

Factorl Factor2
N2 0.37179 -0.24400
N1 0.34825 -0.20546
LOC 0.35964 -0.23069
ELOC 0.30054 -0.13353
ETA2 0.04072 0.26228
ETA1 -0.65691 1.30095

and the transformation matrix in Table 12.10, what are the domain metrics for
this module?

12.8 Given the data in Table 12.11, what is the relative complexity metric, p;,
and the scaled relative complexity metric, p}, for each program module?

12.9 Why is multicollinearity an important issue in software quality mod-
eling?

12.10 For a discriminant model that classifies high-risk and low-risk mod-
ules, what is a type 1 error and what is a type 2 error?

12.11 What is a measure of the quality of predictions of a multiple linear
regression model?

TABLE 12.11 Domain Metrics

Factor scores

Module Factorl Factor2 Factor3d
1 -0.505 -0.508 -2.752
2 -0.493 0.874 0.445
3 6.754 -0.322 1.787

Figenvalues 7.048 2.560 2.547

Software Metrics for Reliability Assessment 529

12.12 List the steps of model development related to the data-splitting tech-
nique. Why is this technique used?

12.13 Solve the Bayesian model in Sec. 12.5.1. Namely, (1) Express the pdf of
t; given o and ¢; (2) solve &; (3) obtain the reliability estimate at the present
time n.

S

