Appendix

Review of Reliability Theory,
Analytical Techniques,
and Basic Statistics

This appendix reviews the reliability theory, analytical modeling tech-
niques, and statistical techniques commonly used in software reliabil-
ity engineering studies. Reliability theory establishes a foundation for
the application of reliability concepts and reliability-related quantities
to a system. Analytical modeling provides frameworks for abstracting
the information obtained from measurement-based studies. Statistical
techniques allow us to extract reliability measures from data, analyze
the structure of data, and test hypotheses. These techniques are useful
in every phase of the empirical evaluation of software reliability. The
reliability theory reviewed in this appendix includes reliability defini-
tions, underlying mathematics, and failure rate functions. The analyti-
cal methods consist of combinatorial models, Markov models, Markov
reward analysis, birth-death processes, and Poisson processes. The sta-
tistical techniques cover parameter estimation, characterization of
empirical distribution, and multivariate analysis. Our discussion is not
intended to be comprehensive. For a comprehensive study of the tech-
niques, you are encouraged to read [Dani79, DeGr86, Dill84, Hogg83,
Howa71, John82, Kend77, Mood74, Shoo83, Triv82].

B.1 Notation and Terminology

This section gives notation, terminology, and several important distri-
butions that are referred to throughout App. B. The set of all possible
outcomes of an experiment is called a sample space. A sample space can
be made up of all kinds of things. For example, conducting an experi-
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ment may consist of tossing a coin two times and observing the face
of each toss. The sample space may be represented by S =
{(head,head),(head,tail),(tail,head),(tail,tail)}. Another example is to
draw a ball from an urn containing blue, green, and red balls and
record their color; in this case the sample space is S = {blue, green, red}.
In order to develop mathematical models for describing the probabili-
ties of the occurrence of outcomes (events) in a sample space, it is con-
venient to define a function that maps each outcome in the sample
space to a single numerical value. Such a function is called a random
variable. Therefore, we define a random variable to be the following: a
random variable, say X, is a function defined over a sample space, S,
which associates a real number, X(e) = x, with each possible outcome e
in S. There are two types of random variables. If the set of all possible
values of a random variable is finite or countably infinite, we call it a
discrete random variable. On the other hand, if a random variable is
capable of attaining any value in some interval and not just discrete
points, then we call it a continuous random variable. Random variables
are usually denoted by capital letters, such as X, Y, and Z, while the
possible values that the corresponding random variables can attain are
denoted by the lowercase letters x, y, and z.

B.1.1 Discrete random variables

For a discrete random variable X, the sample space is countable. There-
fore, the values that X can assume are countable as well. The probabil-
ity of the event such that X(e) = x is given by P(e : X(e) = x,e € S), it is
usually denoted by p(x). We call p(x) the probability density function
(pdf) or density function of X if and only if p(x;) 2 0 and Z,. p(x;) =1
where x’s are the possible values of X. The cumulative distribution
function (cdf) or simply distribution function, PIX < x} =X, .. p(x)), is
the probability that X is less then or equal to the fixed value x. Associ-
ated with random variable X are two important characteristics of its
distribution—the mean (or expected value) and the variance. The
expected value of X is defined to be

EX]=> xp(x) (B.1)

where the sum is taken over all possible values of X. E1X] is a weighted
average used to measure the center of the associated distribution. The
following variance, however, measures the dispersion of the associated
distribution:

Var(X)=E[(X -EIX])?] => x’px) - (Z xp(x))2 (B.2)

X X
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Several important discrete pdf’s and their corresponding mean and
variance are given in Table B.1.

B.1.2 Continuous random variables

For each terminology we used for the discrete random variables, there
is a parallel analogy for the continuous ones. We denote the pdf of a
continuous random variable X by f(x). The function f(x) must satisfy
the following two conditions: (1) f(x) = 0, Vx; and (2) |~ flx)dx = 1.
Recall from the discrete case that the cdf of X at x is the probability
that X is less than or equal to the point x. Unlike what we have for the
discrete case, instead of summing over all {x; : x; < x} we integrate the
pdf over this subset to obtain the cdf. That is,

Fw=PX<a=[ fiydy (B.3)
The mean of a continuous random variable X is defined to be

EX1=] xfxidx (B.4)

and the variance is

2

Var(X) = E(X - EX17] = [ #*f(x)dx - ( [ xf(x)dx) (B.5)

—_ —co

Table B.2 summarizes some of the important continuous pdf’s and
their corresponding mean and variance.

B.1.3 Conditional probabilities and
conditional probability density functions

In some random experiments, we are interested in only those outcomes
that are elements of a subset C, of the sample space S. This means that
the sample space is essentially the subset C,. The problem is, how do
we define probability functions with C, being the “new” sample space?

TABLE B.1 Pdf, Mean, and Variance of Important Discrete Distributions

Bernoulli Binomial Poisson
Parameters O<p<lg=1-p O<p<l,g=1-p 0<A
n e\
pdf pqu—x’xzo’l (x)pqux’x:(): 17"'9” x| ,JCZO, 13
Mean b np A

Variance g npq A
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TABLE B.2 Pdf, Mean, and Variance of Important Continuous Distributions

Normal Exponential Gamma Chi-square

Parameters —o0 < L < oo 0<h 0<A0<a v=12,-
1 2 Al 1
~[{x-p)al®/2 -Ax a-1,Ax = 0 wlZ2-x/2
pdf Vano © ’ A, rem™ ¢ 22w/ ¢
—o0 <X < o0 0<x O<x 0<x

Mean L /A o/ A v
Variance o’ /A2 o/ A2 2u

Let P(C)) be a probability function defined on the sample space S
such that P(C)) > 0, and let C; be another subset of S. Then the proba-
bility of the event C, relative to the new sample space C, or the condi-
tional probability of C, given C1, denoted by P(C;, | C)), is defined to be
P(CinC)IP(C,).

A similar concept is carried through for the conditional pdf of a dis-
crete random variable. Let X; and X; be two discrete random variables
having pi(x;) and p,(x;), respectively, as their marginal pdf’s and
plxy,x,) as their joint pdf. Note that we can obtain the marginal pdf for
X, by summing the joint pdf over all possible values of X;, that is, p;(x,)
= Zy,, P(x1, X), and vice versa for X,. Then the conditional pdf of X,
given X for i, j € (1,2} is given by |

P(XL :xi,)fj :xj)

pla | &) = PXi=x | X,=x) = ——p 2705

- plgjii;ﬁi) pfx;)>0 (B.6)
FAN)

Analogously, for continuous random variables we define the condi-
tional pdf of X; given X, to be

- f(xi) x_]) 4 .
fla | 2)= D258 i) >0 B.7)

for i,j € {1,2}, where f{(x;) = [". f(x,, x;)dx; is the marginal pdf of X,.

B.1.4 Stochastic processes

A stochastic process is a collection of random variables X, or X(¢) where
t belongs to a suitable index set. The index ¢ can be a discrete time unit,
then the index set is T'= {0,1,2,3,4,,}; or it can be a point in a continu-
ous time interval, then the index set is equal to T = [0, ). An example
of a discrete time stochastic process is the outcomes at successive tosses
of a coin. In this case, outcomes can be observed only at a discrete time
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unit, i.e., toss 1, 2, 3, etc. Conversely, the number of births in a popula-
tion 1s an example of a continuous time stochastic process, since a birth
can happen at any time in a day and any day in a year. Stochastic pro-
cesses are classified by their state space, or the range of their possible
values, by their index set, and by the dependence structure among ran-
dom variables X(¢) that make up the entire process. We will discuss dif-
ferent types of stochastic processes in the subsequent sections.

B.2 Reliability Theory

Reliability theory is essentially the application of probability theory to
the modeling of failures and the prediction of success probability. This
section summarizes some of the key points in reliability theory. It is
assumed that the reader has an introductory knowledge of probability
theory [Shoo83].

B.2.1 Reliability definitions
and mathematics

Modern probability theory bases many of its results on the concept of a
random variable, its pdf’s, and the cdf’s. In the case of reliability, the
random variable of interest is the time to failure, 7. We develop the
basic relationships needed by focusing on the probability that the time
to failure T is in some interval (¢, + A¢)

Pt <T<t+At) = probability that t < T < ¢ + At

The above probability can be related to the density and distribution
functions, and the results are

Pi<T<t+At)=f()At =F(t + At) — F(¢) (B.8)

where F(¢) and f(¢) are the cdf and pdf (or the failure density function),
respectively.

If we divide by At in Eq. (B.8) and let At — 0, we obtain from the fun-
damental definition of the derivative the fact that the density function
is the derivative of the distribution function:

dF(t)
dt

£(t) = (B.9)

Clearly, the distribution function is then the integral of the density
function

Ft) = fot Fx)dax (B.10)
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Note this function is equivalent to the probability of failure by time ¢.
Since the random variable T is defined only for the interval 0 to +o
(negative time has no meaning), from Eq. (B.8) we can derive

Ft)=PO<T<t) = fot Flx)dx (B.11)

One can also define the probability of success at time ¢, R(¢), as the
probability that the time to failure is larger than ¢ (that is, T > #):

RO=PT>D=1-F@t)=| flxdx (B.12)

where R(¢) is the reliability function.

Mathematically, Eq. (B.12) summarizes most of what we need to
know about reliability theory. However, when we start to study failure
data for various items, we find that the density function f(¢) is not very
useful. Instead, the failure rate function (hazard function) is derived.

B.2.2 Failure rate

A useful concept in reliability theory to describe failures in a system
and its components is the failure rate. It is defined as the probability
that a failure per unit time occurs in the interval, say, [¢,f + A¢], given
that a failure has not occurred before ¢. In other words, the failure rate
is the rate at which failures occur in [t,¢ + A¢]. That is,

Pi<T<t+At|T>t) Pe<T<t+A?)
At - AtP(T>v)

 Fi+An-F@)
~ AtR®

Failure rate =

The hazard rate is defined as the limit of the failure rate as the inter-
val approaches zero, that is, A# — 0. Thus, we obtain the hazard rate at
time £ as

2(0) =A1ti? Fi+At)-F@) f@) (B.13)

0 AtR(t) " R®

The hazard rate is an instantaneous rate of failure at time ¢, given that
the system survives up to £. In particular, the quantity z(¢)d¢ repre-
sents the probability that a system of age ¢ will fail in the small inter-
val £ to £ + dt. Note that although there is a slight difference in the
definitions of hazard rate and failure rate, they are used interchange-
ably in this book.
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The functions f(¢), F(¢), R(t), and z(¢) could be transformed with one
another. For example, combining Eq. (B.9) with Eq. (B.13) for any time
t yields

dFt) 1

dr % (B.14)

From Eq. (B.12), we observe that dF(¢)/dt = —-dR(t)/dt, and substitution
in Eq. (B.14) yields

2(¢) =

dR(2)
R(t)

=—z(t)dt (B.15)

Integrating both sides with respect to ¢, we obtain

t

InR() = — f 2x)dx +¢

0

Since the system is initially good and the initial condition R(0) = 1,
¢ must be 0. Exponentiating both sides results in

R(&) = exp [ _ fot z(x)dx} (B.16)

Note Eq. (B.16) is the fundamental equation relating reliability to fail-
ure rate.
Differentiating both sides of Eq. (B.16), f(#) is given in terms of z(t) by

£() = 2(t)exp [— fot z(x)dx] (B.17)

Note all of the above relationships hold for the corresponding condi-
tional functions as well. One simply replaces the hazard, reliability,
cumulative distribution, or probability density functions for a “single”
failure by the associated conditional functions. For example, suppose
the system has not failed at time ¢, then the conditional hazard rate
function is denoted as z(¢|¢), where ¢t > ¢, and z(t|t,) = f(£]|¢t)/
[1-F(t|t)] =f(&|t)/R(t|¢t,).

The hazard rate will change over the lifetime of a system. The haz-
ard rate curve depicted in Fig. B.1 exhibits the characteristics of many
systems or components. The shape is often referred to as a bathtub
curve and can generally be divided into three distinct regions.

Region I, known by various names such as the debugging phase or
infant mortality, represents early failures because of material or man-
ufacturing defects or improper design. Quality control and initial prod-
uct testing usually eliminate many substandard devices and thus
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Hazard rate 2(t)

Region [:
early failures

Region |1
random failures

Region lII:
wear-out failures

Time ¢t

Figure B.1 Typical hazard rate of a system or component.

avoid this higher initial hazard rate. In this region, the hazard rate
tends to decrease as a function of time.

Region II is known as the useful life period or normal operating
phase and represents chance failures caused by sudden stress or
extreme conditions. This is the only region in which the exponential
distribution is valid: since the hazard remains constant, f(f) is roughly
the density of an exponential distribution.

Region III represents the wear-out or fatigue failures and is charac-
terized by a rapid increase in the hazard rate. In the case of software,
there is no software wear-out failure mode. As a result, this region does
not apply to software. However, there is a different set of failure modes
for software: incorrect specification, misunderstood specifications, algo-
rithmic error, input data error, program logic error, etc. The complexity
of these software failure modes rivals or surpasses the difficulties in
analyzing hardware failures.

Example B.1 (Constant Hazard) If a constant-hazard rate z(z) = A is assumed, the
time integral is given by [6 Adx = ¢, resulting in

z(t)=A (B.18)
F@) =he™ (B.19)
Rit)=e™=1-F(@) (B.20)

The four functions z(¢), f(¢), F(t), and R(¢) are drawn in Fig. B.2. A constant-
hazard rate implies an exponential density function and an exponential reliabil-
ity function.

Example B.2 (Linearly Increasing Hazard) When wear or deterioration is present,
the hazard will increase as time passes. The simplest increasing-hazard model
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Figure B.2 Constant-hazard model: (@) constant
hazard; (b) decaying exponential density function,;
{¢) rising exponential distribution function; {(d)
decaying exponential reliability function.
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that can be postulated is one in which the hazard increases linearly with time.
Assuming that z(¢) = Kt for ¢ > 0 yields

zt)=Kt
f() = Kte™Xt*2

R(t) — e~Kt 2/2

(B.21)
(B.22)
(B.23)

These functions are sketched in Fig. B.3. The density function of Eq. (B.22) is a
Rayleigh density function.

Z(t)

Kt

(1 —e%)=0.393

~ Y

b o ——— -

~Y

R(t)
=~ — Initial slope = 0

(c)

~v
~ Y

v1/K
(d

Figure B.3 Linearly increasing hazard: (a) linearly increasing hazard; (b)
Rayleigh density function; (¢) Rayleigh distribution function; (d) Rayleigh reli-

ability function.
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Example B.3 (The Weibull Model) In many cases, the z(¢) curve cannot be approx-
imated by a straight line, and the previously discussed models fail. In order to fit
various z(#) curves, it is useful to investigate a hazard model of the form that is
known as a Weibull model [Weib51l:

z@)=Kt"form >-1 (B.24)
f(t) :Ktme-KtM+1/(m+1) (B25)
R(t)= et /omeD (B.26)

By appropriate choice of the two parameters K and m, a wide range of hazard
curves can be approximated. The various functions obtained for typical values of
m are shown in Fig. B.4. For fixed values of m, a change in the parameter K
merely changes the vertical amplitude of the z(¢) curve; thus, z(t)/K is plotted
versus time. Changing K produces a time-scale effect on the R(#) function; there-
fore, time is normalized so that t™*! = [K/(m + D]}¢t™ " !, Note the curves m =0 and
m =1 are constant-hazard and linearly increasing-hazard models, respectively.

B.2.3 Mean time to failure

It is often convenient to characterize a failure model or a set of failure
data by a single parameter. We generally use the mean time to failure
(MTTF) for this purpose. This is the expected life, or the expected time
during which the system will function successfully without mainte-

Kt) (m+1)]mf(m+1)
K |TK

A() +3

Reliability

(c)
1
r:tfor(a);rz[(%)”‘"“”}for(b),(c);ﬂc:[( k )”(’"*2)]tfor(d)

+1 m+1

Figure B.4 Reliability functions for the Weibull model: () hazard function; (b) density
function; (c) distribution function; (d) reliability function.
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nance or repair. For a hazard model with density function f(¢) over time
t, 1t 1s defined as

MTTF = E[T] = f: () dt (B.27)

Another convenient method for determining MTTF is given in terms of
reliability function by

MTTF = f: R()dt (B.28)

Several examples of Eq. (B.28) for different hazards are computed for
MTTF. For constant hazard

~At

oo

(B.29)

T e g, € 1
MTTF*foe dt = =

Y

a)

MTTF = [ eXfgt= — - = [T B.30
he 2 K72 2K (530

For a Weibull distribution

For a linearly increasing hazard

I'lm + 2)(m + 1)]
[k/(m + 1)]1/(m+1)

MTTF = f oKt ™+ Vlim + Vg (B.31)
0

B.2.4 Failure intensity

The last important functions that we consider are the failure intensity
function and the mean value function for the cumulative number of
failures. We denote the failure intensity function as A(¢). This is the
instantaneous rate of change of the expected number of failures with
respect to time. Suppose we let M(t) be the random process denoting
the cumulative number of failures by time ¢ and we denote n(z) as its
mean value function, i.e.,

u(t) = E[M(2)) (B.32)

The failure intensity function is then obtained from pu(t) as its deriva-
tive, i.e.,

dult)

ME) = dt

d
= E(E [M@®D (B.33)
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In order to have reliability growth we should have dA(¢)/dt < 0 V¢ > to for
some ¢,. The failure intensity function may also exhibit a zigzag-type
behavior, but it must still be decreasing to achieve reliability growth.

B.3 Analytical Methods
B.3.1 Combinatorial models

A logical approach to deal with a complex system is to decompose the
system into functional entities consisting of units or subsystems. We
model characteristics of each entity and then connect these models
according to the system structure. We compute the system reliability in
terms of the subdivision reliabilities. Combinatorial models are useful
for modeling hardware reliability. It is usually difficult to model soft-
ware as a combination of units because of the logical complexity of soft-
ware and possible hidden interactions between units. Also, software
faults are design faults, and therefore obtaining the characteristics of
software units is not straightforward. Fault tree analysis, a combinato-
rial modeling technique, has been used to model software safety and
reliability. In a fault tree analysis, we deduce various failure modes
that can contribute to a specified undesirable event. We then display
all the events graphically: the top undesired events are identified and
plotted, followed by the secondary undesired events, and so on, until
the basic events are reached.

B.3.2 Markov models

A powerful technique for analyzing complex probabilistic systems,
based on the notion of state and transitions between states, is Markov
modeling [Howa71, Triv82]. To formulate a Markov model, system
behavior is abstracted into a set of mutually exclusive system states.
For example, the states of a system can be the set of all distinet combi-
nations of working and failed modules in a reliability model. A set of
equations describing the probabilistic transitions from one state to
another state and an initial probability distribution in the state of the
process uniquely determine a Markov model. One of the most impor-
tant features of a Markov model is that the transition from state ; to
another state depends only on the current state. That is, the way in
which the entire past history affects the future of the process is com-
pletely summarized in the current state of the process.

If the state space is discrete, either finite or countably infinite, then
the model is called a discrete-space Markov model, and the Markov pro-
cess 1s referred to as a Markov chain; otherwise, the model is called a
continuous-space Markov model. If the model allows transitions
between states at any time, the model is called a continuous-time
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Markov model. In a discrete-time Markov model, all state transitions
occur at fixed time intervals. We only consider the discrete-space
Markov model.

In the case of a continuous-time model, the state transition equation
has the form

dP(®) {

2= S P j(t)] _ P D) (B.34)

P

where P|(t) = P{X(t) = j}, r;;(t) = transition rate from state ¢ to state j at
time ¢, and r,(¢) = total transition rate out of state j at time z. A Markov
process is called homogeneous (or stationary) when P{X(¢ +s) =7 | X(s)
=i} =P,(t),V¥s 2 0.If P{X(¢ + s)=j | X(s) =i} depends on s, it becomes a
nonhomogeneous (or nonstationary) process.

Example B.4 Figure B.5 shows a simple continuous-time Markov model repre-
senting the operating system reliability for a seven-machine VAXcluster system.
S, represents that i machines are down because of software. So S, represents a
normal state, and S; represents that all seven machines are down because of soft-
ware. In each state, error generation and recovery occur in all machines. In the
case that the transition rates between states are time-invariant, the transition
rate from state S; to state S, is estimated from the data:

- total number of transitions from S; to S;
=

cumulated time the system was in S; (B.35)

The set of states and the transition rates capture all relevant reliability charac-
teristics of the system at the modeled level of abstraction.

B.3.3 Markov reward analysis

Markov reward analysis combines Markov modeling and reward anal-
ysis. Each state in a Markov model is associated with a reward rate.
Markov reward analysis has been used to evaluate performance-
related reliability of computer systems [Meye92, Triv92]. In such an
analysis, the states in a model capture all possible combinations of fail-
ures in major system components, and reward for each state represents
the performance level of the system in the state. The relative perfor-

_— —_— — >
4—’_— - -
10

Figure B.5 Simple operating system reliability model for 7-machine VAXcluster.
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mance the system delivers at time ¢ is given by

E[X®)]=> rpdt) (B.36)
where p,(¢) is the probability of the system being in state i at time ¢, and
r; i1s the reward rate for state i. The quantity E[X(z)] is the expected
Instantaneous reward rate at time ¢ [Goya87]. E[X(?)] is a measure of
the instantaneous capacity of system performance assuming 100 per-
cent capacity at time 0. If r; is 1 in a nonfailure state and 0 in a failure
state and the model does not allow a repair of system failure, E[X(¢)]
equates to reliability.

The expected time-averaged accumulated reward over the time
period (0,¢), i.e., the expected interval reward rate [Goya87], Y(¢), can be
calculated by

E[Y()] = % jo > ripdx)dx (B.37)

E[Y(®)! is a measure of the time-averaged accumulated service pro-
vided by the system. This quantity has been used to evaluate the prob-
ability of task completion or mission success in the presence of system
degradation, when a repair of system failure is not allowed. The
expected reward rate at the steady-state (i.e., when the states stabilize
and no rate changes occur), Y, can be estimated by

Y=> rp (B.38)

where p; is the probability of the system being in state i in steady state.

Example B.5 The key step is to define a reward function that characterizes the
performance loss in each degraded state. Here we illustrate Markov reward anal-
ysis using the seven-machine VAXcluster model shown in Fig. B.5. Given a time
interval AT (random variable), a reward rate for a machine in the VAXcluster
system in AT is determined by

r(AT)=W(AT)/ AT (B.39)

where W(AT' ) denotes the useful work done by the system in AT and is calculated
by

AT in normal state
W(AT) = s AT —nt in error state (B.40)
0 in failure state

where n is the number of raw errors (error entries in the log) in A7} and 1 is the
mean recovery time for a single error. Thus, one unit of reward is given for each
unit of time when a machine is in the normal state. In an error state, the penalty
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paid depends on the time the machine spends on recovery in that state, which is
determined by the linear function AT —nt (normally, AT > nt; if AT < nt, W(AT ) is
set to 0). In a failure state, W(AT') is by definition zero.

Applying Eq. (B.40) to the seven-machine VAXcluster, the reward rate formula
has the following form:

7
r(AT)=> WJ(AT)/(7xAT) (B.41)

j=1

where W/(AT) denotes the useful work done by machine j in time AT. Here, all
machines are assumed to contribute an equal amount of reward to the system.
For example, if three machines fail, the reward rate is 4/7.

The expected steady-state reward rate, Y, can be estimated by

Y:% > r(At)AL; (B.42)

AtjeT

where T is the summation of all A¢’s (particular values of AT') in con-
sideration. If we substitute r from Eq. (B.41) and let AT represent the
holding time of each state in the error model, Y becomes the steady-
state reward rate of the VAXcluster, which is also an estimate of soft-
ware availability (performance-related availability). Since the model is
an empirical one based on the error event data (of which the failure
event data are a subset), the information about errors and failures of
all machines for each particular A¢; can be obtained from the data.

In Eq. (B.42), if we substitute r from Eq. (B.41) and let AT represent
the time span of the error event for a particular type of error, Y
becomes the steady-state reward rate of the system during the event
intervals of the specified error. Thus, (1 - Y) measures the loss in per-
formance during the specified error event. Examples B.6 and B.7 are
continuations of Example B.5.

Example B.6 The steady-state reward rate for the VAXcluster in Example B.5
was computed with 1 being 0.1, 1, 10, and 100 ms. The results are given in Table
B.3. The table shows that the reward rate is not sensitive to 7. This is because the
overall recovery time is dominated by the failure recovery time, i.e., the major
contributors to the performance loss are failures, not nonfailure errors. In the
range of these 1 values, the VAXcluster availability is estimated to be 0.995,

Example B.7 Table B.4 shows the steady-state reward rate for each error type
(t = 1 ms) for the VAXcluster. These numbers quantify the loss of performance
incurred by the recovery from each type of error. For example, during the recov-

TABLE B.3 Steady-State Reward Rate for the VAXcluster

T 0.1 ms 1 ms 10 ms 100 ms
Y 0.995078 0.995077 0.995067 0.994971
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TABLE B.4 Steady-State Reward Rate for Each Error Type in the VAXcluster

Error type CPU Memory Disk Tape Network Software
Y 0.14950 0.99994 0.61314 0.89845 0.56841 0.00008

ery from CPU errors, the system can be expected to deliver approximately 15 per-
cent of its full performance. During disk error recovery, the average system per-
formance degrades to nearly 61 percent of its capacity. Since software errors have
the lowest reward rate (0.00008), the loss of work during the recovery from soft-
ware errors is the most significant.

B.3.4 Birth-death processes

A birth-death process is the special case of a Markov process in which
transitions from state j are permitted only to neighboring states j + 1,
J, and j — 1. This restriction allows us to carry the solution much further
for Markov processes in many cases. Our main interest will focus on
(continuous-time) birth-death processes with discrete state space.
When the process is said to be in state j, we will let this denote the fact
that the population at that time is of size j. Moreover, a transition from
J toj + 1 will signify a “birth” within the population, whereas a transi-
tion from j to j — 1 will denote a “death” in the population.

Regarding the nature of births and deaths, we introduce the notion
of a birth rate );, which describes the rate at which births occur when
the population is of size j. Similarly, we define a death rate ;, which is
the rate at which deaths occur when the population is of size j. Note
that these birth and death rates are independent of time and depend
only on state j; thus we have a continuous-time homogeneous Markov
of the birth-death type.

To be more explicit, the assumptions we need for the birth-death pro-
cess are that it is a homogeneous Markov chain X(¢) on the states 0, 1,
2, ..., that births and deaths are independent (this follows directly
from the Markov property), and

B;: Plexactly 1 birth in (¢,t + A#)| current population size is j]
= XJAL‘ +0 (At)

D Plexactly 1 death in (¢, + At) | current population size is j]
= l.lJAt +0 (At)

B,: P lexactly 0 birth in (¢,t + A¢)| current population size is j]
=1- h,At +O(At)

D, P [exactly 0 death in (¢, + At)| current population size is j]

From these assumptions we see that multiple births, multiple deaths,
or in fact both a birth and a death in a small time interval are prohib-
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ited in the sense that the probabilities of such events are of order o(At),
where o(At) denotes an unspecified function satisfying

o(At)

At 0

limy o

We wish to solve for the probability that the population size is j at
time ¢. We denote the probability by

P(t) = PX(t) =] (B.43)

We begin by expressing the Chapman-Kolmogorov dynamics. We
focus on the possible motions of the number of members in our popula-
tion during an interval (¢,t + A¢). We will find ourselves in state j at
time ¢ + At if one of the three following mutually exclusive and exhaus-
tive events occurred:

1. The population size was j at time ¢ and no state changes occurred.

2. The population size was j — 1 at time ¢ and we had a birth during the
interval (£,t + A¢).

3. The population size was j + 1 at time ¢ and we had one death during
the interval (¢, + At).

The probability for the first of these possibilities is merely P(t) times
the probability that we moved from state j to state j during the next At
time period; this is represented by the first term on the right-hand side
of Eq. (B.44). The second and third terms on the right-hand side of that
equation correspond, respectively, to the second and third cases listed
above. The probability of any event other than the ones mentioned above
is included in o(At). Thus we may write, assuming B, Dy, By, and D,,

Pt + At) =P, )1 - LAt + o(AD]I[1 — pAt + o(AD)] + P;_1(8)
A, A+ o(AD] + PO, 1At +0(AD] +0o(A2)  j=1 (B.44)

Pyt + At) = Py(£)[1 — hoAE + o(AD)] + P [,AL + o(AD)]
+ o(At) Jj=0 (B.45)

In Eq. (B.45) we have used the assumption that it is impossible to
have a death when the population is of size 0 and the assumption that
one can indeed have a birth when the population size is 0. Expanding



764 Appendix B

the right-hand side of Eqs. (B.44) and (B.45), and rearranging the
terms, we have the following:

Pt + At) - Pt)

=+ WIPLE) + A 1Py () + Wy 1P (8)

At
o(At) :
e
Pyt + A Atz —P@®) _ “AoPo(t) + I Py(E) + O;Att) j=0 (B47)

Taking the limit as At approaches 0, we see that the left-hand sides
of Eqs. (B.46) and (B.47) represent the formal derivative of P(¢) with
respect to ¢ and also that the term o(A¢)/A¢ goes to 0. Consequently, we

have the resulting equations:
dP;(t) |
d-ift( =—(Azj+“j)Pj(t)+lj_1 j‘l(t)+uj+1Pj+1(t) _]2 1

dPt)
dt

and = —;\.()P()(t) + Hlpl(t) J =0 (B48)

The set of equations given by Eq. (B.48) is clearly a set of differential-
difference equations and represents the dynamics of our probability
system. The solution to the differential equations describing the behav-
ior of Pj(¢) is found in [Cohe69]. The differential-difference equations
displayed by Eq. (B.48) could be summarized by a state-transition-rate
diagram. In such a diagram the state j is represented by an oval sur-
rounding the number j. Each nonzero infinitesimal rate r;; is repre-
sented in the state-transition-rate diagram by a directed branch
pointing from i to j and labeled with the value r;. Furthermore, we do
not include the self-loop from j back to j, since it contains no new infor-
mation. Thus the state-transition-rate diagram for the general birth-
death process is as shown in Fig. B.6.

Concentrating on state j, we observe that we may enter it only from
state j — 1 or from state j + 1 and, similarly, we leave state j only by
entering state j — 1 or state j + 1. We also observe that the rate at which
probability that the process “flows” into state j at time ¢ is given by

Ao Aq Aj 1 i
SR EPA TGP PR
My H2 H; Wit 1

Figure B.6 State-transition-rate diagram for the birth-death process.
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A1 Pi_1(t) + ;. 1P; . 1(t), whereas the flow rate out of the state j at time
¢t is given by (A; + W)P(2).

B.3.5 Poisson processes

The simplest birth-death process to consider is a pure birth system in
which p; = 0 V¥j and A; = A Vj. Substituting this into our Eq. (B.48), we
have

APt
—‘dJ; ) = —?\.Pj(t) + kPj_l(t) J >1
dl;ft ) AP j=0 (B.49)

For simplicity we assume that the system begins at time 0 with 0
members, that is,

1 | =
P(0) = { o 70 (B.50)

Solving for Py(t) we have immediately
Pyt) =e
Inserting this last into Eq. (B.49) for j = 1 results in

dP (1)
dt

= —APy(t) + he™

The solution to this differential equation is clearly
Py(8) = Mte™!

Continuing by induction, then, we finally have as a solution to Eq.
(B.49)

(AE)J
J!

P(t)= et jz20,t20 (B.51)
This is the celebrated Poisson distribution. It is a pure birth process
with constant birth rate A giving rise to a sequence of birth epochs that
constitute a Poisson process.

With the initial condition in Eq. (B.50), P;(¢) gives the probability
that j arrivals occur during the time interval (0,£). It is intuitively clear,
since the average arrival rate is A, that the average number of arrivals
in an interval of length ¢ must be At. In fact both the mean and the
variance of a Poisson process are equal to Az
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B.4 Statistical Techniques
B.4.1 Parameter estimation

Among the most important characteristics of a random variable are its
probability distribution, mean, and variance. In practice, means and
variances are usually unknown parameters. This subsection discusses
how to estimate these parameters from data [Hogg83, Mood74].

B.4.1.1 Point estimation. Point estimation is often used in reliability
analysis. Examples include the estimation of the detection coverage
from fault injections and the estimation of mean time to failures
(MTTF) from field data. Each fault injection and each failure occur-
rence can be treated as a sample, which is assumed to be independent
of other samples.

Given a collection of n sampling outcomes, xy, %3, . . . ,%n, of a random
variable X each x; can be considered as a reahzatmn of the random
variable X.. These X/s are independent of each other and identically
distributed as X, The set {X1, X, . . . , X,} is called a random sample of
X. Our purpose is to estimate the value of some parameter 8 (8 could be
E[X] or Var(X)) of X using a function of X;, X5, . . ., X,,. The function
used to estimate 6, 0= B(Xl,Xg, ..., X,),1s called an estzmator of 6, and
0(x, X, - - - %) | is sald to be apomt estimate of 6.

An estlmator 8 is called an unbiased estimator of 0, if E[6] = 6. The
unbiased estimator that has the minimum variance, i.e., that mini-
mizes Var(9) = E[(8 — 6)?] among all unbiased estimators 8’s, is said to
be the unbiased minimum-variance estimator. It can be shown that the
sample mean

1 n
= Z‘ (B.52)

is the unbiased minimum-variance linear estimator of the population
mean |, and the sample variance

8% = S(Xi- X)? (B.53)

is, under some mild conditions, an unbiased minimum-variance
quadratic estimator of the population variance Var(X). If an estimator
8 converges in probability to 6, that is,

lim P( |9(X1,X2, X)) —-0|28)=0 (B.54)

n—w

where ¢ is any small positive number, it is said to be consistent.

Method of maximum likelihood. If the functional form of the pdf of the
variable is known, the method of maximum likelihood is a good
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approach to parameter estimation. In many cases, approximate func-
tional forms of empirical distributions can be obtained. In such cases,
the maximum likelihood method can be used to determine distribution
parameters.

The maximum likelihood method is to choose an estimator such that
the observed sample is the most likely to occur among all possible sam-
ples. The method usually produces estimators that have minimum-
variance and consistency properties. But if the sample size is small, the
estimator may be biased.

Assuming X has a pdf f(x|8), where 8 is an unknown parameter, the
joint pdf of the sample (X, X, . . ., X},

L®ey=T117_, f(x;|©) (B.55)

is called the likelihood function of 6. If é(xl, Xs, . ..,X,)1s the point esti-
mate of 6 that maximizes L(8), then 0(X;, X,, ..., X,) is said to be the
maximum likelihood estimator of 6. The following example illustrates
the method.

Example B.8 Let X denote the random variable time between failures in a com-
puter system, Assuming X is exponentially distributed with an arrival rate A, we
wish to estimate A from a random sample { X, X, . . ., X,}. By Eq. (B.55),

L=TII_, hehri = }\’ne—lz:?:lxlj

How do we choose an estimator such that the estimated A maximizes L(A)? An
easier way is to find the A value that maximizes InL () instead of L(A). This is
because the A that maximizes L (L) also maximizes InL (X), and InL (X) is easier to
handle. In this case we have

InL(MA) =nIn) -1 > x
i=1
To find the maximum, consider the first derivative

dllnL(W)] n <
. —El o
The solution of this equation at zero,
. n
h= Liax

is the maximum likelihood estimator for A.

Method of moments. Sometimes it is difficult to find maximum likeli-
hood estimators in closed form. One example is the pdf of the gamma
distribution G{(c.,0)

glx) = (e
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The estimation of a and 6 is complicated by the existence of the gamma
function I'(cr). The gamma distribution, however, is useful for charac-
terizing arrival times in the real world. In such cases, the method of
moments can be used if an analytical relationship is found between the
moments of the variable and the parameters to be estimated.

To explain the method of moments, we introduce the simple concepts
of sample moment and population moment. The kth (k=1,2, . ..) sam-
ple moment of the random variable X is defined as

1 n
= — > X% (B.56)

where X;, X,, ..., X, are a sample of X. The kth population moment of
X is just E[X*].

Suppose there are 2 parameters to be estimated. The method of
moments sets the first £ sample moments equal to the first 2 popula-
tion moments, which are expressed as the unknown parameters, and
then solves these k equations for the unknown parameters. The
method usually gives simple and consistent estimators. However, some
estimators may not have unbiased and minimum-variance properties.
The following example shows details of the method.

Example B.9 We wish to estimate o and A based on a sample {X,,X,, . .., X,}
from a gamma distribution. Since X ~ G(a,)\), we know

o o?
Elxl=5  Ell=-5+5;

The first two sample moments, by definition, are given by

Zx— Zx~Sz+X

Setting m; =E(X ) and m, = E(X?) and solvmg for o and A, we obtain

These are the estimators for o and A from the method of moments.

Least-squares estimates. The least-squares estimation technique is
commonly applied in engineering and mathematics problems. We
assume that a linear law relates two variables, the independent vari-
able x and the dependent variable y:

y=ax +b

The true data relating y and x are a set of n pairs of points: (x, yy),
(x2, ¥2), . . ., (X, ¥»). The error between the true value of the dependent
variable and the best fit of a linear function is

error; =y; — (ax; + b)
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The error measure for the accuracy of fit is given by the sum of the
squared errors (SSE):

SSE = Z (error;)? = Z (y; —ax; —b)?
i=1 i=1

The best estimates of a and b are the values of ¢ and b that minimize
the sum of the squared errors, which is achieved by

dSSE/da =0 dSSE/db =0

Solving for the resulting values of ¢ and b yields

g Zi-1(yi— Y- %) (B.57)
T o (x;— x)?
and
b=5-4% (B.58)
where
1 _ 14
x:;g“lxi y=;i:1yi

The symbols é and b stand for the least-squares estimates of @ and b,
respectively. Note that we can also perform least-squares estimation
in a similar manner with other nonlinear functional relationships
between y and x.

B.4.1.2 Interval estimation. So far, our discussion has been limited to
the point estimation of unknown parameters. The estimate may devi-
ate from the actual parameter value. To obtain an estimate with a high
confidence, it is necessary to construct an interval estimate such that
the interval includes the actual parameter value with a high probabil-
ity. Given an estimator 6, if

PO -e,<0<0+e)=p (B.59)

the random interval (6 — e, 0 + e,) is said to be 100 x B percent confi-
dence interval for 8, and B is called the confidence coefficient (the prob-
ability that the confidence interval contains 6).

Confidence intervals for means. In the following discussion, the sample
mean X is used as the estimator for the population mean. As men-
tioned in Sec. B.4.1.1, it is the unbiased minimum variance linear esti-
mator for u. Let’s first consider the case in which the sample size 1s
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large. By the central limit theorem, X is asymptotically normally dis-
tributed, no matter what the population distribution is. Thus, when the
sample size n is reasonably large (usually 30 or above, sometimes 50 or
more if the population distribution is badly skewed with occasional
outliers), Z = (X — W/S/Vn) can be approximately treated as a standard
normal variable. To obtain a 100 B percent confidence interval for 1, we
can find a number z,,; from the normal distribution N(0, 1) table such
that P(Z > z,,5) = 0/2, where oo = 1 — B. Then we have

—H <Za/2):1—0(

X
Sin

Thus, the 100(1 — o) percent confidence interval for | is approximately

P(_ZOU'Z <

= S = S
X —Za/QTnT <U< X+2a/27—; (B.60)

If the sample size is small (considerably smaller than 30), the above
approximation can be poor. In this case, we consider two commonly
used distributions: normal and exponential. If the population distribu-
tion is normal, the random variable T = (X — w/(S/Vr) has a Student’s
t-distribution with n — 1 degrees of freedom. By repeating the same
approach performed above with a ¢-distribution table, the following
100(1 — o) percent confidence interval for |1 can be obtained:

S = S
X—tnfl;a/2ﬁ<“’< X+tn—1;a/2_\/-;- (B61)

where ¢, _ 142 1s @a number such that P(T > ¢, /) = 0/2. Theoretically,
Eq. (B.61) requires X to have a normal distribution. However, this esti-
mator is not very sensitive to the distribution of X when the sample
size 1s reasonably large.

If the population distribution is exponential, it can be shown that
¥? = 2nX/u has a chi-square distribution with 2n degrees of freedom.
Thus, we can use the chi-square distribution table. Because the chi-
square distribution is not symmetrical about the origin, we need to
find two numbers, x%,.; 40 and x%, .42, such that P(y? < x%,1_4p) =
a/2 and P(x* > x°,.42) = 0/2. The obtained 100(1 - o) percent confi-
dence interval for p is

2nX U< _2nX (B.62)

2 2
X 2n:0/2 X 2n:1-o/2

Confidence intervals for variances. Our discussion focuses on the two com-
monly used distributions: normal and exponential. If X is normally dis-
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tributed, the sample variance S? can be used to construct the confidence
interval. It is known that the random variable (n — 1)S%c? has a
chi-square distribution with n — 1 degrees of freedom. To determine a
100(1 — o) percent confidence interval for 6% we follow the procedure for
constructing Eq. (B.62) to find the numbers x%, 1; .» and x%,_ 1,/ from
the chi-square distribution table. The confidence interval is then given by

(n — 1)8? (n—1)8?
TR sl T D

2 62 2
X n-10/2 x n—11-0/2

(B.63)

Our experience shows that this equation, like Eq. (B.61), is not
restricted to the normal distribution when the sample size is reason-
ably large (15 or more).

If X is exponentially distributed, we can use Eq. (B.62) to estimate
the confidence interval for Var(X), because of the exponential random
variable, Var(X) equals u® Since all terms in Eq. (B.62) are positive, we
can square them. The result gives a 100(1 — o) percent confidence inter-
val for Var(X):

( 2nX )2<Var(X)<(__%’}?_f_)2 (B.64)

2 2
X2 n.0/2 X on;1-o/2

Confidence intervals for proportions. Often, we need to estimate the con-
fidence interval for a proportion or percentage whose underlying dis-
tribution is unknown. For example, we may want to estimate the
confidence interval for the detection coverage after fault injection
experiments. In general, given n Bernoulli trials with the probability of
success on each trial being p and the number of successes being Y, how
do we find a confidence interval for p? If n is large (particularly when
np =2 5 and n(1 — p) = 5 [Hogg83]), Y/n has an approximately normal
distribution, N(u,6%), with u = p and 6% = p(1 — p)/n. Note that Y/n is
the sample mean, which is an estimator of u or p. By Eq. (B.60), the
100(1 — «) percent confidence interval for p is

% + 2,0 Vp(1 — piin (B.65)

Example B.10 We would like to determine the number of injections required to
achieve a given confidence interval for an estimated fault detection coverage. Let
n represent the number of fault injections and Y the number of faults detected in
the n injections. Assume that all faults have the same detection coverage, which
is approximately p. Now we wish to estimate p with the 100(1 — ) percent confi-
dence interval being e. By Eq. (B.65), we have

e =242 Vp(1l—p¥n (B.66)
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Solving the equation for n gives us

Za/22p(1 -p)
n=—

e2 (B.67)

where n is the number of injections required to achieve the desired confidence
interval in estimating p.

For example, assume detection coverage p = 0.6, confidence interval e = 0.05, and
confidence coefficient 1 — o = 90 percent. Then the required number of injections is

1.6452x 0.6 x 0.4
n= 0.052 = 260

B.4.2 Distribution characterization

While mean and variance are important parameters that summarize
data by single numbers, probability distribution provides further infor-
mation about the data. Analysis of distributions can help us under-
stand the data in detail and arrive at conclusions regarding the
underlying models. For example, if the time to failure and the recovery
time for a system are all exponential, then the model is a Markov
model; otherwise, it could be one of the other types of models.

B.4.2.1 Empirical distribution. Given a sample of X, the simplest way to
obtain an empirical distribution of X is to plot a histogram of the obser-
vations, shown in Fig. B.7. The range of the sample space is divided into
a number of subranges called buckets. The lengths of the buckets are
usually the same, although this is not essential. Assume that we have %

112 3 4 5 [6 k—2 |k-1| k

Xo Xy Xz Xz Xq4 X5 Xg  vrr Xz X X1 Xy

Figure B.7 Histogram for the pdf of X.
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buckets, separated by xy, x1, . . ., x3, for the given sample of size n. In
each bucket, there are y; instances. Clearly, the sample size n is th L Vi
Then, y,/n is an estimation of the probability that X takes a value in
bucket i. The histogram is an empirical pdf of X. An empirical cdf can be
constructed from the histogram (shown in Fig. B.8):

0 x < X
Fo={ ¥ % X 1<x<x (B.68)
i=1
1 X, < x

The key issue in plotting histograms is to determine the bucket size.
A small size may lead to such a large variation among buckets that the
distribution cannot easily be characterized. On the other hand, a large
size may lose details of the distribution. Given a data set, it is possible
to obtain very different distribution shapes by using different bucket
sizes. One guideline is that if any bucket has less than five instances,
the bucket size should be increased or a variable bucket size should be
used. Normally 10 or more buckets are sufficient in most cases,
depending on the sample size.

B.4.2.2 Distribution function fitting. Analytical distribution functions
are useful in analytical modeling and simulations. Thus, it is often
desirable to fit an analytical function to a given empirical distribution.
Function fitting relies on knowledge of statistical distribution func-
tions. Given an empirical distribution, step 1 is to make a good guess of
the closest distribution function(s) based on the shape of the empirical

Fk(X) A
10— m o

{(y1+y2+y3)yn|---

(y1 +y2¥ni-
yl/ni—

Xg X1 X3 X3 X4 Xg Xg ver Xeo3z o Xgoo X1 Xe x

Figure B.8 Histogram for the cdf of X.
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distribution, prior knowledge, and intuition. Step 2 is to use a statisti-
cal package to obtain the parameters for a guessed function by trying
to fit it to the empirical distribution. Step 3 is to test the goodness-of-
fit to see if the fitted function is acceptable. If the function is not accept-
able, we go to step 1 to try a different function.

Let’s look at step 3—the significance test. Assume that the given
empirical cdf is F}, defined in Eq. (B.68), and the hypothesized cdf is
F(x), obtained from step 2. Our task is to test the hypothesis

H,:F(x)=F(x)

Two commonly used goodness-of-fit test methods are the chi-square
test and the Kolmogorov-Smirnov test. We now brleﬂy introduce these
two methods [Dani90].

B.4.2.3 Chi-square test. The chi-square test assumes the distribution
under consideration can be approximated by a multinomial distribu-
tion. Assume X comes from the distribution F(x). Let

D =F(x)—Flx;,_1) i=1,...,k

where p; is the probability that an instance falls into bucket i (that is,
the interval [x;_;, x;]). For a random sample of size n, X1, X,, . . . , X, we
form a new random variable to count the number of instances in each
bucket:

Yizz I[Iiflinixi] izl,...,k (B69)
J=1
where

I _ 1 Xi-1 Sngl
[xi 1<X<x] = .
Feoamass 0 otherwise

Y, has a joint multinomial distribution, where the expected instances
falling into bucket i is np,. Furthermore, the sum of error squares
divided by the expected numbers

* (y; — np;)*
qpo1= > ———— (B.70)
i=1 np;

is a measure of the closeness of the observed number of instances, y;, to
the expected number of instances, np,, in bucket i. If g, _, is small, we
tend to accept H,. This can be measured in terms of statistical signifi-
cance if we treat g, | as a particular value of the random variable @, _;.
It can be shown that if n is large (np; = 1), the distribution of @, _, is
approximately a chi-square distribution with 2 — 1 degrees of freedom,
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x*(k — 1). If H, is true, we expect g, _, to fall into an acceptable range of
Q) -1, so that the event is likely to occur. The boundary value, or critical
value, of the acceptable range, x 2(k — 1) is chosen such that

P, 1>xik-Dl=0o

where o is called the significance level of the test. Thus, we should
reject Hy if g, _1 > %2(k — 1). Usually, o is chosen to be 0.05 or 0.1.

Example B.11 Mendelian theory indicates that the shape and color of a certain
variety of pea ought to be grouped into four groups, “round and yellow,” “round
and green,” “angular and yellow,” and “angular and green,” according to the ratios
9/3/3/1. For n = 1600 peas, the following were observed (the last column gives the
expected number):

Round and yellow 948 900
Round and green 279 300
Angular and yellow 284 300
Angular and green 89 100

A 0.05 significance level test of the null hypothesis H,: p, = 9/16, p, = 3/16,
p3=3/16, and p, = 1/16 is given by the following: reject H, if and only if g, = i (y;
—np;)*np, exceeds x| (k) =y’ (3) = 7.81. The observed g, is

(948 - 900)* N (279 - 300 N (284 — 300)2 N (89 - 100y

900 300 300 100 609

and so there is good agreement with the null hypothesis; that is, there is a good
fit between the data and the model.

B.4.2.4 Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test is
another nonparametric method in that it assumes no particular distri-
bution for the variable in consideration. The method uses the empirical
cdf, instead of the empirical pdf, to perform the test, which is more strin-
gent than the chi-square test. It can be shown that F,(x) in Eq. (B.68) has
an asymptotic normal distribution. Namely, V&[F,(x) — F(x)] has a limit-
ing normal distribution with mean 0 and variance F(x)[1 — F(x)]. The
Kolmogorov-Smirnov statistic is thus defined by

D, =sup, | Fi{(x) - F(x) | (B.71)

where sup, represents the least upper bound of all pointwise differences
| Fi(x) = F(x) |.In calculation, we can choose the midpoint between x;_,
and x;, for i = 1, ..., k, to obtain the maximum value of | Fy(x) - F(x) |.
It is seen that D), is a measure of the closeness of the empirical and hypo-
thesized distribution functions. It can be derived that D, follows a distri-
bution whose cdf values are given by the table of Kolmogorov-Smirnov
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acceptance limits [Hand66]. Thus, given a significance level o, we can
find the critical value d; from the table such that

PID,>d:] =«

The hypothesis H, is rejected if the calculated value of D, is greater
than the critical value d;. Otherwise, we accept H,.

Example B.12 A hospital is interested in knowing whether the times of birth are
uniformly distributed over the hours of the day. For 37 consecutive births in the
hospital, the following times were observed: 1:53 P.M., 3:06 P.M., 6:45 P.M., 6:26 A M.,
8:12 A.M., 10:45 A.M., 2:02 P.M., 11:46 P.M., 12:26 A.M., 5:49 AM., 8:40 A.M,, 2:17 P.M.,
4:09 p.M., 4:44 pM., 7:02 p.M., 11:08 PM., 11:45 pM., 3:56 A.M., 5:08 AM., 9:06 A.M.,
11:19 A.M., 12:25 pM., 1:30 P.M., 3:57 P.M., 2:28 A M., 6:32 A.M., 7:40 A M., 8:25 A M.,
12:40 P.M., 12:55 P.M., 3:22 P.M., 4:31 P.M., 7:46 P.M., 1:24 AM,, 3:02 A.M,, 10:06 A.M.,
10:07 A.M. Both the hypothesized uniform cdf and the sample cdf are sketched
in Fig. B.9.

One can calculate sup, | Fi(x)— F(x) | = | (31/37) - (1004/1440) | =~ 0.1406.

The critical value for significance o = 0.10 is greater than 0.2; so, according to the
Kolmogorov-Smirnov goodness-of-fit test, the data do not indicate that the
hypothesis that times of birth are uniformly distributed throughout the hours of
the day should be rejected. (That is, there is a good fit of the data.)

B.4.3 Multivariate analysis

In reality, measurements usually consist of realizations from multiple
variables. For example, a computer workload measurement may in-
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Figure B.9 Uniform cdf and sample cdf of the birth data.
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clude usages on the CPU, memory, disk, and network. A computer fail-
ure measurement may collect data on multiple components. Multivari-
ate analysis is the application of methods that deal with multiple
variables [Dill84, Kend77, John82]. These methods, including cluster
analysis, correlation analysis, and factor analysis, identify and quan-
tify relationships among multiple variables.

B.4.3.1 Correlation analysis. The correlation coefficient, Cor(X;, X,),
between two random variables X; and X, is defined as

E[(X, - M (X — gl
010y

COr(X]_, Xz) = (B72)

where L, and L are the means of X; and X, and o, and o, are the stan-
dard deviations of X, and X,, respectively. If we use p to denote the cor-
relation coefficient of X; and X,, then p satisfies -1 < p < 1. The
correlation coefficient is a measure of the linear relationship between
two variables. When |p| =1, we have X; =a X, + b, wherea > 0 ifp=1,
and a < 0 if p = —1. In these extreme cases, there is an exact linear rela-
tionship between X; and X;. When |p| # 1, there is no exact linear rela-
tionship between X, and X;. In this case, p measures the goodness of
the linear relationship X, = a X, + b between X, and X,.

If a random variable, X, is defined on time series, the correlation coef-
ficient can be used to quantify the time serial dependence in the sam-
ple data of X. Given a time window At > 0, the autocorrelation
coefficient of X on the time series ¢ is defined as

Autocor(X, At) = Cor(X(t), X(t + At)) (B.73)

where ¢ is defined on the discrete values (At, 2A¢, 8A¢,. .. ). In this
case, we treat X(¢) and X(¢ + A¢) as two different random variables, and
the autocorrelation coefficient is actually the correlation coefficient
between the two variables. That is, Autocor(X,At) measures the time
serial correlation of X with a window At.

B.4.3.2 Factor analysis. The limitation of correlation analysis is that
the correlation coefficient can only quantify a dependency between two
variables. However, dependencies may exist within a group of more
than two variables or even among all variables. The correlation coeffi-
cient cannot provide information about such multiway dependencies.
Factor analysis is a statistical technique to quantify multiway depen-
dencies among variables. The method attempts to find a set of unob-
served common factors that link together the observed variables.
Consequently, it provides insights into the underlying structure of the
data. For example, in a distributed system, a disk crash can account for
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failures on those machines whose operations depend on a set of critical
data on the disk. The disk state can be considered to be a common fac-
tor for failures on these machines.

Let X=(X,...,X,)" be a normalized random vector. We say that the
k-factor model holds for X if X can be written in the form

X=AF+E (B.74)

where A=(A;;) (i =1,...,p;j=1,...,k)is a matrix of constants called
factor loadings, and F = (f,... ,f,)T and E = (e, . .. ,e,)" are random
vectors. The elements of F are called common factors, and the elements
of E are called unique factors (error terms). These factors are unob-
servable variables. It is assumed that all factors (both common factors
and unique factors) are independent of each other and that the com-
mon factors are normalized.
Each variable x; (i =1, ... ,p) can then be expressed as

B
xX; = Z A‘ijf:f + €,
J=1
and its variance can be written as
k
(5? = Z A‘?j +
i=1

where v; is the variance of e;. Thus, the variance of x; can be split into
two parts. The first part

k
h?=Z A‘?j
j=1

is called the communality. It represents the variance of x; that is
shared with the other variables via the common factors. In particular
Ai;=Cor(x;,f;) represents the extent to which x; depends on the jth com-
mon factor. The second part, v, is called the unique variance. It is due
to the unique factor e; and explains the variability in x; not shared with
the other variables.

B.4.3.3 Cluster analysis. Cluster analysis is helpful in identifying pat-
terns in data. More specifically, it helps in reading a large number of
points plotted in an n-dimensional space into a few identifiable states
called clusters. For example, it can be used for characterizing workload
states in computer systems by identifying the points in a resource
usage plot that are similar by some measure and grouping them into a
cluster. Assume we have a sample of p workload variables. We call each
instance in the sample a point characterized by p values. Let x; = (x;,,
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X9, . . . ,X;p) denote the ith point of the sample. The Euclidean distance
between points ; and j,

P ,\12
dij: | X, —X; | =(Z (xil_le))
=1

18 usually used as a similarity measure between points i and j.

There are several different clustering algorithms. The goal of these
algorithms is to achieve small within-cluster variation relative to the
between-cluster variation. A commonly used clustering algorithm is the
k-means algorithm. The algorithm partitions a sample with p dimen-
sions and n points into % clusters, C, C,, . . . ,C,. The mean, or centroid
of the C; is denoted by X,. The error component of the partition is
defined as

EZZ X, - X, |? (B.75)

J=1x;eCy

The goal of the k-means algorithm is to find a partition that minimizes K

The clustering procedure starts with k2 groups, each of which consists
of a single point. Each new point is added to the group with the closest
centroid. After a point is added to a group, the mean of that group is
adjusted to take into account the new point. After a partition is formed,
the procedure searches for another partition with smaller Eby moving
points from one cluster to another cluster until no transfer of a point
results in a reduction in E[Spat80].

The presence of outliers in the sample is a problem associated with
the clustering algorithms. Outliers can be an order of magnitude
greater than most (usually more than 95 percent) of the other points of
the sample and can be scattered over the sample space. As a result, the
generated clusters may not characterize the features of the sample
well. For example, most generated clusters may contain only one or two
outliers, with all other points groupable into only a few clusters. One
way to deal with this problem is to specify in the algorithm the mini-
mum number of points to form a cluster, typically 0.5 percent of the
sample size. Another way is to define an upper bound for the radius
(maximum distance between the centroid and any point in a cluster) of
any generated cluster. A recommended range for the upper bound is 1.0
to 1.5 standard deviations of the sample [Arti86].







